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Abstract

We consider an alternating risk reserve process with a threshold dividend strat-
egy. The process can be in two different states and the state of the process can
only change at the arrival instants of an independent Poisson observer. Whether
or not a change then occurs depends on the value of the risk reserve w.r.t. the
barrier. If at such an instant the capital is below the threshold, the system is
set to state 1 (paying no dividend), and if the capital is above the threshold, the
system is set to state 2 (paying dividend). In each of the two states, the process is
described by different premium rates, Poisson claim arrival intensities, and claim
size distributions. For this model we determine the survival probabilities, distin-
guishing between the initial state being 1 or 2, and the process starting below or
above the barrier. In the case of exponentially distributed claim sizes, survival
probabilities are found by solving a system of integro-differential equations. In
the case of generally distributed claim sizes, they are expressed in the survival
probabilities of the corresponding standard risk reserve processes. We perform
several numerical experiments, including a comparison with the case in which
state changes can only occur just after claim arrival instants; that case is treated
in Part I.

1 Independent Poisson Observer

In this paper we consider the alternating risk reserve process with a threshold dividend
strategy. In the classical threshold dividend strategy model(s), dividend is paid out with
a rate less than or equal to the premium rate as soon as the risk reserve process is above
a certain threshold or barrier. In our model, the decision to start (or to cancel) dividend
payments only takes place at so-called observer instants; these instants occur according
to a Poisson process. Moreover, at these observer instants also claim size distribution
and claim arrival rate can be changed.
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To be more precise, the risk reserve process can be either in state 1 or in state 2.
If the process is in state 1 it is described by the premium rate r1, the generic claim
size C1 with distribution C1(·) and a Poisson claim arrival process with rate λ1. If the
process is in state 2 it is described by the premium rate r2, the generic claim size C2

with distribution C2(·) and a Poisson claim arrival process with rate λ2. For future use
we define the parameters ρi := λiE(Ci)/ri, i = 1, 2. Note that our analysis does not
depend on the assumption that r2 < r1, although this is the case when assuming that
there is dividend paid out above the threshold.

If the observer finds the risk process in state 1 and above the barrier K > 0 the
risk process is put into state 2 (cf. τ4 and τ6 in Figure 1). If the observer finds the
risk process in state 2 and below K the risk process is put into state 1 (cf. τ2 and τ5
in Figure 1). Otherwise the risk process is unchanged by the observer (cf. τ1 and τ3
in Figure 1). We further assume that the observation instants occur at rate ν1 or ν2

depending on whether the risk process was below or above K at the last observation.

K

τ τ τ ττ 1 τ 2 3 4 5 6

Figure 1: Sample path of the risk reserve process in the case that r2 < r1. The observer
instants are indicated as τ1, τ2, . . . .

The focus of the paper is on the survival probabilities starting at some level x. We
have to distinguish between the cases x < K and x ≥ K. We do not assume that ρ1 < 1.
However, we do assume that ρ2 < 1 since for ρ2 ≥ 1, the risk process is guaranteed to
return below K, and eventually to go below 0; hence the survival probability is zero.

In a companion paper [5], we have considered the same risk reserve process, with
one essential difference: a change can only occur right after claim arrival instants. We
refer the reader to the introduction in [5] for a literature account on dividend strategies.
We shall sometimes refer to the model with changes at claim arrival instants as the
ACAI model, whereas the independent Poisson observer model is referred to as IPO
model. Both models may arise quite naturally, and together they offer much modelling
flexibility. If the arrival rate of the Poisson observer in IPO is taken infinitely large,
the classical model with instantaneous change of premium rate is retrieved. The feature
of different claim arrival rates and different claim size distributions in states 1 and 2
allows us, e.g., to represent reinsurance whenever the reserve process is below a certain
threshold.

The approach we have taken in [5] is more probabilistic, whereas in the present paper
we rely more heavily on analytic methods and Laplace-Stieltjes transforms. On the one
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hand we felt it was more interesting to use another approach, and on the other hand the
IPO model seems slightly more complicated than the ACAI model, and the probabilistic
approach seems harder than for ACAI.
The paper is organized as follows. In Section 2 we derive integro-differential equations
for the survival probabilities when the initial risk reserve equals x below, respectively
above, K. These equations are solved in Section 3 for the case of exponential claim
size distributions. Subsection 3.2 contains numerical results via which the survival
probabilities in our model are compared with those in the model with state changes
at claim arrival instants [5]. The case of general claim size distributions is studied in
Section 4. The structure of the survival probabilities is considered in more detail, in
Section 5, for the case that the claim sizes have a rational Laplace-Stieltjes transform,
i.e., claim sizes are distributed according to a mixture of exponentials. Section 6 contains
some suggestions for future research.

