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Abstract. For families of random walks {S(a)
k } with ES

(a)
k = −ka < 0 we

consider their maxima M(a) = supk≥0 S
(a)
k . We investigate the asymptotic

behaviour of M(a) as a → 0 for asymptotically stable random walks. This
problem appeared first in the 1960’s in the analysis of a single-server queue

when the traffic load tends to 1 and since then is referred to as the heavy-traffic

approximation problem. Kingman and Prokhorov suggested two different ap-
proaches which were later followed by many authors. We give two elementary

proofs of our main result, using each of these approaches. It turns out that

the main technical difficulties in both proofs are rather similar and may be
resolved via a generalisation of the Kolmogorov inequality to the case of an

infinite variance. Such a generalisation is also obtained in this note.

Assume that {Xi}∞i=1 is a sequence of i.i.d. random variables with a zero expec-
tation: EX1 = 0. Define a random walk

S0 = 0, Sk =
k∑

i=1

Xi for k ≥ 1.

Along with the random walk {Sk}, for each a > 0 define a random walk {S(a)
k } via

S
(a)
k = Sk − ka.

Now we can define

M (a) = sup
k≥0

S
(a)
k .

Since the random walk S
(a)
k drifts to −∞, the maximum M (a) is a proper random

variable for each a > 0. However, M (a) → +∞ in probability as a → 0. From this
fact a natural question arises: How fast does M (a) grow as a → 0?

It is well-known that the stationary distribution of the waiting time of a customer
in a single-server first-come-first-served (GI/GI/1) queue coincides with that of
the maximum of a corresponding random walk. The condition on the mean of the
random walk becoming small (a → 0) means in the context of a queue that the
traffic load tends to 1. Thus, the problem under consideration may be seen as
the investigation of the growth rate of the stationary waiting-time distribution in
a GI/GI/1 queue. This is one of the most important problems in the queueing
theory that is referred to as the heavy-traffic analysis. The question was first posed
by Kingman [5, 6] (see also [7] for an extensive discussion) who considered the case
when |X1| has an exponential moment and proved that

P(aM (a) ≤ x) → 1− e−2x/σ2
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for all x ≥ 0 as a → 0, where σ2 = V arX1. In his proof, Kingman used an
analytical approach. Namely, he applied an expression for the Laplace transform
of M (a) which follows from the Wiener-Hopf factorisation.

Prokhorov [8] generalised the latter result to the case when V arX1 ∈ (0,∞).
Prokhorov’s approach was based on the functional Central Limit Theorem.

These two approaches have become classical and have both been used to prove
various heavy-traffic results. However, they seem to have never been compared.
Later in this note we shall discuss both approaches in more detail and point out their
differences and similarities. The analytical approach was used by Boxma and Cohen
[2] (see also Cohen [3]) to study the limiting behaviour of M (a) in the case of an
infinite variance. They proved that if P(X1 > x) is regularly varying at infinity with
a parameter 1 < α < 2 (and under some additional assumptions), then there exists
a function ∆(a) such that ∆(a)M (a) converges in law to a proper random variable.
Furrer [4] and Resnick and Samorodnitsky [10] proved similar results assuming that
the random walk {Sn} belongs to the domain of attraction of a spectrally positive
stable law and using functional limit theorems. It is worth mentioning that Furrer
has computed the corresponding limit distribution explicitly.

The main purpose of the present note is to determine the asymptotic behaviour
of M (a) for any random walk from the domain of attraction of a stable law.

A random walk {Sn} is said to belong to the domain of attraction of a stable
law with index α ∈ (0, 2], if there exist sequences bn and cn such that

Sn − bn

cn
→ ξ weakly,

where ξ has the corresponding stable distribution.
It is known that the random walk {Sn} belongs to the domain of attraction of a

stable law with index α ∈ (0, 2] iff the function

V (x) := E(X2
1 , |X1| ≤ x), x > 0

is regularly varying at infinity with index 2 − α. The latter implies that we can
choose

cn := inf
{

u > 0 :
V (u)
u2

≤ 1
n

}
, n ≥ 1.

