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Abstract

We use Palm measures, along with a simple approximation technique to derive new explicit
expressions for all of the transient moments of the workload process of an M/G/1 queue. These
expressions can also be used to derive a closed-form expression for the nth moment of the
stationary workload, which solves the well-known Takács recursion that generates the waiting
time moments of an M/G/1 queue that serves customers in a first-come-first-serve manner.
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1 Introduction

We consider the workload process of an M/G/1 queue that serves its customers in a work-conserving
manner. Examples of such service disciplines include the First-Come-First-Served (FCFS) discipline,
the Last-Come-First-Served (LCFS) discipline (both nonpreemptive and preemptive-resume), and
the Processor-Sharing discipline. This process has been heavily studied in the literature, and is one
of the classical queueing models, so we will not dare attempt to give a complete list of references
which feature studies on the workload. Readers interested in a classical study of the workload process
can refer to the textbooks of Kleinrock [21], and Prabhu [23].

Our study will focus on the transient, or time-dependent behavior of the workload process. Some
examples of papers which discuss the transient behavior of the workload include Takács [25], Ott
[22], Cox and Isham [15], and Abate and Whitt [5, 6]. Other recent studies of a more general nature
(i.e. for reflected Lévy processes) can be found in the recent works of Es-Saghouani and Mandjes
[16] and Andersen and Mandjes [7].

The dynamics of the M/G/1 workload can be described as follows. We assume that customers
arrive according to a Poisson process with rate λ > 0, and each customer brings with it to the
system a random, arbitrarily distributed amount of work, which is independent of the time at
which the customer arrived, along with the arrival times of all other customers visiting the system.
This generates a sequence of service times, and we assume that this sequence is independent and
identically distributed.

A classical method used to model the M/G/1 workload is to make use of what is known as a
one-dimensional reflection map; see, for example, [13]. To be more precise, let Y := {Y (t); t ≥ 0}
be a stochastic process which is of the form

Y (t) = Y (0) +
N(t)∑
n=1

Bn − t
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where N represents our Poisson process with rate λ, {Bk}k≥1 our sequence of i.i.d. service times,
and Y (0) is a random variable which we assume is independent of all other random elements in
our model. In our paper, Y (0) will actually be a deterministic value. In particular, Y (0) can be
interpreted as the initial workload found in the queueing system at time zero.

We now define another stochastic process W := {W (t); t ≥ 0} which is a functional of Y . In
particular,

W (t) = max(Y (t), Y (t)− inf
0≤s≤t

Y (s))

= Y (t)−min(0, inf
0≤s≤t

Y (s)).

Under this representation, W (t) can be interpreted as the workload currently found in an M/G/1
queue at time t: moreover, W (t) = Y (t) if and only if Y (0) > 0 and inf0≤s≤t Y (s) > 0, and
W (t) = Y (t)− inf0≤s≤t Y (s) if and only if Y hits zero at some point in [0, t], which corresponds to
the end of the first busy period of the M/G/1 queue. If the first busy period ends before time t,
then by subtracting the infimum of Y over [0, t] we are forcing W (t) to be zero while the queueing
system is empty.

This representation of the workload has proven to be extremely useful in many queueing studies,
particularly when attempting to show that the sample paths of the workload can be approximated
by a simpler stochastic process, such as a regulated Brownian motion.

It is also well-known that if ρ := λE[B1] < 1, the M/G/1 queue is stable, and as t → ∞, W (t)
converges weakly to a random variable W (∞), where for each x ≥ 0

P (W (∞) ≤ x) = (1− ρ)
∞∑
n=0

ρnP

(
n∑
k=1

B∗k ≤ x

)
(1)

where {B∗k}k≥1 represents an i.i.d. sequence of random variables, with distribution

P (B∗1 ≤ x) =
1

E[B1]

∫ x

0

P (B1 > t)dt.

Identity (1) is known as the Pollaczek-Khintchine formula.
One way to see why the Pollaczek-Khintchine formula holds is to imagine that the workload

process corresponds to that of an M/G/1 queue which operates under the preemptive-resume LCFS
discipline. Queueing systems which serve customers in this manner operate as follows: when a
customer arrives to the system, it immediately begins receiving service, and the customer that
was previously receiving service up to that point then waits in the system until the customer that
interrupted its moment with the server leaves the system, at which point it rejoins its place with the
server. Once the server revisits a customer it previously abandoned, it resumes service at the point
where it previously left-off. The best way to visualize such a system is to imagine the customers
waiting in a stack, where newly arriving customers to the system are placed on top of the stack, and
at each moment in time, the server serves whomever is currently on top of the stack.