2 Integro-Differential Equations of the Survival Prob-

abilities

Denote by Fi(x), i = 1, 2, the probability of survival (i.e., no ruin) if the initial risk
reserve is x and the risk process is in state i. It is our goal in this section to determine
these survival probabilities.

We begin by analysing the survival probability when the risk reserve is below K. As-
sume that the initial capital is x−∆x < K. If the risk reserve is in state 1, analysing the
survival probability over the small time interval [0, ∆x

r1
] we have the following expression:

F1(x− ∆x) = (1 − λ1∆x
r1

)(1 − ν1∆x
r1

)F1(x)

+λ1∆x
r1

∫ x

0
F1(x− y)dC1(y)

+ν1∆x
r1

F1(x) + o(∆x).

(1)

The first term on the right hand side corresponds to the case when no claim arrives and
the observer does not arrive either. The second term corresponds to the case when there
is a claim arriving but no observer. And the third term corresponds to the case when
there is no claim but the observer arrives.

Subtracting F1(x) from both sides, subsequently dividing both sides of (1) by −∆x,
rearranging the terms, and letting ∆x tend to zero we get the following integro-differential
equation for the survival probability F1(x) for 0 < x < K:

dF1(x)

dx
=
λ1

r1
F1(x) −

λ1

r1

∫ x

0

F1(x− y)dC1(y). (2)

Equivalently, if the risk process is in state 2, analysing the survival probability over
the time interval [0, ∆x

r2
] yields the integro-differential equation for the survival proba-
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bility F2(x) for 0 < x < K:

dF2(x)

dx
=
λ2 + ν2

r2
F2(x) −

λ2

r2

∫ x

0

F2(x− y)dC2(y) −
ν2

r2
F1(x). (3)

Analysing the survival probability when the initial risk reserve is above K gives in
a similar manner:

dF1(x)

dx
=
λ1 + ν1

r1
F1(x) −

λ1

r1

∫ x

0

F1(x− y)dC1(y) −
ν1

r1
F2(x), (4)

and
dF2(x)

dx
=
λ2

r2
F2(x) −

λ2

r2

∫ x

0

F2(x− y)dC2(y). (5)

3 Exponential Claims

In this section we assume that the claims are exponentially distributed, that is, C1(x) =
1− e−µ1x and C2(x) = 1− e−µ2x. For this case we are able to derive explicit expressions
for the survival probabilities F1(x) and F2(x). Furthermore, the insight obtained in this
section will be helpful in tackling the case of generally distributed claims in the next
section.

Let us begin with the survival probability when 0 < x < K. Integro-differential
Equation (2) can be written as

dF1(x)

dx
=
λ1

r1
F1(x) −

λ1

r1

∫ x

0

F1(y)µ1e
−µ1(x−y)dy. (6)

The solution to (6) is derived in exactly the same way as for the corresponding
survival probability in the model described in [5] (cf. Equation (7) in [5]) and is

F1(x) = C11 + C12e
−(µ1−

λ1
r1

)x
, 0 < x < K. (7)

To find the survival probability F2(x) for 0 < x < K we need to solve integro-
differential Equation (3) with C2(x) = 1 − e−µ2x:

dF2(x)

dx
=
λ2 + ν2

r2
F2(x) −

λ2

r2

∫ x

0

F2(y)µ2e
−µ2(x−y)dy −

ν2

r2
F1(x). (8)

Multiplying both sides of (8) with eµ2x and letting G2(x) := eµ2xF2(x) we get

dG2(x)

dx
= (µ2 +

λ2 + ν2

r2
)G2(x) −

λ2µ2

r2

∫ x

0

G2(y)dy −
ν2

r2
eµ2xF1(x). (9)

Differentiating (9) once gives

d2G2(x)

dx2
= (µ2 +

λ2 + ν2

r2
)
dG2(x)

dx
−
λ2µ2

r2
G2(x) −

ν2

r2

d

dx
(eµ2xF1(x)). (10)
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Thus we have a second order inhomogeneous linear equation with constant coefficients.
For the homogeneous solution of (10) we have the characteristic equation

k2 − (µ2 +
λ2 + ν2

r2
)k +

λ2µ2

r2
= 0, (11)

with two distinct roots

k1 =
1

2
(µ2 +

λ2 + ν2

r2
) +

1

2

√

(µ2 +
λ2 + ν2

r2
)2 − 4

λ2µ2

r2
, (12)

and

k2 =
1

2
(µ2 +

λ2 + ν2

r2
) −

1

2

√

(µ2 +
λ2 + ν2

r2
)2 − 4

λ2µ2

r2
. (13)

So the homogeneous solution of (10) is

G2h(x) = C21e
k1x + C22e

k2x, 0 < x < K. (14)

To find the particular solution of (10) we first note that

d

dx
(eµ2xF1(x)) = µ2C11e

µ2x + C12(µ2 − µ1 +
λ1

r1
)e

(µ2−µ1+
λ1
r1

)x
.

