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Abstract

We consider an alternating risk reserve process with a threshold dividend strat-
egy. The process can be in two different states and the state of the process can only
change just after claim arrival instants. If at such an instant the capital is below
the threshold, the system is set to state 1 (paying no dividend), and if the capital
is above the threshold, the system is set to state 2 (paying dividend). Our inter-
est is in the survival probabilities. In the case of exponentially distributed claim
sizes, survival probabilities are found by solving a system of integro-differential
equations. In the case of generally distributed claim sizes, they are expressed in
the survival probabilities of the corresponding standard risk reserve processes.

1 Introduction and model description

In this paper we consider an alternating risk reserve process with a threshold dividend
strategy. Dividend strategies for insurance risk models were first proposed by De Finetti
[10]. There are many different types of barrier dividend strategies. In the classical
constant barrier dividend strategy, where dividend is paid out as soon as the surplus of
the insurance company reaches a constant barrier, the whole premium amount collected
above the barrier is paid out as dividend, that is, the dividend intensity is equal to the
premium intensity. Some recent studies of the constant barrier strategies can be found
in, for example, Lin et al. [18] and Frostig [13]. A second type of dividend strategies is
the threshold strategy where dividend is paid out with smaller intensity than the premium
intensity as soon as the surplus is above a barrier. This strategy can be viewed as a
generalization of the constant barrier strategy. The threshold strategy has been studied
for the classical compound Poisson risk process in, among others, Asmussen [3], Lin
et al. [18], Lin and Pavlova [17], and Gerber and Shiu [16]. A third type of barrier
dividend strategies is the linear barrier strategy, where the barrier grows linearly in
time and dividends are paid out with a fixed intensity whenever the surplus reaches the
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barrier, see, for example, Gerber [14], Albrecher et al [1], and Albrecher et al [2]. We
refer the reader to Avanzi [6] for a recent review on dividend strategies.

In the model under consideration in this paper, the decision to start (or to cancel)
dividend payments only takes place at claim arrival instants. Moreover, at these instants
also claim size distribution and claim arrival rate can be changed. To be more precise,
the risk reserve process can be either in state 1 or in state 2. If the process is in state
1 it is described by the net premium rate r1, generic claim size C1 with distribution
C1(·) and a Poisson claim arrival process with rate λ1. If the process is in state 2 it is
described by the net premium rate r2, generic claim size C2 with distribution C2(·) and
a Poisson claim arrival process with rate λ2. For future use we define the parameters
ρi := λiE(Ci)/ri, i = 1, 2. Note that our analysis does not depend on the assumption
that r2 < r1, although this is the case when assuming that there is dividend paid out
(with rate r1 − r2) above the threshold.

If after a claim arrival the risk process is in state 1 and above the barrier K > 0,
then it is put into state 2 (cf. τ2 and τ4 in Figure 1). If after a claim arrival the risk
process is in state 2 and below K, then it is put into state 1 (cf. τ1, τ3 and τ5 in Figure
1). Otherwise the state of the risk process is unchanged even after a claim arrival (cf.
other claim arrival instants in Figure 1).

K

τ1 τ2 τ3 τ4 τ5

x

Figure 1: Sample path of the risk reserve process in the case that r2 < r1. The claim
arrival instants resulting in state changes are indicated by τ1, τ2, . . .

The focus of the paper is on the survival probabilities starting at some level x. We
have to distinguish between the cases x < K and x ≥ K. If the input quantities ri, Ci(·)
and λi are the same for i = 1 and i = 2, then we are in the setting of the classical risk
reserve model, for which the survival probability (1 minus the ruin probability) is well
studied; see, e.g., Asmussen [4]. In particular, the following is well known (cf. [4], pp.
30-32) if ρ1 < 1: the survival probability starting at x equals the steady-state probability
that, in an M/G/1 queue with arrival rate λ1, service time distribution C1(·) and service
speed r1, the workload is less than x. This result has been extended by Asmussen and
Schock Petersen [5] to a case in which the premium rate is not constant but some
function of the present risk reserve. A special case thereof is that the premium rate
instantaneously changes when the level K is crossed, the rate otherwise being constant.

We shall not restrict ourselves to the case ρ1 < 1. However, we do assume that
ρ2 < 1. For ρ2 ≥ 1, the risk process is guaranteed to return below K, and eventually to
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go below 0; hence the survival probability is zero.

