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Abstract

In this paper we study intermittency for the parabolic Anderson equation ∂u/∂t =
κ∆u + γξu with u : Z

d × [0,∞) → R, where κ ∈ [0,∞) is the diffusion constant, ∆ is
the discrete Laplacian, γ ∈ (0,∞) is the coupling constant, and ξ : Z

d × [0,∞) → R is
a space-time random medium. The solution of this equation describes the evolution of a
“reactant” u under the influence of a “catalyst” ξ.

We focus on the case where ξ is the voter model with opinions 0 and 1 that are updated
according to a random walk transition kernel, starting from either the Bernoulli measure
νρ or the equilibrium measure µρ, where ρ ∈ (0, 1) is the density of 1’s. We consider
the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive
moments of u. We show that these exponents are trivial when the random walk is not
strongly transient, but display an interesting dependence on the diffusion constant κ when
the random walk is strongly transient, with qualitatively different behavior in different
dimensions.

In earlier work we considered the case where ξ is a field of independent simple random
walks in a Poisson equilibrium, respectively, a symmetric exclusion process in a Bernoulli
equilibrium, which are both reversible dynamics. In the present work, a main obstacle
is the non-reversibility of the voter model dynamics, since this precludes the application
of spectral techniques. The duality with coalescing random walks is key to our analysis,
and leads to a representation formula for the Lyapunov exponents that allows for the
application of large deviation estimates.
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1 Introduction and main results

The outline of this section is as follows. In Section 1.1 we provide motivation. In Sections 1.2–
1.4 we recall some basic facts about the voter model. In Section 1.5 we define the annealed
Lyapunov exponents, which are the main objects of our study. In Section 1.6 we prove a
representation formula for these exponents in terms of coalescing random walks released at
Poisson times along a random walk path. This representation formula is the starting point
for our further analysis. Our main theorems are stated in Section 1.7 (and proved in Sections
2–5). Finally, in Sections 1.8–1.9 we list some open problems and state a scaling conjecture.

1.1 Reactant and catalyst

The parabolic Anderson equation is the partial differential equation

∂

∂t
u(x, t) = κ∆u(x, t) + γξ(x, t)u(x, t), x ∈ Z

d, t ≥ 0. (1.1)

Here, the u-field is R-valued, κ ∈ [0,∞) is the diffusion constant, ∆ is the discrete Laplacian,
acting on u as

∆u(x, t) =
∑

y∈Zd

‖y−x‖=1

[u(y, t)− u(x, t)] (1.2)

(‖ · ‖ is the Euclidian norm), γ ∈ [0,∞) is the coupling constant, while

ξ = {ξ(x, t) : x ∈ Z
d, t ≥ 0} (1.3)

is an R-valued random field that evolves with time and that drives the equation. As initial
condition for (1.1) we take

u(·, 0) ≡ 1. (1.4)

The PDE in (1.1) describes the evolution of a system of two types of particles, A and B,
where the A-particles perform an autonomous dynamics and the B-particles perform inde-
pendent simple random walks that branch at a rate that is equal to γ times the number of
A-particles present at the same location. The link is that u(x, t) equals the average number
of B-particles at site x at time t conditioned on the evolution of the A-particles. The initial
condition in (1.4) corresponds to starting off with one B-particle at each site. Thus, the so-
lution of (1.1) may be viewed as describing the evolution of a reactant u under the influence
of a catalyst ξ. Our focus of interest will be on the annealed Lyapunov exponents, i.e., the
exponential growth rates of the successive moments of u.

In earlier work (Gärtner and den Hollander [5], Gärtner, den Hollander and Maillard [6],
[8]) we treated the case where ξ is a field of independent simple random walks in a Poisson
equilibrium, respectively, a symmetric exclusion process in a Bernoulli equilibrium. In the
present paper we focus on the case where ξ is the Voter Model (VM), i.e., ξ takes values

in {0, 1}Zd×[0,∞), where ξ(x, t) is the opinion of site x at time t, and opinions are imposed
according to a random walk transition kernel. We choose ξ(·, 0) according to either the
Bernoulli measure νρ or the equilibrium measure µρ, where ρ ∈ (0, 1) is the density of 1’s. We
may think of 0 as a vacancy and 1 as a particle.

An overview of the main results in [5], [6], [8] and the present paper as well as further
literature is given in Gärtner, den Hollander and Maillard [7]. Gärtner and Heydenreich [4]
consider the case where the catalyst consists of a single random walk.
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1.2 Voter Model

Throughout the paper, we abbreviate Ω = {0, 1}Zd
(equipped with the product topology),

and we let p : Z
d × Z

d → [0, 1] be the transition kernel of an irreducible random walk, i.e.,

∑

y∈Zd

p(x, y) = 1 ∀x ∈ Z
d, p(x, y) = p(0, y − x) ≥ 0 ∀x, y ∈ Z

d, p(· , ·) generates Z
d.

(1.5)
Occasionally we will need to assume that p(· , ·) has zero mean and finite variance. A special
case is simple random walk

p(x, y) =

{
1
2d if ‖x− y‖ = 1,

0 otherwise.
(1.6)

The VM is the Markov process on Ω whose generator L acts on cylindrical functions f as

(Lf)(η) =
∑

x,y∈Zd

p(x, y) [f(ηx→y)− f(η)] , η ∈ Ω, (1.7)

where

ηx→y(z) =

{
η(x) if z = y,

η(z) if z 6= y.
(1.8)

Under this dynamics, site x imposes its state on site y at rate p(x, y). The states 0 and
1 are referred to as opinions or, alternatively, as vacancy and particle. The VM is a non-
conservative dynamics: opinions are not preserved. We write (St)t≥0 to denote the Markov
semigroup associated with L.

Let ξt = {ξ(x, t); x ∈ Z
d} be the random configuration of the VM at time t. Let Pη denote

the law of ξ starting from ξ0 = η, and let Pµ =
∫
Ω µ(dη) Pη . We will consider two choices for

the starting measure µ:
{
µ = νρ, the Bernoulli measure with density ρ ∈ (0, 1),

µ = µρ, the equilibrium measure with density ρ ∈ (0, 1).
(1.9)

Let p∗(· , ·) be the dual transition kernel, defined by p∗(x, y) = p(y, x), x, y ∈ Z
d, and

p(s)(· , ·) the symmetrized transition kernel, defined by p(s)(x, y) = (1/2)[p(x, y) + p∗(x, y)],
x, y ∈ Z

d. The ergodic properties of the VM are qualitatively different for recurrent and
for transient p(s)(· , ·). In particular, when p(s)(· , ·) is recurrent all equilibria are trivial, i.e.,
µρ = (1 − ρ)δ0 + ρδ1, while when p(s)(· , ·) is transient there are also non-trivial equilibria,
i.e., ergodic measures µρ. In the latter case, µρ is taken to be the unique shift-invariant and
ergodic equilibrium with density ρ. For both cases we have

Pνρ (ξt ∈ · )→ µρ(·) weakly as t→∞, (1.10)

with the same convergence for any starting measure µ that is stationary and ergodic with
density ρ (see Liggett [10], Corollary V.1.13).

We will frequently use the measures νρST , T ∈ [0,∞], where νρS∞ = µρ by convention in
view of (1.10). The VM is attractive (see Liggett [10], Definition III.2.1 and Theorem III.2.2).
Consequently, since νρ has positive correlations, the same is true for νρST , i.e., non-decreasing
functions on Ω are positively correlated (see Liggett [10], Theorem II.2.14).
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1.3 Graphical representation and duality

In the VM’s graphical representation Gt from time 0 up to time t (see e.g. Cox and Grif-
feath [3], Section 0), space is drawn sidewards, time is drawn upwards, and for each or-
dered pair of sites x, y ∈ Z

d arrows are drawn from x to y at Poisson rate p(x, y). A
path from (x, 0) to (y, s), s ∈ (0, t], in Gt (see Figure 1) is a sequence of space-time points
(x0, s0), (x0, s1), (x1, s1), . . . , (xn, sn), (xn, sn+1) such that

(i) x0 = x, s0 = 0, xn = y, sn+1 = s;

(ii) the sequence of times (si)0≤i≤n+1 is increasing;

(iii) for each 1 ≤ i ≤ n there is an arrow from (xi−1, si) to (xi, si);

(iv) for each 0 ≤ i ≤ n, no arrow arrives at xi at any time in (si, si+1).

Then ξ can be represented as

ξ(y, s) =

{
1 if there exists a path from (x, 0) to (y, s) in Gt for some x ∈ ξ(0),
0 otherwise,

(1.11)

where ξ(0) = {x ∈ Z
d : ξ(x, 0) = 1} is the set of initial locations of the 1’s. The graphical

representation corresponds to binary branching with transition kernel p(· , ·) and step rate 1
and killing at the moment when an arrow arrives from an other location. Figure 1 shows how
opinions propagate along paths. An open circle indicates that the site adopts the opinion of
the site where the incoming arrow comes from. The thick line from (x, 0) to (y, s) shows that
the opinion at site y at time s stems from the opinion at site x at time 0.

-0 Z
d

6

t

time

�

�

-

�

-

(x, 0)

(y, s)

-

-

Fig. 1: Graphical representation Gt. Opinions propagate along paths.
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We can define the dual graphical representation G∗t by reversing time and direction of all
the arrows in Gt. The dual process (ξ∗s )0≤s≤t on G∗t can then be represented as

ξ∗(x, t) =

{
1 if there exists a path from (y, t− s) to (x, t) in G∗t for some y ∈ ξ∗(t− s),
0 otherwise,

(1.12)
where ξ∗(t− s) = {x ∈ Z

d : ξ∗(x, t − s) = 1}. The dual graphical representation corresponds
to coalescing random walks with dual transition kernel p∗(· , ·) and step rate 1 (see Figure 2).

-t Z
d

?

0

time

-

-

�

-

�

(x, t)

(y, t−s)

�

�

Fig. 2: Dual graphical representation G∗t . Opinions propagate

along time-reversed coalescing paths.

Figures 1 and 2 make it plausible that the equilibrium measure µρ in (1.10) is non-reversible,
because the evolution is not invariant under time reversal.

1.4 Correlation functions

A key tool in the present paper is the following representation formula for the n-point cor-
relation functions of the VM, which is an immediate consequence of the dual graphical re-
presentation (see e.g. Cox and Griffeath [3], Section 1). For n ∈ N, x1, . . . , xn ∈ Z

d and
−∞ < s1 ≤ · · · ≤ sn ≤ t, let

ξ∗t {(x1, s1), . . . , (xn, sn)} (1.13)

be the set of locations at time t of n coalescing random walks, with transition kernel p∗(· , ·)
and step rate 1, when the m-th random walk is born at site xm at time sm, 1 ≤ m ≤ n, and
let

Nt {(x1, s1), . . . , (xn, sn)} = | ξ∗t {(x1, s1), . . . , (xn, sn)} | , (1.14)

be the number of random walks alive at time t.