Since this is a sum with two terms we can find a particular solution to (10) for each
term, that is, we want to find particular solutions to

d2G2(x)

dx2
− (µ2 +

λ2 + ν2

r2
)
dG2(x)

dx
+
λ2µ2

r2
G2(x) = −

ν2µ2

r2
C11e

µ2x, (15)

respectively,

d2G2(x)

dx2
−(µ2+

λ2 + ν2

r2
)
dG2(x)

dx
+
λ2µ2

r2
G2(x) = −

ν2

r2
C12(µ2−µ1+

λ1

r1
)e

(µ2−µ1+
λ1
r1

)x
, (16)

for 0 < x < K.
For Equation (15) we try a solution of the form G2p(x) = A1e

µ2x. Inserting this into
(15),

[µ2
2 − (µ2 +

λ2 + ν2

r2
)µ2 +

λ2µ2

r2
]A1e

µ2x = −
ν2µ2

r2
C11e

µ2x.

Hence A1 = C11.

For Equation (16) we try a solution of the form G2p(x) = A2e
(µ2−µ1+

λ1
r1

)x
. Inserting

this into (16) gives A2 = −AC12, where

A =
ν2

r2
(µ2 − µ1 + λ1

r1
)

(µ2 − µ1 + λ1

r1
)2 − (µ2 + λ2+ν2

r2
)(µ2 − µ1 + λ1

r1
) + λ2µ2

r2

. (17)

The solution of (10) is therefore

G2(x) = C21e
k1x + C22e

k2x + C11e
µ2x − AC12e

(µ2−µ1+
λ1
r1

)x
, 0 < x < K. (18)
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Thus

F2(x) = C21e
(k1−µ2)x + C22e

(k2−µ2)x − AC12e
−(µ1−

λ1
r1

)x
+ C11, 0 < x < K, (19)

where k1 and k2 are the two roots of the characteristic Equation (11) and A is the
constant given in (17). The constants C11, C12, C21 and C22 should be determined by
boundary conditions.

Let us now continue with the survival probabilities for initial values x above K as
described by differential Equations (4) and (5).

We begin with (5). Using the assumption that the claims are exponentially dis-
tributed, we get

dF2(x)

dx
=
λ2

r2
F2(x) −

λ2

r2

∫ x

K

F2(y)µ2e
−µ2(x−y)dy −

λ2

r2

∫ K

0

F2(y)µ2e
−µ2(x−y)dy, (20)

where F2(x) in the second integral on the right hand side is the survival probability for
0 < x < K given in (19).

The solution to (20) is obtained in the same way as for Equation (6) (cf. the survival
probability in the model described in [5] for x > K and initial state 2) and is

F2(x) = D21 +D22e
−(µ2−

λ2
r2

)x
, x > K. (21)

For the survival probability F1(x) we can rewrite the integro-differential equation
(4) as follows

dF1(x)

dx
=

λ1 + ν1

r1
F1(x) −

λ1µ1

r1

∫ x

K

F1(y)e
−µ1(x−y)dy (22)

−
λ1µ1

r1

∫ K

0

F1(y)e
−µ1(x−y)dy −

ν1

r1
F2(x), x > K,

where we take into account that the survival probability F1(x) for 0 < x < K is now
known.

The integro-differential equation for G1(x) := eµ1xF1(x) is in this case

dG1(x)
dx

= (µ1 + λ1+ν1

r1
)G1(x) −

λ1µ1

r1

∫ x

K
G1(y)dy

−λ1µ1

r1

∫ K

0
G1(y)dy −

ν1

r1
eµ1xF2(x).

(23)

Differentiating once gives

d2G1(x)

dx2
= (µ1 +

λ1 + ν1

r1
)
dG1(x)

dx
−
λ1µ1

r1
G1(x) −

ν1

r1

d

dx
(eµ1xF2(x)). (24)

This differential equation has the same structure as (10) so we can immediately write
down the solution

G1(x) = D11e
k̂1x +D12e

k̂2x +D21e
µ1x −BD22e

(µ1−µ2+
λ2
r2

)x
, x > K, (25)
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where

k̂1 =
1

2
(µ1 +

λ1 + ν1

r1
) +

1

2

√

(µ1 +
λ1 + ν1

r1
)2 − 4

λ1µ1

r1
, (26)

k̂2 =
1

2
(µ1 +

λ1 + ν1

r1
) −

1

2

√

(µ1 +
λ1 + ν1

r1
)2 − 4

λ1µ1

r1
, (27)

and

B =
ν1

r1
(µ1 − µ2 + λ2

r2
)

(µ1 − µ2 + λ2

r2
)2 − (µ1 + λ1+ν1

r1
)(µ1 − µ2 + λ2

r2
) + λ1µ1

r1

. (28)

Thus

F1(x) = D11e
(k̂1−µ1)x +D12e

(k̂2−µ1)x − BD22e
−(µ2−

λ2
r2

)x
+D21, x > K. (29)

The constants can be determined from boundary conditions.