While equality between survival probability in the risk model and workload distribu-
tion in the corresponding queueing model (as in the classical risk reserve case mentioned
above) does not hold in our case, we do identify strong relations between our risk reserve
model and the corresponding queueing model. We refer to [7] for a detailed analysis
of an M/G/1 queue with a switching level K and in which the service speed may be
adapted right after customer arrivals. In [8] Lévy processes without negative jumps
are considered, with reflection at the origin. Such processes contain as special case the
compound Poisson process with negative drift, that corresponds to the workload process
in the M/G/1 queue. In the model of [8], the Lévy exponent may be changed at arrival
instants, or at Poisson observer instants, depending on the level of the process w.r.t. a
barrier. It would be interesting to extend the analysis of the present paper to the case
of Lévy processes without positive jumps, and with adaptable Lévy exponent; however,
that falls outside the scope of this paper.

One motivation for studying the present model is that it is quite natural to have
different premium rates in risk reserve processes below and above a certain threshold.
Moreover, it is often not realistic that a change of such rates occurs instantaneously
when the threshold is crossed. Furthermore, such instantaneous changes might lead to
a very large number of changes per time unit, which is undesirable. Remark that we
not only allow different premium rates, but also different claim arrival rates and claim
size distributions. This gives much additional modeling flexibility. For example, in this
way we can also model the situation in which part of the claims or part of the sizes
of the claims are paid by others (due to a reinsurance contract) whenever the reserve
process is below the threshold. Finally, we would like to emphasize that our model may
be applied to a quite large variety of practical applications, and may also be used for,
e.g., studying various storage models (where claims correspond to orders).

In a companion paper [9], we consider the same risk reserve process, with one essential
difference: the state of the process may only change at arrival instants of an independent
observer. Paper [9] also contains numerical results comparing the two models.

The paper is organized as follows. In Section 2 we obtain a system of integro-
differential equations for the survival probabilities starting at level x. Next, in Section 3,
we obtain the solution of this system in the special case that claim sizes are exponentially
distributed. In Section 4 we show how the survival probabilities can be obtained in the
case of general claim sizes. We do that by relating the survival probabilities in the
alternating risk reserve process to the survival probabilities in the standard risk reserve
process (with only one underlying state). In Section 5 we discuss the structure of
the solution in the case that the claim sizes are distributed according to a mixture of
exponentials. Section 6 concludes.

2 Integro-differential equations

Denote by Fi(x), i = 1, 2, the survival probability when initially the risk process is in
state i and the risk reserve is equal to x. We begin by analysing the survival probability
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when the risk reserve is below K. Assume that the initial capital is x−∆x < K. If the
risk reserve is in state 1, analysing the survival probability over the time interval [0, ∆x

r1

]
we obtain the following expression:

F1(x − ∆x) = (1 −
λ1∆x

r1

)F1(x) +
λ1∆x

r1

∫ x

0

F1(x − y)dC1(y) + o(∆x). (1)

Here, the first term on the right-hand side corresponds to the case when no claim arrives
in the interval [0, ∆x

r1

] while the second term corresponds to the case when a claim arrives
of size smaller than x.

Dividing both sides of (1) by −∆x, rearranging the terms, and letting ∆x tend to
zero we get the following integro-differential equation for the survival probability F1(x)
for 0 < x < K:

dF1(x)

dx
=

λ1

r1
F1(x) −

λ1

r1

∫ x

0

F1(x − y)dC1(y). (2)

Equivalently, if the risk process is in state 2, analysing the survival probability over
the time interval [0, ∆x

r2

] yields the following expression

F2(x − ∆x) = (1 −
λ2∆x

r2

)F2(x) +
λ2∆x

r2

∫ x

0

F1(x − y)dC2(y) + o(∆x), (3)

which gives the following integro-differential equation for the survival probability F2(x)
for 0 < x < K:

dF2(x)

dx
=

λ2

r2
F2(x) −

λ2

r2

∫ x

0

F1(x − y)dC2(y). (4)

Analysing the survival probability when the initial risk reserve is above K gives in
a similar manner:

dF1(x)

dx
=

λ1

r1
F1(x) −

λ1

r1

∫ x−K

0

F2(x − y)dC1(y) −
λ1

r1

∫ x

x−K

F1(x − y)dC1(y), (5)

and

dF2(x)

dx
=

λ2

r2

F2(x) −
λ2

r2

∫ x−K

0

F2(x − y)dC2(y) −
λ2

r2

∫ x

x−K

F1(x − y)dC2(y). (6)