Under these assumptions, we see that this is a work-conserving discipline, and it is well-known
that the workload process corresponding to this system is the same for all M/G/1 queues which
operate under a work-conserving discipline. In particular, in steady-state, the stationary joint distri-
bution of the queue-length (including the customer in service) and the residual service times (which
we denote as Vk(∞)) of an M/G/1 queue under preemptive-resume LCFS is

P (Q(∞) = n, Vk(∞) ≤ xk, 1 ≤ k ≤ n) = (1− ρ)ρn
n∏
k=1

P (RB ≤ xk)
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where RB denotes the residual, or equilibrium distribution, of B. Once this is known, a simple
conditioning argument can be used to derive the Pollaczek-Khintchine formula. This observation
was first discovered by Cooper and Niu [14].

Moreover, the moments of W (∞) satisfy the following recursion:

E[W (∞)k] =
λ

1− ρ

k∑
i=1

(
k

i

)
E[Bi+1

1 ]
(i+ 1)

E[W (∞)k−i]. (2)

These results were first discovered by Takács [25], and are also discussed in the textbook of Kleinrock
[21].

Our study of the transient behavior of the M/G/1 workload is closely aligned with what was
carried out in [6], but it has also been influenced by [14]. In [6], the authors showed that the transient
moments of the workload can be related to one another through a system of differential equations.
To be precise, if we (using their notation) define mk(t) = mk(t, x) = E[W (t)k|W (0) = x], then the
relationship can be summarized in the following theorem.

Theorem 1.1 (Theorem 1 of [6]).
(a) m

′

1(t) = ρ− 1 + P (W (t) = 0|W (0) = x).
(b) If mk(t) <∞ for some k, k ≥ 2, then the derivative m

′

k(t) exists and

m
′

k(t) = ρE[Bk]− (1− ρ)kmk−1(t) + ρ

k−1∑
j=2

(
k

j

)
E[Bj ]mk−j(t). (3)

(c) If mk+1(0) <∞ and E[Bk+1] <∞ for some k, k ≥ 1, then m
′

k+1(t)→ 0 as t→∞ and

mk(∞) =
λ

1− ρ

k∑
j=1

(
k

j

)
E[Bj+1]
j + 1

mk−j(∞). (4)

Furthermore, the authors show in [6] that (4) is a consequence of (3), and this recursion is just (2).
They also show that, given W (0) = 0, W (t) is stochastically increasing in t: hence, the kth moment
of W (t) can be expressed as the kth moment of W (∞), times a cumulative distribution function.
Once this is known, the study of the transient behavior reduces to the study of the cumulative
distribution function, and how it can be approximated. A crucial point in the analysis is that all of
these distribution functions depend on the idle probabilities P (W (t) = 0|W (0) = 0), t ≥ 0, which at
the time could only be expressed in terms of transforms. Not only that, only the first four moments
are derived explicitly in [6]: while the method could be used in principle to derive any moment of
interest, it is not clear how to use this method to derive an explicit formula which describes all of
the moments of W (t).

It is also possible to derive (3) by making use of the “BAR” (Basic Adjoint Relation) approach;
see Chen [12]. This was originally used in queueing to derive the stationary distributions of multi-
dimensional regulated Brownian motion, and it is shown in [12] that the method is also useful in a
transient setting as well.

Our contribution to the transient literature on the M/G/1 workload is as follows: we show that
all of the moments of W (t) can be expressed in terms of cumulative distribution functions, which
correspond to different types of independent sums of residual busy periods, which are generated by
various residuals of a typical service time. For instance, we will show in the next section that

E[W (t)|W (0) = x] =
∫ x

0

P (τu > t)du+ λE[B]
∫ t

0

P (τRB
> s)ds (5)

where τx represents the amount of time it takes the workload to go from level x to level zero, and
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τX = X +
N(X)∑
k=1

τBk

where X is independent of all other random elements present in the random summation.
From this expression we observe the well-known fact that if E[B2] < ∞, the first moment of

W (t) converges to the first moment of W (∞), as t → ∞. Moreover, under this condition we find
that

E[W (t)|W (0) = x] =
∫ x

0

P (τu > t)du+
λE[B2]
2(1− ρ)

P (RτRB
≤ t). (6)

The form of this moment is very similar to the transient moments of the M/G/1 queue that op-
erates under the preemptive Last-Come-First-Served discipline, which we provide for the reader’s
convenience (details can be found in [19]):

E[Q(t)|Q(0) = n0] =
n0∑
k=1

P (τ1 + . . .+ τk > t) +
ρ

1− ρ
P (RτB

≤ t). (7)

Similar expressions also hold for higher moments of W (t), as we will show below. Indeed, these
expressions are very similar to the type of expressions derived in [1, 2, 3, 4] for regulated Brownian
motion, and the M/M/1 queue length process.