In this case the sequence {cn} is regularly varying with index 1/α and, furthermore,

V (cn)
c2
n

∼ 1
n

, n →∞. (1)

In this note we consider the case when {Sn} belongs to the domain of attraction
of a stable law with index α ∈ (1, 2] and EX1 = 0. It is known that under these
assumptions we can choose bn ≡ 0. Hence, we have the convergence

Sn

cn
→ ξ weakly.

Let {ξt, t ≥ 0} denote a stable Lévy process, where ξ1 is equal in law to ξ. We
also need to define the supremum of the process {ξt − t}t≥0 via

M∗ = sup
t≥0
{ξt − t},

which is a proper random variable as ξt − t drifts to −∞ as t →∞.
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For any α ∈ (1, 2] one can choose a positive integer-valued function n(a) such
that

an(a) ∼ cn(a) as a → 0. (2)

It follows from the regular variation of {cn} that n(a) is regularly varying at zero
with index −α/(α − 1). This, in its turn, implies that cn(a) is regularly varying
with index −1/(α− 1).

Theorem. Suppose that {Sn} belongs to the domain of attraction of a stable law
with index α ∈ (1, 2]. Then, as a → 0,

M (a)

cn(a)
→ M∗ in law. (3)

The theorem implies that M (a) grows as a regularly varying at zero function
with index −1/(α−1). The limit distribution (that of M∗) is only known explicitly
in two particular cases. If {ξt} has no positive jumps, then one has an exponential
distribution. If {ξt} has no negative jumps and α < 2, then M∗ has a Mittag-Leffler
distribution (see, e.g., [4]). In the other cases the explicit form of the distribution
is unknown, however, one can easily find its tail asymptotics P(M∗ > x) ∼ Cx1−α

as x →∞.
We will provide two different proofs of the theorem, with the use of both methods

mentioned above. However, we would like to start by giving a brief description and
comparison of the two methods.

The first, analytical, method is based on the analysis of the Laplace transform of
the normalised maximum of a random walk. It was proposed by Kingman [5, 6, 7].
The idea is to use a corollary of the Wiener-Hopf factorisation:

Ee
−µ M(a)

cn(a) = exp

{
−

∞∑
k=1

1
k
E

(
1− e

−µ
S
(a)
k

cn(a) ;S(a)
k > 0

)}
, µ ≥ 0.

In [7] heuristic arguments are given stating that the main contribution to the infinite
series in the exponent on the RHS is due to the values of k of order n(a). This,
however, was not proved formally. Instead, the author represented the exponent in
the form of an integral along the imaginary axis and gave a proof of the statement
by solving a Wiener-Hopf boundary-value problem. The same method was used
later by Boxma and Cohen [2] and Cohen [3] in the case of an infinite variance.

Our proof justifies the heuristic arguments of Kingman. The main difficulty
consists in showing that the contribution to the infinite series on the RHS of the
latter equality from values of k � n(a) is negligible. This is shown in our proof to
follow from

lim
T→∞

∑
k≥Tn(a)

1
k
P
(
S

(a)
k > 0

)
= 0 (4)

uniformly in a > 0. Thus, the derivation of (4) will be the crucial step in our proof.
We now turn to the second method used in the literature, namely the method

based on functional limit theorems. Consider the maximum of {S(a)
n } on a finite-

time interval

M
(a)
T = sup

k≤Tn(a)

S
(a)
k .
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It easily follows from the functional limit theorems for asymptotically stable random
walks that

lim
a→0

P

(
M

(a)
T

cn(a)
≥ x

)
= P(M∗

T ≥ x)

for any x ≥ 0, where
M∗

T = sup
t≤T

{ξt − t}.

The latter convergence implies that

lim
T→∞

lim
a→0

P

(
M

(a)
T

cn(a)
≥ x

)
= P(M∗ ≥ x).