3 Exponentially distributed claim sizes

In this section we solve the system of integro-differential equations in the special case
that the claim sizes are exponentially distributed, i.e., C1(x) = 1 − e−µ1x and C2(x) =
1 − e−µ2x. Let us begin with the survival probability when 0 < x < K. Integro-
differential equation (2) can be written as

dF1(x)

dx
=

λ1

r1
F1(x) −

λ1

r1

∫ x

0

F1(y)µ1e
−µ1(x−y)dy. (7)
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Multiplying both sides of (7) with eµ1x and using the fact that

d

dx
(eµ1xF1(x)) = µ1e

µ1xF1(x) + eµ1xdF1(x)

dx
,

we get
d

dx
(eµ1xF1(x)) = (µ1 +

λ1

r1
)eµ1xF1(x) −

λ1µ1

r1

∫ x

0

eµ1yF1(y)dy. (8)

Let G1(x) := eµ1xF1(x). We can now rewrite (8) using G1(x)

dG1(x)

dx
= (µ1 +

λ1

r1
)G1(x) −

λ1µ1

r1

∫ x

0

G1(y)dy. (9)

Differentiating (9) once yields

d2G1(x)

dx2
= (µ1 +

λ1

r1
)
dG1(x)

dx
−

λ1µ1

r1
G1(x). (10)

Thus we have a second order linear equation with constant coefficients. The character-
istic equation

k2
− (µ1 +

λ1

r1
)k +

λ1µ1

r1
= 0

has two distinct roots k1 = µ1 and k2 = λ1

r1

, and the solution to (10) is given by

G1(x) = C11e
µ1x + C12e

λ1

r1
x
, 0 < x < K.

Consequently the solution to (7) is

F1(x) = C11 + C12e
−(µ1−

λ1

r1
)x

, 0 < x < K. (11)

To find the survival probability F2(x) for 0 < x < K we need to solve integro-
differential equation (4) with C2(x) = 1 − e−µ2x:

dF2(x)

dx
=

λ2

r2
F2(x) −

λ2

r2

∫ x

0

F1(x − y)µ2e
−µ2ydy (12)

=
λ2

r2
F2(x) −

λ2

r2

[
C11 + (A1 − C11)e

−µ2x
− A1e

−(µ1−
λ1

r1
)x

]
,

with
A1 =

µ2

µ1 − µ2 −
λ1

r1

C12. (13)

Thus we have a first order inhomogeneous linear equation with constant coefficients.
The solution of this equation is given by

F2(x) = C21e
λ2

r2
x

+ C11 + A2e
−µ2x + A3e

−(µ1−
λ1

r1
)x

, 0 < x < K, (14)
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with

A2 =
λ2

r2

(A1 − C11)
λ2

r2

+ µ2

, A3 =
λ2

r2

A1

λ1

r1

− µ1 −
λ2

r2

. (15)

The constants C11, C12 and C21 should be determined by the boundary conditions.

Let us now continue with the survival probabilities for initial values x above K
described by differential equation (5) and (6). We begin with (6). Using the assumption
that the claims are exponentially distributed we get

dF2(x)

dx
=

λ2

r2

F2(x) −
λ2

r2

∫ x

K

F2(y)µ2e
−µ2(x−y)dy −

λ2

r2

∫ K

0

F1(y)µ2e
−µ2(x−y)dy, (16)

where F1(x) in the second integral on the right hand side is the survival probability
for 0 < x < K given in (11). Multiply both sides of (16) by eµ2x and define G2(x) :=
eµ2xF2(x) so that we get

dG2(x)

dx
= (µ2 +

λ2

r2
)G2(x) −

λ2µ2

r2

∫ x

K

G2(y)dy −
λ2µ2

r2

∫ K

0

F1(y)eµ2ydy. (17)

Differentiating (17) once we get a second order linear equation

d2G2(x)

dx2
= (µ2 +

λ2

r2

)
dG2(x)

dx
−

λ2µ2

r2

G2(x). (18)

This equation has the same structure as (10) and we can immediately write down the
solution

G2(x) = D21e
µ2x + D22e

λ2

r2
x

x > K.