3.1 Boundary Conditions

In the four expressions for the survival probabilities (7), (19), (21), and (29) we have
in total eight unknown constants. To find these constants we set up eight boundary
conditions. The first two are

B1 limx→∞ F1(x) = 1.

B2 limx→∞ F2(x) = 1.

The first condition implies that D11 = 0 since k̂1 − µ1 > 0. The second implies that
D21 = 1.

The second pair of boundary conditions is given by the fact that the survival prob-
abilities should be continuous at the barrier K, that is

B3 F1(K
−) = F1(K

+).

B4 F2(K
−) = F2(K

+).

The third pair of boundary conditions comes from the behaviour of the derivatives at
0. From Equations (2) and (3) we get

B5 F ′

1(0
+) = λ1

r1
F1(0

+).

B6 F ′

2(0
+) = λ2+ν2

r2
F2(0

+) − ν2

r2
F1(0

+).

Condition B5 implies that C12 = −ρ1C11.
Finally, the last pair of boundary conditions comes from the behaviour of the deriva-

tives of the survival probabilities at the barrier K. Subtracting Equation (2) from (4)
with x = K− and x = K+, respectively, we get using boundary condition B3

B7 F ′

1(K
+) − F ′

1(K
−) = ν1

r1
(F1(K

+) − F2(K
+)).
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A similar expression can be found for F2 by subtracting Equation (5) from (3) and
applying boundary condition B4:

B8 F ′

2(K
−) − F ′

2(K
+) = ν2

r2
(F2(K

−) − F1(K
−)).

We have five unknown constants left to determine, C11, C21, C22, D12, and D22,
which can be found by boundary conditions B3, B4, B6, B7, and B8.

3.2 Numerical Examples

The differences between F1(x) and F2(x), for the parameter settings r1 = 0.9, r2 =
0.3, λ1 = λ2 = 1, µ1 = µ2 = 4 and K = 1 are shown for three different cases: the case
ν1 = ν2 = 0.1 in Figure 2, the case ν1 = ν2 = 1 in Figure 3 and the case ν1 = ν2 = 10
in Figure 4. The figures appear at the end of the paper. They nicely illustrate that the
current state of the system highly influences the survival probability if the arrival rate
of the observer is low, while it hardly has any influence on the survival probability if
the arrival rate of the observer is high. The dependence of F1(x) on the value of ν1 is
illustrated in Figure 5. The differences between the survival probabilities in the IPO
and the ACAI model are illustrated in Figure 6. We have taken the arrival rates of the
Poisson observer equal to the arrival rates of claims. In the ACAI model, a claim that
crosses the K = 1 threshold from above immediately gives rise to a high premium rate
r1; apparently, this causes the survival probability to be larger than in IPO.

3.3 The Always Active Observer

If we let the arrival rate of the observer tend to infinity in both states, then we should
get the classical result for the constant barrier when the premium rate is changed as
soon as the barrier is crossed, see [1].

Indeed, from (12), (13) and (17) we have that k1 → ∞, k2 → 0, and A → −1 as
ν2 → ∞ and from (26), (27) and (28) we have that k̂1 → ∞, k̂2 → 0, and B → −1 as
ν1 → ∞.

In this case we have the survival probabilities (cf. p. 195 of [1])

F1(x) = F2(x) =

{

C11(1 − ρ1e
−(µ1−

λ1
r1

)x
), 0 < x < K,

1 +D22e
−(µ2−

λ2
r2

)x
, x ≥ K.

(30)

While these are obvious from (7) and (21), they can also be obtained from (19) and (29)
using the boundary conditions.

4 General claims

In this section we no longer restrict ourselves to exponentially distributed claim sizes.

Part 1: F1(x) for x < K.
Let us start the analysis of the survival probabilities for the case of generally distributed
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claim sizes with Equation (2). This equation coincides with Equation (2) of our com-
panion paper [5], that is formally solved in Section 4 of that paper. In the present paper
we’d like to pay some more attention to this formula, giving additional analytic and
probabilistic insight into its solution. It should first be observed that Equation (2) is
also the equation for the steady-state buffer content distribution P (V (K) < x) in an
M/G/1 queue with finite workload capacity K and rejection of customers whose service
requirement would cause the workload to exceed level K. It is well-known, and was
rigorously proved in [9], that, if ρ1 = λ1EC1/r1 < 1,

P (V (K) < x) =
P (V (∞) < x)