However, in order to prove the theorem, one needs to show that

lim
a→0

lim
T→∞

P

(
M

(a)
T

cn(a)
≥ x

)
= P(M∗ ≥ x).

Therefore, it remains to justify the interchange of limits. It is easy to see that a
sufficient condition could be written as

lim
T→∞

P

(
sup

k≥n(a)T

S
(a)
k ≥ 0

)
= 0 (5)

uniformly in a > 0. This was shown by Prokhorov [8] in the case of a finite variance
with the application of the classical Kolmogorov inequality. Later, Asmussen [1,
page 289] proved the same result using the fact that the sequence {Sn/n} is a
backward martingale. This fact was also utilised by Furrer [4] and Resnick and
Samorodnitsky [10] in the case of an infinite variance.

We are now going to state and to prove a generalisation of the Kolmogorov
inequality which allows one to overcome the technical difficulties in both approaches
described above, namely, to prove (4) and (5). A formal proof of the theorem using
both approaches is provided after the proof of the following lemma, which is an
easy consequence of Pruitt’s bound, see [9].

Lemma. There exists C > 0 such that the inequality

P
(
max
k≤n

Sk ≥ x
)
≤ C

nV (x)
x2

(6)

holds for all x > 0.

Proof. According to inequality (1.2) in [9],

P
(
max
k≤n

Sk ≥ x
)
≤ Cn

(
P(|X1| > x) + x−1|E(X1; |X1| ≤ x)|+ x−2V (x)

)
(7)

(here and in what follows C denotes a generic positive and finite constant).
It is easy to see that

P(|X1| > x) =
∞∑

j=0

P(|X1| ∈ (2jx, 2j+1x]) ≤
∞∑

j=0

V (2j+1x)
22jx2

≤ V (x)
x2

4C(γ)
∞∑

j=1

2−(α−γ)j ,
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where in the last step we used the inequality

V (y)
V (x)

≤ C(γ)
(y

x

)2−α+γ

, y ≥ x, (8)

which follows from the Karamata representation, see [13, Theorem 1.2] (recall that
V (x) is regularly varying with index 2− α). Choosing γ < α, we get

P(|X1| > x) ≤ C
V (x)
x2

. (9)

In a way similar to that used in obtaining (9), we can get the bound

|E(X1; |X1| ≤ x)| = |E(X1; |X1| > x)| ≤ C
V (x)

x
. (10)

Combining (7), (9) and (10), we get inequality (6). The proof is thus complete. �

Proof of the theorem via Wiener-Hopf. The Wiener-Hopf factorisation implies that

Ee−λM(a)
= exp

{ ∞∑
k=1

1
k
E
(
e−λS

(a)
k − 1;S(a)

k > 0
)}

for any λ > 0, see, e.g. [14, Proposition 19.2]. For the purposes of our proof, we
set λ = µ/cn(a) where µ > 0. In these terms the latter equality takes the form

Ee
−µ M(a)

cn(a) = exp

{
−

∞∑
k=1

1
k
E

(
1− e

−µ
S
(a)
k

cn(a) ;S(a)
k > 0

)}
. (11)

We aim at showing that a pointwise, in µ, limit of this Laplace transform is equal
to the Laplace transform of M∗.

Fix ε ∈ (0, 1), T > 1 and divide the sum in the exponent in (11) into three parts:

∞∑
k=1

=
εn(a)∑
k=1

+
Tn(a)∑

k=εn(a)

+
∞∑

k=Tn(a)

=: Σ1 + Σ2 + Σ3.

We will now analyse these three summands separately.
It follows from the inequalities 0 ≤ 1− e−t ≤ t for any positive t that

0 ≤ E

(
1− e

−µ
S
(a)
k

cn(a) ;S(a)
k > 0

)
≤ µ

cn(a)
E
(
S

(a)
k ;S(a)

k > 0
)

.

