
TIME-LIMITED POLLING SYSTEMS WITH BATCH ARRIVALS AND
PHASE-TYPE SERVICE TIMES

AHMAD AL HANBALI, EURANDOM, P.O. BOX 513, 5600 MB EINDHOVEN, THE
NETHERLANDS,

ALHANBALI@EURANDOM.TUE.NL

ROLAND DE HAAN, RICHARD J. BOUCHERIE, AND JAN-KEES VAN OMMEREN ,
UNIVERSITY OF TWENTE, P.O. BOX 217, 7500 AE ENSCHEDE, THE NETHERLANDS

{R.DEHAAN,R.J.BOUCHERIE,J.C.W.VANOMMEREN}@UTWENTE.NL

Abstract. In this paper, we will develop a general framework to analyze polling systems
with either the autonomous-server or the time-limited service discipline. We consider
Poisson batch arrivals and phase-type service times. It is known that these disciplines
do not satisfy the well-known branching property in polling system. Therefore, hardly
any exact results exist in the literature. Our strategy is to apply an iterative scheme
that is based on relating in closed-form the joint queue-length at the beginning and the
end of a server visit to a queue. These kernel relations are derived using the theory of
absorbing Markov chains.
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1. Introduction

Polling systems have been extensively studied in the last years due to their vast area of
applications in production and telecommunication systems [15, 18]. They have demon-
strated to offer an adequate modeling framework to analyze systems in which a set of
entities need certain service from a single resource. These entities are located at different
positions in the system awaiting their turn to receive service.

In queueing theory, a polling system is equivalent to a set of queues with exogenous job
arrivals all requiring service from a single server. The server serves each queue according
to a specific service discipline and after serving a queue he will move to a next queue.
A tractable analysis of a polling system is possible if the system satisfies the so-called
branching property [17]. This property states that each job present at a queue at the
arrival instant of the server will be replaced in an independent and identically distributed
manner by a random number of jobs during the course of the server’s visit. For disciplines
not satisfying this property hardly any exact results are known.

The two most well-known disciplines that satisfy the branching property are the exhaustive
and gated discipline. Exhaustive means that the server continues servicing a queue until
it becomes empty. At this instant the server moves to the next queue in his schedule.
Gated means that the server only serves the jobs present in the queue at its arrival.
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The drawback of the exhaustive and gated disciplines is that the server is controlled by
the presence of jobs at Qi. To reduce this control on the server, other type of service
disciplines were introduced such as the time-limited or the k-limited discipline. According
to the time-limited discipline, the server continues servicing a queue for a certain time
period or until the queue becomes empty, whichever occurs first. Under the k-limited
discipline, the server continues servicing a queue until k jobs are served or the queue
becomes empty, whichever occurs first. Another discipline, evaluated more recently in the
literature and closely related to the time-limited discipline, is the so-called autonomous-
server discipline [1, 8], where the server stays at a queue for a certain period of time,
even if the queue becomes empty. This discipline may also be seen as the non-exhaustive
time-limited discipline. We should emphasize that these latter disciplines do not satisfy
the branching property and thus hardly any closed-form results are known for the queue-
length distribution under these disciplines.

To circumvent this difficulty, researchers resort to numerical methods using for instance
iterative solution techniques or the power series algorithm. The power series algorithm
[4, 5] aims at solving the global balance equations. To this end, the state probabilities are
written as a power series and via a complex computation scheme the coefficients of these
series, and thus the queue-length probabilities, are obtained. The iterative techniques
[13, 14] exploit the relations between the joint queue-length distributions at specific in-
stants, viz., the start of a server visit and the end of a server visit. The relation between
the queue length at the start and end of a visit to a queue is established via recursively
expressing the queue length at a job departure instant in terms of the queue length at
the previous departure instant of a job. The complementary relation, between the queue
length at the end of a visit to a queue and a start of visit to a next queue, can easily be
established via the switch-over time. Starting with an initial distribution, the stationary
queue-length distribution is then obtained by means of iteration. For the k-limited disci-
pline, the authors in [20] proposed an iterative approximation that is based on a matrix
geometric method. Although these methods offer a way to numerically solve intrinsically
hard systems, their solution provides little fundamental insight.

Under the assumption of exponential service times, we derived in [2] a direct and more
insightful relation between the joint number of jobs at the beginning and end of a server
visit to a queue for the autonomous-server, the time-limited, and the k-limited discipline.
This is done using a matrix analytic approach. In the same paper, we also re-derived a
result of [21] for the exhaustive time-limited discipline for the special case of exponential
service times. The latter article studied the exhaustive time-limited discipline for preemp-
tive service [21]. Observing that upon successful service completion at a queue the busy
period in fact regenerates, the authors could obtain a closed-form relation between the
joint queue length at the end and the beginning of a server visit. In [7] all these results
were extended by including routing of jobs between the different queues. This is done by
constructing Markov chains at specific embedded epochs and subsequently relating the
state space at these epochs.

