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Abstract

Let X1,..., X, bei.i.d. observations, where X; = Y; 40, Z; and the
Y’s and Z’s are independent. Assume that the Y’s are unobservable
and that they have the density f and also that the Z’s have a known
density k. Furthermore, let o,, depend on n and let 0,, — 0 as n — oco.
We consider the deconvolution problem, i.e. the problem of estimation
of the density f based on the sample X7,..., X,,. A popular estimator
of f in this setting is the deconvolution kernel density estimator. We
derive its asymptotic normality under two different assumptions on the
relation between the sequence o, and the sequence of bandwidths h,,.
We also consider several simulation examples which illustrate different
types of asymptotics corresponding to the derived theoretical results
and which show that there exist situations where models with o,, — 0
have to be preferred to the models with fixed o.
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kernel type density estimator.



AMS subject classification: Primary 62G07; Secondary 62G20
Running title: Deconvolution kernel density estimator



1 Introduction

The classical deconvolution problem consists of estimation of the density f of
a random variable Y based on the i.i.d. copies Y71, ...,Y, of Y, which are cor-
rupted by an additive measurement error. More precisely, let X1,..., X, be
i.i.d. observations, where X; = Y; 4+ Z; and the Y’s and Z’s are independent.
Assume that the Y’s are unobservable and that they have the density f and
also that the Z’s have a known density k. Such a model of measurements
contaminated by an additive measurement error has numerous applications
in practice and arises in a variety of fields, see for instance Carroll et al.
(2006). Notice that the X’s have a density g which is equal to the convo-
lution of f and k. The deconvolution problem consists in estimation of the
density f based on the sample X1,..., X,.

A popular estimator of f is the deconvolution kernel density estimator,
which was proposed in Carroll and Hall (1988) and Stefanski and Carroll
(1990), see also pp. 231-233 in Wasserman (2007) for an introduction. Addi-
tional recent references can be found e.g. in van Es et al. (2008). Let w be a
kernel and h,, > 0 a bandwidth. The deconvolution kernel density estimator
fnh,, is constructed as
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where ¢ep denotes the empirical characteristic function, i.e. ¢emp(t) =
n! E?zl exp(itX;), ¢ and ¢, are Fourier transforms of functions w and
k, respectively, and
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Depending on the rate of decay of the characteristic function ¢, at plus and
minus infinity, deconvolution problems are usually divided into two groups,
ordinary smooth deconvolution problems and supersmooth deconvolution
problems. In the first case it is assumed that ¢ decays to zero at plus and
minus infinity algebraically (an example of such k is the Laplace density)
and in the second case the decay is essentially exponential (in this case k can
be e.g. a standard normal density). In general, the faster ¢ decays at plus
and minus infinity (and consequently smoother the density k is), the more
difficult the deconvolution problem becomes, see e.g. Fan (1991a). The usual
smoothness condition imposed on the target density f is that it belongs to
the class Cor, = {f : |fO(x) — fO(x +t)| < L|t|** for all z and t}, where
a >0, £ = |a] (the integer part of a) and L > 0 are known constants, cf.
Fan (1991a). Then, if k is ordinary smooth of order (3 (see e.g. Assumption
C (ii) below for a definition), the optimal rate of convergence for the esti-
mator fpp, () with the mean square error used as the performance criterion



is n=/(e+26+1) " while if k is supersmooth of order A (see Assumption B
(ii)), the optimal rate of convergence is (logn)~®/*, see Fan (1991a). The
latter convergence rate is rather slow and it suggests that the deconvolution
problem is not practically feasible in the supersmooth case, since it seems
samples of very large size are required to obtain reasonable estimates. Hence
at first sight it appears that the nonparametric deconvolution with e.g. the
Gaussian error distribution (a popular choice in practice) cannot lead to
meaningful results for moderate sample sizes and is practically irrelevant.
However, it was demonstrated by exact MISE (mean integrated square er-
ror) computations in Wand (1998) that, despite the slow convergence rate in
the supersmooth case, the deconvolution kernel density estimator performs
well for reasonable sample sizes, if the noise level measured by the noise-
to-signal ratio NSR = Var[Z](Var[Y])~1100%, cf. Wand (1998), is not too
high. Clearly, an ‘ideal case’ in a deconvolution problem would be that not
only the sample size n is large, but also that the error term variance is small.
This leads one to an idealised model X =Y + 0,,Z, where now Var[Z] =1
and o, depends on n and tends to zero as n — oco. The idea to consider
o, — 0 was already proposed in Fan (1992) and was further developed in
Delaigle (2008). We refer to these works for additional motivation. These
papers deal mainly with the mean integrated square error of the estimator
of f. Here we will study its asymptotic normality. Asymptotic normality
of the deconvolution kernel density estimator in the deconvolution problem
with fixed error term variance was derived in Fan (1991b) and van Es and
Uh (2004, 2005). For a practical situation where o,, — 0 can arise, see e.g.
Section 4.2 of Delaigle (2008), where an example of measurement of sucrase
in intestinal tissues is considered and inference is drawn on the density of
the sucrase content. Sucrase is a name of several enzymes that catalyse the
hydrolisis of sucrose to fructose and glucose.