The following lemma gives us a handle on the n-point correlation functions.
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Lemma 1.1. For all n ∈ N, T ∈ [0,∞], x1, . . . , xn ∈ Z
d and −∞ < s1 ≤ · · · ≤ sn ≤ t <∞,

PνρST

(
ξ(xm, t− sm) = 1 ∀ 1 ≤ m ≤ n

)
= E

∗
(
ρNT+t{(x1,s1),...,(xn,sn)}

)
, (1.15)

where E
∗ denotes expectation with respect to the coalescing random walk dynamics.

Proof. For T <∞, we have

PνρST

(
ξ(xm, t− sm) = 1 ∀ 1 ≤ m ≤ n

)
= Pνρ

(
ξ(xm, T + t− sm) = 1 ∀ 1 ≤ m ≤ n

)
. (1.16)

The event in the right-hand side of (1.16) occurs if and only if ξ(z, 0) = 1 for all sites z in the set
ξ∗T+t{(x1, s1), . . . , (xn, sn)} (Figure 2), which under νρ has probability ρNT+t{(x1,s1),...,(xn,sn)}

and proves the claim. Since t 7→ Nt is non-increasing, we may let T → ∞ in (1.15) and use
(1.10) to get the formula for T =∞.

Note that for T = ∞ the right-hand side of (1.15) does not depend on t, in accordance
with the fact that νρS∞ = µρ is an equilibrium measure.

1.5 Lyapunov exponents

By the Feynman-Kac formula, the formal solution of (1.1) and (1.4) reads

u(x, t) = E x

(
exp

[
γ

∫ t

0
ξ
(
Xκ(s), t− s

)
ds

])
, (1.17)

where Xκ is simple random walk on Z
d with step rate 2dκ, and E x denotes expectation w.r.t.

Xκ given Xκ(0) = x. Let µ be an arbitrary initial distribution. For p ∈ N and t > 0, the p-th
moment of the solution is then given by

Eµ([u(0, t)]
p) = (Eµ ⊗ E⊗p

0 )

(
exp

[
γ

∫ t

0

p∑

q=1

ξ
(
Xκ
q (s), t− s

)
ds

])
, (1.18)

where Xκ
q , q = 1, . . . , p, are p independent copies of Xκ.

For p ∈ N and t > 0, define

Λµp (t) =
1

pt
log Eµ([u(0, t)]

p). (1.19)

Then

Λµp (t) =
1

pt
log (Eµ ⊗ E⊗p

0 )

(
exp

[
γ

∫ t

0

p∑

q=1

ξ
(
Xκ
q (s), t− s

)
ds

])
. (1.20)

We will see that for µ = νρST , T ∈ [0,∞], the last quantity admits a limit as t→∞,

λµp = lim
t→∞

Λµp (t), (1.21)

which is independent of T and which we call the p-th annealed Lyapunov exponent. Note that
Λµp (t) ∈ [ργ, γ] for all t > 0, as is immediate from (1.20) and Jensen’s inequality. Hence

λµp ∈ [ργ, γ]. (1.22)
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From Hölder’s inequality applied to (1.19) it follows that Λµp (t) ≥ Λµp−1(t) for all t > 0
and p ∈ N\{1}. Hence λµp ≥ λµp−1 for all p ∈ N\{1}. We say that the solution of the
parabolic Anderson model is p-intermittent if λµp > λµp−1. In the latter case the solution is
q-intermittent for all q > p as well (see e.g. Gärtner and Heydenreich [4], Lemma 3.1). We say
that the solution is intermittent if it is p-intermittent for all p ∈ N\{1}. Intermittent means
that the u-field develops sparse high peaks dominating the moments in such a way that each
moment is dominated by its own collection of peaks (see Gärtner and König [9], Section 1.3,
and Gärtner and den Hollander [5], Section 1.2).

1.6 Representation formula

In this section we derive a coalescing random walk representation for the Lyapunov exponents.
Recall (1.14). For n ∈ N, x1, . . . , xn ∈ Z

d and −∞ < s1 ≤ · · · ≤ sn ≤ t, let

N coal
t {(x1, s1), . . . , (xn, sn)} = n−Nt {(x1, s1), . . . , (xn, sn)} (1.23)

be the number of random walks coalesced at time t. Let Πργ and PPoiss denote the Poisson
point process on R with intensity ργ and its law, respectively. We consider Πργ as a random
subset of R and write Πργ(B) = Πργ ∩B for Borel sets B ⊆ R.

Proposition 1.2. For all T ∈ [0,∞], t > 0 and right-continuous paths ϕq : [0, t] → Z
d,

q = 1, . . . , p,

e−ργpt E νρST

(
exp

[
γ

∫ t

0

p∑

q=1

ξ
(
ϕq(s), t− s

)
ds

])

=
(
E
⊗p
Poiss ⊗ E

∗
)(

ρ−N coal
T+t

{
Sp

q=1

{
(ϕq(s),s) : s∈Π

(q)
ργ ([0,t])

}})
,

(1.24)

where Π
(q)
ργ , q = 1, . . . , p, are p independent copies of Πργ . In particular,

exp
[
pt(Λ

νρST
p (t)− ργ)

]

=
(
E⊗p

0 ⊗ E
⊗p
Poiss ⊗ E

∗
)(

ρ−N coal
T+t

{
Sp

q=1

{
(Xκ

q (s),s) : s∈Π
(q)
ργ ([0,t])

}})
.

(1.25)

Proof. Fix ϕq, q = 1, . . . , p. By a Taylor expansion of the factors exp[γ
∫ t
0 ξ(ϕq(s), t − s) ds],

q = 1, . . . , p, we have

e−ργpt E νρST

(
exp

[
γ

∫ t

0

p∑

q=1

ξ
(
ϕq(s), t− s

)
ds

])

= e−ργpt

[
p∏

q=1

∞∑

nq=0

γnq

nq!

( nq∏

m=1

∫ t

0
ds(q)m

)]
E νρST

(
p∏

q=1

nq∏

m=1

ξ
(
ϕq
(
s(q)m
)
, t− s(q)m

))

=

[
p∏

q=1

∞∑

nq=0

(ργt)nq

nq!
e−ργt

1

tnq

( nq∏

m=1

∫ t

0
ds(q)m

)]

× ρ−
Pp

q=1 nq E νρST

(
p∏

q=1

nq∏

m=1

ξ
(
ϕq
(
s(q)m
)
, t− s(q)m

))
.

(1.26)

For each q = 1, . . . , p,
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• [(ργt)nq/nq!] exp[−ργt], nq ∈ N0 = N ∪ {0}, is the Poisson distribution with parameter
ργt;

• (1/tnq )(
∏nq

m=1

∫ t
0 ds

(q)
m ) is the uniform distribution on [0, t]nq , coinciding with the distri-

bution of the (unordered) points of Π
(q)
ργ in [0, t] given

∣∣∣Π(q)
ργ ([0, t])

∣∣∣ = nq, nq ∈ N0.

Moreover, by Lemma 1.1 we have

E νρST

(
p∏

q=1

nq∏

m=1

ξ
(
ϕq
(
s(q)m
)
, t− s(q)m

))
= E

∗

(
ρNT+t

{
Sp

q=1

{(
ϕq(s

(q)
m ),s

(q)
m

)
: m=1,...,nq

}})
. (1.27)

Therefore, combining (1.26–1.27) and inserting (1.23), we get (1.24).

Recalling (1.20), we see that formula (1.25) follows from (1.24) by substituting ϕq = Xκ
q ,

q = 1, . . . , p, and taking the expectation E⊗p
0 .

What (1.25) in Proposition 1.2 says is that, for initial distribution µ = νρST , the p-th
Lyapunov exponent λµp can be computed by taking p simple random walks (with step rate
2dκ), releasing coalescing random walks (with dual transition kernel p∗(· , ·) and step rate 1)
from the paths of these p random walks at rate ργ until time t, recording the total number
of coalescences up to time T + t, and letting t → ∞ afterwards. The representation formula
(1.25) will the be starting point of our large deviation analysis.

1.7 Main theorems

Theorems 1.3–1.5 below are our main results. We write λµp(κ) to exhibit the κ-dependence
of the Lyapunov exponents λµp . The dependence on the other parameters will generally be
suppressed from the notation.

Theorem 1.3. For all d ≥ 1, p ∈ N, κ ∈ [0,∞), γ ∈ (0,∞) and ρ ∈ (0, 1), the limit λµp in
(1.21) exists for µ = νρST and is the same for all T ∈ [0,∞] (and is henceforth denoted by
λp).

Theorem 1.4. For all d ≥ 1, p ∈ N, γ ∈ (0,∞) and ρ ∈ (0, 1),

(i) κ 7→ λp(κ) is globally Lipschitz outside any neighborhood of 0;

(ii) λp(κ) > ργ for all κ ∈ [0,∞).

Theorem 1.5. Fix p ∈ N, γ ∈ (0,∞) and ρ ∈ (0, 1).

(i) If 1 ≤ d ≤ 4 and p(· , ·) has zero mean and finite variance, then λp(κ) = γ for all
κ ∈ [0,∞).

(ii) If d ≥ 5, then:

(a) limκ↓0 λp(κ) = λp(0);

(b) limκ→∞ λp(κ) = ργ;

(c) if p(· , ·) has zero mean and finite variance, then there exists κ0 > 0 such that
p 7→ λp(κ) is strictly increasing for κ ∈ [0, κ0).
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-

6

0

γ

κ

λp(κ)

-

6

p = 1

p = 2

p = 3

0

γ

ργ

κ

λp(κ)

Fig. 3: κ 7→ λp(κ) for 1 ≤ d ≤ 4, respectively, d ≥ 5, when p(· , ·) has zero mean

and finite variance.

Theorem 1.3 says that the Lyapunov exponents exist and do not depend on the choice
of the starting measure µ. Theorem 1.4 says that the Lyapunov exponents are continuous
functions of the diffusion constant κ away from 0 and that the system exhibits clumping for
all κ: the Lyapunov exponents are strictly larger in the random medium than in the average
medium. Theorem 1.5 shows that the Lyapunov exponents satisfy a dichotomy (see Figure
3): for p(· , ·) with zero mean and finite variance they are trivial when 1 ≤ d ≤ 4, but display
an interesting dependence on κ when d ≥ 5. In the latter case (a) the Lyapunov exponents
are continuous in κ at κ = 0; (b) the clumping vanishes in the limit as κ → ∞: when the
reactant particles move much faster than the catalyst particles they effectively see the average
medium; (c) the system is intermittent for small κ: when the reactant particles move much
slower than the catalyst particles, the growth rates of their successive moments are determined
by different piles of the catalyst.

Theorems 1.3 and 1.4 are proved in Sections 2 and 3, respectively. Section 4 contains block
estimates for coalescing random walks, which are needed to exploit Proposition 1.2 in order
to prove Theorems 1.5(ii)(a) and 1.5(ii)(b). Finally, Theorems 1.5(i) and 1.5(ii)(c) are proved
in Section 5.