In this paper, we develop a framework to analyze the autonomous server and the time-
limited polling systems with Poisson batch arrivals and phase-type service times. Our
framework incorporates an iterative solution method which enhances the method intro-
duced in [13]. More specifically, contrary to that approach, we will establish a direct
relation between the joint number of jobs at the beginning and end of a server visit to a
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queue without conditioning on any intermediate events that occur during a visit. To this
end, we use the theory of absorbing Markov chains (AMC) [11, 16]. We construct an AMC
whose transient states represent the states of the polling system. The event of the server
leaving a queue is modeled as an absorbing event. We will set the initial state of the AMC
to the joint number of jobs at the beginning of a service period of a queue. Therefore, to
find the joint number of jobs at the end of a service period, it is sufficient to keep track
of the state from which the transition to the absorption state occurs. The probability
of the latter event is eventually determined by first ordering the states in a careful way
and consequently exploiting the structures that arise in the generator matrix of the AMC.
Following this approach, we relate in closed-form the joint queue-length probability gen-
erating functions (p.g.f.) at the end of a visit period to a queue to the joint queue-length
p.g.f. at the beginning of this visit period. The major part of this paper is devoted to
deriving these kernel relations for the above-mentioned two disciplines: autonomous-server
and time-limited. Once these relations are obtained, the joint queue-length distribution
at server departure instants is readily obtained via a simple iterative scheme.

Although we have developed our framework for the case of autonomous-server and time-
limited systems, our framework is generally applicable to analyze other branching and
non-branching type polling systems. The key step is the correct ordering of the states
that allows us to invoke the theory of absorbing Markov chains in order to relate in
closed-form the joint number of jobs in the system at the beginning and end of a server
visit to a queue.

The paper is organized as follows. In Section 2 we give a detailed description of the model
and the assumptions. Section 3 analyzes the autonomous-server discipline. In Section 4
we study the time-limited discipline. In Section 5 we describe the iterative scheme that
is important to compute the joint queue-length distribution. Finally, in Section 6, we
conclude the paper and give some research directions.

2. Model

We consider a single-server polling model consisting of M first-in-first-out (FIFO) systems
with unlimited queue, Qi, i = 1, . . . , M . Jobs arrive to Qi in batches according to a Pois-
son process of rate λi. The sequence of batch sizes consists of independent and identically
distributed random variables, which are independent of inter-arrival times. Let us denote
Di the batch size at Qi with probability mass function Di(·) and probability generating
function D̂i(z), |z| ≤ 1. We assume that Di ≥ 1 for i = 1, . . . ,M . The service time of a
job at Qi is denoted by Bi. Bi is a phase-type random variable with distribution function
Bi(·) with mean bi and hi phases. That is, Bi is a mixture of hi exponential random
variables. We assume that the service requirements are independent and identically dis-
tributed random variables and they are independent of the batch size and inter-arrival
time.

A phase-type distribution can be represented by an initial distribution vector π, a transient
generator T, and an absorption rate vector T o, i.e., T−1T 0 = −eT , where eT is a column
vector with all entries equal to one. For more details we refer, e.g., to [16, p. 44]. Then,
it is well-known that the Laplace-Stieltjes transform (LST) of the service times at Qi, Bi,
can written as follows

B̃i(s) = πi(sI−Ti)−1T o
i , Re(s) ≥ 0. (1)
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For later use, we need to introduce the LST of residual (phase-type) service times.

Lemma 1. The LST of the residual service times at Qi is given by

B̃∗
i (s) =

1
bi

πi(sI−Ti)−1eT , Re(s) ≥ 0. (2)

Proof. The LST of the residual service times reads

B̃∗
i (s) =

1
bis

(1− B̃i(s))

= − 1
bi

πiT−1
i (sT−1

i − I)−1T−1
i T o

i

=
1
bi

πi(sI−Ti)−1eT .

¤

We let Ni(t) denote the number of jobs in Qi, i = 1, . . . , M , at time t ≥ 0 and it is
assumed that Ni(0) = 0, i = 1, . . . ,M . The server visits the queues in a cyclic fashion.
After a visit to Qi, the server incurs a switch-over time Ci from Qi to Qi+1. We assume
that Ci is independent of the service requirement and follows a general distribution Ci(·)
with mean ci, where at least one ci > 0. The service discipline at each queue is either
autonomous-server or time-limited. Under the autonomous-server discipline, the server
remains at location Qi an exponentially distributed time with rate αi before it migrates
to the next queue in the cycle. Under the time-limited discipline, the server departs from
Qi when it becomes empty or when a timer of exponentially duration with rate αi has
expired, whichever occurs first.

It is assumed that the queues of the polling system are stable. In the following lemmas we
shall report the stability condition for both the autonomous-server and the time-limited
systems. The proofs of these lemmas are straightforward extensions to those of Theorems
3.1 and 3.2 in [7, Chap. 3].