It trivially follows from (1) that the deconvolution kernel density esti-
mator for the model that we consider, i.e. X; =Y; + 0,2; with o, — 0 as
n — 00, is defined as
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where

L[ )
wy, () = 5 /_OO () dt, (3)

Tn = on/hy and ¢ now denotes the characteristic function of the random
variable Z with a density k. We will also use p, =r,, L=h, /oy and in this
case we will denote the function w,, by w,,. Observe that if w is symmetric,
(2) will be real-valued.

To get a consistent estimator, we need to control the bandwidth h,,. The
usual condition to get consistency in kernel density estimation is that the



bandwidth h, depends on n and is such that h,, — 0,nh, — oo, see e.g.
Theorem 6.27 in Wasserman (2007). Since in our model we assume o,, — 0,
additional assumptions on h,,, which relate it to o, are needed. In essence
we distinguish two cases: op/h, — r with 0 < r < o0, or o,/h, — 0.
Conditions on the target density f, the density k of Z and kernel w will be
tailored to these two cases.

The remaining part of the paper is organised as follows: in Section 2
we will present the obtained results. Section 3 contains several simulation
examples illustrating the results from Section 2. All the proofs are given in
Section 4.

2 Results

2.1 Thecase 0<r <o

We first consider the case when 0 < r < oco. We will need the following
conditions on f, w, k and h,,.

Assumption A.

(i) The density f is such that ¢; is integrable.

(ii) ¢x(t) # 0 for all £ € R and ¢, has a bounded derivative.

(iii) The kernel w is symmetric, bounded and continuous. Furthermore,
¢w has support [—1, 1], ¢,,(0) = 1, ¢y, is differentiable and |¢,,(t)] < 1.

(iv) The bandwidth h,, depends on n and we have h,, — 0, nh,, — co.

(v) op, — 0 and 1, = 0p,/hy, — 1, where 0 < 1 < 0.

Notice that Assumption A (i) implies that f is continuous and bounded.
Assumption ¢ (t) # 0 for all ¢ € R is standard in kernel deconvolution and
is unavoidable when using the Fourier inversion approach to deconvolution.
Furthermore, a variety of kernels satisfy Assumption A (iii), see e.g. exam-
ples in van Es and Uh (2005). Also notice that w is not necessarily a density,
since it may take on negative values. Observe that in Assumption A (v) we
do not exclude the case r = 0.

The following theorem establishes asymptotic normality in this case.

Theorem 1. Let Assumption A hold and let the estimator f,, be defined
by (2). Then
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Notice that unlike the asymptotic normality theorem for the deconvo-
lution kernel density estimator in the supersmooth deconvolution problem



with fixed o, that was obtained in van Es and Uh (2004, 2005), the asymp-
totic variance in (4) now depends on f. When r, = 0 for all n, we recover
the asymptotic normality theorem for an ordinary kernel density estimator,
see Parzen (1962).

2.2 The case r = ¢

We turn to the case r = co. In this case we have to make the distinction
between the ordinary smooth and supersmooth deconvolution problems. We
first consider the supersmooth case. We will need the following condition.

Assumption B.

(i) The density f is such that ¢ is integrable.

(ii) ¢r(t) # 0 for all t € R and ¢y(t) ~ C|t|* exp(—|t|*/u) for some
constants A > 1, u > 0 and real constants Ag and C.

(iii) w is a bounded, symmetric and continuous function. Furthermore,
¢u is supported on [—1,1], ¢,(0) =1 and |¢y(¢)| < 1. Moreover,

dw(1 —t) = AtY + o(t?)

ast | 0, where A € R and « > 0 are some numbers.
(iv) The bandwidth h,, depends on n and we have h,, — 0,nh,, — co.
(v) 0, — 0 and o)) /h) ! — oo.