Consequently the solution to (16) is

F2(x) = D21 + D22e
−(µ2−

λ2

r2
)x

x > K. (19)

For the survival probability F1(x) we rewrite the integro-differential equation (5) as

dF1(x)

dx
=

λ1

r1

F1(x) −
λ1

r1

∫ x

K

F2(y)µ1e
−µ1(x−y)dy −

λ1

r1

∫ K

0

F1(y)µ1e
−µ1(x−y)dy, (20)

where we now can use the fact that we know F2(y) for y > K via (19) and F1(y) for
0 < y < K via (11). Thus we have a first order inhomogeneous linear equation with
constant coefficients. The solution of this equation is given by

F1(x) = D11e
λ1

r1
x

+ B1 + B2e
−(µ2−

λ2

r2
)x

+ B3e
−µ1x, x > K. (21)

The constants B1, B2 and B3 are given by

B1 = D21,
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B2 =
µ1

λ1

r1(
λ1

r1

−
λ2

r2

+ µ2

)(
µ1 + λ2

r2

− µ2

)D22,

B3 =

λ1

r1

C11

(
eµ1K − 1

)
+ µ1C12

(
e

λ1

r1
K
− 1

)
−

λ1

r1

D21e
µ1K −

λ1

r1
µ1D22

µ1+
λ2

r2
−µ2

e

“

µ1+
λ2

r2
−µ2

”

K

λ1

r1

+ µ1

.

Again, the constants D11, D21 and D22 should be determined by the boundary condi-
tions.

3.1 Boundary Conditions

In the four expressions for the survival probabilities (11), (14), (19), and (21) we have in
total six unknown constants. To find these constants we set up six boundary conditions.
The first two are

B1 limx→∞ F1(x) = 1,

B2 limx→∞ F2(x) = 1.

The next two boundary conditions follow from the fact that at the barrier K the prob-
abilities of surviving should be continuous, that is

B3 F1(K
−) = F1(K

+),

B4 F2(K
−) = F2(K

+).

The fifth boundary condition comes from the behaviour of the derivative of F1(x) at
x = 0. From (2) we get

B5 F ′

1(0
+) = λ1

r1

F1(0
+).

Finally, the sixth boundary condition comes from the behaviour of the derivative of
F2(x) at x = K. From (4), (6) and condition B4 we get

B6 F ′

2(K
−) = F ′

2(K
+).

Conditions B5 for the derivative of F1(x) at x = 0 and B6 for the derivative of F2(x)
at x = K are required since (7) for F1(x), x < K, and (16) for F2(x), x > K, give rise
to second order differential equations.

Conditions B1 and B2 imply that D11 = 0 and D21 = 1. Condition B5 implies
that C12 = −

λ1

r1µ1

C11. Conditions B3, B4 and B6 can be used to determine the three
remaining constants C11, C21 and D22.
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4 Generally distributed claim sizes

In this section, we shall call the process under consideration ”original process” and a
standard risk process - with premium rate equal to ri, claim arrival process with param-
eter λi and distribution of claims Ci - is called ”standard process in state i”, for i = 1, 2.
In the case of generally distributed claim sizes, we shall relate the survival probabil-
ities for the original process to the survival probabilities of the standard processes in
state 1 and 2. As mentioned in the introduction, these latter survival probabilities are
extensively studied in the literature.

4.1 F1(x) for x < K.

To find the survival probability in this case, note that the process starts in state 1 at a
level below K and its state will not change at least until it reaches level K. Taking this
into account, one can apply arguments similar to those used in the proof of [3, Chapter
VII, Proposition 1.10] to obtain

F1(x) = F̃1(x)
F1(K)

F̃1(K)
, (22)

where F̃1(y) denotes the survival probability for the standard process in state 1 starting
at level y. Hence, it remains to find the value of F1(K), which is done in Subsection 4.4.
We refer to Section 4 of the companion paper [9] for a more detailed discussion of (2)
and its solution (22). Formula (2) also appears in the model studied there, with state
changes at Poisson observer epochs.