What is also interesting about our argument is that it makes heavy use of the idea of relat-
ing the workload process to a queueing system which operates under the Last-Come-First-Served
preemptive-resume discipline. In [14], the authors used such an idea to give a probabilistic de-
scription of the Pollaczek-Khintchine formula. Similarly, in our work we will also show that the
sample paths of the M/G/1 workload can be approximated with (properly scaled) sample paths of
an M/G/1 system, with batch arrivals, which operates under the preemptive-resume LCFS disci-
pline. Queueing systems which behave in a preemptive-resume manner are generally much easier to
analyze than those which behave otherwise, and so this allows us to see that the workload process
is quite tractable as well.

We begin our discussion in Section 2, where we briefly define the notion of a Palm measure, which
will be the main technical tool used throughout this study. Section 3 will focus on the derivation of
the first moment, and this expression will be used to derive the covariance function of the stationary
version of the workload process. In Section 4, we will show how our technique can also be used to
derive all of the moments of the transient workload. The reader will see that our expressions are
explicit, and so they can be used to derive closed-form expressions for the steady-state workload
as well, which solves the well-known recursion (2) discussed above. Our transient moments can
be expressed in terms of cumulative distribution functions (cdfs) which represent various types of
independent sums of busy periods generated by residuals of a typical service time, and we will
conclude in Section 5 by showing how our Palm approach can be used to derive all of the moments
of these cdfs as well. Being able to derive these moments is important, as they allow us to create
simple approximations of our cdfs, which leads to simple approximations of the moments of the
transient workload.

2 Palm Measures

We begin by assuming that all of the random elements discussed throughout this study are defined
on a probability space (Ω,F , P ), where Ω represents our sample space which is assumed to be a
complete, separable metric space, F represents the σ-field generated by the open sets with respect to
the metric on Ω, and P is a probability measure on (Ω,F). These topological assumptions on (Ω,F)
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are needed in order for the Palm measures to exist; see Chapter 10 of [20] for further discussion.
Readers should not be alarmed by the fact that we are placing such assumptions on our space, as
the vast majority of queueing models found in the literature can exist in such a setting.

Each point process {N(t); t ≥ 0} induces a family of probability measures {Pt}t∈[0,∞), which are
known as Palm measures.

Definition 2.1 The collection of Palm measures {Pt}t∈[0,∞) induced by a point process N are prob-
ability measures with the property that (i) for each fixed Borel set A ∈ F , Pt(A) is a measurable
function in t, and (ii) for each fixed t, Pt is a probability measure on (Ω,F). Moreover, for each
Borel set B ⊂ R and each A ∈ F , we find that

E[N(B)1(A)] =
∫
B

Pt(A)µ(dt)

where µ represents the mean measure of N .

A very important consequence of this definition is what is known as the Campbell-Mecke formula,
which we now present.

Theorem 2.1 Suppose X(t, ω) is a measurable function on [0,∞)× Ω. Then

E

[∫ ∞
0

X(t, ω)N(dt)
]

=
∫ ∞

0

Et[X(t, ω)]µ(dt).

This is, quite possibly, the most important tool used when applying Palm measures to a particular
problem, and we will find that it is an invaluable tool in our setting as well. Readers interested
in Palm measures should refer to the research monograph of Kallenberg [20]: examples of its use
in queueing applications include Blaszczyszyn [10], Blaszczyszyn et al. [11], Rolski [24], Fralix and
Riaño [19], and Fralix [18].

We will also make use of higher-order Palm measures in our paper, which are of the form Ps1,...,sn ,
where s1, . . . , sn are points in [0,∞). We interpret, for a given A ∈ F , Ps1,...,sn

(A) as the probability
of the event A, given that N has points at s1, s2, . . . , sn. Moreover, in our case N will be a Poisson
process (under P ), and under Ps1,...,sn

, N is basically Poisson, with extra points at the locations
s1, . . . , sn. We refer readers that are interested in properties of these higher-moment Palm measures
to Chapter 12 of [20].

3 The First Moment, and the Covariance Formula

We begin by computing the first moment of W (t), given W (0) = x, for some x ≥ 0. This will
illustrate the main idea used in all of the computations performed throughout this paper, without
unnecessarily complicating the matter with combinatorial arguments, iterated integrals, and residual
calculations, which will be required for higher moments.