Assumption B (i)-(iv) correspond to those in van Es and Uh (2005).
Assumption B (v) is stronger than o, /h, — oo, but it is essential in the
proof of Theorem 2. Denote ((p,) = exp(1/(up))). The following theorem
holds true.

Theorem 2. Let Assumption B hold and let the estimator f,, be defined
by (2). Furthermore, assume that E [Yf] < oo and E [ZJQ] < oo. Then

N A2 i 2+2a
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as n — 0.

When o, =1 for all n, the arguments given in the proof of this theorem
are still valid, and hence we can also recover the asymptotic normality theo-
rem of van Es and Uh (2005) for the deconvolution kernel density estimator
in the supersmooth deconvolution problem.

Finally, we consider the ordinary smooth case.

Assumption C.
(i) The density f is such that ¢; is integrable.



(ii) ¢x(t) # 0 for all t € R and ¢ (t)t° — C, ¢} ()t — —BC ast — oo,
where 8 > 0 and C' # 0 are some constants.

(iii) ¢y is symmetric and continuously differentiable. Furthermore, ¢,
is supported on [—1,1], |¢w(t)] < 1 and ¢,,(0) = 1.

(iv) The bandwidth h,, depends on n and we have h,, — 0,nh,, — co.

(v) o0 — 0 and o, /hy, — 0.

For the discussion on Assumption C (i)—(iv) see Fan (1991b).

Theorem 3. Let Assumption C hold and let the estimator f,, be defined
by (2). Then

Vit v (2) = E fun (@) 2 A (0,535 [~ Ploutar) (0

as n — oQ.

When o, = 1, we recover the asymptotic normality theorem of Fan
(1991b) for a deconvolution kernel density estimator in the ordinary smooth
deconvolution problem.

As a general conclusion, we notice that Theorems 1-3 demonstrate that
the asymptotics of fpn, () depend in an essential way on the relationship
between the sequences o, and h,,. In case r, — r < 0o, the asymptotics are
similar to those in the direct density estimation, while when r = oo, they
resemble those in the classical deconvolution problem.

3 Simulation examples

In this section we consider several simulation examples for the supersmooth
deconvolution case covered by Theorems 1 and 2. We do not pretend to
produce an exhaustive simulation study. Our examples serve as a mere
illustration of the asymptotic results from the previous section.

It follows from Theorems 1-3 that for a fixed point x and a large enough
n, a suitably centred and normalised estimator f, (x) is approximately
normally distributed with mean and standard deviation given in these three
theorems. Suppose we have fixed the sample size n and the bandwidth
hn, generated a sample of size n, evaluated the estimate f,, () and have
repeated this procedure N times, where N is sufficiently large. This will
give us N values of f,p, (). We then can evaluate the sample mean and the
sample standard deviation of this set of values fy5, (). Under appropriate
conditions these should be close to the ones predicted by Theorems 1 and
2. In particular, in the setting of Theorem 1, the mean M and the standard
deviation SD must be approximately given by

M= frwn (&), SD=—— f(a;)/oo g o (W), (7)



while in the setting of Theorem 2 they are approximately equal to

A(1+a)+Xro—1
A py e Pn C(pn)
M= fxwy (z), SD= (7) MNa+1
f +un, (2) A (5) eyt
We first concentrate on Theorem 1. Let f and k be standard normal
densities, let n = 1000 and suppose o,, = 0.1. The noise level measured by
the noise-to-signal ratio is thus rather low and equals NSR = 1%. Suppose
that a kernel w is given by

48 cosx 15 144 sin x 5
w(x) = 1 <1_x?>_<2 > 9)

. (8)
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Its corresponding Fourier transform is given by ¢y, (t) = (1 — t2)31[,1,1] (t).
Here A =8 and a = 3. A good performance of this kernel in deconvolution
context was established in Delaigle and Hall (2006). Assume that the
number of replications N = 500. Before we proceed any further, we need to
fix the bandwidth. We opted for a theoretically optimal bandwidth, i.e. the
bandwidth that minimises