1.8 Open problems

The following problems remain open:

(1) Show that λp(κ) < γ for all κ ∈ [0,∞) when d ≥ 5 and p(· , ·) has zero mean and finite
variance.

(2) Show that κ 7→ λp(κ) is convex on [0,∞). Convexity, when combined with the properties
in Theorems 1.4(ii) and 1.5(ii)(b), would imply that κ 7→ λp(κ) is strictly decreasing on
[0,∞) when d ≥ 5. Convexity was proved in [5] and [6] for the case where ξ is a field
of independent simple random walks in a Poisson equilibrium, respectively, a symmetric
exclusion process in a Bernoulli equilibrium.

(3) Show that the following extension of Theorem 1.5 is true: the Lyapunov exponents are

non-trivial if and only if p(s)(· , ·) is strongly transient, i.e.,
∫∞
0 t p

(s)
t (0, 0) dt < ∞. A

similar full dichotomy was found in [6] for the case where ξ is a symmetric exclusion
process in a Bernoulli equilibrium, namely, between recurrent and transient p(· , ·).
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1.9 A scaling conjecture

Let pt(x, y) be the probability for the random walk with transition kernel p(· , ·) (satisfying
(1.5)) and step rate 1 to move from x to y in time t. The following conjecture is a refinement
of Theorem 1.5(ii)(b).

Conjecture 1.6. Suppose that p(· , ·) is simple random walk. Then for all d ≥ 5, p ∈ N,
γ ∈ (0,∞) and ρ ∈ (0, 1),

lim
κ→∞

2dκ[λp(κ)− ργ] =
ρ(1− ρ)γ2

Gd
G∗
d + 1{d=5} (2d)5

[
ρ(1− ρ)γ2

Gd
p

]2

P5 (1.28)

with

Gd =

∫ ∞

0
pt(0, 0) dt, G∗

d =

∫ ∞

0
t pt(0, 0) dt, (1.29)

and

P5 = sup
f∈H1(R5)
‖f‖2=1

[∫

R5

∫

R5

dx dy
f2(x) f2(y)

16π2‖x− y‖ − ‖∇f‖
2
2

]
∈ (0,∞), (1.30)

where ‖ · ‖2 is the L2-norm on R
5, ∇ is the gradient operator, and H1(R5) = {f : R

5 →
R : f,∇f ∈ L2(R5)}.

A remarkable feature of (1.28) is the occurrence of a “polaron-type” term in d = 5. An
important consequence of (1.28) is that in d = 5 there exists a κ1 < ∞ such that λp(κ) >
λp−1(κ) for all κ ∈ (κ1,∞) when p = 2 and, by the remark made after formula (1.22), also
when p ∈ N\{1}, i.e., the solution of the parabolic Anderson model is intermittent for all κ
sufficiently large. For d ≥ 6, Conjecture 1.6 does not allow to decide about intermittency for
large κ.

The analogue of (1.28) for independent simple random walks and simple symmetric exclu-
sion were proved in [5], [6] and [8] with quite a bit of effort (with d = 3 rather than d = 5
appearing as the critical dimension). We provide a heuristic explanation of (1.28) in Appendix
A.

2 Proof of Theorem 1.3

Throughout this section we assume that p(· , ·) satisfies (1.5). The existence of the Lyapunov
exponents for µ = νρST , T ∈ [0,∞], is proved in Section 2.1, the fact that they are equal is
proved in Section 2.2. In what follows, d ≥ 1, p ∈ N, κ ∈ [0,∞), γ ∈ (0,∞) and ρ ∈ (0, 1) are
kept fixed. Recall (1.21).

2.1 Existence of Lyapunov exponents

Proposition 2.1. For all T ∈ [0,∞], the Lyapunov exponent λ
νρST
p exists.

Proof. The proof proceeds in 2 steps.

Step 1: (Bridge approximation argument)
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Let Qt log t = Z
d ∩ [−t log t, t log t]d. As noted in Gärtner and den Hollander [5], Section 4.1,

we have for µ = νρST ,

Λµp (t) ≤ Λµp (t) ≤
1

pt
log
(
|Qt log t|p eptΛ

µ
p (t) + p eγpt P0

(
Xκ

1 (t) /∈ Qt log t
))

(2.1)

with

Λµp (t) =
1

pt
log max

x∈Zd

(
Eµ ⊗ E⊗p

0

)(
exp

[
γ

∫ t

0

p∑

q=1

ξ
(
Xκ
q (s), t− s

)
ds

] p∏

q=1

δx
(
Xκ
q (t)

))
. (2.2)

Since limt→∞(1/t) log P0 (Xκ
1 (t) /∈ Qt log t) = −∞, it follows that

lim
t→∞

[
Λµp (t)− Λµp(t)

]
= 0. (2.3)

Hence, to prove the existence of λµp , it suffices to prove the existence of

λµp = lim
t→∞

Λµp (t), (2.4)

after which we can conclude from (2.3) that λµp = λµp . We will prove (2.4) by showing that
t 7→ tΛµp (t) is superadditive, which will imply that

λµp = sup
t>0

Λµp (t). (2.5)

Step 2: (Superadditivity)

We first give the proof for p = 1. To that end, abbreviate

E(t, y) = exp

[
γ

∫ t

0
ξ
(
Xκ(s), t− s

)
ds

]
δy
(
Xκ(t)

)
, t > 0, y ∈ Z

d. (2.6)

Using formula (1.24) in Proposition 1.2, we have, for all t1, t2 > 0 and x, y ∈ Z
d,

e−ργ(t1+t2) (E νρST
⊗ E 0)

(
E(t1 + t2, x)

)

= (E 0 ⊗ EPoiss)

(
δx
(
Xκ(t1 + t2)

)
E
∗

(
ρ
−N coal

T+t1+t2

{
(Xκ(s),s) : s∈Πργ([0,t1+t2])

}))

≥ (E 0 ⊗ EPoiss)

(
δy
(
Xκ(t1)

)
δx
(
Xκ(t1 + t2)

)

× E
∗

(
ρ
−N coal

T+t1

{
(Xκ(s),s) : s∈Πργ([0,t1])

}
−N coal

T+t1+t2

{
(Xκ(s),s) : s∈Πργ([t1,t1+t2])

}))

= (E 0 ⊗ EPoiss)

(
δy
(
Xκ(t1)

)
δx−y

(
Xκ(t1 + t2)−Xκ(t1)

)

× E
∗

(
ρ
−N coal

T+t1

{
(Xκ(s),s) : s∈Πργ([0,t1])

}
−N coal

T+t1+t2

{
(Xκ(s)−Xκ(t1),s) : s∈Πργ([t1,t1+t2])

}))
,

(2.7)
where the inequality comes from inserting the extra factor δy(X

κ(t1)) under the expectation
and ignoring coalescence between random walks that start before, respectively, after time t1,
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and the last line uses the shift-invariance of N coal
T+t1+t2

. Because Xκ and Πργ have independent
stationary increments, we have

r.h.s. (2.7) = (E 0 ⊗ EPoiss)

(
δy
(
Xκ(t1)

)
E
∗

(
ρ
−N coal

T+t1

{
(Xκ(s),s) : s∈Πργ([0,t1])

}))

× (E 0 ⊗ EPoiss)

(
δx−y

(
Xκ(t2)

)
E
∗

(
ρ
−N coal

T+t2

{
(Xκ(s),s) : s∈Πργ([0,t2])

}))

= e−ργt1 (E νρST
⊗ E 0)

(
E(y, t1)

)
× e−ργt2 (E νρST

⊗ E 0)
(
E(x− y, t2)

)
,

(2.8)

where in the last line we again use formula (1.24). Taking the maximum over x, y ∈ Z
d in

(2.7–2.8), we conclude that

exp[(t1 + t2)Λ
νρST

1 (t1 + t2)] ≥ exp[t1Λ
νρST

1 (t1)]× exp[t2Λ
νρST

1 (t2)], (2.9)

which proves the superadditivity of t 7→ tΛ
νρST

1 (t).

The same proof works for p ∈ N\{1}. Simply replace (2.6) by

Ep(t, y) = exp


γ
∫ t

0

p∑

q=1

ξ
(
Xκ
q (s), t− s

)
ds




p∏

q=1

δy
(
Xκ
q (t)

)
, t ≥ 0, y ∈ Z

d, (2.10)

and proceed in a similar manner.

2.2 Equality of Lyapunov exponents

Proposition 2.2. λ
νρ
p = λ

νρST
p for all T ∈ [0,∞]. In particular, λνρ = λµρ .

Proof. We first give the proof for p = 1.

λ
νρ

1 ≤ λ
νρST

1 : Since t 7→ N coal
t is non-decreasing, it is immediate from the representation

formula (1.25) in Proposition 1.2 that

Λ
νρ

1 (t) ≤ Λ
νρST

1 (t) ∀ t > 0, T ∈ [0,∞]. (2.11)

Since λ
νρST

1 = limt→∞ Λ
νρST

1 (t), this implies the claim.

λ
νρ

1 ≥ λ
νρST

1 : We first assume that T < ∞. Recall (2.3) and (2.4–2.6), and estimate, for
T, t > 0,

λ
νρ

1 = Λ
νρ

1 (∞) = Λ
νρ

1 (∞) ≥ Λ
νρ

1 (T + t) =
1

T + t
log max

x∈Zd
(E νρ ⊗ E 0)

(
E(T + t, x)

)
. (2.12)

In the right-hand side of (2.12), drop the part s ∈ [t, T + t] from the integral over s ∈ [0, T + t]
in definition (2.6) of E(T + t, x), insert an extra factor δx(X

κ(t)) under the expectation, and
use the Markov property of ξ and Xκ at time t. This gives

r.h.s. (2.12) ≥ 1

T + t
log max

x∈Zd

{(
E νρST

⊗ E 0

)(
E(t, x)

)
P0

(
Xκ(T ) = 0

)}
. (2.13)

12



Combine (2.12) with (2.13) to get

λ
νρ

1 ≥
t

T + t
Λ
νρST

1 (t) +
1

T + t
log P0

(
Xκ(T ) = 0

)
. (2.14)

Let t→∞ to get λ
νρ

1 ≥ Λ
νρST

1 (∞) = λ
νρST

1 , which proves the claim.

Next, for T, t > 0 and x ∈ Z
d,

λ
νρ

1 ≥ λ
νρST

1 = Λ
νρST

1 (∞) ≥ Λ
νρST

1 (t) ≥ 1

t
log

(
E νρST

⊗ E 0

)(
E(t, x)

)
, (2.15)

where we have used (2.5). The weak convergence of νρST to µρ implies that we can take the
limit as T →∞, to obtain

λ
νρ

1 ≥
1

t
log
(
Eµρ ⊗ E 0

)(
E(t, x)

)
. (2.16)

Finally, taking the maximum over x and letting t→∞, we arrive at λ
νρ

1 ≥ λ
µρ

1 , which is the
claim for T =∞.

The same proof works for p ∈ N\{1} by using (2.10) instead of (2.6).