To compute our expressions for the moments of W (t), we will need to make use of a few properties
of residuals of random variables.

Definition 3.1 Suppose X is a nonnegative random variable. The residual of X is a nonnegative
random variable RX such that, for each t ≥ 0,

P (RX ≤ t) =
1

E[X]

∫ t

0

P (X > y)dy

We will also need to calculate “residuals of residuals”, and so we define Rn,X as the nth residual of
X, i.e. Rn,X = R1,Rn−1,X

= RRn−1,X
. The use of the nth residual of a random variable will prove

to be useful later, when we derive the higher moments of the workload.
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Consider the following collection of queueing processes {QM (t); t ≥ 0}, for M ≥ 1. For each
QM , we assume that groups of customers arrive according to a Poisson process N , with rate λ. We
signify the points of N with the sequence {Tk}k≥1, where 0 < T1 < T2 < .... To be more precise,
at each one of these Poisson arrival times Tn we assume that Cn,M customers arrive, where each
customer brings with it a deterministic amount of work which is of size 1/2M . In particular, we
define Cn,M as follows:

Cn,M =
∞∑
k=1

k1
(
k − 1
2M

< Bn ≤
k

2M

)
.

The queue then processes all work in a preemptive-resume LCFS manner; hence, we assume that
associated with each customer in the batch is a number k, 1 ≤ k ≤ Cn,M , where customer 1 is served
first, customer 2 second, and so on. Moreover, for each time s let CM (s) denote the size of the last
batch to arrive to the system at or before time s, and let Wk,M (s) denote the sojourn time of the
kth customer within the last batch that arrived at or before time s. If there is no kth customer in
the batch, we set Wk,M (s) = 0.

We will also assume that at time zero, there are m0,M = sup{n ≥ 1;n/2M ≤ x} customers
present in the system. At time zero, the amount of work being held by each of these customers is
also equal to 1/2M , and they are ordered in the same manner as a typical batch, with Wk,M denoting
the sojourn time of the kth customer in the group.

Notice that now QM is an integer-valued process, and due to our choice of service discipline we
can express it in the following way: for each time t ≥ 0,

QM (t) =
m0,M∑
k=1

1(Wk,M > t) +
∫ t

0

CM (s)∑
k=1

1(Wk,M (s) > t− s)N(ds)

Our first result shows that, when properly scaled, the sample paths of the QM processes approach,
as M →∞, the workload process. This is a simple and very intuitive (but not very deep) proposition,
and it will be of great use when we derive the transient moments of the workload.

Proposition 3.1 As M →∞, for each t ≥ 0,

sup
0≤s≤t

∣∣∣∣QM (s)
2M

−W (s)
∣∣∣∣→ 0.

In other words, QM/2M converges to W uniformly on compact sets.

Proof Clearly, after some thought we see that, since the arrival times are exactly the same for each
M ≥ 1,

sup
0≤s≤t

∣∣∣∣QM (s)
2M

−W (s)
∣∣∣∣ ≤ 2(N(t) + 1)

2M

which approaches 0 as M → ∞. If the reader does not see the upper bound on the supremum,
consider the case where N(t) = 0. In this case, it is clear that, for each M , the maximum difference
between the scaled queue-length and the workload is just

max
(
QM (0)

2M
−W (0), QM (1/2M−)−W (1/2M−)

)
≤ 2

2M

since it is clear that QM (0)
2M −W (0) = QM (1/2M )

2M −W (1/2M ). The same type of logic can be used for
any realization of N(t), which is always finite. ♦
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One consequence of this proposition is that the hitting times of the scaled queue-length processes
converge to the corresponding hitting-times of the workload. To be more precise, define, for each
M ≥ 1,

τk,M = inf{t > 0 : QM (0) = k,QM (t) = 0}

and

τx = inf{t > 0 : W (0) = x,W (t) = 0}.

Note that, in the definition of τx, we are placing the condition that W (0) = x in the statement;
this is merely to remind the reader that this random variable is the amount of time it takes the
workload to reach state zero, starting from state x (similarly for the τk,M definition). With this
proposition in mind, an application of the continuous mapping theorem (see [26]) shows that if we
let k(M,y) = sup{k ≥ 1 : k/2M ≤ y}, then τk(M,y),M converges weakly, as M →∞, to τy.

We are now ready to compute the first moment of the workload. For convenience, we will assume
that E[B2] <∞. This assumption is not really needed (as can be seen from the proof), but it does
allow us to rewrite an integral as a cumulative distribution function.