Note that E
(
S

(a)
k ;S(a)

k > 0
)

= E (Sk − ka;Sk > ka) ≤ E(Sk;Sk > 0). Since Sn is
asymptotically stable with α > 1,

lim
n→∞

c−1
n E(Sn;Sn > 0) = E(ξ1; ξ1 > 0).

This implies that E(Sk;Sk > 0) ≤ Cck for all k ≥ 1. As a result we have the bound

0 ≤ E

(
1− e

−µ
S
(a)
k

cn(a) ;S(a)
k > 0

)
≤ Cµ

ck

cn(a)
.

Hence,

0 ≤ Σ1 ≤
Cµ

cn(a)

εn(a)∑
k=1

ck

k
. (12)



6 SHNEER AND WACHTEL

Since the sequence {ck} is regularly varying with index 1/α ∈ (0, 1),

n∑
1

ck

k
∼ 1

α
cn as n →∞.

Consequently,
εn(a)∑
k=1

ck

k
≤ Ccεn(a) ≤ Cε1/αcn(a). (13)

Estimates (12) and (13) imply that

0 ≤ Σ1 ≤ Cε1/αµ. (14)

In order to bound Σ3 we note that

0 ≤ E

(
1− e

−µ
S
(a)
k

cn(a) ;S(a)
k > 0

)
≤ P(S(a)

k > 0) = P(Sk > ka).

Using the lemma, we obtain

0 ≤ Σ3 ≤
∞∑

k=Tn(a)

1
k
P(Sk > ka) ≤ C

∞∑
k=Tn(a)

V (ka)
(ka)2

≤ C
1
a

∫ ∞

Tan(a)

V (x)
x2

dx.

Recalling that V (x) is regularly varying with index 2− α, we continue with

Σ3 ≤ C
V (Tan(a))
Ta2n(a)

≤ CT 1−α V (an(a))
a2n(a)

≤ CT 1−α. (15)

In the last step we used the relations

V (an(a))
a2n(a)

∼
V (cn(a))
(cn(a))2

n(a) ∼ 1, a → 0, (16)

which follow from (1).
It now remains to analyse Σ2. Using the assumption that Sk/ck converges in

law to ξ1, we get

S
(a)
k

cn(a)
=

Sk

cn(a)
− ka

cn(a)

=
Sk

ck

ck

cn(a)
− ka

cn(a)
→ v1/αξ1 − v (17)

in distribution as a → 0 and k/n(a) → v ∈ (0,∞). In the last step we used (2)
and the regular variation of {ck}. It follows from the scaling property of the stable
process {ξt} that v1/αξ1 and ξv are equal in law. From this relation and (17) we
conclude that

E

(
1− e

−µ
S
(a)
k

cn(a) ;S(a)
k > 0

)
→ E

(
1− e−µ(ξv−v); ξv − v > 0

)
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as a → 0 and k/n(a) → v ∈ (0,∞). Using now the dominated convergence we see
that, as a → 0,

Σ2 =
Tn(a)∑

k=εn(a)

n(a)
k

E

(
1− e

−µ
S
(a)
k

cn(a) ;S(a)
k > 0

)
1

n(a)
→

∫ T

ε

1
v
E
(
1− e−µ(ξv−v); ξv − v > 0

)
dv. (18)

It is clear that the process ξt− t drifts to −∞. Then, using [12, Theorem 48.1], we
obtain

lim
ε→0,T→∞

∫ T

ε

1
v
E
(
1− e−µ(ξv−v); ξv − v > 0

)
dv

=
∫ ∞

0

1
v
E
(
1− e−µ(ξv−v); ξv − v > 0

)
dv < ∞. (19)

Hence, combining (11), (14), (15) and (18) and letting ε → 0, T →∞, we get

Ee
−µ M(a)

cn(a) → exp
{
−
∫ ∞

0

1
v
E
(
1− e−µ(ξv−v); ξv − v > 0

)
dv
}

as a → 0.