3 Proof of Theorem 1.4

Throughout this section we assume that p(· , ·) satisfies (1.5). In Section 3.1 we show that
κ 7→ λp(κ) is globally Lipschitz outside any neighborhood of 0. In Section 3.2 we show that
λp(κ) > ργ for all κ ∈ [0,∞). In what follows, d ≥ 1, p ∈ N, γ ∈ (0,∞) and ρ ∈ (0, 1) are
kept fixed.

3.1 Lipschitz continuity

In this section we prove Theorem 1.4(i).

Proof. In what follows, µ can be any of the initial distributions νρST , T ∈ [0,∞] (recall
Proposition 2.2). We write Λµp (κ; t) to indicate the κ-dependence of Λµp (t) given by (1.20). We
give the proof for p = 1.

Pick κ1, κ2 ∈ (0,∞) with κ1 < κ2 arbitrarily. By Girsanov’s formula,

exp[tΛµ1 (κ2; t)]

= (Eµ ⊗ E 0)

(
exp

[
γ

∫ t

0
ξ(Xκ2(s), t− s) ds

])

= (Eµ ⊗ E 0)

(
exp

[
γ

∫ t

0
ξ(Xκ1(s), t− s) ds

]
exp

[
J(Xκ1 ; t) log(κ2/κ1)− 2d(κ2 − κ1)t

])

= I + II,
(3.1)

where J(Xκ1 ; t) is the number of jumps of Xκ1 up to time t, I and II are the contributions
coming from the events {J(Xκ1 ; t) ≤ M2dκ2t}, respectively, {J(Xκ1 ; t) > M2dκ2t}, and
M > 1 is to be chosen. Clearly,

I ≤ exp
[(
M2dκ2 log(κ2/κ1)− 2d(κ2 − κ1)

)
t
]

exp[tΛµ1 (κ1; t)], (3.2)
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while
II ≤ eγt P0

(
J(Xκ2 ; t) > M2dκ2t

)
(3.3)

because we may estimate
∫ t
0 ξ(X

κ1(s), t− s) ds ≤ t and afterwards use Girsanov’s formula in
the reverse direction. Since J(Xκ2 ; t) = J∗(2dκ2t) with (J∗(t))t≥0 a rate-1 Poisson process,
we have

lim
t→∞

1

t
log P0

(
J(Xκ2 ; t) > M2dκ2t

)
= −2dκ2I(M) (3.4)

with
I(M) = sup

u∈R

[
Mu−

(
eu − 1

)]
= M logM −M + 1. (3.5)

Since λ1(κ) = limt→∞ Λµ1 (κ; t), it follows from (3.1–3.4) that

λ1(κ2) ≤
[
M2dκ2 log(κ2/κ1)− 2d(κ2 − κ1) + λ1(κ1)

]
∨
[
γ − 2dκ2I(M)

]
. (3.6)

On the other hand, estimating J(Xκ1 ; t) ≥ 0 in (3.1), we have

exp[tΛµ1 (κ2; t)] ≥ exp[−2d(κ2 − κ1)t] exp[tΛµ1 (κ1; t)], (3.7)

which gives the lower bound

λ1(κ2)− λ1(κ1) ≥ −2d(κ2 − κ1). (3.8)

Next, for κ ∈ (0,∞), define

D+λ1(κ) = lim sup
δ→0

δ−1[λ1(κ+ δ) − λ1(κ)],

D−λ1(κ) = lim inf
δ→0

δ−1[λ1(κ+ δ)− λ1(κ)].
(3.9)

Then, picking κ1 = κ and κ2 = κ+ δ (resp. κ1 = κ− δ and κ2 = κ) in (3.6) and letting δ ↓ 0,
we get

D+λ1(κ) ≤ (M − 1)2d ∀M > 1: 2dκI(M) − (1− ρ)γ ≥ 0 (3.10)

(with the latter together with λ1(κ) ≥ ργ guaranteeing that the first term in the right-hand
side of (3.6) is the maximum), while (3.8) gives

D−λ1(κ) ≥ −2d. (3.11)

We may pick

M = M(κ) = I−1

(
(1− ρ)γ

2dκ

)
(3.12)

with I−1 the inverse of I : [1,∞)→ R. Since I(M) = 1
2 (M − 1)2[1+ o(1)] as M ↓ 1, it follows

that

[M(κ) − 1]2d = 2d

√
γ

1− ρ
dκ

[1 + o(1)] as κ→∞. (3.13)

By (3.10), the latter implies that κ 7→ D+λ1(κ) is bounded from above outside any neighbor-
hood of 0. Since, by (3.11), κ 7→ D−λ1(κ) is bounded from below, the claim follows.

The extension to p ∈ N\{1} is straightforward and is left to the reader.
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3.2 Clumping

In this section we prove Theorem 1.4(ii).

Proof. Fix d ≥ 1, κ ∈ [0,∞), γ ∈ (0,∞) and ρ ∈ (0, 1). Since p 7→ λp(κ) is non-decreasing,
it suffices to give the proof for p = 1. In what follows, µ can be any of the measures νρST ,
T ∈ [0,∞] (recall Proposition 2.2).

Abbreviate

I(Xκ;T ) = γ

∫ T

0
ds
[
ξ
(
Xκ(s), T − s

)
− ρ
]
, T > 0. (3.14)

For any T > 0 we have, recalling (2.2–2.5),

λ1(κ) = Λµ1 (∞) = Λµ1 (∞) ≥ Λµ1 (T )

≥ ργ +
1

T
log (Eµ ⊗ E 0)

(
exp[I(Xκ;T )] δ0

(
Xκ(T )

))

≥ ργ +
1

T
log (Eµ ⊗ E 0)

([
1 + I(Xκ;T ) +

1

2
I(Xκ;T )2e−γT

]
δ0
(
Xκ(T )

))
,

(3.15)

where in the third line we use that ex ≥ 1 + x+ 1
2x

2e−|x|, x ∈ R.

As T ↓ 0, we have

(Eµ ⊗ E 0)

([
1

T
I(Xκ;T )

]2

δ0
(
Xκ(T )

))
→ γ2

∫

Ω
µ(dη)

[
η(0) − ρ

]2
= ρ(1− ρ)γ2 (3.16)

and

(Eµ ⊗ E 0)

([
1

T
I(Xκ;T )

]
δ0
(
Xκ(T )

))
≥ −O(T 2). (3.17)

The claim in (3.16) is obvious, the claim in (3.17) will be proven below. Combining (3.15–
3.17), we have

λ1(κ)− ργ ≥
1

4
T ρ(1− ρ)γ2, 0 < T ≤ T0(κ), (3.18)

showing that λ1(κ) > ργ.

To prove (3.17), let J(Xκ;T ) denote the number of jumps by Xκ up to time T . Then

(Eµ ⊗ E 0)

([
1

T
I(Xκ;T )

]
δ0
(
Xκ(T )

))

= (Eµ ⊗ E 0)

([
1

T
I(Xκ;T )

]
δ0
(
Xκ(T )

)(
1l{J(Xκ;T ) = 0}+ 1l{J(Xκ;T ) ≥ 1}

))
.

(3.19)
The first term in the right-hand side of (3.19) equals

P0

(
J(Xκ;T ) = 0

) γ
T

∫ T

0
dsEµ

(
ξ(0, s)− ρ

)
= 0, (3.20)

while the second term is bounded below by

−ργ P0

(
J(Xκ;T ) ≥ 1,Xκ(T ) = 0

)
≥ −ργ P0

(
J(Xκ;T ) ≥ 2

)
= −O(T 2), T ↓ 0. (3.21)

Combine (3.19–3.21) to get the claim in (3.17).
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4 Proof of Theorems 1.5(ii)(a) and 1.5(ii)(b)

Throughout this section we assume that p(· , ·) satisfies (1.5) and that d ≥ 5. In Section
4.1 we state an estimate for blocks of coalescing random walks. In Section 4.2 we formulate
two lemmas, and in Section 4.3 we use these lemmas to prove the block estimate. The block
estimate is used in Sections 4.4 and 4.5 to prove Theorems 1.5(ii)(a) and 1.5(ii)(b), respectively.

4.1 Block estimate

We call a collection of subsets S1, . . . , SN of R ordered, if s < t for all s ∈ Si, t ∈ Sj and
i < j. Given a path ψ : R→ Z

d and a collection of disjoint finite subsets S1, . . . , SN of R, we
are going to estimate the moment generating function of N coal

∞

{
(ψ(s), s) : s ∈ ∪Nj=1Sj

}
, the

number of random walks starting from sites ψ(s) at times s ∈ ∪Nj=1Sj that coalesce eventually
(recall (1.23)). Let d(Si, Sj) denote the Euclidean distance between Si and Sj.

Our key estimate, which will be proved in Section 4.3, is the following.

Proposition 4.1. Let d ≥ 5. Then there exist δ : (0,∞) → (0,∞) with limK→∞ δ(K) = 0
and, for each ǫ ∈ (0, (d−4)/2), Cǫ > 0 such that the following holds. For all ρ ∈ (0, 1), ψ : R→
Z
d, all ordered collections of disjoint finite subsets S1, . . . , SN of R, all ǫ ∈ (0, (d−4)/2), K > 0

and r, r′ > 1 with 1/r + 1/r′ = 1,

E
∗

(
ρ−N coal

∞

{
(ψ(s),s) : s∈

SN
j=1 Sj

})

≤ exp

[
δ(K)

ρ

N∑

j=1

|Sj|+ CǫK
ρ−r

′ − 1

r′

∑

1≤j<k≤N

|Sj| |Sk|
d(Sj , Sk)1+ǫ

]

×
[ N∏

j=1

E
∗

(
ρ−rN

coal
∞

{
(ψ(s),s) : s∈Sj

})]1/r

.

(4.1)

Let I ′1, I
′′
1 , . . . , I

′
N , I

′′
N be a finite collection of adjacent time intervals and assume that Sj ⊂ I ′j

for j = 1, . . . , N . What the above proposition does is decouple the coalescing random walks
that start in disjoint time-blocks I ′j separated by time-gaps I ′′j .

4.2 Preparatory lemmas

To prove Proposition 4.1, we need Lemmas 4.2–4.3 below. To this end, fix a path ψ : R→ Z
d

arbitrarily. Let (Y u)u∈R be a family of independent random walks Y u with transition kernel
p∗(· , ·) and step rate 1 starting from ψ(u) at time u. Set Y u(s) = ψ(u) for s < u. We write
P
∗ for the joint law of these random walks.

Given u ∈ R and j ∈ Z, let

Ruj =
{
Y u(s) : s ∈ [j, j + 1]

}
(4.2)

denote the range of Y u in the time interval [j, j + 1]. For u ∈ R and K > 0, define the event
that Y u is K-good by

GuK =
∞⋂

j=⌊u⌋

{∣∣Ruj
∣∣ ≤ K log(j − ⌊u⌋ + 5)

}
. (4.3)
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For u, v ∈ R with u < v, define the event that Y u and Y v meet by

Mu,v =
{
∃ s ≥ v : Y u(s) = Y v(s)

}
. (4.4)

Our two lemmas stated below give bounds for the probabilities of random walks not to be
K-good, respectively, to meet given that the random walk that starts later is K-good.