P (V (∞) < K)
, x ≤ K. (31)

It is also well-known (cf. [2], p. 281) that

P (V (∞) < x) = (1 − ρ1)
∞

∑

k=0

ρk
1P (Cres

1 + · · ·+ Cres
k < x), (32)

where the i.i.d. random variables Cres
i denote residual claim sizes (or rather residual

service times) with distribution
∫ x

y=0
(1−Ci(y))

ECi
dy. The LST φ1(s):=

∫

∞

0
e−sxdP (V (∞) < x)

is given by

φ1(s) =
(1 − ρ1)s

s− λ1

r1
(1 − γ1(s))

, (33)

where γ1(s) is the LST of C1(x).
Concluding: if ρ1 < 1 then F1(x) for x < K is – up to a multiplicative constant – given
by (31), where P (V (∞) < x) is specified by (32) and by its LST (33). In the case of
exponential claim sizes, this is easily seen to lead to Formula (7) (which is indeed also
the expression for the workload distribution in the M/M/1/K queue). If ρ1 ≥ 1 then
F1(x) still coincides with the steady-state distribution P (V (K) < x) in the M/G/1 queue

with finite capacity K, and we still have the truncated form P (V (K) < x) = V (x)
V (K)

, but

now V (·) no longer is the steady-state workload distribution in the M/G/1 queue. See
Cohen [7], pp. 72-73, for a detailed discussion of this function V (·).

Remark It is intuitively obvious that the solution F1(x) of Equation (2), that holds
for all x < K, is a truncated version of the solution of that same equation holding for
all non-negative x (as confirmed in (31)). It becomes probabilistically obvious via the
following reasoning. Split the survival event into two disjoint events; one in which K
is never reached, and another in which K is reached. We can further ignore the first
event, as survival while never reaching K has probability zero. The second event has
probability:

P (survival | K is reached,X0 = x, system at 0 in state 1)

×P (K is reached |X0 = x, system at 0 in state 1) =: A
(K)
1 (x)A

(K)
2 (x).
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Once the level K has been upcrossed, it takes an exp(λ1) distributed, hence memoryless,
amount of time until a claim occurs. Therefore the initial condition x plays no role in
A

(K)
1 (x) ≡ A

(K)
1 . Now observe that, for any L > 0:

A
(K+L)
2 (x) = A

(K)
2 (x)P (K+L is reached |K is reached, X0 = x, system at 0 in state 1)

= A
(K)
2 (x)P (K + L is reached | K is reached).

In the last step, the memoryless property is used once more. Hence A
(K+L)
2 (x) is propor-

tional to A
(K)
2 (x) for all L > 0, including L = ∞, and consequently F1(x) is proportional

to the survival probability for K = ∞.

Part 2: F2(x) for x < K.

Consider Equation (3) for F2(x), x < K. Again assume that this equation holds for all

x > 0, and let V2 be a random variable with distribution that satisfies (3) for all x > 0.
The LST φ2(s):=

∫

∞

0
e−sxdP (V2 < x) satisfies the following equation:

[s−
λ2 + ν2

r2
+
λ2

r2
γ2(s)]φ2(s) = −

ν2

r2
φ1(s) + sF2(0+). (34)

Notice that if φ1(s) = φ2(s) (which occurs if all parameters are the same in both states),
then (34) coincides with (33).

We can rewrite (34) as

φ2(s) =
sF2(0+) − ν2

r2
φ1(s)

s− λ2

r2
(1 − γ2(s)) −

ν2

r2

. (35)

To invert this equation, it should be noticed that s

s−
λ2
r2

(1−γ2(s))−q
is the LST of the scale

functionW (q)(x) corresponding to the Lévy process with Lévy exponent s− λ2

r2
(1−γ2(s));

see, e.g., [4, 12]. Accordingly, with ∗ denoting a convolution:

F2(x) = F2(0+)W (ν2/r2)(x) −
ν2

r2
P (V1 < x) ∗

∫ x

0

W (ν2/r2)(y)dy, x < K. (36)

Remark In the case of exp(µi) distributed claim sizes, φ2(s) in (35) becomes a quotient
of two polynomials, the denominator equalling (s2+(µ2−

λ2

r2
− ν2

r2
)s− ν2

r2
µ2) (s+µ1(1−ρ1)).

This denominator has three zeroes: s1,2 = −µ2 + k1,2, s3 = −µ1(1 − ρ1), cf. (12,13).
Inversion of (35) thus yields the same three exponential terms as were found in (19).