The latter expression is known to be the Laplace transform of M∗, see again [12,
Theorem 48.1]. This completes the proof. �

Proof of the theorem via functional limit theorems. Our proof in this case is closely
related to the description given in the discussion after the statement of the theorem.
However, for the sake of mathematical rigour, we provide here a complete proof.

According to the functional limit theorem for asymptotically stable random
walks, {S[nt]

cn
; t ∈ [0;T ]

}
→ {ξt; t ∈ [0;T ]}

in distribution. Therefore, as a ↓ 0,{S[n(a)t] − [an(a)t]
cn(a)

; t ∈ [0;T ]
}
→ {ξt − t; t ∈ [0;T ]}.

This convergence implies that

lim
a↓0

P
(

max
k≤n(a)T

S
(a)
k ≥ xcn(a)

)
= P

(
sup
t≤T

(ξt − t) ≥ x
)
, x ≥ 0.

Since sup
t≤T

(ξt − t) converges to M∗, The theorem will be proved, if we show that

lim
T→∞

P
(

max
k≥n(a)T

S
(a)
k ≥ 0

)
= 0 (20)

uniformly in a > 0.
Note that{

max
k≥n(a)T

S
(a)
k ≥ 0

}
=

∞⋃
j=0

{
max

k∈[2jn(a)T,2j+1n(a)T )
(Sk − ka) ≥ 0

}
⊂

∞⋃
j=0

{
max

k≤2j+1n(a)T
Sk ≥ 2jan(a)T

}
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From this relation and the lemma we obtain

P
(

max
k≥n(a)T

S
(a)
k ≥ 0

)
≤

∞∑
j=0

P
(

max
k≤2j+1n(a)T

Sk ≥ 2jan(a)T
)

≤ C
∞∑

j=0

2j+1n(a)TV (2jan(a)T )
(2jan(a)T )2

=
2C

a

∞∑
j=0

V (2jan(a)T )
2jan(a)T

.

With the use of (8) with some γ < α− 1 the latter expression can be estimated by

C
V (an(a)T )
a2n(a)T

.

The regular variation of V (x) and (16) yield the bound

V (an(a)T )
a2n(a)T

≤ CT 1−α,

which implies (20), completing our proof. �

At the end we would like to make a few remarks. First of all we note that our
assumption on the family of random walks can be weakened. We assumed that
S

(a)
k = Sk − ka for the transparency of all proofs. However, all our arguments

remain valid if we assume, for instance, that

S
(a)
k = Sk − ka +

k∑
i=1

Y
(a)
i ,

where {Y (a)
i } is a sequence of i.i.d. random variables such that EY

(a)
1 = 0 and

E|Y (a)
1 |γ < ∞ uniformly in a for some γ > α. Indeed, one can easily verify that,

uniformly in a,
S

(a)
n + na

cn
→ ξ weakly

and, furthermore,

E
((

S
(a)
1 + a

)2

;
∣∣∣S(a)

1 + a
∣∣∣ ≤ x

)
≤ CV (x)

with the latter bound allowing us to apply the lemma to the random walk {S(a)
n +

na}.
Moreover, in the case of a finite variance, for our arguments to remain valid, it

is sufficient that a Lindeberg-type condition holds, i.e.

S
(a)
k =

k∑
i=1

X
(a)
i ,

where {X(a)
i } is a sequence of i.i.d. random variables such that EX

(a)
1 = −a,

lim
a→0

V arX
(a)
1 = σ2 ∈ (0,∞) and

lim
a→0

E
((

X
(a)
1

)2

; |X(a)
1 | > ε

a

)
= 0 for all ε > 0. (21)
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The latter condition seems to be optimal. On the one hand, it is necessary, ac-
cording to the Lindeberg theorem, for the normal approximation of aS

(a)
1/a2 . On the

other hand, Sakhanenko [11] gave an example of a family S(a) such that (21) fails
and M (a) = 0 for all a.
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