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Consider an M/G/1 first-come first-served model. By that we mean that
there exists a single server who serves customers at the order of their arrival.
Service times follow an arbitrary distribution function G and the arrival pro-
cess is Poisson with rate denoted by A. Upon arriving to the system and
observing the number of customers there, the arrival assesses his waiting
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time. This is in aim to decide whether to join the queue or to leave for
good. The trade off is between the reward associated with receiving service
(assumed here homogenous across customers and is denoted by V') and the
expected waiting cost (assumed here linear with time and with a homogenous
across customers slope denoted by C'). This cost is applicable also while in
service. Once a customer joins, he may not leave. Note that in some appli-
cations the latter is endogenous. For example, in a case where a significantly
high entrance fee is payed upon joining.

The waiting time of one who joins is composed of two parts which by no
means are independent. The first part is the remaining service time of the
one found to receive service upon the arrival of our tagged customer. The
second part is due to future service times of those he finds in queue upon his
arrival. The contribution of the second component to the mean waiting time
is straightforward: If n — 1 such customers are found in the queue, then their
contribution to the mean waiting time is (n — 1)Z where Z denotes the mean
service time. Assessing the mean remaining service time of the one currently
in service is more complicated. The reason behind that is two-fold. First,
as said, this value if a function of n, n > 0, the total number of customers
found in the system upon arrival. So even in the supposedly simple case
where all join, leaving the analysis as in a standard M/G/1 model, dealing
with the remaining service time is not trivial. Yet, this analysis appears in
the literature. See [8],[3],[7] or [1]. Second, our model gets another twist.
Since customers can balk after observing the queue length, the remaining
service time is, at least in principle, a function of the behavior of all those
who arrive earlier, including those who balked.

A pure strategy in our model is a prescription which says for which queue
lengths to join and for which to balk. Allowing randomization (mixing), a
typical strategy is a set of probabilities p,, n > 0, such that a customer who
faces n customers upon arrival, joins with probability p,, and balks for good
with probability 1 — p,,. Without loss of generality, we assume a reward of
zero in the latter case. As we will see below, the use of a mixed strategy
is quite natural here. Our goal is to develop a symmetric Nash equilibrium
strategy profile. By that we mean a strategy which if followed by all, an
individual’s best response, is to follow it too. From now when we refer to
equilibrium, we mean a symmetric Nash equilibrium. In order to avoid triv-
ialities we assume that V' > CZ, implying that py = 1. Also, for n large
enough so that V < Cnz, p, = 0.



We next explain, by the use of an example borrowed from [2], why one’s
assessment on the remaining service time depends on the behavior of other
customers. Suppose service times follow a Bernoulli distribution, namely
they are either zero or one. Suppose a tagged customer arrives to an empty
queue but observes a customer receiving service. In case of a large value of
p1 used by others, the tagged customer can assess, from the fact that the
queue is empty, that his arrival took place at an earlier stage of the current
service (and hence much is left) in comparison with the case where they all
used a small value for p;. Thus, the higher p; is, the less appealing it is to
the tagged customer to join. This phenomenon is coined ‘avoid the crowd’.
See more on it in [5]. Thus, it is possible (depending on A, C' and V'), that
if all use p; = 0 (p; = 1, respectively), then one’s best response is to join,
ie. pp = 1 (balk, i.e. p; = 0, respectively). Hence, under equilibrium, p;
is a fraction between zero or one, i.e. one would mixed between joining and
balking. For some other service distributions the opposite is the case: The
higher p; is, the more appealing it is for an individual to join. This is the ‘fol-
low the crowd’ phenomenon. In this case (again, depending on the model’s
parameters), when all use p; = 1 (p; = 0, respectively) one should join (balk,
respectively) too. This situation leads to a multiple equilibria. We later give
an example for such a case.

