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Abstract. We show that in the stationary M/G/1 queue, if the ser-
vice time distribution is with increasing (decreasing) failure rate (IFR
(DFR)), then (a) The distribution of the number of customers in the
system is also IFR (DFR), (b) The conditional distribution of the re-
maining service time given the number of customers in the system is also
IFR (DFR) and (c) The conditional distribution of the remaining ser-
vice time given the number of customers in the system, is stochastically
decreasing (increasing) with the number of customers in the system.

1 Introduction

The distribution of the residual service time in a single server queue, has many
reasons of interest. For example it is a non-trivial component of the sojourn
time distribution. Furthermore, the residual service time is the remaining time
until the next departure from the queue, and in a network this may contribute
to the remaining time until the arrival to another queue. The literature on the
departure process from a queue (which is the arrival process to the next queue)
is wide and most of it is relatively old. See e.g. a survey by Daley [5]. Most of
the literature deals with the marginal distribution of the departure process and
or/the inter departure times. In this paper we discuss the conditional residual
service time, which is the conditional time until the next departure, given the
number of customers in the queue. The dependence between the residual service
time and the number of customers in the system can be explained as follows.
The distribution of the residual service time depends on the past service time.
However, if the past itself is not given, the number of customers in the system,
which is a function of both the arrival process and the service process, supplies
information about the past service time. This information changes our prior be-
lief regarding the distribution of the residual service time.
We consider an M/G/1 queue with arrival rate λ and service time CDF G(·),
with G∗(·) being its Laplace-Stieltjes Transform (LST) and x̄ being its associ-
ated mean value. Assume that λx̄ < 1 and that the system is in steady state.
Denote the number of customers in the system by Q and denote the generic
random variable Rn having the same distribution as the residual service time
given Q = n. For any work conserving and non-preemptive service regime, the
model’s parameters λ and G determine the joint and marginal distributions of
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Q and Rn, n ≥ 1. Here we study the influence of G being with monotone failure
rate on the distributions of Rn and Q. The literature regarding the conditional
residual service time (or its joint distribution with the queue length) is quite
wide, see e.g. [1, 4, 6–8]. A relatively new study with the scope of this paper
was done by Ross [10]. Ross showed that if G is DMRL (IMRL) (that is, the
expected residual life time is decreasing (increasing) with its past life time) then
Q is stochastically larger (smaller) than the queue length in the M/M/1 queue
with the same utility level. In this work we show that the IFR (DFR) property
is transferred from G to Rn and to Q. Also, we show that if G is IFR (DFR),
then Rn is stochastically decreasing (increasing) with n.
The paper is organized as follows. In Section 2 we give definitions of stochastic
order and monotone failure rate distributions and state two lemmas which con-
nect these two and can be applied to the residual service time. In section 3 we
state our main theorems and discuss a few consequences of these theorems. We
conclude this paper in section 4 in which two examples are given, both of them
are such that the underlying M/G/1 queue can be described as two dimensional
Markov chain. In these two examples we present the conditional distribution of
the residual service time in a way that our results are observed almost immedi-
ately.

2 Properties of distributions with monotone failure rate

In this section we give some definitions and notations. Also we state some prop-
erties of distributions with monotone failure rate, which come from reliability
theory and stochastic order theory.

Definition 1. A random variable X is said to be stochastically larger than a
random variable Y (denote by X >st Y ), if for any x, P (X > x) ≥ P (Y > x).

Definition 2. A non-negative random variable (or its associated distribution
function F ) is said to be with increasing (decreasing) failure rate (IFR (DFR))
if F̄ (t + s)/F̄ (t) is non-increasing (non-decreasing) with t for any s ≥ 0, such
that F̄ (s + t) > 0), where F̄ = 1− F .

Now, for two independent random variables X and Y , define the generic random
variable {X}Y having the distribution of X − Y |X > Y . Note that {{X}Y }Z

d=
{X}Y +Z . The following lemmas present relations between X (when it has a
monotone failure rate) and {X}Y .

Lemma 1. Let X and Y be two non-negative independent random variables. If
X is IFR (DFR) then {X}Y is IFR (DFR) as well.

Proof. We prove the result for the IFR case, while the proof for the DFR case
is equivalent. We want to prove that for any positive t, s, u,

P ({X}Y > t + u)
P ({X}Y > t)

>
P ({X}Y > t + u + s)

P ({X}Y > t + s)
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which is equivalent to

P (X > Y + t + u)P (X > Y + t + s) > P (X > Y + t + u + s)P (X > Y + t)

or,
log P (X > Y + t + s) + log P (X > Y + t + s) > (1)

> log P (X > Y + t + u + s) + log P (X > Y + t).