MBEMWJ:E[/ (Fon (2) — f(2))2dz | | (10)

o0
—0o0
the mean-squared error of the estimator f,;. To find this optimal bandwidth,
we considered a sequence of bandwidths h = 0.01 %k, k =1,2,..., K, where
K is a large enough integer, passed to the Fourier transforms in (10) via
Parseval’s identity, cf. Wand (1998), and then used the numerical integra-
tion. This procedure resulted in h,, = 0.1. For real data the above method
does not work, because (10) depends on the unknown f, and we refer to
Delaigle (2008) for data-dependent bandwidth selection methods. However,
once again we stress the fact that in order to reach a specific goal of these
simulation examples, the bandwidth h,, must be the same for all N replica-
tions. This excludes the use of a data-dependent procedure. To speed up
the computation of the estimates, binning of observations was used, see e.g.
Silverman (1982) and Jones and Lotwick (1984) for related ideas in kernel
density estimation.

Under these assumptions we evaluated the sample means and standard
deviations of f,p, () for z from a grid on the interval [—3, 3] with mesh size
A = 0.1. These then were plotted in Figure 1 together with the theoretical
values from (7). We notice that the sample means match the theoretical
values very well. This can be also explained by the fact that the bandwidth
h,, is quite small. The match between the sample standard deviations and
the theoretical standard deviations is slightly less satisfactory. It also turns
out that Theorem 2 is clearly not applicable in this case: an evaluation of the
theoretical standard deviation SD in (8) yields a very large value 3.41646,
which grossly overestimates the sample standard deviation for any point x.



Figure 1: The sample means and the theoretical means (left display, a dotted and
a solid line, respectively) together with the sample standard deviations and the two
theoretical standard deviations corresponding to Theorems 1 and 2 (right display,
a dotted, a solid and a dashed line, respectively). Here the target density f and the
density k of a random variable Z are standard normal densities, the noise variance
o2 = 0.01, the sample size n = 1000, the bandwidth h, = 0.1 and the kernel w
is given by (9). The number of replications equals N = 500. The integral in (11)
and not its asymptotic expansion was used to evaluate the standard deviation in
Theorem 2.

The reason for this seems to be that both the sample size n and the error
variance o2 appear to be too small for the setting of Theorem 2.

At this point the following remark is in order. Reviewing the proof of
Theorem 2, one sees that the following asymptotic equivalence is used:

/ 1 () expls/ (uh)]ds ~ AT(a + 1) (ﬁhk)Ha /W) (11
0 A

as h — 0. This explains the shape of the normalising constant in Theorem
2. However, the direct numerical evaluation of the integral in (11) (with
the same parameters and the kernel as in our example above) shows that
the approximation in (11) is good only for very small values of h and that
it is quite inaccurate for larger values of h, see a discussion in van Es and
Gugushvili (2008). Obviously, one can correct for the poor approximation of
the sample standard deviation by the theoretical standard deviation by using
the left-hand side of (11) instead of its approximation. Nevertheless, this
still leads to a very large (compared to the sample standard deviation) value
of the theoretical standard deviation for our particular example, namely
0.034477.

In our second example we left o,,,n and k the same as above, but as f
we took a mixture of two normal densities with means —1 and 1 and equal
variance 0.375. The mixing probability was taken to be equal to 0.5. The
density f is bimodal and is plotted in Figure 2. The simulation results for
this density are reported in Figure 3. The conclusions are the same as for
the first example. One can easily recognise a bimodal shape of the target
density f by looking at the sample standard deviation.



Figure 2: The density f: a mixture of two normal densities with means —1 and 1
and equal variance 0.375. The mixing probability is taken to be equal to 0.5.

In our third example we again considered the standard normal density,
but we increased the sample size to n = 10000. The results are reported in
Figure 4. As can be seen, the match between the sample standard deviations
and the theoretical standard deviations as computed using Theorem 1 is less
satisfactory than in the previous example. The explanation lies in the fact
that, even though the noise level is low when judged by itself, it is still a bit
large compared to the sample size that we have in this case. Also Theorem
2 remains unapplicable, as it still produces considerably larger values of the
theoretical standard deviation compared to the sample standard deviation
(0.0166319 after the necessary correction using (11)).

In the next three examples we kept the standard normal densities f and
k, but increased the sample size n to 100000. The error variance o2 was con-
secutively taken to be 0.01,1 and 4, i.e. we considered three different noise
levels, 1%, 100% and 400%. A transition from the asymptotics described by
Theorem 1 to those described by Theorem 2 is clearly visible in the resulting
plots, see Figures 5-7. Figure 5 also indicates that there exist intermediate
situations not immediately covered by either of the two theorems. Notice
that Figure 7 seems to confirm a general, albeit not intuitive message of The-
orem 2, which says that the asymptotic standard deviation does not depend
on a point x, but only on the error density & : there is a large neighbourhood
around zero for which the sample standard deviation is almost constant.