Lemma 4.2. For all u ∈ R and K > 0,

P
∗([GuK ]c) ≤ δ(K) (4.5)

with

δ(K) =

∞∑

j=5

exp

[
− ⌊K log j⌋

(
log
(
⌊K log j⌋

)
− 1

)
− 1

]
<∞ (4.6)

satisfying limK→∞ δ(K) = 0.

Proof. Recalling (4.3) and taking into account that Y u has stationary increments, we have

P
∗([GuK ]c) ≤

∞∑

j=0

P
∗
(∣∣R0

j

∣∣ > K log(j + 5)
)
≤

∞∑

j=5

P
∗
(
N1 ≥ ⌊K log j⌋

)
, (4.7)

where N1 denotes the Poisson number of jumps of Y 0 during a time interval of length 1. An
application of Chebyshev’s exponential inequality yields, for β > 0,

P
∗
(
N1 ≥ ⌊K log j⌋

)
≤ e−β⌊K log j⌋

E
∗
(
eβN1

)

= exp
[
− β⌊K log j⌋+ eβ − 1

]

= exp

[
− ⌊K log j⌋

(
log
(
⌊K log j⌋

)
− 1

)
− 1

]
,

(4.8)

where in the last line we optimize over the choice of β by taking β = log(⌊K log j⌋). Combining
(4.7–4.8), we get the claim.

Lemma 4.3. Let d ≥ 5. Then for all ǫ ∈ (0, (d − 4)/2) there exists Cǫ > 0 such that for all
K > 0 and all u, v ∈ R with u < v,

P
∗
(
Mu,v | Y v

)
≤ CǫK

(v − u)1+ǫ on GvK . (4.9)

Proof. Fix u, v ∈ R with u < v. Recall (4.2–4.4) to see that

Mu,v ⊆
∞⋃

j=⌊v⌋

⋃

z∈Rv
j

{
∃ s ∈ [j, j + 1]: Y u(s) = z

}
. (4.10)

Hence,

P
∗
(
Mu,v | Y v

)
≤

∞∑

j=⌊v⌋

∑

z∈Rv
j

P
∗
(
∃ s ∈ [j, j + 1]: Y u(s) = z

)
. (4.11)
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Since the transition kernel p∗(· , ·) generates Z
d (recall (1.5)), there exists a constant C > 0

such that

p∗t (x, y) ≤
C

(t+ 7)d/2
∀ t ≥ 0, ∀x, y ∈ Z

d (4.12)

(see Spitzer [12], Proposition 7.6). Let Y be a random walk on Z
d with transition kernel p∗(· , ·)

and jump rate 1. Let P
Y
y denote its law when starting at y and τz = inf{s ≥ 0: Y (s) = z}

its first hitting time of z. Then, since Y u and Y have the same independent and stationary
increments, we have, for j ≥ ⌊v⌋,

P
∗
(
∃ s ∈ [j, j + 1]: Y u(s) = z

)
≤
∑

y∈Zd

p∗(j∨u)−u(ψ(u), y) P
Y
y

(
τz ≤ 1

)

≤ C

(j − u+ 6)d/2

∑

y∈Zd

P
Y
0

(
τy ≤ 1

)
=

C

(j − u+ 6)d/2
E
Y
0 (|R|),

(4.13)

where R = {Y (s) : s ∈ [0, 1]} is the range of Y in the time interval [0, 1]. Since |R| ≤ 1 +N1

with N1 the Poisson number of jumps of Y in [0, 1], we have E
Y
0 (|R|) ≤ 2. Now assume that

Y v is K-good (recall (4.3)). Then, combining (4.11) with (4.13), we obtain

P
∗
(
Mu,v | Y v

)
≤ 2CK

∞∑

j=⌊v⌋

log(j − ⌊v⌋ + 5)

(j − u+ 6)d/2
≤ 2CK

∞∑

j=⌊v⌋

log(j − ⌊u⌋+ 5)

(j − ⌊u⌋ + 5)d/2

≤ 2CK
log(⌊v⌋ − ⌊u⌋+ 4)

(⌊v⌋ − ⌊u⌋+ 4)(d−2)/2
.

(4.14)

Since d ≥ 5, this clearly implies (4.9).

4.3 Proof of block estimate

In this section we use Lemmas 4.2–4.3 to prove Proposition 4.1.

Proof. Fix a path ψ : R → Z
d and an ordered collection of disjoint finite subsets S1, . . . , SN

of R arbitrarily. Assume that the coalescing random walks starting from sites ψ(s) at times
s ∈ ∪Nj=1Sj are constructed from the independent random walks Y u, u ∈ ∪Nj=1Sj , introduced
in Section 4.2, in the obvious recursive manner: if two walks meet for the first time, then the
random walk that started earlier is killed and the random walk that started later survives.

Now recall (4.3). Distinguishing between all possible ways to distribute the good and the
bad events and using the independence of the random walks Y u, we estimate

E
∗

(
ρ−N coal

∞

{
(ψ(s),s) : s∈∪N

j=1Sj

})

=
∑

Ai⊆Si
1≤i≤N

E
∗

(
ρ−N coal

∞

{
(ψ(s),s) : s∈∪N

j=1Sj

}
1l
{ N⋂

j=1

⋂

u∈Aj

GuK

}
1l
{ N⋂

j=1

⋂

u∈Sj\Aj

[GuK ]c
})

≤
∑

Ai⊆Si
1≤i≤N

E
∗

(
ρ−N coal

∞

{
(ψ(s),s) : s∈∪N

j=1Aj

}
1l
{ N⋂

j=1

⋂

u∈Aj

GuK

})

× ρ−
PN

j=1 |Sj\Aj |
N∏

j=1

∏

u∈Sj\Aj

P
∗
(
[GuK ]c

)
.

(4.15)
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To estimate the expectation in the right-hand side of (4.15), we note that

N coal
∞

{
(ψ(s), s) : s ∈ ∪Nj=1Aj

}

≤
N∑

j=1

N coal
∞

{
(ψ(s), s) : s ∈ Aj

}
+
N−1∑

j=1

∑

u∈Aj

1l
{ N⋃

k=j+1

⋃

v∈Ak

Mu,v
}
.

(4.16)

Here we overestimate the number of coalescences of random walks starting in one ‘time-block’
Aj with random walks starting in later ‘time-blocks’ Ak by the number of them that meet at
least one random walk starting in a later ‘time-block’. Together with Hölder’s inequality with
r, r′ > 1 and 1/r + 1/r′ = 1, this yields

E
∗

(
ρ−N coal

∞

{
(ψ(s),s) : s∈∪N

j=1Aj

}
1l
{ N⋂

j=1

⋂

u∈Aj

GuK

})

≤ E
∗

(
ρ−

PN
j=1 N

coal
∞

{
(ψ(s),s) : s∈Aj

}
ρ
−

PN−1
j=1

P

u∈Aj
1l
{

SN
k=j+1

S

v∈Ak

(
Mu,v∩Gv

K

)})

≤
[

N∏

j=1

E
∗

(
ρ−rN

coal
∞

{
(ψ(s),s) : s∈Sj

})]1/r

×
[
E
∗

(
N−1∏

j=1

∏

u∈Sj

ρ
−r′1l

{
SN

k=j+1

S

v∈Sk
Mu,v∩Gv

K

})]1/r′

=

[
N∏

j=1

E
∗

(
ρ−rN

coal
∞

{
(ψ(s),s) : s∈Sj

})]1/r

×
[
E
∗

(
N−1∏

j=1

∏

u∈Sj

(
1 +

(
ρ−r

′ − 1
)
1l
{ N⋃

k=j+1

⋃

v∈Sk

(
Mu,v ∩GvK

)})
)]1/r′

.

(4.17)

In the last step we use the identity ρ−r
′1l{A} = 1 + (ρ−r

′ − 1)1l{A}. Now, by conditional
independence and Lemma 4.3, we have, for ǫ ∈ (0, (d − 4)/2) and 1 ≤ j ≤ N − 1,

E
∗

(
∏

u∈Sj

(
1 +

(
ρ−r

′ − 1
)
1l
{ N⋃

k=j+1

⋃

v∈Sk

(
Mu,v ∩GvK

)}) ∣∣∣ Y w, w ∈
⋃

l>j

Sl

)

≤
∏

u∈Sj

(
1 +

(
ρ−r

′ − 1
) N∑

k=j+1

∑

v∈Sk

P
∗
(
Mu,v

∣∣Y v
)

1l
{
GvK
}
)

≤ exp

[
CǫK

(
ρ−r

′ − 1
) ∑

u∈Sj

N∑

k=j+1

∑

v∈Sk

1

(v − u)1+ǫ

]
.

(4.18)

Clearly,
∑

u∈Sj

N∑

k=j+1

∑

v∈Sk

1

(v − u)1+ǫ ≤
N∑

k=j+1

|Sj| |Sk|
d(Sj , Sk)1+ǫ

. (4.19)

Substituting this into the right-hand side of (4.18) and using the resulting deterministic bounds
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successively for j = 1, . . . , N − 1, we find that

E
∗

(
N−1∏

j=1

∏

u∈Sj

(
1 +

(
ρ−r

′ − 1
)
1l
{ N⋃

k=j+1

⋃

v∈Sk

(
Mu,v ∩GvK

)})
)

≤ exp

[
CǫK

(
ρ−r

′ − 1
) ∑

1≤j<k≤N

|Sj| |Sk|
d(Sj , Sk)1+ǫ

]
.

(4.20)

It remains to estimate the second factor in the right-hand side of (4.15). By Lemma 4.2,

ρ−
PN

j=1 |Sj\Aj |
N∏

j=1

∏

u∈Sj\Aj

P
∗
(
[GuK ]c

)
≤
(
δ(K)

ρ

)PN
j=1 |Sj\Aj |

. (4.21)

Observe that, by the binomial formula,

∑

Ai⊆Si
1≤i≤N

(
δ(K)

ρ

)PN
j=1 |Sj\Aj |

=

(
1 +

δ(K)

ρ

)PN
j=1 |Sj |

≤ exp

[
δ(K)

ρ

N∑

j=1

|Sj |
]
. (4.22)

Proposition 4.1 now follows by combining (4.15) with (4.17), (4.20) and (4.21), and afterwards
applying (4.22).

4.4 Continuity at κ = 0

In this section we prove Theorem 1.5(ii)(a). We pick µ = µρ as the starting measure (recall
Proposition 2.2).

By requiring that the p random walks in (1.20) do not step until time t, we have, for any
κ ∈ [0,∞),

Λ
µρ
p (t;κ) ≥ Λ

µρ
p (t; 0) − 1

pt
log P⊗p

0

(
Xκ
q (s) = 0 ∀ s ∈ [0, t] ∀ 1 ≤ q ≤ p

)
= Λ

µρ
p (t; 0) − 2dκ.