Lemma 2 (Autonomous-server discipline).

System is stable ⇐⇒ ρi < κi, i = 1, . . . , M,

where

ρi = λiE[Di] · 1− B̃i(αi)
αiB̃i(αi)

, κi =
1/αi∑M

j=1 1/αj + cj

.

We note that
(
1− B̃i(αi)

)
/(αiB̃i(αi)) is the LST of the effective service times of a job in

Qi which includes the work lost due to service preemptions. κi is the availability fraction
of the server at Qi.

Lemma 3 (Time-limited discipline).

System is stable ⇐⇒ ρ + max
i=1,...,M

(λiE[Di]
E[G∗

i ]

)
· ct < 1,

where

ρ =
M∑

j=1

λiE[Di]
(
1− B̃i(αi)

)

αiB̃i(αi)
, E[G∗

i ] =
B̃i(αi)

1− B̃i(αi)
, ct =

M∑

j=1

cj .
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We note that ρ represents the total offered load to the system and E[G∗
i ] the mean number

of served jobs at Qi during a cycle when Qi is saturated.

In case the server is active at the end of a server visit, which may happen under the
autonomous-server and time-limited disciplines, then the service will be preempted. At
the beginning of the next visit of the server, the service time will be re-sampled according
to Bi(·). This discipline is commonly referred to as preemptive-repeat-random.

A word on notation. Given a random variable X, X(t) will denote its distribution function.
We use I to denote an identity matrix of appropriate size and use ⊗ as the Kronecker
product operator defined as follows. Let A and B be two matrices and a(i, j) and b(i, j)
denote the (i, j)-entries of A and B respectively then A⊗B is a block matrix where the
(i, j)-block is equal to a(i, j)B. We use e to denote a row vector of appropriate size with
entries equal to one and ei to denote a row vector of appropriate size with the i-th entry
equal to one and the other elements equal to zero. Finally, vT will denote the transpose
of vector v.

3. Autonomous-server discipline

In this section, we will relate the joint queue-length probabilities at the beginning and end
of a server visit to a queue for the autonomous-server discipline. Under the autonomous-
server discipline, the server remains at location Qi an exponentially distributed time with
rate αi before it migrates to the next queue in the cycle. It is stressed that even when Qi

becomes empty, the server will remain at this queue.

Without loss of generality let us consider a server visit to Q1. The number of jobs at the
various queues at the beginning of a server visit to Q1 is denoted by Nb

1 := (N b
11, . . . , N

b
M1);

let Ne
1 := (N e

11, . . . , N
e
M1) denote the queue lengths at the end of such a visit. We assume

that the p.g.f. of the steady-state queue-length at service’s beginning instant at Q1, denoted
by βA

1 (z) = E
[
zNb

1

]
, is known, where z := (z1, . . . , zM ) and |zi| ≤ 1 for i = 1, . . . ,M . The

aim is to derive the p.g.f. of the steady-state queue-length at service visit’s end at Q1,
denoted by γA

1 (z) = E
[
zNe

1
]
.

Let N(t) :=
(
PH1(t), N1(t), . . . , NM (t)

)
denote the (M +1)-dimensional, continuous-time

Markov chain with discrete state-space ξA = {0, 1, . . . , h1} × {0, 1, . . .}M ∪ {a}, where
Nm(t), m = 1 . . . , M , represents the number of jobs in Qm and PH1(t) the phase of the
job in service at Q1 at time t. State {a} is absorbing. We refer to this absorbing Markov
chain by AMCA. The absorption of AMCA occurs when the server leaves Q1 which
happens with rate α1. Moreover, the initial state of AMCA at t = 0 is set to the system
state at server’s arrival to Q1, i.e., Nb

1 = (i1, . . . , iM ). Therefore, the probability that the
absorption of AMCA occurs from state (j1, . . . , jM ) equals P

(
Ne

1 = (j1, . . . , jM )
∣∣ Nb

1 =
(i1, . . . , iM )

)
.

We derive now P
(
Ne

1 = (j1, . . . , jM )| Nb
1 = (i1, . . . , iM )

)
. During a server visit to Q1, the

number of jobs at Qm, m = 2, . . . , M , may only increase. Therefore, P
(
Ne

1 = (j1, . . . , jM )
| Nb

1 = (i1, . . . , iM )
)

= 0 for jl < il, l = 2, . . . , M . For sake of clarity, we shall show first in
detail the structure of AMCA in the case of 3 queues, i.e. for M = 3, and the procedure
of the proof of the desired result before considering the general case.