In our final example we considered the case when the density f is again
a mixture of two normal densities (see above for details). The simulation re-
sults for this density are reported in Figure 8. In this last example the band-
width h,, = 0.44 was on purpose not selected as a minimiser of MISE|f,,,,],
but was taken to be the same as when estimating a standard normal density
(see Figure 7 above). Notice that the sample standard deviation is almost
constant in the neighbourhood of the origin and is of the same magnitude

10



Figure 3: The sample means and the theoretical means (left display, a dotted
and a solid line, respectively) together with the sample standard deviations and
the two theoretical standard deviations corresponding to Theorems 1 and 2 (right
display, a dotted, a solid and a dashed line, respectively). Here the target density
f is a mixture of two normal densities with means equal to —1 and 1 and the same
variance 0.375, the mixing probability is 0.5, the density k of a random variable
Z is a standard normal density, the noise variance o2 = 0.01, the sample size
n = 1000, the bandwidth h,, = 0.08 and the kernel w is given by (9). The number of
replications equals N = 500. The integral in (11) and not its asymptotic expansion
was used to evaluate the standard deviation in Theorem 2.

as the one depicted in Figure 7. This seems to provide an additional con-
firmation of the statement of Theorem 2, which says that the limit variance
of the estimator f,;, does not depend on the target density f. Also notice
that because of the fact that h,, is relatively large, the smoothed version of
f,ie. f*wp,, is unimodal instead of being bimodal.

As a preliminary conclusion (we also considered some other examples not
reported here), our simulation examples seem to suggest that the asymp-
totics given by Theorem 2 correspond to the less realistic scenarios of high
noise level and very large sample size. This provides further motivation
for the study of deconvolution problems under the assumption o, — 0 as
n — oo.

4 Proofs

To prove Theorem 1, we will need the following modification of Bochner’s
lemma, see Parzen (1962) for the latter.

Lemma 1. Suppose that for all y we have K, (y) — K(y) asn — oo and that
sup,, | Kn(y)| < K*(y), where the function K* is such that [*_ K*(y)dy < oo
and limy,_, yK*(y) = 0. Furthermore, suppose that g is a sequence of
densities, such that

lim sup |gn(z —u) = f(z)] =0 (12)

n—oo |u‘§€n

for some sequence €, | 0, such that €,/h, — oo as n — oo for a sequence

11



Figure 4: The sample means and the theoretical means (left display, a dotted and
a solid line, respectively) together with the sample standard deviations and the two
theoretical standard deviations corresponding to Theorems 1 and 2 (right display,
a dotted, a solid and a dashed line, respectively). Here the target density f and the
density k of a random variable Z are standard normal densities, the noise variance
o2 = 0.01, the sample size n = 10000, the bandwidth h,, = 0.07 and the kernel w
is given by (9). The number of replications equals N = 500. The integral in (11)
and not its asymptotic expansion was used to evaluate the standard deviation in
Theorem 2.

i - [ () et = @) [ K@ 09

Proof. The proof follows the same lines as the proof of Lemma 2.1 in Fan
(1991b). We have

1 [ T—y e
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Notice that II converges to zero by the dominated convergence theorem.

We turn to I. Splitting the integration region into the sets {|u| < ¢,} and
{Ju| > €,} for some €, > 0, we obtain that

<

=I+1I.

1< /{ INCCETE Fa) et ()
' /{ PNCCETE )t ()
=IIT+1V.
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Figure 5: The sample means and the theoretical means (left display, a dotted and
a solid line, respectively) together with the sample standard deviations and the two
theoretical standard deviations corresponding to Theorems 1 and 2 (right display,
a dotted, a solid and a dashed line, respectively). Here the target density f and the
density k of a random variable Z are standard normal densities, the noise variance
o2 = 0.01, the sample size n = 100000, the bandwidth h,, = 0.05 and the kernel w
is given by (9). The number of replications equals N = 500. The integral in (11)
and not its asymptotic expansion was used to evaluate the standard deviation in
Theorem 2.