(4.23)
Let t→∞ to obtain

λp(κ) ≥ λp(0)− 2dκ. (4.24)

Therefore, the continuity at κ = 0 reduces to proving that for all d ≥ 5, p ∈ N, γ ∈ (0,∞)
and ρ ∈ (0, 1),

lim sup
κ↓0

λp(κ) ≤ λp(0). (4.25)

Proof. We first give the proof for p = 1. Fix L > 0 and ϑ ∈ (0, 1) arbitrarily. For j ∈ N, let

Ij = [(j − 1)L, jL), I ′j = [(j − 1)L, (j − ϑ)L), I ′′j = [(j − ϑ)L, jL) (4.26)

be the j-th time-interval, time-block and time-gap, respectively. Fix r, r′ with 1/r + 1/r′ = 1
arbitrarily and set

M =
ργ(ρ−2r′ − 1)

r′ log(1/ρ)
. (4.27)
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For any Borel set B ⊆ R, let

Π̃ργ(B) =

{
Πργ(B), if |Πργ(B)| ≤ LM,

∅, otherwise.
(4.28)

Since

Πργ([0, t]) ⊆
⌈t/L⌉⋃

j=1

(
Π̃ργ(I

′
j) ∪

(
Πργ(I

′
j) \ Π̃ργ(I

′
j)
)
∪Πργ(I

′′
j )
)
, (4.29)

we have

N coal
∞ {(Xκ(s), s) : s ∈ Πργ([0, t])} ≤ N coal

∞

{
(Xκ(s), s) : s ∈ ∪⌈t/L⌉j=1 Π̃ργ(I

′
j)
}

+

⌈t/L⌉∑

j=1

|Πργ(I
′
j)| 1l

{
|Πργ(I

′
j)| > LM

}

+

⌈t/L⌉∑

j=1

|Πργ(I
′′
j )|.

(4.30)

Combining the representation formula (1.25) for p = 1 and T = ∞ with (4.30) and applying
Hölder’s inequality, we find that

exp
[
t(Λ

µρ

1 (t;κ)− ργ)
]
≤ E1 E2 E3, (4.31)

where

E1 =

(
(E 0 ⊗ EPoiss ⊗ E

∗)

(
ρ
−rN coal

∞

n

(Xκ(s),s) : s∈∪
⌈t/L⌉
j=1

eΠργ(I′j)
o

))1/r

, (4.32)

E2 =




⌈t/L⌉∏

j=1

EPoiss

(
ρ−r

′|Πργ(I′j)| 1l{|Πργ(I′j)|>LM}
)



1/r′

, (4.33)

E3 =

⌈t/L⌉∏

j=1

EPoiss

(
ρ−|Πργ(I′′j )|

)
= exp

[
ϑ(1− ρ)γL⌈t/L⌉

]
. (4.34)

To estimate E1 in (4.32), we apply Proposition 4.1 with ψ(s) = Xκ(s), N = ⌈t/L⌉,
Sj = Π̃ργ(I

′
j) and ρ replaced by ρr. Then we obtain for arbitrary ǫ ∈ (0, (d−4)/2) and K > 0,

E
∗

(
ρ
−rN coal

∞

n

(Xκ(s),s) : s∈∪
⌈t/L⌉
j=1

eΠργ(I′j)
o

)
≤ E ′1 E ′′1 (4.35)

with

E ′1 =




⌈t/L⌉∏

j=1

E
∗
(
ρ−r

2N coal
∞ {(Xκ(s),s) : s∈eΠργ(I′j)}

)



1/r

(4.36)

and

E ′′1 = exp


δ(K)

ρr

⌈t/L⌉∑

j=1

|Π̃ργ(I
′
j)|+ CǫK

ρ−rr
′ − 1

r′

∑

1≤j<k≤⌈t/L⌉

|Π̃ργ(I
′
j)| |Π̃ργ(I

′
k)|

d(Ij , Ik)1+ǫ


 . (4.37)
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To estimate E ′1, we write

Πργ = Π
(1)

ρr2γ
∪Π

(2)

(ρ−ρr2 )γ
, (4.38)

where Π
(1)

ρr2γ
and Π

(2)

(ρ−ρr2 )γ
are independent Poisson processes on R with intensity ρr

2
γ and

(ρ− ρr2)γ, respectively, and we use that (recall (4.28))

N coal
∞

{
(Xκ(s), s) : s ∈ Π̃ργ(I

′
j)
}
≤ N coal

∞

{
(Xκ(s), s) : s ∈ Π

(1)

ρr2γ
(Ij)

}
+ |Π(2)

(ρ−ρr2 )γ
(Ij)|. (4.39)

This leads to

E ′1 ≤




⌈t/L⌉∏

j=1

E
∗

(
ρ
−r2N coal

∞

n

(Xκ(s),s) : s∈Π
ρr2

γ
(Ij)

o)


1/r

× exp

[
(ρ− ρr2)γ ρ

−r2 − 1

r
L⌈t/L⌉

]
.

(4.40)

To estimate E ′′1 , note that |Π̃ργ(I
′
j)| ≤ LM for all j and d(I ′j , I

′
k) ≥ ϑL(k − j) for k > j, so

that

E ′′1 ≤ exp

[(
δ(K)

ρr
M + C ′

ǫK
ρ−rr

′ − 1

r′
M2

ϑ1+ǫLǫ

)
L⌈t/L⌉

]
, (4.41)

where C ′
ǫ = Cǫ

∑∞
j=1 j

−(1+ǫ). Since the distribution of N coal
∞ is invariant w.r.t. spatial shifts of

the coalescing random walks, and Xκ and Π
ρr2γ

have independent and stationary increments,
we obtain

(E 0 ⊗ EPoiss)




⌈t/L⌉∏

j=1

E
∗

(
ρ
−r2N coal

∞

n

(Xκ(s),s) : s∈Π
ρr2

γ
(Ij)

o)


= (E 0 ⊗ EPoiss)




⌈t/L⌉∏

j=1

E
∗

(
ρ
−r2N coal

∞

n

(Xκ(s)−Xκ((j−1)L),s) : s∈Π
ρr2

γ
(Ij)

o)


=

(
(E 0 ⊗ EPoiss ⊗ E

∗)

(
ρ
−r2N coal

∞

n

(Xκ(s),s) : s∈Π
ρr2

γ
([0,L])

o))⌈t/L⌉

= exp
[(

Λ
µ

ρr2

1 (L;κ) − ρr2γ
)
L⌈t/L⌉

]
,

(4.42)

where in the last line we have used the representation formula (1.25) for p = 1, T = ∞ and
ρ and t replaced by ρr

2
and L, respectively. Now substitute (4.40) and (4.41) into (4.35),

substitute the obtained inequality into (4.32) and use (4.42), to arrive at

E1 ≤ exp

[
1

r2

(
Λ
µ

ρr2

1 (L;κ)− ρr2γ
)
L⌈t/L⌉

]

× exp

[(
(ρ− ρr2)γ ρ

−r2 − 1

r2
+
δ(K)

rρr
M + C ′

ǫK
ρ−rr

′ − 1

rr′
M2

ϑ1+ǫLǫ

)
L⌈t/L⌉

]
.

(4.43)

We next estimate E2 in (4.33). Using Chebyshev’s exponential inequality, we obtain for

22



j = 1, . . . , ⌈t/L⌉,

EPoiss

(
ρ−r

′|Πργ(I′j)| 1l{|Πργ(I′j)|>LM}
)

≤ 1 + EPoiss

(
ρ−r

′|Πργ(I′j)| 1l
{
|Πργ(I

′
j)| > LM

})

≤ 1 + ρr
′LM

EPoiss

(
ρ−2r′|Πργ(Ij)|

)

= 1 + exp
[(
ργ(ρ−2r′ − 1)− r′M log(1/ρ)

)
L
]
.

(4.44)

By our choice of M in (4.27), the expression in the right-hand side equals 2, and we conclude
that

E2 ≤ e⌈t/L⌉. (4.45)

Finally, substitute (4.43), (4.45) and (4.34) into (4.31), take the logarithm on both sides
of the resulting inequality, divide by t, pass to the limit as t→∞ and recall (1.21). Then we
obtain

λ
µρ

1 (κ) − ργ ≤ 1

r2

(
Λ
µ

ρr2

1 (L;κ)− ρr2γ
)

+ (ρ− ρr2)γ ρ
−r2 − 1

r2

+
δ(K)

rρr
M + C ′

ǫK
ρ−rr

′ − 1

rr′
M2

ϑ1+ǫLǫ
+

1

L
+ ϑ(1− ρ)γ.

(4.46)

As can be seen from (1.20), κ 7→ Λ
µ

ρr2

1 (L;κ) is continuous at κ = 0. Hence, passing in (4.46)
to the limits as κ ↓ 0, L→∞, K →∞ and ϑ ↓ 0 (in this order), we find that

lim sup
κ↓0

(
λ
µρ

1 (κ)− ργ
)
≤ 1

r2

(
λ
µ

ρr2

1 (0)− ρr2γ
)

+ (ρ− ρr2)γ ρ
−r2 − 1

r2
. (4.47)

Expanding the exponential function in the right-hand side of (1.20) into a Taylor series and
using (1.15), we see that ρ 7→ Λ

µρ

1 (t; 0) is non-decreasing. Hence, the same is true for ρ 7→
λ
µρ

1 (0). Taking this into account, we may finally pass to the limit as r ↓ 1 in (4.47), to arrive
at

lim sup
κ↓0

(
λ
µρ

1 (κ)− ργ
)
≤ λµρ

1 (0) − ργ. (4.48)

This is the desired inequality (4.25) for p = 1.

The extension to p ∈ N \ {1} is straightforward. The proof follows the same arguments

with Xκ and Πργ replaced by p independent copies Xκ
q and Π

(q)
ργ , q = 1, . . . , p, of Xκ and Πργ ,

respectively.

4.5 Large κ

In this section we prove Theorem 1.5(ii)(b). We again pick µ = µρ as the starting measure
(recall Proposition 2.2).

Proof. Recall (1.22). We first give the proof for p = 1. We show that, for all ρ ∈ (0, 1), γ > 0
and L > 0,

lim
κ→∞

Λ
µρ

1 (L;κ) = ργ. (4.49)

Then the claim for p = 1 follows from (4.46) by passing to the limits as κ → ∞, L → ∞,
K →∞, ϑ ↓ 0 and r ↓ 1 (in this order).
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To prove (4.49), we use the representation formula (1.25):

Λ
µρ

1 (L;κ) − ργ =
1

L
log (E 0 ⊗ EPoiss ⊗ E

∗)
(
ρ−N coal

∞ {(Xκ(s),s) : s∈Πργ([0,L])}
)
. (4.50)

Recall that we are in a transient situation (d ≥ 5) and writeXκ(s) = X1(κs). Then, P 0⊗PPoiss-
a.s.

lim
κ→∞

min
s1,s2∈Πργ([0,L])

s1 6=s2

|Xκ(s1)−Xκ(s2)| =∞, (4.51)

and, consequently,

lim
κ→∞

N coal
∞ {(Xκ(s), s) : s ∈ Πργ([0, L])} = 0 in probability w.r.t. P

∗. (4.52)

Since, moreover, N coal
∞ {(Xκ(s), s) : s ∈ Πργ([0, L])} ≤ |Πργ([0, L])|, we may apply Lebesgue’s

dominated convergence theorem to see that the expression on the right of (4.50) converges to
0 as κ→∞. This proves (4.49).