Case M=3. Let us consider the transient states of AMCA, i.e., (ph1, n1, n2, n3) ∈
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ξA \ {a}. We recall that we consider a server visit to Q1. The number of jobs at
Q2 and Q3 may only increase during a server visit to Q1, while the number of jobs
at Q1 may increase or decrease. To take advantage of this property, we will order the
transient states of the AMCA as follows: (0, 0, 0, 0), (1, 0, 0, 0), . . . , (0, 1, 0, 0), (1, 1, 0, 0),
. . . , (0, 0, 1, 0), (1, 0, 1, 0), . . . ,(0, 0, 0, 1), (1, 0, 0, 1),. . ., i.e., lexicographically ordered first
according to n3, then n2, n1, and finally according to ph1. This ordering induces that
the generator matrix of the transitions between the transient states of AMCA for M = 3,
denoted by Q3, is an infinite upper-triangular block matrix with diagonal blocks equal to
A3 and i-th upper-diagonal blocks equal λ3D3(i)I, i.e.,

Q3 =




A3 λ3D3(1)I λ3D3(2)I · · · · · · · · ·
0 A3 λ3D3(1)I λ3D3(2)I · · · · · ·
...

. . . . . . . . . . . . . . .


 . (3)

We note that A3 denotes the generator matrix of the transitions which do not induce
any modification in the number of jobs at Q3. Moreover, λ3D3(i)I denotes the transition
rate matrix between the transient states (ph1, n1, n2, n3) and (ph1, n1, n2, n3 + i), i.e., the
transitions that represent an arrival of a batch of size i to Q3. The block matrix A3 is
also an infinite upper-triangular block matrix with diagonal blocks equal to A2, and i-th
upper-diagonal blocks equal λ2D2(i)I, i.e.,

A3 =




A2 λ2D2(1)I λ2D2(2)I · · · · · · · · ·
0 A2 λ2D2(1)I λ2D2(2)I · · · · · ·
...
. . . . . . . . . . . . . . . . . .


 , (4)

where λ2D2(i)I denotes the transition rate matrix between the states (ph1, n1, n2, n3)
and (ph1, n1, n2 + i, n3). A2 is the generator matrix of the transition between the states
(ph1, n1, n2, n3) and (l, k, n2, n3) with k ≥ max(n1 − 1, 0) and l ≤ h1, the total number of
phases in the service times. Observe that A2 equals the sum of the matrix −(λ2+λ3+α1)I
and the generator matrix of an MX/PH/1 queue with Poisson batch arrivals and phase-
type service times. Let A1 denote the generator of an MX/PH/1. It is readily seen that
(see, e.g., [16, Chap. 3, Sec. 2])

A1 =




−λ1 λ1D1(1)π1 λ1D1(2)π1 · · · · · · · · ·
T o

1 T1 − λ1I λ1D1(1)I λ1D1(2)I · · · · · ·
0 T o

1 π1 T1 − λ1I λ1D1(1)I λ1D1(2)I · · ·
...
. . . . . . . . . . . . . . . . . .


 . (5)

We recall that T o
1 is a column vector and π1 is a row vector thus T o

1 π1 is a matrix of rank
one with (i, j)-entry representing the transition rate from state (i, n1, n2, n3) to (j, n1 −
1, n2, n3).

Now, we compute P
(
Ne

1 = (j1, j2, j3) | Nb
1 = (i1, i2, i3)

)
as function of the inverse of Q3,

A3 and A2 and later on we shall uncondition on N e
13, then on N e

12, and finally on N e
11.

We emphasize that since Q3, A3 and A2 are all sub-generators with the sum of their row
elements strictly negative, these matrices are invertible. It shall become clear that in this
paper we do not need to determine these inverse matrices in closed-form. For conveniance,
we abbreviate the condition Nb

1 = (i1, i2, i3) to Nb
1, e.g., P

(
Ne

1 = (j1, j2, j3) | Nb
1

)
denotes

P
(
Ne

1 = (j1, j2, j3) | Nb
1 = (i1, i2, i3)

)
.
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From the theory of absorbing Markov chains, given that AMCA starts in state Nb
1 =

(i1, i2, i3), the probability that the transition to the absorption state {a} occurs from state
(j1, j2, j3) reads (see, e.g., [10])

P
(
Ne

1 = (j1, j2, j3) | Nb
1

)
= −α1c3(Q3)−1d3, (6)

where c3 is the probability distribution vector of AMCA’s initial state which is given by

c3 := ei3 ⊗ ei2 ⊗ ei1 ⊗ π1,

and α1d3 is the transition rate vector to {a} given that (j1, j2, j3) is the last state visited
before absorption with

d3 := ej3 ⊗ ej2 ⊗ ej1 ⊗ e.

Note that the presence of π1 in c3 is due to the preemptive-repeat discipline, and e in
d3 is due to the un-conditioning on the phase of the service times in Q1 when the server
leaves the queue. We note that in [12] the absorption probability was introduced in terms
of Palm measures and was applied on infinite state space absorbing Markov chains.

For later use, let us define the following row vectors:

c2 := ei2 ⊗ ei1 ⊗ π1, d2 := ej2 ⊗ ej1 ⊗ e,

c1 := ei1 ⊗ π1, d1 := ej1 ⊗ e.