Note that X is IFR if and only if F̄ is log-concave. Thus, for any positive y, we
have

log(F̄ (y + t + u)) + log(F̄ (y + t + s))− log(F̄ (y + t + u + s))− log(F̄ (y + t)) ≥ 0.

Multiplying the latter by the density of Y and integrating implies (1). In the
DFR case all the inequality signs are reversed.

Lemma 2. Let X, Y, Z be non-negative random variables such that X is inde-
pendent on (Y, Z) and P (Y ≤ Z) = 1. If X is IFR, then {X}Y ≥st {X}Z .If X
is DFR, the stochastic inequality is reversed.

Proof. We want to show that

P (X > Y + t)
P (X > Y )

>
P (X > Z + t)

P (X > Z)

which is equivalent to

log P (X > Y + t)− log P (X > Y )− log P (X > Z + t) + log P (X > Z) > 0

Since X IFR, for any realization y, z of (Y, Z), we have

log P (X > y + t)− log P (X > y)− log P (X > z + t) + log P (X > z) > 0.

Thus, multiplying the latter by the joint density (assume for simplicity that it
exists) of (Y, Z) keeps the inequality. In the DFR case, all the inequalities are
reversed.

3 Main results

In this section we apply the results from section 2 to the conditional residual
service time in the M/G/1 queue. It is shown in [7] that the CDF of Rn follows
the recursion

Fn(t) = P (Rn ≤ t) = (1−G∗(λ))P ({X}Y ≤ t) + G∗(λ)P ({Rn−1}Y ≤ t) (2)

where X ∼ G and Y ∼ Exp(λ). Denote by Gk(t) the CDF of the random variable
{X}Yk

where X follows the service time distribution and Yk ∼ Erlang(k, λ).
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Applying the recursive formula of the distribution Rn n − 1 times implies that
the CDF of Rn can be presented as

Fn(t) = (1−G∗(λ))
n−1∑

i=1

(G∗(λ))i−1Gi(t) + (G∗(λ))n−1Gn(t). (3)

This representation allows us to prove the following theorem.

Theorem 1. In the stationary M/G/1 queue, if the service time distribution is
IFR (DFR), then for any n ≥ 1, Rn is IFR (DFR).

Proof. Let N be a geometric random variable with probability of success 1 −
G∗(λ) and let Y1, Y2, . . . be i.i.d. random variables with the distribution Exp(λ).

Also, let Sn be a generic random variable with the same distribution as
N∧n∑
i=1

Yi.

Following (3), we observe that Rn
d= {X}Sn

. The rest is immediate from lemma
1.

Remark 1. The above proof holds for both IFR and DFR cases. An alternative
proof for the DFR case is as follows. First, by Lemma 1, R1 is DFR. Second,
as a mixture of DFR is also DFR (see [3]), and from (2) we see that Rn is a
mixture of {X}Y and {Rn−1}Y . Hence, by induction, Rn is DFR as well.

In the next theorem we observe a stochastic order in the random sequence Rn.

Theorem 2. In the stationary M/G/1 queue, if the service time distribution is
IFR (DFR), then Rn is stochastically decreasing (increasing) in n.

Proof. We prove the theorem first for the IFR case. We consider the sequence
Sn which was defined in the proof for Theorem 1. We write

Sn+1 = Sn + Y I{N>n}.

Hence, by Lemma 2, since P (Sn ≤ Sn+1) = 1, we have {X}Sn >st {X}Sn+1

which is equivalent to Rn >st Rn+1.

Next we learn from the monotonicity of the failure rate function of the service
time distribution, about the monotonicity of the (discrete) failure function of
the underlying distribution of the number of customers in the system.

Corollary 1. In the stationary M/G/1 queue, if the service time distribution
is IFR (DFR), then the number of customers in the system is IFR (DFR) as
well.

Proof. Let πn = P (Q = n) and let hn = P (Q = n|Q ≥ n) be the failure function
of Q. In [8], the following formula which connects the distribution of Q and the
expected value of Rn appears:

E(Rn) =
1− ρ

λP (Q = n)
P (Q > n) =

1− ρ

λ

(
1
hn

− 1
)

(4)
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Thus, E(Rn) is decreasing (increasing) with n if and only if hn is increasing
(decreasing) with n. From Theorem 2 we have that if the service time distribution
is IFR (DFR) then Rn is stochastically decreasing (increasing) which implies
that E(Rn) is decreasing (increasing), which in turn is equivalent to Q being
IFR (DFR).