The extension to p ∈ N\{1} is easy. Indeed, by (1.17–1.19) and Jensen’s inequality,

exp
[
ptΛ

µρ
p (t;κ, γ)

]
= Eµρ

([
E 0

(
exp

[
γ

∫ t

0
ξ
(
Xκ(s), t− s

)
ds

])]p)

≤ Eµρ

(
E 0

(
exp

[
pγ

∫ t

0
ξ
(
Xκ(s), t− s

)
ds

]))

= exp
[
tΛ

µρ

1 (t;κ, pγ)
]
.

(4.53)

Let t→∞ to get

λp(κ; γ) ≤
1

p
λ1(κ; pγ). (4.54)

This together with the assertion for p = 1 and (1.22) implies the claim for arbitrary p ∈ N.

5 Proof of Theorems 1.5(i) and 1.5(ii)(c)

Throughout this section we assume that p(· , ·) satisfies (1.5) and has zero mean and finite
variance. Theorem 1.5(i) is proved in Section 5.1 and Theorem 1.5(ii)(c) in Section 5.2. As
starting measure we pick µ = νρ (recall Proposition 2.2).

5.1 Triviality in low dimensions

The proof of Theorem 1.5(i) is similar to that of Theorem 1.3.2(i) in Gärtner, den Hollander
and Maillard [6]. The key observation is the following:

Lemma 5.1. If 1 ≤ d ≤ 4, then for any finite Q ⊂ Z
d and ρ ∈ (0, 1),

lim
t→∞

1

t
log Pνρ

(
ξ(x, s) = 1 ∀x ∈ Q ∀ s ∈ [0, t]

)
= 0. (5.1)
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Proof. In the spirit of Bramson, Cox and Griffeath [1], Section 1, we argue as follows. The
graphical representation of the VM (recall Section 1.3) allows us to write down a suitable
expression for the probability in (5.1). Indeed, let

HQ
t =

{
x ∈ Z

d : there is a path from (x, 0) to Q× [0, t] in Gt
}
, (5.2)

where, as in Section 1.3, Gt is the graphical representation of the voter model up to time t
(see Fig. 4).

-0 Z
d

6

t

time

�

�

�

-

(x, 0)

-

-

-

[ ← Q → ]

Fig. 4: Some paths from (x, 0) to Q× [0, t] in Gt.

Note that HQ
0 = Q and that t 7→ HQ

t is non-decreasing. Denote by P and E , respectively,
probability and expectation associated with the graphical representation Gt. Then

Pνρ

(
ξ(x, s) = 1 ∀x ∈ Q ∀ s ∈ [0, t]

)
= (P ⊗ νρ)

(
HQ
t ⊆ ξ(0)

)
, (5.3)

where ξ(0) = {x ∈ Z
d : ξ(x, 0) = 1} is the set of initial locations of 1’s. Indeed, (5.3) holds

because if ξ(x, 0) = 0 for some x ∈ HQ
t , then this 0 will propagate into Q prior to time t (see

Fig. 4).

By Jensen’s inequality,

(P ⊗ νρ)
(
HQ
t ⊆ ξ(0)

)
= E

(
ρ|H

Q
t |
)
≥ ρ E|HQ

t |. (5.4)

Moreover, HQ
t = ∪y∈QH{y}

t , implying

E|HQ
t | ≤ |Q| E|H

{0}
t |. (5.5)

By the dual graphical representation, |H{0}
t | coincides in distribution with the number of

coalescing random walks alive at time t when starting at site 0 at times generated by a rate 1
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Poisson stream. As shown in Bramson, Cox and Griffeath [1], Theorem 2, if p(· , ·) is simple
random walk, then

E|H{0}
t | = o(t) as t→∞ when 1 ≤ d ≤ 4, (5.6)

in which case (5.1) follows from (5.3–5.5). As noted in Bramson, Cox and Le Gall [2], Lemma
2 and its proof, the key ingredient in the proof of (5.6) extends from simple random walk to
random walk with zero mean and finite variance.

We are now ready to give the proof of Theorem 1.5(i).

Proof. Fix 1 ≤ d ≤ 4, κ ∈ [0,∞), γ ∈ (0,∞) and ρ ∈ (0, 1). Since p 7→ λp(κ) is non-decreasing
and λp(κ) ≤ γ for all p ∈ N (recall (1.22)), it suffices to give the proof for p = 1. For p = 1,
(1.20) reads

Λ
νρ

1 (t) =
1

t
log (E νρ ⊗ E 0)

(
exp

[
γ

∫ t

0
ξ
(
Xκ(s), t− s

)
ds

])
. (5.7)

By restricting Xκ to stay inside a finite box Q ⊂ Z
d around 0 up to time t and requiring ξ to

be 1 in the entire box up to time t, we obtain

(E νρ ⊗ E 0)

(
exp

[
γ

∫ t

0
ξ(Xκ(s), t− s) ds

])

≥ eγt Pνρ

(
ξ(x, s) = 1 ∀x ∈ Q ∀ s ∈ [0, t]

)
P0

(
Xκ(s) ∈ Q ∀ s ∈ [0, t]

)
.

(5.8)

The first factor is eo(t) by Lemma 5.1. For the second factor, we have

lim
t→∞

1

t
log P0

(
Xκ(s) ∈ Q ∀ s ∈ [0, t]

)
= λκ(Q) (5.9)

with λκ(Q) < 0 the principal Dirichlet eigenvalue on Q of κ∆, the generator of Xκ. Combining
(5.1) and (5.7–5.9), we arrive at

λ1(κ) = lim
t→∞

Λ
νρ

1 (t) ≥ γ + λκ(Q). (5.10)

Finally, let Q ↑ Z
d and use that limQ↑Zd λκ(Q) = 0, to arrive at λ1(κ) ≥ γ. Since, trivially,

λ1(κ) ≤ γ, we get λ1(κ) = γ.

5.2 Intermittency for small κ

We start this section by recalling some large deviation results for the VM that will be needed
to prove Theorem 1.5(ii)(c). Cox and Griffeath [3] showed that for the VM with a simple
random walk transition kernel given by (1.6), the occupation time of the origin up to time
t ≥ 0,

Tt =

∫ t

0
ξ(0, s) ds, (5.11)

satisfies a strong law of large numbers and a central limit theorem for d ≥ 2. For d = 1 there
is no law of large numbers: Tt/t has a non-trivial limiting law. These results carry over to
random walk with zero mean and finite variance.

The following proposition gives large deviation bounds.
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Proposition 5.2. (Bramson, Cox and Griffeath [1], Theorem 1; Bramson, Cox and Le Gall [2],
Lemma 2 and its proof; Maillard and Mountford [11], Theorem 1.3.2) Suppose that p(· , ·) has
zero mean and finite variance. Then for every α ∈ (ρ, 1) there exist 0 < I−(α) < I+(α) <∞
such that, for t sufficiently large (depending on α),

e−I
+(α) bt ≤ Pνρ

(
Tt
t
≥ α

)
≤ e−I−(α) bt (5.12)

with

bt =





log t if d = 2,√
t if d = 3,
t

log t if d = 4,

t if d ≥ 5.

(5.13)

By interchanging the opinions 0 and 1, similar bounds are obtained for Pνρ (Tt/t ≤ α), α ∈
(0, ρ). The case α = 1 may be included in d ≥ 3 but not in d = 2, for which it is shown
in Maillard and Mountford [11], Theorem 1.3.1, that P(Tt = t) is of order exp[−(log t)2]. A
full large deviation principle is expected to hold for d ≥ 3, but this has not been established.
Inspection of the proof in Bramson, Cox and Griffeath [1] shows that for d ≥ 5 there exists a
C > 0 such that

I−(α) ≥ C
(√
α−√ρ

)2
, α ∈ (ρ, 1). (5.14)

No comparable upper bound on I+ is given.

We are now ready to give the proof of Theorem 1.5(ii)(c).

Proof. We first give the proof for κ = 0. Fix d ≥ 5, p ∈ N, γ ∈ (0,∞) and ρ ∈ (0, 1), and
recall that λp(0) > ργ by Theorem 1.4(ii). Pick α ∈ (ρ, γ−1λp(0)) and define

I(α) = − lim sup
t→∞

1

t
log P νρ

(
1

t
Tt ≥ α

)
> 0, (5.15)

where the positivity of the limit comes from the upper bound in (5.12), which implies I(α) ≥
I−(α) > 0. Put

β = γ−1

[
λp(0) +

1

2p
I(α)

]
(5.16)

and split

Λ
νρ
p (t) =

1

pt
log E νρ

(
e pγTt

)
=

1

pt
log(At +Bt + Ct) (5.17)

with

At = E νρ

(
e pγTt 1l

{
0 ≤ 1

t
Tt < α

})
,

Bt = E νρ

(
e pγTt 1l

{
α ≤ 1

t
Tt < β

})
,

Ct = E νρ

(
e pγTt 1l

{1

t
Tt ≥ β

})
.

(5.18)

Next, note that

At ≤ e pγαt, Bt ≤ e pγβt P νρ

(
1

t
Tt ≥ α

)
. (5.19)
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Thus, in (5.17) both At and Bt are negligible as t→∞, because limt→∞ Λ
νρ
p (t) = λp(0) while

γα < λp(0) and γβ − 1
pI(α) = λp(0)− 1

2pI(α) < λp(0). Hence,

λp(0) = lim
t→∞

1

pt
logCt. (5.20)

Now, by (5.16) and (5.20), we have

λp+1(0) = lim
t→∞

1

(p+ 1)t
log E νρ

(
e(p+1)γTt

)

≥ lim sup
t→∞

1

(p+ 1)t
log E νρ

(
e(p+1)γTt 1l

{1

t
Tt ≥ β

})

≥ 1

p+ 1
γβ + lim

t→∞

1

(p+ 1)t
logCt

=
1

p+ 1
γβ +

p

p+ 1
λp(0) = λp(0) +

1

2p(p + 1)
I(α) > λp(0),

(5.21)

which proves the gap between λp(0) and λp+1(0).

By the continuity of κ 7→ λp(κ) at κ = 0 in Theorem 1.5(ii)(a), it follows that there exists
κ0 > 0 such that λp(κ) > λp−1(κ) for all κ ∈ [0, κ0) when p = 2 and, by the remark made
after formula (1.22), also when p ∈ N\{1}.