Above we gave an example under which a p; which is strictly between zero
and one, is part of an equilibrium profile. The same is the possibility re-
garding p, for any n > 1. Thus, the first thing needed here towards the
construction of an equilibrium, is the computation of the mean remaining
service times for any queue length under any mixed strategy profile. This
was achieved in [7]. Specifically, let 7, be the mean remaining service time
given n customers in the system, n > 1, (applicable, by PASTA, at arrival
times too). Then, 7, is a function of P = (p1,ps, ....), the probabilities used
by others. As it turns out, 7, is a function only of py,...,p,. An explana-
tion for the latter is as follows. First, the only information about the past
is reflected into the distribution of the remaining service time is information
about events and actions taken by other customers since the beginning of
current service. Second, since obviously there were no departure since the
current service started, there were never more than n customers in the sys-
tem since then. Thus, the behavior of those who find more than n upon
arrival is irrelevant to the distribution the remaining service time given that
there are n customers in the system. In [7], a recursive expression for 7, is
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given. See (3) and (4) below. Thus, the equilibrium probabilities p,, n > 1,
will too be derived recursively. Yet, as 7, is a function also of p,,, computing
Pn, given p;; 1 < ¢ < n — 1, requires a fixed point analysis. In particular,
multiple equilibria are a possibility. Details on how this is done are given in
Section 2.

The next question we address is if we can characterize some of the cases
where the equilibrium is unique and others where it is not. Details are given
in Section 3. Here we highlight our main findings. Under some distributions
of service times, the mean remaining service time is decreasing with the age
of that service (DMRL, for decreasing mean residual life, an acronym used
mainly in reliability models). Others are IMRL (where ‘I’ stands for ‘increas-
ing’), while the rest are of course none of the above. We show in Section 3
that in the DMRL case there exists a unique equilibrium strategy (which
can prescribed mixing for some queue lengths). The intuition behind this
uniqueness is exemplified upon in the case of Bernoulli distribution for ser-
vice. Indeed, in the DMRL case, the smaller is the joining probability used
by all, the higher is one’s assessment regarding the age of service he finds
upon arrival, which in turn implies a smaller remaining service time, making
him more inclined to join. This is a typical situation in which equilibrium
is unique. Moreover, as we show via an example, that although counter-
intuitive, it is possible that under equilibrium p,, < p,1 for some values of
n. An explanation is as follows. True, one more = is added to the mean
waiting time when comparing a system with n + 1 customers with that of n
but the information that one more has joined (let alone arrived), may change
upwards the prior regarding the age of service. This in turn, in the DMRL
case, reduces the prior regarding the remaining service time of the one cur-
rently in service, making joining at the case of n + 1 more appealing.

The opposite is the case under IMRL distributions. Here too, a high joining
probability implies that the arrival takes place at an early stages of service.
But now it means a lower remaining service time, making joining appealing.
In other words, the more who join the queue, the more it is appealing for
an individual to do so. This is the follow the crowd phenomenon. A unique
equilibrium is not ruled out here but, as we show in Section 3, it is possible
to have three equilibria. Two among them are pure, namely they subscribe
joining or balking while the third is mixed. We conclude with some examples
in Section 4.

We end this introduction with a short literature review. The decision prob-
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lem of joining or not a queue after observing its queue length goes back
to [9] who solved the M/M/1 case. There due the memoryless property
of the service distribution, customers do not interact via assessing the re-
maining service time, making the equilibrium policy simple: Join if and and
only if the number in the system is smaller than n., where n, = |V/(CZ)].
In [2] an observable M/G/1 queue was presented where service times follow a
Bernoulli distribution and customers decide whether or not to join the queue
after observing its length. There it is shown that for selected values for the
V and C parameters, and for a sufficiently large arrival rate, there exists an
equilibrium strategy profile of the “delay threshold policy” type: Join with
some probability p, 0 < p < 1, when the queue is empty (i.e. there is only
one customer in the system, and he is being served), join with probability
one when the queue length is below a certain threshold, and balk when it is
greater than this threshold. We consider the same model but remove the as-
sumption of Bernoulli distribution of service times. A related model is dealt
with in [6]. There, only partial information is assumed: in case that the
server is busy, the arrival is informed if the queue is empty or if at least one
is standing there. Thus, a strategy is stated by two values p and ¢, where p
(q, respectively) is the probability of joining in case of an empty (not empty,
respectively) queue. All equilibria were derived there. Indeed, under equi-
librium, p and our p; coincide (and it comes with all the featured described
above). Interestingly, for any equilibrium p, there exists a unique equilib-
rium ¢ as the ‘avoid the crowd’ phenomenon prevails under this information
regardless of the service distribution.