For I11 we have

IT] < sup |gn(z —u) —f(x)\/_oo K*(u)du.

lul<en

By (12) the right-hand side of the above expression vanishes as n — oo.
Now we consider I'V. Using the fact that g, is a density (and hence that it
is positive and integrates to one), we have

1 u 1 U
v < (i —uw)— K ()] a Sk (L) a
V_/u>6ng (z u)hn (hn)‘ u+ f(z) /u>6n ™ (hn> u

sup  [yK* ()| + f(2) / K*(y)dy.
lyl>en/hn ly|>€n/hn

<

A

Notice that the right-hand side in the last inequality vanishes as n — oo,
because we assumed that €,/h, — oco. Combination of these results yields
the statement of the lemma. O

Proof of Theorem 1. The main steps of the proof are similar to those on pp.
1069-1070 of Parzen (1962). Let ¢ be an arbitrary positive number. Denote

1 - X
an = anrn (x hn ]>7

where w,,, is defined by (3) and notice that (2) is an average of the i.i.d.
random variables Vj,1,..., Vu,. We have

VarlVi] = E[V2] - (B [Viy))”. (14)

13
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Figure 6: The sample means and the theoretical means (left display, a dotted and
a solid line, respectively) together with the sample standard deviations and the two
theoretical standard deviations corresponding to Theorems 1 and 2 (right display,
a dotted, a solid and a dashed line, respectively). Here the target density f and the
density k of a random variable Z are standard normal densities, the noise variance
02 = 1, the sample size n = 100000, the bandwidth h, = 0.24 and the kernel w
is given by (9). The number of replications equals N = 500. The integral in (11)
and not its asymptotic expansion was used to evaluate the standard deviation in
Theorem 2.

Observe that

W, <$h_ny> ‘QQn(y)dy, (15)

1
271
E[vnﬂ—/_ooh%

where g, denotes the density of X;. Integration by parts gives
1t Y\
=L [ (80,
iu J_q o (rnt)

Do)k (Tnt) — TP (£) P (Tt
(or(rnt))?

Furthermore, lim, o r, = r < oo implies that there exists a positive num-
ber a, such that supr, < a < co. Notice that

inf }|¢k(7“nt)| Zse[inf ]|¢k(5)’ > inf ]!¢k(8)|-

te[-1,1 —Tn,Tn s€[—a,a

and hence

1 1
[ul J 4

|wy, (u)] < dt

Therefore .
[wr, (w)] < Cakmll/;l(|¢;u(t)’ + |pw(t)])dt, (16)

where the constant ¢, does not depend on n, but only on the density k£ and
the number a. On the other hand

I |Pu(t)]
|w7’n (U)’ = % /1 infse[fa,a] |¢k(s)’dt =0 (17)
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Figure 7: The sample means and the theoretical means (left display, a dotted and
a solid line, respectively) together with the sample standard deviations and the two
theoretical standard deviations corresponding to Theorems 1 and 2 (right display,
a dotted, a solid and a dashed line, respectively). Here the target density f and the
density k of a random variable Z are standard normal densities, the noise variance
02 = 4, the sample size n = 100000, the bandwidth h, = 0.44 and the kernel w
is given by (9). The number of replications equals N = 500. The integral in (11)
and not its asymptotic expansion was used to evaluate the standard deviation in
Theorem 2.

Combining (16) and (17), we obtain that
C
] < min (€1, ). (13)

where the constants C7 and C5 do not depend on n. Observe that the func-
tion on the right-hand side of (18) is square integrable. Next, we have

sup [gn(z —u) = f(2)| < sup |gn(z —u) = gn(2)[+|gn(z) = f(z)] = I + 1.

[u|<en [u|<en

for an arbitrary €, > 0. By the Fourier inversion argument for I we obtain

1 [ .
|I| < | sup o e () g (rnt) (e — 1)dt
lu|<en 4T J -0
1 & .
< Dy | (t)] sup e — 1]|dt.
™ J—c0 ul<en

Notice that supj,<, let — 1| < e,|t| — 0 for every fixed t. Furthermore,
SUD|y|<e,, le®—1| < 2 and ¢y is integrable. Let ¢, | 0 as n — oc. Then by the
dominated convergence theorem I will vanish as n — oco. A similar Fourier
inversion argument and another application of the dominated convergence
theorem shows that I also vanishes as n — oo. Thus (12) is satisfied. Now
(15), (18) and Lemma 1 imply that

BV~ o f(a) [ " () Pl (19)

hn o
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Figure 8: The sample means and the theoretical means (left display, a dotted and
a solid line, respectively) together with the sample standard deviations and the two
theoretical standard deviations corresponding to Theorems 1 and 2 (right display,
a dotted, a solid and a dashed line, respectively). Here the target density f is a
mixture of two normal densities with means equal to —1 and 1 and the same variance
0.375, the mixing probability is 0.5, the density k of a random variable Z is a
standard normal density, the noise variance o2 = 4, the sample size n = 100000, the
bandwidth h,, = 0.44 and the kernel w is given by (9). The number of replications
equals N = 500. The integral in (11) and not its asymptotic expansion was used to
evaluate the standard deviation in Theorem 2.