Remark It should be noticed that the denominator of (35) also appears in Cohen’s
analysis ([8], Formula (4.91) on p. 259) of the transient workload behavior of the M/G/1
queue. As a special case of that Formula (4.91) (take arrival rate λ2, service speed r2 = 1,
service requirement LST γ2(s)),

∫

∞

0

ae−atE[e−sVt|V0 = 0]dt =
a

a+ λ2(1 − µ2(a))

s− a− λ2(1 − µ2(a))

s− λ2(1 − γ2(s)) − a
. (37)
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Here µ2(s) is the LST of the busy period length of the M/G/1 queue. It can be checked
(cf. Theorem 46.3 of Sato [11]) that a+λ2(1−µ2(a)) is the inverse of the Lévy exponent
s − λ2(1 − γ2(s)). It may be interesting to study this scale function W (q)(x) with its
interpretation in terms of the transient M/G/1 workload behaviour more closely, the
more so since there is a growing interest in scale functions of Lévy processes and since
there are only a few concrete interpretations of scale functions. However, this is beyond
the scope of the present paper. We end this remark with the observation that substi-
tution of a = ν2/r2 in (37) yields E[e−sVY |V0 = 0], where Y ∼ exp(ν2/r2): the M/G/1
workload observed an exponentially distributed amount of time after the system has
become empty.

Part 3: F2(x) for x ≥ K.
Rewrite Formula (5) into:

dF2(x)

dx
=

λ2

r2
F2(x) −

λ2

r2

∫ x

0−

C2(x− y)dF2(y)

=
λ2

r2
F2(x) −

λ2

r2

∫ K

0−

C2(x− y)dF2(y) −
λ2

r2

∫ x

K

C2(x− y)dF2(y). (38)

Introducing ψ2(s) :=
∫

∞

K
e−sxdF2(x), and taking transforms on both sides of (38), we

obtain:

sψ2(s) − e−sK dF2(x)

dx
|x=K =

λ2

r2
ψ2(s) −

λ2

r2

∫

∞

K

e−sxdx

∫ K

0−

C2(x− y)dF2(y)

−
λ2

r2
ψ2(s)γ2(s), (39)

and hence

[s−
λ2

r2
(1 − γ2(s))]ψ2(s)

= e−sK dF2(x)

dx
|x=K −

λ2

r2

∫

∞

K

e−sxdx

∫ K

0−

C2(x− y)dF2(y). (40)

Introducing

H2(s) :=

∫

∞

K

e−sxdx

∫ K

0−

C2(x− y)dF2(y), (41)

we can rewrite (40) as:

ψ2(s) =
(1 − λ2

r2
EC2)s

s− λ2

r2
(1 − γ2(s))

e−sK dF2(x)
dx

|x=K − λ2

r2
H2(s)

(1 − λ2

r2
EC2)s

. (42)

Notice that dF2(x)
dx

|x=K = λ2

r2
H2(0) (cf. (40) for s = 0).

The first term in the right-hand side of (42) is the LST of P (W2 < x), the waiting
time or workload in a standard M/G/1 queue with arrival rate λ2, service speed r2 and

11



service requirement C2 – or, alternatively, the survival probability in the corresponding
ruin model. Notice that the condition for a steady-state distribution of that waiting
time to exist, or equivalently, for the corresponding survival probability to be positive,
is λ2EC2/r2 < 1. Some thought makes it obvious that this is also the condition for the
survival probability in our alternating risk reserve process to be positive.

The second term concerns random variables on [K,∞): e−sK is the LST of the con-
stant K, and (41) shows that H2(s) is the LST of the restriction to [K,∞) of the sum
of C2 and the random variable on [0, K] with distribution F2(·). Division by s amounts
to integrating the distribution.

Part 4: F1(x) for x ≥ K.
Finally we turn to (4), rewriting it into:

dF1(x)

dx
=
λ1 + ν1

r1
F1(x)−

λ1

r1

∫ K

0−

C1(x−y)dF1(y)−
λ1

r1

∫ x

K

C1(x−y)dF1(y)−
ν1

r1
F2(x), x > K.

(43)
Notice that F2(x) is - by now - known for x > K. Introducing ψ1(s) :=

∫

∞

K
e−sxdF1(x),

and taking transforms on both sides of (43), we obtain:

sψ1(s) − e−sK dF1(x)

dx
|x=K =

λ1 + ν1

r1
ψ1(s) −

λ1

r1
γ1(s)ψ1(s)

−
λ1

r1

∫

∞

K

e−sxdx

∫ K

0−

C1(x− y)dF1(y) −
ν1

r1
ψ2(s). (44)

Hence

[s−
λ1

r1
(1 − γ1(s)) −

ν1

r1
]ψ1(s)

= e−sK dF1(x)

dx
|x=K −

λ1

r1

∫

∞

K

e−sxdx

∫ K

0−

C1(x− y)dF1(y) −
ν1

r1
ψ2(s). (45)

Finally,

ψ1(s) =
e−sK dF1(x)

dx
|x=K − λ1

r1

∫

∞

K
e−sxdx

∫ K

0−
C1(x− y)dF1(y) −

ν1

r1
ψ2(s)

s− λ1

r1
(1 − γ1(s)) −

ν1

r1

. (46)

This transform can be inverted by observing the following:
1. The three terms in the numerator of (46) are the Laplace-Stieltjes transforms of

(i) I(x > K)dF1(x)
dx

|x=K , with I(·) denoting an indicator function; (ii) −λ1

r1

∫ K

0
C1(x −

y)dF1(y) on [K,∞), and (iii) −ν1

r1
F2(x) on [K,∞).