We are now ready to formulate our first result.

Lemma 4. The conditional generating function of the queue-length of Q3 at the end of
the server visit to Q1 is given by

E
[

z
Ne

31
3 1{Ne

11=j1,Ne
21=j2)}

∣∣∣Nb
1

]
= −α1z

i3
3 c2

(
λ3D̂3(z3)I + A3

)−1
dT

2 . (7)

Proof. Multiplying (6) by zj3
3 and summing these equations over j3 we find that

E
[

z
Ne

31
3 1{Ne

11=j1,Ne
21=j2)}

∣∣∣Nb
1

]
= −α1c3(Q3)−1

∑

j3≥i3

zj3
3 (ej3 ⊗ d2)T

= −α1c3(Q3)−1(
∑

j3≥i3

zj3
3 ej3 ⊗ d2)T

= −α1

( ∑

j3≥i3

zj3
3 u3(j3)

)
dT

2 , (8)

where u3 =
(
u3(0), u3(1), . . .

)
:= c3(Q3)−1. First, let us derive

∑
j3≥i3

zj3
3 u3(j3). Note

that u3Q3 = c3. Inserting Q3 given in (3) into the latter equation gives that

u3(0)A3 = 0, (9)

λ3

n−1∑

l=0

D3(n− l)u3(l)I + u3(n)A3 = 1{n=i3}c2, n ≥ 1. (10)

Note, since A3 is nonsingular, Eq. (9) yields that u3(0) = 0, i.e., u3(0) is a vector of zeros.
Inserting u3(0) = 0 into (10) with n = 1 yields that u3(1) = 0. Therefore, we deduce by
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an induction argument that u3(n) = 0 for n = 0, . . . , i3−1. The latter system of equations
now rewrites

u3(i3)A3 = c2, (11)

λ3

n−1∑

l=i3

D3(n− l)u3(l) + u3(n)A3 = 0, n > i3. (12)

Multiplying (11) by zi3
3 and (12) by zn

3 and summing these equations over n we find that
∑

j3≥i3

zj3
3 u3(j3) = zi3

3 c2

(
λ3D̂3(z3)I + A3

)−1
. (13)

Inserting (13) into (8) readily gives Lemma 4. ¤
Lemma 5. The conditional generating function of the joint queue-length of Q2 and Q3 at
the end of the server visit to Q1 is given by

E
[

z
Ne

21
2 z

Ne
31

3 1{Ne
11=j1}

∣∣∣Nb
1

]
= −α1z

i2
2 zi3

3 c1

(
λ2D̂2(z2)I + λ3D̂3(z3)I + A2

)−1
dT

1 . (14)

Proof. Multiplying (7) by zj2
2 and summing over j2 gives that

E
[

z
Ne

21
2 z

Ne
31

3 1{Ne
11=j1}

∣∣∣Nb
1

]
= −α1z

i3
3 c2

(
λ3D̂3(z3)I + A3

)−1(
∑

j2≥i2

zj2
2 ej2 ⊗ d1)T

= −α1z
i3
3

( ∑

j2≥i2

zj2
2 u2(j2)

)
dT

1 , (15)

where u2 =
(
u2(0), u2(1), . . .

)
:= c2

(
λ3D̂3(z3)I+A3

)−1. We emphasize that the matrices
Q3 and (λ3D̂3(z3)I + A3

)
given in (3) and (4) have a similar structure. Therefore, by

analogy with the derivation of (8) in Lemma 4 we deduce that
∑

j2≥i2

zj2
2 u2(j2) = zi2

2 c1

(
λ2D̂2(z2)I + λ3D̂3(z3)I + A2

)−1
. (16)

Inserting (16) into (15) readily gives the desired result. ¤

We are now ready to report our main result for the autonomous-server discipline in the
case M = 3.

Theorem 1. The generating function of the joint queue-length of Q1, Q2 and Q3 at the
end of the server visit to Q1 is given by

E
[
zNe

1
]

= p(z)E
[
r1(z2, z3)Nb

11z
Nb

21
2 z

Nb
31

3

]
+ q(z)E

[
z

Nb
11

1 z
Nb

21
2 z

Nb
31

3

]
, (17)

where z := (z1, z2, z3),

p(z) =
α1

s1(r1(z2, z3), z2, z3)
× (z1 − 1)B̃1(s1(z1, z2, z3))

z1 − B̃1(s1(z1, z2, z3))
, (18)

q(z) =
α1

s1(z1, z2, z3)
× z1

(
1− B̃1(s1(z1, z2, z3))

)

z1 − B̃1(s1(z1, z2, z3))
, (19)

s1(z1, z2, z3) = α1 +
∑3

i=1 λi(1 − D̂i(zi)), and where r1(z2, z3) is the root with smallest
absolute value of: (solving for z1)

z1 = B̃1

(
s1(z1, z2, z3)

)
.
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Proof. Multiplying (14) by zj1
1 and summing over all values of j1 gives that

E
[
zNe

1
∣∣Nb

1

]
= E

[
z

Ne
11

1 z
Ne

21
2 z

Ne
31

3

∣∣∣Nb
1

]

= −α1z
i2
2 zi3

3 c1

(
λ2D̂2(z2)I + λ3D̂3(z3)I + A2

)−1

×(
∑

j1≥0

zj1
1 ej1 ⊗ e)T

= −α1z
i2
2 zi3

3

( ∑

j1≥0

zj1
1 u1(j1)

)
eT , (20)

where u1 =
(
u1(0), u1(1), . . .