2 The model and main results

We consider a first-come first-served M/G/1 queue. An arriving customer
observes the queue length and decides whether or not to join it (mixing is
allowed). After taking the decision upon arrival, there are no further regrets.
That is, if a customer balks, he never returns and if he joins, he can not leave
before his service completion. We assume that the customers are homogenous
in the sense that each one of them has the same value for receiving service
and the same waiting cost parameters. Some notation is introduced: A is the
arrival rate. G is the service time distribution function. Z and 2 are the first
and the second moment of the service time, respectively. To avoid trivialities,



we assume that Cz < V. G*(s) = T e **dG(z) is the Laplace-Stieltjes
=0

transform (LST) associated with the service time distribution. As mentioned
above, the decision variables in our model are the joining probabilities. Let p,
be the probability that an arriving customer who observed n customers in the
system upon his arrival joins the queue, n > 0. For shortening, we denote
P, = (p1,...,pn) and P = P,. The random variables defined below and
their expected values are functions of these decision variables under steady-
state conditions. L and L, are the number of customers in the system at
arbitrary instants and at arrival instants, respectively. R is the remaining
service time of the customer in service. 7,(P) = Ep(R|L, = n), under joining
probabilities P. It was shown in [7] that the LST of the conditional residual
service obeys the following recursive formulas:

1—F7 4(s)
1- ;Lk—l<)‘pn)

Rt = 2 (6 n)

—G*(s)) L n>2 (1)

with the initial condition

. Ap1 - G*(s) — G*(\py)
Ff(s) =
1(s) Apr—s 1 —G*(A\py)

(2)

where F(s) = E(e™*f|L, = n), n > 1. Likewise,

B G*(Apn) _ 1 B
o (P) = " Fpt(P)——4+2 , n>2 3
( ) 1- n71<>‘pn) 1< ) )‘pn ( )
with the initial value
T 1
m(P) (4)

T1-G(Op)  Ap

Remark 2.1 We note that F*(s) is a function of py, ..., p,, as it is a function
of p, and of Ff_,(-), while F(s) is a function of p;. Also, 7,(P) = 7,,(P,).

When an arrival faces n customers in the system, given a set of joining prob-
abilities P, his expected waiting time (which includes his own service time)
is nZ + 7,(P). In this model, a symmetric Nash equilibrium joining proba-
bilities is a set P¢ = (p§, pS, - . .) such that, if all join with these probabilities,



then one does not have a better response than following these probabilities
oneself. Hence, P¢ satisfies:

P € arg max p (V= O (ra(PF) +02)) » n=1 . (5)

Following Remark 2.1, we learn that the equations in (5) can, at least in
principle, be solved recursively, initiating with n = 1. Specifically, note
that the objective function given in (5) is linear in the decision variable p.
Therefore, the maximizer is:

1V >C(ra(Pey, 1)+ nz)

p V =C (7 (PS) + nx) , every p € 0,1]

0 V< C(ru(Psy,0) + nz)

where p here means any p € [0, 1], since if V' = C(7,(P,) + nZ), then the
individual’s utility is zero regardless whether he joins or not, and hence he is
indifferent between joining and balking, or in fact, any mixing between the
two. It is clear that for n large enough, for example, n > %, py = 0.