4.2 F2(x) for x ≥ K.

We exploit here the following idea: the original process starts at a level x ≥ K at
state 2 and will stay in this state before the time it will first cross level K. Until this
time, the process follows the trajectory of a standard process in state 2 starting at level
x−K. Hence, the original process ”survives” in either of the two following cases: (i) the
standard process in state 2 starting at level x − K never hits the negative half-line, or
(ii) the standard process in state 2 starting at level x−K hits the negative half-line, but
its first negative value (we will denote it by −Tx−K so that Tx−K is the quantity that is
usually referred to in the literature as the deficit at ruin) is in the interval (−K, 0), and
the original process starting at the level K − Tx−K ”survives”. Note that in the second
scenario the probability of survival after the standard process in state 2 has reached the
negative half-line is equal to F1(K − Tx−K) (since only a claim arrival can cause the
process to go downwards, and as soon as the standard process in state 2 goes below the
level 0, the state of the original process changes to 1) and is a known quantity due to
the previous subsection.

Formally,

F2(x) = F̃2(x − K) + (1 − F̃2(x − K))

∫ K

0

F1(K − y)dP(Tx−K ≤ y), (23)
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where x ≥ K and F̃2(y) denotes the survival probability in the standard risk model
starting at level y in state 2.

Remark 1. The random variable Ty was investigated in a number of papers. Its Laplace
transform may be found in [15]. In some particular cases it is also possible to find an
explicit formula for its distribution (see, e.g. [11] and [12]).

Remark 2. In the case x = K Formula (23) may be simplified with the use of the
following well-known fact (see, e.g. [3, Chapter III, Theorem 2.2]):

P(T0 < y) =
1

EC2

∫ y

z=0

(1 − C2(z))dz for all y > 0.

Using this, we obtain

F2(K) = F̃2(0) +
1

EC2

(1 − F̃2(0))

∫ K

0

(1 − C2(y))F1(K − y)dy

= 1 −
λ2EC2

r2
+

λ2

r2

∫ K

0

(1 − C2(y))F1(K − y)dy.

Note that in the last equality we also used the fact that F̃2(0) = 1−
λ2EC2

r2
(see, e.g. [3,

Chapter III, Corollary 3.1]

4.3 F2(x) for x < K.

Consider (4):
dF2(x)

dx
=

λ2

r2

F2(x) −
λ2

r2

∫ x

0

F1(x − y)dC2(y).

In the second term on the RHS the range of x−y is (0, x) and since the function F1 in this
range is known, one can use here the standard method of solving an inhomogeneous first-
order differential equation. We represent F2(x) as C(x)eλ2x/r2 and obtain a differential
equation satisfied by C(x):

C ′(x) = −
λ2

r2
e−λ2x/r2

∫ x

0

F1(x − y)dC2(y),

and hence,

C(x) = C1 −
λ2

r2

∫ x

0

e−λ2z/r2

∫ z

0

F1(z − y)dC2(y)dz,

where C1 is a constant. This implies that

F2(x) = C1e
λ2x/r2 −

λ2

r2

∫ x

0

eλ2(x−z)/r2

∫ z

0

F1(z − y)dC2(y)dz.

To find C1, use the continuity of the function F2 at point K (F2(K
−) = F2(K

+)):

C1 = e−λ2K/r2F2(K) +
λ2

r2

∫ K

0

e−λ2z/r2

∫ z

0

F1(z − y)dC2(y)dz,
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and, finally, after re-arranging terms,

F2(x) = e−λ2(K−x)/r2F2(K) +
λ2

r2

∫ K

x

eλ2(x−z)/r2

∫ z

0

F1(z − y)dC2(y)dz.

Note here that F2(K) has already been obtained (see Remark 2). An intuitive interpre-
tation of the formula above is as follows. The first term corresponds to the case when
there is no claim before the process starting at level x reaches level K (the probability
of this event is equal to e−λ2(K−x)/r2, since the slope in this case is always equal to r2,
and the probability of survival conditioned on this event happening is equal to F2(K)).
The second term corresponds to the case when a claim arrives when the process is at a
level z between x and K.