)
:= c1

(
λ2D̂2(z2)I + λ3D̂3(z3)I + A2

)−1. Let us now derive∑
j1≥0 zj1

1 u1(j1). Note that A2 = A1 − (λ2 + λ3 + α1)I and u1(λ2D̂2(z2)I + λ3D̂3(z3)I +
A2

)
= c1. Inserting A1 given in (5) into the latter equation gives that

−θu1(0) + u1(1)T 0
1 = 0, (21)

λ1D1(n)u1(0)π1 + λ1

n−1∑

l=1

D1(n− l)u1(l)I

+u1(n)(T1 − θI) + u2(n + 1)T 0
1 π1 = 1{n=i1}π1, n ≥ 1, (22)

where θ := α1 + λ1 + λ2(1 − D̂2(z2)) + λ3(1 − D̂3(z3)). By multiplying (21) by π1 and
adding it to the sum over n of (22) multiplied by zn

1 , we find that

∑

n≥1

u1(z1)zn
1

[
T1 −

(
θ − λ1D̂1(z1)

)
I +

1
z1

T 0
1 π1

]
=

[
zi1
1 + u1(0)

(
θ − λ1D̂1(z1)

)]
π1. (23)

Let R := [T1 −
(
θ − λ1D̂1(z1)

)
I + 1

z1
T 0

1 π1

]
. Then,

∑

n≥1

u1(z1)zn
1 =

[
zi1
1 + u1(0)

(
θ − λ1D̂1(z1)

)]
π1R−1. (24)

Inserting (24) into (20) we find that

E
[

z
Ne

1
1 z

Ne
2

2 z
Ne

3
3

∣∣∣Nb
1

]
= −α1z

i2
2 zi3

3

(
u1(0) +

[
zi1
1 + u1(0)

(
θ − λ1D̂1(z1)

)]
π1R−1eT

)
, (25)

Now, we shall compute π1R−1e. For the ease of the notation, let us denote R1 := T1 −(
θ − λ1D̂1(z1)

)
I. By the Sherman-Morrison formula, see [3, Fact 2.14.2, p. 67], we have

that

π1R−1eT = π1

[
R−1

1 − 1
z1

(1− 1
z1

B̃1(θ − λ1D̂1(z1)))−1R−1
1 T 0

1 π1R−1
1

]
eT

= π1R−1
1 eT

[
1 +

1
z1

B̃1(θ − λ1D̂1(z1))

1− 1
z1

B̃1(θ − λ1D̂1(z1))

]

= −1− B̃1(θ − λ1D̂1(z1))
θ − λ1D̂1(z1)

× z1

z1 − B̃1(θ − λ1D̂1(z1))
, (26)
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where the second equality follows from (1) and the last equality from Lemma 1. Inserting
(26) into (25) yields that

E
[

z
Ne

1
1 z

Ne
2

2 z
Ne

3
3

∣∣∣Nb
1

]
=

α1z1z
i2
2 zi3

3 [1− B̃1(s1(z1, z2, z3))][zi1
1 + u1(0)s1(z1, z2, z3)]

s1(z1, z2, z3)[z1 − B̃1(s1(z1, z2, z3))]

−α1z
i2
2 zi3

3 u1(0), (27)

where s1(z1, z2, z3) = θ − λ1D̂1(z1). We shall show that for |z1| ≤ 1 the denominator of
(27) is not equal to zero except at one point. First, note that the real part of θ−λ1D̂1(z1)
is strictly positive for α1 > 0, |zi| ≤ 1, i = 1, 2, 3. Moreover, by Rouché’s theorem it is
readily seen that z1 − B̃1(θ − λ1D̂1(z1)) = 0 has a unique root, r1(z2, z3), inside the unit
the disk. Since the l.h.s. in (27) is a p.g.f. , it is analytical for |z1| ≤ 1 we deduce that
r1(z2, z3) is a removable singularity in (27), which gives

u1(0) = − r1(z2, z3)i1

θ − λ1D̂1(r1(z2, z3))
. (28)