The next question is how to compute P¢, and in particular, how to find the
initial value of pj. We deal with this issue next. The following proposition
appears in [6].

Proposition 2.1 Assume L, = 1. Then, at least one of the following cases
0CCUTS:

Case 1. If

%+ max z 1 < V
T+ max  ——= v~ — —
0<p<i |1 —=G*(A\p) Ap) — C

then joining is a dominant strategy.!

LA strategy is said to be a dominant strategy, if it is one’s best response for any strategy
selected by all others. Of course, if there exists a dominant strategy, no other equilibrium
exists.



Case 2. If

T 4+ min L—i >K
0<p<t |1 —=G*(A\p) Ap) — C

then not joining 1s a dominant strategy.

Case 3. If a dominant strategy does not exist, then at least one of the

following holds:

3a. If T+ % —§ > ¥ then joining with probability one is an equilibrium.

3b. Ifz + % < % then joining with probability zero is an equilibrium.

3c. There exists a (not necessarily unique) mized Nash equilibrium pS,
z 1 v

e - _ Vv e :
0 < pf <1, where x + 0w T W T O Moreover, any p{ which solves

this equation is an equilibrium.

2

We would like to point out that in proposition 2.1, Case 1 implies Case 3a,
that and Case 2 implies Case 3b, while ruling out the other cases.

Proof. If Case 1 (Case 2, respectively) holds, than the individual reward
from joining is positive (negative, respectively) regardless of others’ behavior.
Hence, it is a dominant strategy for him/her to join (not to join, respectively).
If the inequality in Case 3a (3b, respectively) holds, and all join (do not join,
respectively), then the individual’s net gain from joining is positive (negative,
respectively). Therefore, one’s best response is to join (not to join, respec-
tively) and hence p§ = 1 (p{ = 0, respectively). If there exists p§ as defined
in Case 3c, and if all those who find one customer in the system upon their
arrivals join with probability p{, then the individual’s net gain from joining
is zero. Hence, this individual has no better response against p§ than itelsf.
Therefore, p§ is a Nash equilibrium. Finally, as 7 (p) is continuous function
in p, if neither Case 1 nor Case 2 holds, then Case 3¢ must hold for some
(not necessarily unique) p$, 0 < p§ < 1.3 O

2If no one joins when L, = 1 then an empty queue does not give any information

about the residual service time. Also, lim,_.o % — ﬁ = % (a fact that can be
shown analytically by applying L’Hospital rule on (4)).
3This of course does not rule out the possibility, for example, that all cases 3a,3b and

3c hold at the same time, leading to a multiple equilibria.



Remark 2.2 As we demonstrate later, the existence of mixed Nash equi-
librium strategies, does not rule out the possibility of the existence of pure
Nash equilibrium strategies.

Once P¢_,, n > 1, is in hand (no matter if it is unique or not), the value(s)

of p¢ can be determined. Details are given next.

Proposition 2.2 For any equilibrium probabilities P¢_,, the (not necessarily
unique) equilibrium joining probability pt, is determined by the not necessarily
mutually exclusive (but comprehensive) cases:

Case 1. IfnZ + 7, (P¢_y, 1) < &, then pg =1 is an equilibrium.

n—1

Case 2. If nz + 7,(P¢

¢ 1,0) > ¥, then p& = 0 is an equilibrium.
Case 3. For anyp, 0 <p < 1, such that nz + 7, (P¢_,p) = %, pS =pis an

equilibrium.

Proof. The same as the proof for Proposition 2.1. O

We would like to point out that for a profile P in which p, = 0 for some
n > 1, we don’t analyze the Nash equilibrium behavior for L, = m for any
m > n. This is because of if p, = 0, then the number of customers never
exceeds n. Thus, the problem of finding p,, for n > m is not well-defined.