4.4 F1(x) for x ≥ K.

Consider (5):

dF1(x)

dx
=

λ1

r1
F1(x) −

λ1

r1

∫ x−K

0

F2(x − y)dC1(y) −
λ1

r1

∫ x

x−K

F1(x − y)dC1(y)

for x ≥ K. Note that the range of x − y in the first integral on the RHS is (K, x) (the
function F2 is known in this range), and the range of x− y in the second integral on the
RHS is (0, K) (the function F1 is known in this range). Hence, one can use the same
methods as in the previous subsection to solve an inhomogeneous first-order differential
equation:

F1(x) = D1e
λ1x/r1 −

λ1

r1

∫ x

0

eλ1(x−z)/r1

∫ z−K

0

F2(z − y)dC1(y)dz

−
λ1

r1

∫ x

0

eλ1(x−z)/r1

∫ z

z−K

F1(z − y)dC1(y)dz,

where D1 is a constant. To find it, first re-write the expression above as

F1(x) = eλ1x/r1

(
D1 −

λ1

r1

∫ x

0

e−λ1z/r1

∫ z−K

0

F2(z − y)dC1(y)dz

−
λ1

r1

∫ x

0

e−λ1z/r1

∫ z

z−K

F1(z − y)dC1(y)dz

)

and then use the fact that F1(x) → 1 as x → ∞:

D1 =
λ1

r1

∫
∞

0

e−λ1z/r1

∫ z−K

0

F2(z−y)dC1(y)dz+
λ1

r1

∫
∞

0

e−λ1z/r1

∫ z

z−K

F1(z−y)dC1(y)dz,

and hence,

F1(x) =
λ1

r1

∫
∞

x

eλ1(x−z)/r1

∫ z−K

0

F2(z−y)dC1(y)dz+
λ1

r1

∫
∞

x

eλ1(x−z)/r1

∫ z

z−K

F1(z−y)dC1(y)dz.

(24)
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As in the previous subsection, the formula above has an intuitive explanation. One
should just think of conditioning on the level z (between x and ∞) at which the first
claim arrives.

Remark 3. The formula above may be used for finding F1(K), which will complete the
task of finding the survival probabilities in the general case. To find F1(K), one should
use formulas for F1(x) for x < K from subsection 4.1 and for F2(x) for x ≥ K from
subsection 4.2. Once these values are plugged into (24), all but one terms in the obtained
equation depend on F1(K), and the remaining term is a constant, hence, the value of
F1(K) may be computed.

5 Claim sizes distributed as mixtures of exponen-

tials

In this section we assume that the claim size distributions have the form

Cj(x) = 1 −

Lj∑

i=1

cj,ie
sj,ix, j = 1, 2. (25)

In (25), sj,i < 0 for all j and i, and
∑Lj

i=1 cj,i = 1 for j = 1, 2. We will show how to use
the results of the previous section to find ruin probabilities in this case. Hereby, we will
use the results of [15].

• F1(x) for x < K.

From, e.g., Formula (18) in [15] it follows that in this case

F̃1(x) = 1 −

L1∑

i=1

D1,ie
q1,ix,

where q1,i are solutions of the equation

λ1

r1

L1∑

i=1

c1,i

q − sj,i
= 1

(see (14) in [15]), and D1,i may be found using Formula (15) from [15].

It is now clear from (22) that F1(x) for x < K is a constant plus a mixture of L1

exponentials.

• F2(x) for x ≥ K. We will use here (23):

F2(x) = F̃2(x − K) + (1 − F̃2(x − K))

∫ K

0

F1(K − y)dP(Tx−K ≤ y)

= F̃2(x − K) +

∫ K

0

F1(K − y)g(x− K, y)dy, (26)
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where function g is defined via (2) and (3) in [15]. Now we need to make use of
the facts that, analogously to the previous case,

F̃2(x − K) = 1 −

L2∑

i=1

D2,ie
q2,i(x−K)

and that (from Formula (16) in [15])

g(x− K, y) =
L2∑

i=1

L2∑

k=1

D2,i,ke
s2,iyeq2,k(x−K).

Plugging the two expressions above into (26) (and taking into account the expres-
sion for F1(x) for x < K), yields that in our case F2(x) for x ≥ K is a constant
plus a mixture of L2 exponentials.

• Remaining cases.

In both remaining cases (F2(x) for x < K and F1(x) for x ≥ K) one should use
results of the cases already considered and the last expressions from Sections 4.3
and 4.4, respectively. After some tedious computations, one obtains that F2(x)
for x < K is a constant plus a mixture of L1 + L2 + 1 exponentials, and F1(x) for
x ≥ K is a constant plus a mixture of L1 + L2 exponentials.

6 Conclusion

We considered a risk reserve process with a threshold dividend strategy which can be
in two different states and which can only change state at claim arrival instants. In
the companion paper [9] we will look at a similar model in which the process can only
change state at the arrival instants of an independent Poisson observer. In [9] we will
also present numerical results for both models.
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