Furthermore, by Fubini’s theorem

o= | () o ()]
() ()] o (5] e

11 o0 itx t
= an N exp <_hn> bf <hn> O (t)dt.

The last expression is bounded uniformly in A, due to Assumption A (i) and
(iii), which can be seen by a change of the integration variable ¢/h, = s.
Moreover, using (15), (17) and (19), we have that

BV = [ s e (55)

is of order h,,'~9. Combination of the above results now yields

E [[Voj — E [Viy]**]
n5/2(Var[an])l+5/2
as hy, — 0,nh,, — oco. Therefore f, (x) satisfies Lyapunov’s condition for

asymptotic normality in the triangular array scheme, see Theorem 7.3 in
Billingsley (1968), and hence it is asymptotically normal, i.e.

(20)

2+0
gn(y)dy (21)

<1

- h2+6

0 (22)

fnhn ($) —-E [fnhn (.’L‘)] g N(

0,1).
Var[fnhn (.Cl?)]
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Formula (4) is then immediate from this fact, formulae (14), (19), (20) and
Slutsky’s lemma, see Corollary 2 on p. 31 of Billingsley (1968). O

Proof of Theorem 2. The proof follows the same line of thought as the proof
of Theorem 1 in van Es and Uh (2005). For an arbitrary 0 < € < 1 we have

o= b 3 [ (o) e

J
W o
+2wihn;</_l s [ e (is(Fe >)¢f<s§p)n>ds- o

The integral in (23) is real-valued, which can be seen by taking its complex
conjugate. Using Assumption B (i), the variance of (23) can be bounded as

follows:
1 - ¢ ([ Xj—w Pu(3)
d
2mnh, j; /6 P <ZS < I >> Pk(s/pn) ’
1 € (X Pu(s) ?
<-——F .
= I W o (+(%,7)) q>k<s/pn>ds>
1 < 1 ?
< ds
~ 4m2nh? (/6 [Pk (5/pn)l >
1 1 ’
< 2¢)% |( -
- 47r2nh%( ) <1nf—e§s§e |¢k(s/pn)‘)
oLl (T (2
-\ mnoZ \pn ) )
Hence the contribution of (23) minus its expectation is of order
O 11 ( € >1—)\o < 6)\ )
- [ — exp | —x .
P On \/ﬁ pn ,upf{

By comparing this to the normalising constant in (5), by Slutsky’s lemma we
see that (23) can be neglected when considering the asymptotic normality

Of fnhn (l’)

Var
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The term (24) can be written as

mwz/ / exp (is h ))qf)w()(z)_)‘oexp(li;)ds

(25)
1 n € 1 . Xj —x
o, ; (/_1 +/€ )eXp (ZS< B >>¢w(8>
1 5] (ISIA)
X | ———— exp | — | )ds. 26
(cbk(S/pn) c <pn) P\ ) (26)
Observe that both (25) and (26) are real. Expression (25) equals
A
,\0 1 - < —Xo 5
wnanC o Z/ cos ))gf)w(s)s exp (MP?‘L) ds. (27)
By formula (21) of van Es and Uh (2005)
Xj — X o Xj — X A
cos <s( W )) = cos( ™ ) + Ry j(s), (28)
where R, j(s) is a remainder term satisfying
1-s
o) < (al + 1%,1) (=) (29)

whence by Lemma 5 of van Es and Uh (2005) the expression (27) equals

gt [ a0 >dszcos< )2

= mTlnCA(F(a +1)+o0(1)) (%)Ha ph(Fe)+io—1l, ZCOS ( )
1 .
E Z Rn,ja

where

- I Y st
By = [ R e () ds

decpn o

By (29) and Lemma 5 of van Es and Uh (2005) the latter expression can be
bounded as