3 Special cases and the uniqueness issue

Definition 3.1 A nonnegative random variable is said to be with decreasing
(increasing, respectively) mean residual life (DMRL (IMRL, respectively)) if
E(X —¢|X > t) is monotone decreasing (increasing, respectively) with ¢.

The DMRL property looks quite natural, as it says that the longer is the past
life time, the shorter is the expected future life time. Known examples for
distributions with the DMRL property are the uniform distribution, and the
Erlang distribution. The IMRL property looks counter intuitive, as it says
that the longer is the past life time, the longer is the expected future life time.
Mixtures of exponential distributions, as in Example 2 in the next section,
are good examples for an IMRL distribution. In particular, assume that the
service time is exponential with a small mean value with some probability



and exponential with a relatively large mean value with the complementary
probability. In this case, the larger is the past service time, the larger is
the posterior probability that the service time is has the large mean value.
This implies that the mean residual service time is increasing with the past
service time. Another known example for IMRL distribution is the Pareto
distribution, in which P(X >t) = (/8 +t)“, for some a > 1,3 > 0. In this
distribution, E(X — ¢|X > t) = (8 +t)/(a — 1) which is increasing with t.
The exponential distribution, in which the past and future are independent,
is both DMRL and IMRL. Moreover, it is the only one which is both DMRL
and IMRL. The following lemma is now clear.

Lemma 3.1 If the service distribution is DMRL (IMRL, respectively) then
for any n > 1 and for any P,y € (0,1]"7', 7,(P,_1,p) 1is increasing (de-
creasing, respectively) with p.

Proof. Observe by a sample path argument, that for any n > 1 and for any
fixed P,_; € (0,1]*!, when L, = n, the completed service time of the cus-
tomer who is currently in service is stochastically decreasing with p. Hence,
if the service distribution G is with DM RL (IM RL, respectively), then the
expected residual service time is decreasing (increasing, respectively) with
the completed service time and hence increasing (decreasing, respectively)
with p. O

Lemma 3.1 leads to following propositions:

Proposition 3.1 If the service time distribution is DMRL, then the Nash
equilibrium profile is unique. Moreover, it is defined recursively by p; = 1
and forn > 1,

1 C(Fn(PS_y,1) +nz) <V

p, =4 0 C(rn(P_1,0)+nz) >V

B C(ra(Pi_y, B) +nz) =V
as long as p,—1 > 0.

Proof. Since the conditional expected residual service time is increasing
with p (see Lemma 3.1) and continuous (see(3)), then exactly one of the
three cases itemized in Proposition 2.2 holds. Moreover, if both Case 1 and
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Case 2 there do not hold, then there exists a unique 3, 0 < § < 1, which
satisfies the equality in Case 3c. O

We note that any structure of the unique solution is possible. In particular,
the parameters of the model can be selected such that for some n, pj, < pf, ;.
This phenomenon may appear in cases where the service time distribution
has a small mean value, but a small fraction of customers have a relatively
long service time. As a queue is observed, it is likely that the customer in
service is one with a long service time. On one hand the existence of another
customer in the queue does not carry with itself high marginal cost (as the
marginal mean service time is small). On the other hand, a longer queue
indicates that more time elapsed since the beginning of the current service.
The difference between the mean value of the residual service time is larger
than the mean service time of the extra customer. Thus, it makes joining
more appealing for a larger queue length. Example 1 in the next section
demonstrates this phenomenon.

Proposition 3.2 If the service distribution is IMRL, then a pure Nash equi-
librium exists. Moreover, it is defined recursively by the following exhaustive
and mutually conclusive cases (where the third case implies that multiple
equilibria may exist):

1. If C(rp(PS_1,1) + nx) >V, then pt = 0 is an equilibrium. Moreover,
1t 1S unique.

2. If C(7,(P¢_1,0) + nz) <V, then p. = 1 is an equilibrium. Moreover,
1t 18 unique.

3. If neither case 1 nor case 2 holds, then there exists 3, 0 < 3 < 1, such
that C (7, (P¢_y, B)+nx) =V, and three equilibria exist: pS, = 0,p% =1
and p;, = 3. as long as p,—1 > 0.