Theorem 3.1 For each t ≥ 0, x ≥ 0,

E[W (t)|W (0) = x] =
∫ x

0

P (τy > t)dy +
λE[B2]
2(1− ρ)

P
(
RτRB

≤ t
)
.

Proof We will first assume that the service time distribution of each Bk is absolutely continuous.
Notice that the first moment of each scaled queue-length process QM is as follows:

E

[
QM (t)

2M

]
=

m0,M∑
k=1

P (τk,M > t)
1

2M
+

1
2M

E

∫ t

0

CM (s)∑
k=1

1(Wk,M (s) > t− s)N(ds)


=

m0,M∑
k=1

P (τk,M > t)
1

2M
+ λ

∫ t

0

Es

 1
2M

CM (s)∑
k=1

1(Wk,M (s) > t− s)

 ds. (8)

However, after some thought we see that under Ps, the joint distribution of CM (s) and τk,M is the
same as the joint distribution of a typical batch size, and the busy period generated by a deterministic
amount of work of size k/2M . Thus, under Es the events {CM (s) ≥ k} and {τk,M > t − s} are
independent, and so

Es

 1
2M

CM (s)∑
k=1

1(τk,M > t− s)

 = Es

 1
2M

CM (s)∑
k=1

P (τk,M > t− s)

 .
Recall that as M → ∞, τk(M,y),M converges weakly to τy, which implies that P (τk(M,y),M > t− s)
converges to P (τy > t − s), for all y 6= t − s, due to the fact that each random variable τx has an
atom at x. Thus, for each realization of CM (s) under Es, we can apply the dominated convergence
theorem to conclude that

1
2M

CM (s)∑
k=1

P (τk,M > t− s)→
∫ B

0

P (τy > t− s)dy (9)

Combining (8) with (9) yields, as M →∞,
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E

[
QM (t)

2M

]
→

∫ x

0

P (τy > t)dy + λ

∫ t

0

E

[∫ B

0

P (τy > t− s)dy

]
ds

=
∫ x

0

P (τy > t)dy + λ

∫ t

0

E

[∫ ∞
0

P (τy > t− s)P (B > y)dy
]
ds

=
∫ x

0

P (τy > t)dy + λE[B]
∫ t

0

P (τRB
> t− s)ds

=
∫ x

0

P (τy > t)dy + λE[B]E[τRB
]P (RτRB

≤ t). (10)

However, clearly

E[τRB
] =

E[RB ]
1− ρ

=
E[B2]

2E[B](1− ρ)

and plugging this into (10) completes the proof. A standard phase-type approximation argument
(see Theorem 4.2 of Asmussen [8]) can be used to derive the first moment for general service times. ♦

Remark By letting t→∞, we arrive at the first moment of the stationary workload:

lim
t→∞

E[W (t)|W (0) = x] =
λE[B2]
2(1− ρ)

.

♣

Remark It is also easy to see that if x = 0, E[W (t)] is not only increasing, but also concave in t.
This follows immediately from the expression, since the derivative is decreasing in t. These type of
properties were proved in a much more general setting in [7]; however, for our specific Lévy process
we are actually able to see the result immediately from our derived expression for the first moment. ♣

Remark We should also mention that an alternative expression for the first moment can also be
found in Theorem 7.3 of [2], which holds for an arbitrary reflected Lévy process. It would be in-
teresting to see a direct argument which shows how the two expressions are related to one another. ♣

We will now use this result to derive an explicit expression for the covariance function of the
stationary version of the workload process {Ws(t); t ∈ R}. Clearly, since the workload process is
Markovian, we see that

E[Ws(0)Ws(t)] =
∫ ∞

0

xE[W (t)|W (0) = x]dP (Ws(0) ≤ x)

=
∫ ∞

0

x

∫ x

0

P (τy > t)dydP (Ws(0) ≤ x) +
∫ ∞

0

x
λE[B2]
2(1− ρ)

P (RτRB
≤ t)dP (Ws(0) ≤ x)

=
∫ ∞

0

∫ ∞
y

xP (τy > t)dP (Ws(0) ≤ x)dy +
[
λE[B2]
2(1− ρ)

]2
P (RτRB

≤ t). (11)

Hence, the covariance formula r(t) = E[Ws(0)Ws(t)]− E[Ws(0)]2 is just

r(t) =
∫ ∞

0

∫ ∞
y

xP (τy > t)dP (Ws(0) ≤ x)dy +
[
λE[B2]
2(1− ρ)

]2
P (RτRB

≤ t)−
[
λE[B2]
2(1− ρ)

]2
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However, we recall that, for each y,

∫ ∞
y

xdP (Ws(0) ≤ x) = P (AWs(0) > y)E[Ws(0)]

where, for a given nonnegative random variable X, AX represents the total life distribution of X,
i.e. for each y ≥ 0,

P (AX ≤ y) =

∫ y
0
xdP (X ≤ x)
E[X]

.