2. The denominator of (46) is the Laplace-Stieltjes transform of
∫ x

0
W (ν1/r1)(y)dy, where

W (q)(x) is the scale function corresponding to the Lévy process with Lévy exponent
s− λ1

r1
(1 − γ1(s)), cf. the discussion above (36).
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5 Claim sizes with a rational Laplace-Stieltjes trans-

form

In this section we assume that the claim size distributions have rational Laplace-Stieltjes
transforms (put differently: the claim sizes are distributed as mixtures of exponentials):

γj(s) =
γN,j(s)

γD,j(s)
=

γN,j(s)
∏Lj

i=1(s− sj,i)
, j = 1, 2, (47)

where γN,j(s) are polynomials of at most degree Lj − 1, j = 1, 2. Accordingly, one can
write:

Cj(x) = 1 −

Lj
∑

i=1

cj,ie
sj,ix, j = 1, 2. (48)

Here we have assumed that all sj,i are different; if they aren’t, like in the case of Erlang
distributed claim sizes, then minor adaptations are required.

We shall successively discuss the resulting form of Fj(x), j = 1, 2, for x < K and
x ≥ K, starting from Formulas (33), (35), (42) and (46). We shall also compare the
results with those obtained for the special case of exponential claim sizes in Section 3.

Part 1: F1(x) for x < K.
It is easily seen that φ1(s) in (33) is a quotient of two polynomials of degree L1: φ1(s) =
φN,1(s)

φD,1(s)
. Accordingly, F1(x) is for x < K a constant plus a mixture of L1 exponentials.

Since λ1E(C1)/r1 is not necessarily less than one, some of the poles of φ1(s) may be
positive, and hence some of the exponentials may have a positive exponent.

In case C1(x) = 1−e−µ1x, as in Section 3, this exponential is the familiar e−(µ1−λ1/r1)x

from the theory of the M/M/1 queue and the theory of ruin probabilities for exponential
claim sizes; cf. Formula (7).

Part 2: F2(x) for x < K.

Using (35) and the above representation φ1(s) =
φN,1(s)

φD,1(s)
, in which φN,1(s) and φD,1(s)

are polynomials of degree L1, we can write:

φ2(s) =
sF2(0+)φD,1(s) −

ν2

r2
φN,1(s)

φD,1(s)[s−
λ2

r2
(1 − γ2(s)) −

ν2

r2
]
. (49)

It is known from M/G/1 theory (cf. Cohen [8], p. 548) that, for λ2E(C2)/r2 < 1, the
function s− λ2

r2
(1 − γ2(s)) −

ν2

r2
has one zero with positive real part. In addition, there

are L2 zeroes with non-positive real part. Multiplying numerator and denominator with
γD,2(s) results in:

φ2(s) =
sF2(0+)φD,1(s)γD,2(s) −

ν2

r2
φN,1(s)γD,2(s)

φD,1(s)[sγD,2(s) −
λ2

r2
(γD,2(s) − γN,2(s)) −

ν2

r2
γD,2(s)]

. (50)
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It is now easily verified that both numerator and denominator of the expression for
φ2(s) are polynomials of degree L1 +L2 + 1. Hence F2(x) is on [0, K) a constant plus a
mixture of L1 + L2 + 1 exponentials.

For L1 = L2 = 1, as in Section 3, we indeed find a mixture of the three exponentials
of (19), one term corresponding to φD,1(s) = s+ µ1 −

λ1

r1
.

Part 3: F2(x) for x ≥ K.
Consider the expression (42) for ψ2(s) =

∫

∞

K
e−sxdF2(x). It is a product of two terms,

yielding after inversion a convolution of two inversions. The first one is the waiting
time distribution in an M/G/1 queue with service time distribution C2(·) – which
here is a mixture of L2 exponentials. Now consider the second term and its inver-
sion. Using (48) and the identity (see below (42)) dF2(x)

dx
|x=K = λ2

r2
H2(0), and defining

c∗2,i = c2,i

∫ K

0
e−s2,iydF2(y), we can write the second term in the right-hand side of (42)

as
λ2

r2

1 − λ2

r2
E(C2)

L2
∑

i=1

c∗2,i

1

s− s2,i
e−(s−s2,i)K , (51)

which is easily inverted to a mixture of L2 shifted exponentials, since

1

s− a
e−(s−a)K =

∫

∞

y=K

e−syeaydy.