Proof. If Case 1 (Case 2, respectively) holds, then for any p, 0 < p < 1,
C(rn(PS_y,p)+nz) >V (C(Tp(P:_y,p)+nZ) <V, respectively). Hence, the
individual’s best response against any p is to join with probability zero (one,
respectively). If neither Case 1 nor Case 2 holds, then due to the continuity
of 7,(P) in p,, (since we can see in (3) that p, appears inside the argument of
LST’s), then Case 3 holds. In this case, since 7,,(PS5_,,p) + nZ is decreasing

n—1»
in p (see Lemma 3.1), we get all of the following:
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o C(rn(P:_1,0) + nx) > V and hence if all join with probability zero,
then the individual’s unique best response is to do so too.

o C(rn(P:_;,1)+nZx) <V and hence if all join with probability one, then
the individual’s unique best response is to do so too.

e [f all join with probability 3, then the individual’s gain from joining is
zero and hence he has no better response than to join with probability
0 as well. O

4 Examples

In this section we demonstrate, by numerical examples, some of the phenom-
ena which were pointed out earlier.

Example 1: Zero-one service times

In this example, we present a counter-intuitive result which exemplifies a
related point considered in [2]. In this example p§ < p§. In other words,
under equilibrium, a customer who finds two customers in the system upon
his arrival, is more likely to join the system than the one who finds only
one customer. Assume G(x) = €lg>1) + (1 — €)1(z>0}, i.e. the length of
service is zero with probability 1 — € and is one with probability €. Note
that the residual service time given n > 1 customers in the system is not a
function of €. Fix € to be small enough, say ¢ = 0.01. If an arrival finds a
customer in service and an empty queue, the expected residual service time
is 71(p1) = —E5 — = (see (4)). Let C = 1 and V = 0.7. Note that

1—e~?P1 A
the expected waiting tifrlw, service inclusive, (which equals 71(p;) + €) is a
function of A and p; only through their product Ap;. If 0 < p{,p§ < 1, then
E(Wy) = E(W,) = 0.7. Solving Equation (4), we get that Ap{ = 2.51. After
inserting this value of A\p$ in Equations (2) and (3) we get that Ap§ = 2.59.
Since in this example the residual service time is increasing, we get that the
pair (p§, p5) is as follows:

1. If X <2.51 then p =p§ = 1.
2. If 2.51 < A < 2.59 then 0 < p§ < 1,p5 = 1.

3. If A > 2.59 then 0 < pf < p§ < 1.
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In summary, for any A, p{ < p§, with strict inequality if A > 2.51.

Example 2: A mixture of exponential distributions

In this example, we demonstrate the case where three equilibria p; exist.
Moreover, one of these three is a mixed strategy while the the other two
are pure. Let G(z) = 1 — 2= This IMRL distribution can be looked
at as a mixture of exponential distributions whose parameter is generated
from a uniform distribution on the interval [1,2]. For this distribution,
T = log?2 and hence 7(p;) = /\p1(log(2+)\;olg)glog(1+)\p1)) — /\%1' Fix the pa-
rameters V' = 2.81, A = 1 and C = 1. Using equations (1)-(4) we get the
following: W1(0) = 1.414 and hence p§ = 1 *. After inserting p¢ = 1, we get
that W5(1,0) = 2.137 and hence p§ = 1. Inserting further p§ = 1 we get that
W3(1,1,0) = 2.827 and W3(1,1,1) = 2.804. Hence, as stated in Case 3 in
Proposition 3.2, a multiple equilibria exists: p§ = 1, p§ = 0 and p§ = 0.654,
where 0.654 is the solution 3, of the equation C'(3z +r3(1,1,8)) = V.
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