Therefore, we see from (11) that

r(t) = E[Ws(0)]
∫ ∞

0

P (τy > t)P (CWs(0) > y)dy −
(
λE[B2]
2(1− ρ)

)2

P
(
RτRB

> t
)

= E[Ws(0)2]P (τCWs(0) > t)−
(
λE[B2]
2(1− ρ)

)2

P
(
RτRB

> t
)
.

It is stated in Es-Saghouani and Mandjes [16] that the asymptotics (as t → ∞) of the covariance
function of the M/G/1 workload resemble those of the busy period, and our results show why this is
the case. It is not, however, immediately obvious from the expression to draw the same conclusions
regarding the behavior of r(t) (i.e. whether or not r is positive, decreasing or convex) from this
particular form of r.

4 Higher Moments

Throughout this section, we will assume that W (0) = 0. The results can be generalized to any initial
condition, by following a similar proof technique, and we leave the details to the interested reader.

Theorem 4.1 Suppose that W (0) = 0. Then, the nth moment of W (t) can be expressed in the
following way:

E[W (t)n] =
n∑

m=1

∑
rk≥1,r1+...+rm=n

(
m∏
l=1

(
n− 1−

∑l−1
j=1 rj

rl − 1

))( m∏
l=1

λE[Brl+1]l
(rl + 1)(1− ρ)

)
P

(
m∑
l=1

RτRrl,B
≤ t

)

Moreover, letting t→∞ in E[W (t)n] gives us the stationary moments, which we now state as a
corollary.

Corollary 4.1 The moments of the stationary distribution of the workload process are as follows:
for n ≥ 1,

E[W (∞)n] =
n∑

m=1

∑
rk≥1,r1+...+rm=n

(
m∏
l=1

(
n− 1−

∑l−1
j=1 rj

rl − 1

))( m∏
l=1

λE[Brl+1]l
(rl + 1)(1− ρ)

)
.

Remark We can also use these moments to derive the moments of the steady-state distribution of
the number of customers waiting for service in an M/G/1 queue. From the distributional Little’s
law (see e.g. Bertsimas and Nakazato [9]) we find that, if we assume the queue operates under
the FCFS discipline, the stationary workload is equal in distribution the steady-state waiting time,
and the steady-state queue-length and steady-state waiting times are related to one another in the
following way:

9



E[zQ(∞)] = E[e−λ(1−z)W (∞)].

After differentiating both sides of the equality n times with respect to z, and letting z → 1, we find
that

E[Q(∞)(Q(∞)− 1) · · · (Q(∞)− n+ 1)] = λnE[W (∞)n]

which proves the claim. ♣

Proof Our goal is to derive the nth moment of W (t), for all t. We will again assume that the
services are absolutely continuous, but as we saw for the first moment, the general case will also
follow from a standard phase-type approximation argument. Clearly,

E

[(
QM (t)

2M

)n]
=

1
2Mn

E

∫ t

0

· · ·
∫ t

0

n∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > t− sk)N(dsn)N(dsn−1) . . . N(ds1)


=

1
2Mn

∫ t

0

· · ·
∫ t

0

Es1,s2,...,sn

 n∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > t− sk)

µs1,...,sn−1(dsn) · · ·µs1(ds2)µ(ds1)

where for each Borel set A, µ(A) = λ|A| (| · | representing Lebesgue measure), and µs1,...,sn
(A) =

λ|A|+
∑n
k=1 1(sk ∈ A). In other words, µs1,...,sn

represents a measure that is basically proportional
to Lebesgue measure, with deterministic unit atoms at the points s1, . . . , sn.