A Heuristic explanation of Conjecture 1.6

In this appendix we give a heuristic explanation of (1.28). We only consider the case p = 1. A
similar argument works for p ∈ N\{1}. As starting measure we pick µ = µρ (recall Proposition
2.2).

1. Pair correlation. Lemma 1.1 for n = 2 yields the following representation for the pair
correlation function of the VM in equilibrium.

Lemma A.1. Suppose that p(· , ·) is symmetric and transient. Then, for all x1, x2 ∈ Zd and
s ≥ 0,

Eµρ

(
[ξ(x1, s)− ρ][ξ(x2, 0) − ρ]

)
=
ρ(1− ρ)
Gd

∫ ∞

0
ps+t(x1, x2) dt (A.1)

with Gd =
∫∞
0 pt(0, 0) dt.

Proof. The proof is standard. By (1.15) with T =∞ and n = 2, we have

Eµρ

(
[ξ(x1, s)− ρ][ξ(x2, 0) − ρ]

)
= ρ(1 − ρ) P

∗
(
N∞{(x1, 0), (x2, s)} = 1

)
. (A.2)

The probability in the right-hand side of (A.2) can be computed as follows. The first random
walk starts from site x1 at time 0, moves freely until time s, and reaches some site y at time
s. The second random walk starts from site x2 at time s and has to eventually coalesce with
the first random walk. This gives

P
∗
(
N∞{(x1, 0), (x2, s)} = 1

)
=
∑

y∈Zd

ps(x1, y)w(y − x2) (A.3)
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with
w(z) = Pz (Zt = 0 for some 0 ≤ t <∞) , z ∈ Z

d. (A.4)

Here we use that, by the symmetry of p(· , ·), the difference between the two random walks
is a single random walk Z running at double the speed. By a renewal argument (see Spitzer
[12], Section 4), for transient p(· , ·) we have

w(z) =
1

Gd

∫ ∞

0
pt(z, 0) dt. (A.5)

Combining (A.2–A.3) and (A.5), we obtain (A.1).

2. Green term. From now on let p(· , ·) be simple random walk. Fix d ≥ 5, γ ∈ (0,∞) and
ρ ∈ (0, 1). Scaling time by κ in (1.20), we have λ1(κ) = κλ∗1(κ) with

λ∗1(κ) = lim
t→∞

Λ∗
1(κ; t) and Λ∗

1(κ; t) =
1

t
log (Eµρ ⊗ E 0)

(
exp

[
γ

κ

∫ t

0
ds ξ

(
X(s),

t− s
κ

)])
,

(A.6)
where X = X1. For large κ, the ξ-field in (A.6) evolves slowly and therefore does not manage
to cooperate with the X-process in determining the growth rate. As a result, the expectation
over the ξ-field can be computed via a Gaussian approximation, which we expect to become
sharp in the limit as κ→∞, i.e.,

Λ∗
1(κ; t)−

ργ

κ
=

1

t
log (Eµρ ⊗ E 0)

(
exp

[
γ

κ

∫ t

0
ds

(
ξ
(
X(s),

t− s
κ

)
− ρ
)])

≈ 1

t
log E 0

(
exp

[
γ2

2κ2

∫ t

0
ds

∫ t

0
du Eµρ

([
ξ
(
X(s),

t− s
κ

)
− ρ
][
ξ
(
X(u),

t− u
κ

)
− ρ
])])

.

(A.7)
(In essence, what happens here is that the asymptotics for κ → ∞ is driven by moderate
deviations of the ξ-field, which fall in the Gaussian regime.) Next, by Lemma A.1, for any
0 ≤ s ≤ u ≤ t we have

Eµρ

([
ξ
(
X(s),

t− s
κ

)
− ρ
][
ξ
(
X(u),

t− u
κ

)
− ρ
])

= C

∫ ∞

0
dv pu−s

κ
+v

(
X(s),X(u)

)
, (A.8)

where C = ρ(1− ρ)/Gd. Hence

lim
κ→∞

2dκ[λ1(κ)− ργ] = lim
κ→∞

2dκ2
[
λ∗1(κ) −

ργ

κ

]

= lim
κ→∞

2dκ2 lim
t→∞

[
Λ∗

1(κ; t) −
ργ

κ

]
= lim

κ→∞
2dκ2 lim

t→∞
I(κ; t)

(A.9)

with

I(κ; t) =
1

t
log E 0

(
exp

[
Cγ2

κ2

∫ t

0
ds

∫ t

s
du

∫ ∞

0
dv pu−s

κ
+v

(
X(s),X(u)

)
])

≈ Cγ2

tκ2

∫ t

0
ds

∫ t

s
du

∫ ∞

0
dv E 0

(
pu−s

κ
+v

(
X(s),X(u)

))
.

(A.10)

29



In the last line of (A.10), a linear approximation is made in the expectation over the random
walk X, which we expect to become sharp in the limit as κ → ∞ in d ≥ 6. Next, for any
0 ≤ s ≤ u ≤ t and T ≥ 0,

E 0

(
pT (X(s),X(u))

)
=
∑

x,y∈Zd

p2ds(0, x) p2d(u−s)(x, y) pT (x, y)

=
∑

x∈Zd

p2ds(0, x) p2d(u−s)+T (x, x) = p2d(u−s)+T (0, 0).
(A.11)

Here, we use that p(· , ·) is simple random walk, so that ξ fits with X. We therefore have

r.h.s. (A.10) =
Cγ2

tκ2

∫ t

0
ds

∫ t

s
du

∫ ∞

0
dv p2d(u−s)1[κ]+v

(
0, 0
)
, (A.12)

where we abbreviate 1[κ] = 1 + 1
2dκ . Rewriting

1

t

∫ t

0
ds

∫ t

s
du

∫ ∞

0
dv p2d(u−s)1[κ]+v

(
0, 0
)

=

∫ t

0
dw

∫ ∞

0
dv

(
t− w
t

)
p2dw1[κ]+v

(
0, 0
)
, (A.13)

we get from (A.10–A.12) that

lim
t→∞

I(κ; t) =
Cγ2

2dκ21[κ]

∫ ∞

0
dw

∫ ∞

0
dv pw+v(0, 0) =

Cγ2

2dκ21[κ]
G∗
d. (A.14)

Recalling (A.9), we arrive at (1.28) for d ≥ 6.

3. Polaron term. Where does the term with P5 come from? We expect this term to arise
from the part of the integral in the exponent in the first line of (A.10) with (u − s)/κ and v
of order κ2, as we will argue next. Put Z

d
κ = κ−1

Z
d and, for t ≥ 0 and x, y ∈ Z

d
κ, define

Xκ(t) = κ−1X(κ2t), pκt (x, y) = κd p2dκ2t(κx, κy). (A.15)

In the limit as κ → ∞, (Xκ(t))t≥0 converges weakly to Brownian motion, while (pκt (· , ·))t≥0

converges to the corresponding family of Gaussian transition kernels (pGt (· , ·))t≥0 given by

pGt (x, y) = (4πt)−d/2 exp[−‖x− y‖2/4t], x, y ∈ R
d. (A.16)

After scaling, the part we are after is approximately

Cγ2 κ4−d

∫ κ−2t

0
ds

∫ s+Kκ

s+εκ
du

∫ K

0
dv pG1

2d(u−s
κ

+v)

(
Xκ(s),Xκ(u)

)
, (A.17)

where 0 < ε≪ 1≪ K <∞. For δ > 0, divide the first and the second integral in (A.17) into
pieces of length δκ, and define the occupation time measures

Ξκw(A) =
1

δκ

∫ w+δκ

w
1A(Xκ(u)) du, w ≥ 0, A ⊂ R

d Borel. (A.18)

Then, when δ ≪ ε, (u − s)/κ is almost constant on time intervals of length δκ and, conse-
quently,

(A.17) ≈ Cγ2 κ4−d

∫ κ−2t

0
ds

∫ s+Kκ

s+εκ
du

∫ K

0
dv

∫

Rd

Ξκs (dx)

∫

Rd

Ξκu(dy) p
G
1
2d(u−s

κ
+v)(x, y).

(A.19)
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Using the large deviation principle for Ξκ(·) as κ→∞, we find that the contribution of (A.19)

to I(κ; t) for large κ is approximately

1

t
sup
µ(·)

[
Cγ2κ4−d

∫ κ−2t

0
ds

∫ s+Kκ

s+εκ
du

∫ K

0
dv

∫

Rd

µs(dx)

∫

Rd

µu(dy) p
G
1
2d(u−s

κ
+v)(x, y)

−
∫ κ−2t

0
J(µs) ds

]
,

(A.20)

where the supremum is taken over all probability measure-valued paths µ(·) and

J(ν) =

{ ∥∥∇
√
dν/dλ

∥∥2

2
if ν ≪ λ,

∞ otherwise,
(A.21)

with λ the Lebesgue measure on R
d. By the convexity of the large deviation rate function J ,

the supremum in (A.20) diagonalizes and reduces to

(A.20) =
1

κ2
sup
ν

[
Cγ2κ4−d

∫

Rd

ν(dx)

∫

Rd

ν(dy)

∫ Kκ

εκ
du

∫ K

0
dv pG1

2d(u
κ
+v)(x, y)− J(ν)

]
.

(A.22)
Putting u = 2dκũ, v = 2dṽ and letting ε ↓ 0 and K →∞, we end up with a contribution to
limκ→∞ 2dκ2 limt→∞ I(κ; t) of the form

2d sup
ν

[
(2d)2Cγ2

∫

Rd

ν(dx)

∫

Rd

ν(dy)

∫ ∞

0
dũ

∫ ∞

0
dṽ pGũ+ṽ(x, y)− J(ν)

]
(A.23)

in d = 5 and zero in d ≥ 6. In d = 5 we have from (A.16)

∫ ∞

0
dũ

∫ ∞

0
dṽ pGũ+ṽ(x, y) =

∫ ∞

0
dt t pGt (x, y) =

1

16π2‖x− y‖ . (A.24)

Substituting this into (A.23), putting ν = f2λ and recalling (A.21), we get

(A.23) = 2d sup
‖f‖2=1

[
(2d)2 Cγ2

∫

R5

∫

R5

dx dy
f2(x) f2(y)

16π2‖x− y‖ − ‖∇f‖
2
2

]
. (A.25)

Scaling of f shows that the supremum with the prefactor (2d)2Cγ2 equals ((2d)2Cγ2)2 times
the supremum without this prefactor. Hence we get

(A.23) = 2d
(
(2d)2Cγ2

)2 P5, (A.26)

where we recall (1.30). This is precisely the “polaron-type” term in (1.28) for p = 1.

The heuristic argument in Parts 2 and 3 follows a line of thought that was made rigorous in
Gärtner and den Hollander [5] and Gärtner, den Hollander and Maillard [6], [8] for the case
where ξ is a field of independent simple random walks in a Poisson equilibrium, respectively,
a simple symmetric exclusion process in a Bernoulli equilibrium. We refer to these papers for
further details. There it is also explained why for p ∈ N\{1} the polaron term is p2 times that
for p = 1.
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