Inserting u1(0) into (27) and removing the condition on Nb
1 readily gives E

[
zNe

1
]

in The-
orem 1. ¤

General case. By analogy with the case of M = 3, we order the transient states of
AMCA first according to nM , then nM−1, . . ., n1, and finally according to ph1. During a
server visit to Q1, the number of jobs at Qj , j = 2, . . . , M , may only increase. Therefore,
similarly to the case of M = 3, the AMCA the generator matrix of the transition rates
between the transient states of AMCA for the general case, denoted by QM , is an upper-
triangular block matrix with diagonal blocks equal to AM , and i-th upper-diagonal blocks
equal to λMDM (i)I. Moreover, AM in turn is an upper-triangular block matrix with
diagonal blocks equal to AM−1, and i-th upper-diagonal blocks equal to λM−1DM−1(i)I.
We emphasize that Aj , j = M, . . . , 3, all verify the previous property. Finally, the matrix
A2 = A1 − (λ2 + . . . + λM + α1)I, where A1 is the generator matrix of an MX/PH/1
queue, with Poisson batch arrivals of inter-arrival rate λ1 and batch size distribution
function D1(·).
By analogy with the M = 3 case, we find that the probability of Ne

i = (j1, . . . , jM ), given
that Nb

1 = (i1, . . . , iM ), reads

P
(
Ne

1 = (j1, . . . , jM ) | Nb
1

)
= −α1cM (QM )−1dM , (29)

where

cM := eiM ⊗ . . .⊗ ei1 ⊗ π1, dM := ejM ⊗ . . .⊗ ej1 ⊗ e.

Lemma 6. The conditional generating function of the joint queue-length of Q2, . . . , QM

at the end of the server visit to Q1 is given by

E
[ M∏

i=2

z
Ne

i1
i 1{Ne

11=j1}

∣∣∣∣∣N
b
1

]
= −α1

M∏

n=2

zin
n c1

( M∑

i=2

λiD̂i(zi)I + A2

)−1
dT

1 .

Proof. Similar to the proof of Lemma 5. ¤

We are now ready to report our main result for the general case.
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Theorem 2 (Autonomous-server discipline). The generating function of the joint queue-
length of Q1, . . ., QM at the end of the server visit to Q1 is given by

γA
1 (z) = pA

1 (z)βA
1 (z∗1) + qA

1 (z)βA
1 (z1), (30)

where z = (z1, . . . , zM ), z∗1 =
(
r1(z2, . . . , zM ), z2, . . . , zM

)
,

pA
1 (z) =

α1

s1(z∗1)
× (z1 − 1)B̃1(s1(z))

z1 − B̃1(s1(z))
, qA

1 (z) =
α1

s1(z)
× z1

(
1− B̃1(s1(z))

)

z1 − B̃1(s1(z))
,

s1(z) = αi+
∑M

i=1 λi(1−D̂i(zi)), and where r1(z2, . . . , zM ) is the root with smallest absolute
value of: (solving for z1)

z1 = B̃1

(
s1(z)

)
.

Proof. By analogy with the proof of Theorem 1. ¤

Eq. (30) relates γA
1 (z), the p.g.f. of the joint queue-length at the beginning of a server

visit to Q1, to βA
1 (z1), the p.g.f. of the joint queue-length at the end of a server visit to

Q1. From Theorem 2, we deduce that for a server visit to Qi, i = 1, . . . , M ,

γA
i (z) = pA

i (z)βA
i (z∗i ) + qA

i (z)βA
i (zi), (31)

where z∗i = (z1, . . . , zi−1, ri(z1, . . . , zi−1, zi+1, . . . , zM ), zi+1, . . . , zM ),

pA
i (z) =

αi

si(z∗i )
× (zi − 1)B̃i(si(z))

zi − B̃i(si(z))
, qA

i (z) =
αi

si(z)
× zi

(
1− B̃i(si(z))

)

zi − B̃i(si(z))
,

where si(z) = αi +
∑M

i=1 λi(1− D̂i(zi)), and where ri(z1, . . . , zi−1, zi+1, . . . , zM ) is the root
with smallest absolute value of:

zi = B̃i

(
si(z)

)
.

Finally, introducing the switch-over times from Qi−1 to Qi, thus by using that E
[
zNb

i
]

=

E
[
zNe

i−1
]
Ci−1(z), where Ci−1(z) = Ci−1

(∑M
i=1 λi

(
1− D̂i(zi)

))
is the p.g.f. of the number

of Poisson batch arrivals during Ci−1, we obtain

γA
i (z) = pA

i (z)γA
i−1(z

∗
i )C

i−1(z∗i ) + qA
i (z)γA

i−1(z)C
i−1(z). (32)

Remark 1. In the particular case where D̂i(zi) = zi, i.e., the arriving batches are all of
size one, Eq. (31) agrees with [7, Theorem 5.3].

4. Time-Limited discipline

In this section, we will relate the joint queue-length probabilities at the beginning and end
of a server visit to a queue for the time-limited discipline. Under this discipline, the server
departs from Qi when it becomes empty or when a timer of exponentially duration with
rate αi has expired, whichever occurs first. Moreover, if the server arrives to an empty
queue, he leaves the queue immediately and jumps to the next queue in the schedule. For
this reason, we should differentiate here between the two events where the server joins an
empty and non-empty queue.