Remark 2. As the set of IFR distributions is closed under convolutions, Theo-
rem 1 implies immediately that if the service time distribution is IFR, then the
conditional sojourn time, given the number of customers in the system upon ar-
rival is IFR as well. This of course does not imply that the marginal distribution
of the sojourn time is IFR, as the set of IFR distributions is not closed under
mixtures.

4 Examples

In this section we give two examples, one is IFR and the other is DFR, in which
the results in Theorems 1 and 2 can be derived directly. The M/G/1 queue when
the service time distribution is one of these two examples was studied intensively
in the literature, mostly in the two dimensional Markov process setting. See e.g.
[9]. For our purposes, the simplest way to present the residual service time is
using (3).

Example 1: Ek distribution
Assume that the service time distribution is the Erlang distribution with k phases
and a rate µ of each phase. In this case, as we show next, the distribution of Rn

can be obtained explicitly. Given n ∧N = m, i.e. Sm ∼ E(m,λ), we have

P (X > Sn + u) =

∞∫

y=0

∞∫

x=y+u

µkλmxk−1ym−1e−λy−µx

(m− 1)!(k − 1)!
dxdy =

=
k−1∑

i=0

i∑

j=0

e−µu (µu)i−j

(i− j)!

(
m− 1 + j

j

)(
µ

µ + λ

)j (
λ

µ + λ

)m

.

From the latter we learn that Rn can be written as a mixture of independent
random variables. In particular, let Wn be an integer valued random variable
which gets values between 1 and k. Thus, Rn|Wn = i ∼ Erlang(i, µ). Moreover,
Wn

d= k − Bn|Bn < k where Bn is a negative binomial random variable with
number of successes n∧N and probability of success λ

λ+µ . According to Theorem
7.1 in [11], a random sum of i.i.d. exponential random variables, in which the
number of addend is IFR, is IFR as well. Hence, to show the result of Theo-
rem 1 we need to show that Wn is IFR. As Bn is a sum of geometric random
variables, it is IFR. It can be shown (see e.g. [2], p. 37) that it is equivalent to
P (Bn = j|Bn ≤ j) is decreasing, which is in turn equivalent to Wn being IFR.
Obviously, Bn <st Bn+1 and hence Wn >st Wn+1. As Rn and Rn+1 are random
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sums of random variables from the same distribution (see, e.g., Theorem 1.A.4
in [12]), Rn >st Rn+1.

Example 2: H2 distribution
Assume that the service time follows the Hyper exponential distribution. That
is G(x) = 1 − αe−µ1x − (1 − α)e−µ2x for some α, µ1, µ2, such that 0 < α < 1.
Assume w.l.o.g. that µ1 < µ2. It is clear that for any n, the residual service time
is hyper exponential as well and hence DFR. Let αn be the probability that the
server is working at a rate of µ1, given that there are n customers in the system.
In our case, the result of Theorem 2 is equivalent to αn being increasing in n.
We show that next. Given n ∧ N = m we have, using (3) and conditioning on
the service rate selected in the beginning of the service,

P (Rn > r) = P (X > Sm+r|X > Sm) =
αe−µ1r

(
λ

λ+µ1

)m

+ (1− α)e−µ2r
(

λ
λ+µ2

)m

α
(

λ
λ+µ1

)m

+ (1− α)
(

λ
λ+µ2

)m .

Thus,

αn =
αPn

(
λ

µ1+λ

)

αPn

(
λ

µ1+λ

)
+ (1− α)Pn

(
λ

µ2+λ

) =
αPn

(
λ

µ1+λ

)
/Pn

(
λ

µ2+λ

)

αPn

(
λ

µ1+λ

)
/Pn

(
λ

µ2+λ

)
+ 1− α

(5)
where

Pn(z) = E
(
zn∧N

)
=

z(1−G∗(λ))
1− zG∗(λ)

+
1− z

1− zG∗(λ)
(zG∗(λ))n.

Note that since µ1 < µ2, λ
λ+µ1

< λ
λ+µ2

. Thus, what we need to show is that the
ratio Pn(z1)/Pn(z2) is increasing in n, for z1 > z2. We write

Pn(z1)
Pn(z2)

= C

(
a1 + b1e

−θ1n

a2 + b2e−θ2n

)

where

C =
1− z2G

∗(λ)
1− z1G∗(λ)

, ai = zi(1−G∗(λ)), bi = 1− zi and θi = − log(ziG
∗(λ)).

A simple calculus shows that if C > 0, a1 > a2, b1 < b2 and θ1 < θ2 (as in our
case), this ratio is increasing.
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