To compute this integral, we will need to rewrite it in a way such that we are only integrating
with respect to µ, i.e. a constant multiple of Lebesgue measure. We will first give the following
identity:

∫ t

0

· · ·
∫ t

0

Es1,s2,...,sn

 n∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > t− sk)

µs1,...,sn−1(dsn) · · ·µs1(ds2)µ(ds1)

=
n∑

m=1

∑
rk≥1,r1+...+rm=n

λm

[
m∏
l=1

(
n− 1−

∑l−1
j=1 rj

rl − 1

)]

×
∫

(0,t]

· · ·
∫

(0,t]−{s1,...,sm−1}
Es1,...,sm

 m∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > t− sk)

rk
 dsm . . . ds1. (12)

This can be seen by applying a counting argument on the indices.
To finish the calculation, we will need to compute each of the integrals that are of the form

∫
(0,t]

· · ·
∫

(0,t]−{s1,...,sm−1}
Es1,...,sm

 m∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > t− sk)

rk
 dsm . . . ds1. (13)

An important thing to notice is that this integral can be expressed as the sum of m! integrals which
are of the form

∫ t

0

∫ s1

0

· · ·
∫ sm−1

0

Es1,...,sm

 m∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > t− sk)

rk
 dsm . . . ds1 (14)

10



where m! refers to the number of permutations of s1, . . . , sm. The reader may think that this integral
will differ between permutations, due to the presence of the ri terms in the exponent, but we will see
very soon that this is not the case. Based on how (14) is written, we see that sm < sm−1 < . . . < s1,
and so from the independent increments property of a marked Poisson process, along with the fact
that the customers are served in a preemptive-resume LCFS manner, we find that

Es1,...,sm

 m∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > t− sk)

rk


= Es1,...,sm

 m∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > sk−1 − sk)

rk


=
m∏
k=1

Esk

CM (sk)∑
l=1

1(Wl(sk) > sk−1 − sk)

rk


where we are following the convention that s0 = t. Thus, to compute the integral it suffices to
compute each of the expectations

Esk

CM (sk)∑
l=1

1(Wl(sk) > sk−1 − sk)

rk
 .

However, after rearranging terms and performing some algebra we see that

CM (sk)∑
l=1

1(Wl(sk) > sk−1 − sk)

rk

=
CM (sk)∑
l=1

((CM (sk)− l + 1)rk − (CM (sk)− l)rk)1(Wl(sk) > sk−1 − sk). (15)

Moreover, as was true in the previous section, on the set where CM (sk) ≥ l, Wl(sk) d= τl,M , and so
by independence under Psk

Esk

CM (sk)∑
l=1

1(Wl(sk) > sk−1 − sk)

rk


= Esk

CM (sk)∑
l=1

((CM (sk)− l + 1)rk − (CM (sk)− l)rk)P (τl,M > sk−1 − sk)


and as M → ∞, we see that after including our space-scaling factor, two applications of the domi-
nated convergence theorem give

1
2Mrk

E

CM (sk)∑
l=1

((CM (sk)− l + 1)rk − (CM (sk)− l)rk)P (τl,M > sk−1 − sk)


→ E

[∫ B

0

P (τy > sk−1 − sk)rk(B − y)rk−1dy

]

11



= E

[∫ ∞
0

P (τy > sk−1 − sk)rk(B − y)rk−11(B > y)dy
]

=
∫ ∞

0

P (τy > sk−1 − sk)rkE[(B − y)rk−11(B > y)]dy. (16)

If we now apply Lemma 6.2 from the appendix to (16), we find that

∫ ∞
0

P (τy > sk−1 − sk)rkE[(B − y)rk−11(B > y)dy =
∫ ∞

0

P (τy > sk−1 − sk)rkE[Brk−1]P (Rrk−1,B > y)dy

= E[Brk−1]E[Rrk−1,B ]rkP (τRrk,B
> sk−1 − sk)

= E[Brk ]P (τRrk,B
> sk−1 − sk).

Thus, after plugging this into (14) and integrating,

∫ t

0

∫ s1

0

· · ·
∫ sm−1

0

Es1,...,sm

 m∏
k=1

CM (sk)∑
l=1

1(Wl(sk) > t− sk)

rk
 dsm . . . ds1

=
∫ t

0

∫ s1

0

· · ·
∫ sm−1

0

m∏
k=1

E[Brk ]P (τRrk,B
> sk−1 − sk)dsm . . . ds1

=

(
m∏
k=1

E[Brk ]

)(
m∏
k=1

E[τRrk,B
]

)
P

(
m∑
k=1

RτRrk,B
≤ t

)

=

(
m∏
k=1

E[Brk ]

)(
m∏
k=1

E[Rrk,B ]
1− ρ

)
P

(
m∑
k=1

RτRrk,B
≤ t

)

=

(
m∏
k=1

E[Brk+1]
(rk + 1)(1− ρ)

)
P

(
m∑
k=1

RτRrk,B
≤ t

)
.

This calculation proves that each of the m! integrals we alluded to above whose sum gives (13) are
equal to one another. Finally, plugging this expression into (12) completes the proof. ♦

5 The Moments of the Busy Period

It is also worth noting at this point that all of the moments of the cdfs found in the moment
expressions of W (t) can be computed as well, once we know the moments of the M/G/1 busy
period, and these can be computed in a recursive manner; see [4]. To do this, it suffices to derive a
formula for the moments of τx.

