Abstract: Let X_1, \ldots, X_n be i.i.d. observations, where $X_i = Y_i + \sigma_n Z_i$ and the Y's and Z's are independent. Assume that the Y's are unobservable and that they have the density f and also that the Z's have a known density k. Furthermore, let σ_n depend on n and let $\sigma_n \to 0$ as $n \to \infty$. We consider the deconvolution problem, i.e. the problem of estimation of the density f based on the sample X_1, \ldots, X_n. A popular estimator of f in this setting is the deconvolution kernel density estimator. We derive its asymptotic normality under two different assumptions on the relation between the sequence σ_n and the sequence of bandwidths h_n. We also consider several simulation examples which illustrate different types of asymptotics corresponding to the derived theoretical results and which show that there exist situations where models with $\sigma_n \to 0$ have to be preferred to the models with fixed σ.

Keywords: Asymptotic normality, deconvolution, Fourier inversion, kernel type density estimator.