For L2 = 1, the first term in the right-hand side of (42) reduces to the M/M/1 term
(1−ρ2)(µ2 + s)/(µ2(1−ρ2)+ s), and the second term reduces to Z1e

−(s−s2,1)K/(s− s2,1)
= Z2e

−sK/(s+ µ2), the Zi denoting constants. The (µ2 + s) terms cancel, yielding

ψ2(s) = Z3
e−sK

µ2 −
λ2

r2
+ s

,

which after inversion indeed yields the form (21) (an exponential shifted over K).

Part 4: F1(x) for x ≥ K.
In a similar fashion as in Part 3 above, we rewrite the numerator of the right-hand side
of (46) as:

λ1

r1

L1
∑

i=1

c∗1,i

s

s− s1,i
e−(s−s1,i)K +

ν1

r1
[(F1(K) − F2(K))e−sK − ψ2(s)],

where c∗1,i = c1,i

∫ K

0
es1,iydF1(y). This leads to the following expression for ψ1(s):

ψ1(s) = e−sK

λ1

r1

∑L1

i=1 c
∗

1,i
s

s−s1,i
es1,iK + ν1

r1
[F1(K) − F2(K) −

λ2
r2

s

s−
λ2
r2

(1−γ2(s))

∑L2

i=1 c
∗

2,i
1

s−s2,i
es2,iK ]

s− λ1

r1
(1 − γ1(s)) −

ν1

r1

.

(52)
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Inversion again yields a mixture of exponentials, shifted over K. The exponents are
determined by the zeroes of the denominator of (52), and by the s1,i, s2,i and the zeroes
of s− λ2

r2
(1− γ2(s)). Some of these cancel; e.g., the 1/(s− s1,i) in the numerator of (52)

disappear when we multiply the denominator and numerator of (52) by γD,1(s).

Now consider the case L1 = L2 = 1, as in Section 3. The denominator of (52)
becomes (s2−s(λ1+ν1

r1
−µ1)−ν1µ1/r1)/(s+µ1). The factor s+µ1 takes care of the term

1/(s−s1,i) = 1/(s+µ1) in the numerator. After partial fraction expansion and inversion
the factor 1

s2
−s(

λ1+ν1
r1

−µ1)−ν1µ1/r1

yields two exponentials, which are easily verified to be the

first two exponentials in (29). The third exponential in (29) is retrieved by considering
the last term of the numerator of (52):

Z4
s

s− λ2

r2
(1 − γ2(s))

1

s− s2,1

=
Z4

µ2 −
λ2

r2
+ s

.

6 Conclusion

In this paper, and in [5], we have studied a risk reserve process with a threshold dividend
strategy which can be in two different states, and which can change only at particular
epochs. We have determined the survival probability when starting at a particular level
and in a particular state. Topics for future research may include other performance
measures (like the time until ruin, if ruin is certain), and generalization to the case that
the claim process is a spectrally negative Lévy process (a Lévy process with only negative
jumps), instead of a compound Poisson process. We would then consider different Lévy
exponents above and below a barrier, and an independent Poisson observer. In [3]
a queueing model with such adaptable Lévy exponents has been analysed. See also
Bratiychuk and Derfla [6] for a risk process with a two-step premium function, with a
perturbation by a Brownian motion, and see Kyprianou and Loeffen [10] for a study of
Lévy processes without positive jumps and with state-dependent exponents.
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at http://arxiv.org/abs/0801.4655.

[11] K. Sato (1999). Lévy processes and Infinitely Divisible Distributions. Cambridge
University Press, Cambridge.

[12] L. Nguyen-Ngoc and M. Yor (2005). Some martingales associated to reflected Lévy
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Figure 2: Difference between F1(x) and F2(x) in the case ν1 = ν2 = 0.1. The other
parameters are fixed to r1 = 0.9, r2 = 0.3, λ1 = λ2 = 1, µ1 = µ2 = 4, and K = 1.
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Figure 3: Difference between F1(x) and F2(x) in the case ν1 = ν2 = 1. The other
parameters are fixed to r1 = 0.9, r2 = 0.3, λ1 = λ2 = 1, µ1 = µ2 = 4, and K = 1.

0 0.5 1 1.5 2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Initial surplus (x)

S
ur

vi
va

l p
ro

ba
bi

lit
y

Parameters: r
1
=0.9, r

2
=0.3, λ

1
=λ

2
=1, µ

1
=µ

2
=4, ν

1
=ν

2
=10, K=1

 

 

F1
IPO

F2
IPO

Figure 4: Difference between F1(x) and F2(x) in the case ν1 = ν2 = 10. The other
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