1 A
sl < el 10 [ (5ot e (2 Y as
1 a+2
= A (8) W+ 2) + o)A ) o] + 1.

18



Hence

N . 1 o)A —
Var[Ry, ;] < B[R] ;] =0 (U%h% pa eyt 1><c<pn>>2) -

Here we used the fact that E[Y?] + E[Z7] < oo together with the fact that
being convergent, the sequence o, is bounded, which implies that E [X ]2] is
bounded uniformly in n. By Chebyshev’s inequality it follows that

n A(24+a)+Ao—1
1 >, >, 1 Pn g(pn)
- . _E N — )
22U B Rag) = Or (%hn NG (30)

After multiplication of this term by the normalising factor from (5) we obtain
that the resulting expression is of order p)\(c,h,) ™! = h)~'o). Assumption
B (v) and Slutsky’s lemma then imply that the remainder term (30) can be
neglected when considering the asymptotic normality of fyn, ().

The variance of (26) can be bounded by

peere (W + [ it (1 ') xp(L[';)|u<s/pn>|ds)2,

where the function w is given by

Cly|* exp(—|y|*n™)
o (y)

This function is bounded on R\(—d,0), where ¢ is an arbitrary positive
number. It follows that u(s/py) is also bounded and tends to zero for all
fixed s with |s| > € as p, — 0. Hence the variance of (26) is of smaller order
compared to the variance of (25), which can be shown by the dominated
convergence theorem via an argument similar to the one in the proof of
Lemma 5 of van Es and Uh (2005). Therefore by Slutsky’s lemma (26) can
be neglected when considering asymptotic normality of (5).
Combination of the above observations yields that it suffices to study

u(y) =

~ 1. (31)

:5 (4 T 1) + 0(1)) U, (), (32)
where
1= 5 (o (%) - o (352

Observe that




and that by the same arguments as in the proof of Lemma 6 in van Es
and Uh (2005), both (Y; — «)/h,, mod 27 and Z/p, mod 2w converge in
distribution to a random variable with a uniform distribution on [0, 27].
Furthermore, these two random variables are independent. Now notice that
for two independent random variables W7 and W5 the sum W7+ W5 mod 27
equals in distribution (W; mod 2t+ W5 mod 27) mod 27. Moreover, if W,
and Wy are uniformly distributed on [0, 27], then also Wi + Ws mod 27
is uniformly distributed on [0, 27|, see Scheinok (1965). Using these two
facts, by exactly the same arguments as in the proof of Lemma 6 of van Es
and Uh (2005) we finally obtain that Uy, () 2 N (0,1/2). The latter in
conjunction with (32) entails (5). O

Proof of Theorem 3. The proof employs an approach similar to the proof of
Theorem 2.1 of Fan (1991b). We have

> 1 T —y 2
E[V7] = /ooh% W, <hn>' 9n(y)dy.

By equation (3.1) of Fan (1991b) (with h,, replaced by p,) we have

P (1)

ont/ony| = 0

where wy is a positive integrable function. Hence by the dominated conver-
gence theorem

1 Lo
3 —itx 3
) = 5oz [ Poubar

Furthermore, again by equation (3.1) of Fan (1991b) we have |pgwpn(y)| <
(5 for some constant Cy independent of n and y, while equation (2.7) of Fan
(1991b) implies that \pgwpn (y)] < C1/ly|. Combination of these two bounds
gives

P, ()] < min (E, 02) . (33)

Since the fact that g, satisfies (12) can be shown exactly as in the proof of
Theorem 1, by Lemma 1 we then obtain that

o S (P71 s ’
E[an]Nhnp?zﬁ /_oo [ch /_16 . %(t)dt] W

1 f(x 1
= s | a0

(34)
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where the last equality follows from Parseval’s identity. Furthermore, by
Fubini’s theorem and the dominated convergence theorem we have

= 4 [ on (4o (5]

_ LT it <t>

R A O KL (35)
_ % / e £ () (it )t

— f(z).

The dominated convergence theorem is applicable because of Assumption B
(i) and (iii). Finally, let us consider E [[V%*‘SH. Writing

1 r—y
BV = [ g e (5Y)

o h%+6
and using (33) and Lemma 1, we obtain that

2448
9n(y)dy, (36)

E (Vo **] = O(hy ' =00, 7259)).

Combination of (34), (35) and (36) yields that Lyapunov’s condition is ful-
filled and hence that f,5, (z) is asymptotically normal. Formula (6) then
follows from (34) and (35). This completes the proof. O
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