Clearly τx can be represented in the following way:

τx = x+
∫ x

0

τ(s)N(ds)

where τ(s) is the busy period induced by the last arrival at or before time s. Notice that “time”
(on [0, x]) has a different interpretation in this context; however, the idea behind this equation is
exactly the same as the classical branching-process interpretation used when computing the busy
period of the M/G/1 queue (see Feller [17] for details). In particular, under the measure Ps1,...,sn ,
τ(s1), . . . , τ(sn) are independent, and are equal in distribution to a typical busy period.

Also, for each integer n ≥ 1,
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E[τnx ] =
n∑
k=0

(
n

k

)
xn−kE

[(∫ x

0

τ(s)N(ds)
)k]

. (17)

By applying the Campbell-Mecke formula k times, we can mimic the argument used in the calculation
of the moments of the workload to find that

E

[(∫ x

0

τ(s)N(ds)
)k]

=
∫ x

0

· · ·
∫ x

0

Es1,s2,...,sk
[
k∏
l=1

B(sl)]µs1,...,sk−1(dsk) . . . µ(ds1)

=
k∑
j=1

∑
ri≥1,r1+...+rj=k

λj

(
j∏
l=1

(
k − 1−

∑l−1
m=1 rm

rl − 1

))
xj

j∏
l=1

E[τ rl ]. (18)

By plugging (18) into (17), we see that we now have an expression for all of the moments of τx,
purely in terms of the moments of the busy period. Expressions for the first four moments of τx can
also be found in Theorem 7 of [6].

6 Appendix

We will now state an expression for the moments of the residuals, which is a well-known result, but
for the reader’s convenience we will also provide a proof.

Lemma 6.1 For integers n ≥ 0, k ≥ 0, we have that

E[Rnk,B ] =
E[Bn+k](
n+k
n

)
E[Bk]

.

Proof We will prove this statement by induction. Suppose that k = 0. Then

E[Bn] = E[Rn0,B ] =
E[Bn+0](
n+0
n

)
E[B0]

= E[Bn].

Now assume that it holds for all j ≤ k. Then

E[Rnk+1,B ] =
E[Rn+1

k,B ]
(n+ 1)E[Rk,B ]

=
E[Bn+k+1](

n+k+1
n+1

)
E[Bk](n+ 1) E[Bk+1]

(k+1)E[Bk]

=
E[Bn+k+1]

(n+k+1)!
(n+1)!k!

n+1
k+1E[Bk+1]

=
E[Bn+k+1]

(n+k+1)!
n!(k+1)! E[Bk+1]

which completes the proof. ♦

The following result gives an alternative representation for the tail of the nth residual of a random
variable.

13



Lemma 6.2 For each integer n ≥ 0, and each nonnegative real number x,

E[(B − x)n1(B > x)] = E[Bn]P (Rn,B > x).

Proof The statement is trivial if n = 0. Suppose now that the statement holds for all k ≤ n. Then

E[(B − x)n+11(B > x)] =
∫ ∞
x

(y − x)n+1dP (B ≤ y)

=
∫ ∞
x

∫ y

x

(y − x)ndudP (B ≤ y)

=
∫ ∞
x

∫ ∞
u

(y − x)ndP (B ≤ y)du

=
∫ ∞
x

∫ ∞
u

n∑
k=0

(
n

k

)
(y − u)k(u− x)n−kdP (B ≤ y)du

=
∫ ∞
x

n∑
k=0

(
n

k

)
E[Bk]P (Rk,B > u)(u− x)n−kdu. (19)

However, if we apply Lemma 6.1, we find that

∫ ∞
x

(u− x)n−kP (Rk,B > u)du =
∫ ∞
x

∫ y

x

(u− x)n−kdudP (Rk,B ≤ y)

=
∫ ∞
x

(y − x)n−k+1

n− k + 1
dP (Rk,B ≤ y)

=
E[Rn−k+1

k,B ]P (Rn+1,B > x)
n− k + 1

=
E[Bn+1]P (Rn+1,B > x)(
n+1

n−k+1

)
(n− k + 1)E[Bk]

. (20)

Plugging (20) into (19) and simplifying gives

E[(B − x)n+11(B > x)] = E[Bn+1]P (Rn+1,B > x)
n∑
k=0

1
n+ 1

= E[Bn+1]P (Rn+1,B > x)

which completes the proof. ♦
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