We will follow the same approach as in Section 3. Thus, we first assume that there are
Nb

1 := (i1, ..., iM ) jobs in (Q1, . . . , QM ), with i1 ≥ 1, at the beginning time of a server visit
to Q1 and second there are Ne

1 := (Ne
11, ...,N

e
1M ) = (j1, ..., jM ) jobs in (Q1, . . . , QM ) at

the end time of a server visit to Q1. Note that if Q1 is empty at the beginning of a server
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visit, i.e., i1 = 0, then P
(
Ne

1 = Nb
1

)
= 1. We shall exclude the latter obvious case from the

analysis in the following. However, we shall include it when the result is unconditioned
on Nb

1.

Let N(t) := (PH1(t), N1(t), . . . , NM (t)) denote the (M + 1)-dimensional, continuous-time
Markov chain with discrete state-space ξT = {1, . . . , h1}× {0, 1, . . .}M ∪ {a}, where Nj(t)
represents the number of jobs in Qj at time t and at which Q1 is being served. State
{a} is absorbing. We refer to this absorbing Markov chain by AMCT . The absorption of
AMCT occurs when the server leaves Q1 which happens with rate α1 from all transient
states. The transient states of the form (ph1, 1, n2, . . . , nM ) have an additional transition
rate to {a} that is equal to the (ph1)-entry of T 0

1 which represents the departure of the
last job at Q1 from the service phase ph1.

We shall now derive the joint moment of the p.g.f. of Ne
1 and the event that the absorption

is due to timer expiration and later the joint conditional p.g.f. of Ne
1 and the event that

the absorption is due to Q1 empty. We set N(0) = (PH1(0),Nb
1), where PH1(0) is

distributed according to π1, i.e., preemptive repeat discipline. We order the transient states
lexicographically first according to nM , then to nM−1,. . ., n1, and finally according to ph1.
Similarly to the autonomous-server discipline, during a server visit to Q1, the number of
jobs at Qj , j = 2, . . . , M , may only increase. It then follows that the transient generator
of AMCT has the same structure as the transient generator of AMCA, i.e. it is an upper-
triangular Toeplitz matrix of upper-triangular Toeplitz diagonal blocks. Therefore, by
the same arguments as for the autonomous-server, we find that the joint moment of the
p.g.f. of Ne

1 and the event that the absorption is due to timer expiration, denoted by
{timer}, given N1(0), reads

E
[
zNe

11{timer}
∣∣∣Nb

1

]
= −α1

M∏

n=2

zin
n c1

( M∑

i=2

λiD̂i(zi)I + B2

)−1
g1(z1)T , (33)

where B2 := B1−(λ2 + . . .+λM +α1)I, B1 is the generator matrix of an MX/PH/1 queue
restricted to the states with the number of jobs strictly positive, i.e., B1 is obtained by
deleting the first row of blocks and column of the matrix A1 defined in (5), and where

g1(z1) :=
∑

j1≥1

zj1
1 ej1 ⊗ e = (z1e, z

2
1e, . . .), c1 = ei1 ⊗ π1.

Let QT(z) =
∑M

i=2 λi

(
1− D̂i(zi)

)
I + B1.

Lemma 7. The joint moment of the p.g.f. of Ne
1 and the event that the absorption is due

to timer expiration, given Nb
1 = (i1, . . . , iM ), is given by

E
[
zNe

11{timer}
∣∣∣Nb

1

]
= α1z1

( M∏

n=2

zin
n

) [zi1
1 − r1(z2, . . . , zM )i1 ][1− B̃1

(
s1(z)

)
]

s1(z)[z1 − B̃1

(
s1(z)

)
]

, (34)

where r1 = B̃1

(
s1(r1, z2, . . . , zM )

)
and s1(z) = α1 +

∑M
i=1 λi(1− D̂i(zi)).

Proof. Equation (33) yields that

E
[
zNe

11{timer} | Nb
1

]
= −α1

M∏

n=2

zin
n

( ∑

j1≥1

zj1
1 u1(j1)

)
eT , (35)
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where u1 =
(
u1(1), u1(2), . . .

)
:= c1(QT(z))−1. Note that u1QT(z) = c1. Inserting QT(z)

into the latter equation gives that

1{n≥2}λ1

n−1∑

l=1

D1(n− l)u1(l)I + u1(n)(T1 − θI) + u2(n + 1)T 0
1 π1 = 1{n=i1}π1, (36)

where θ = α1 + λ1 +
∑M

i=2 λi(1 − D̂i(zi)). Multiplying (36) by zn
1 and summing over n

yields that
∑

n≥1

u1(z1)zn
1 =

[
zi1
1 + u1(1)T 0

1

]
π1R−1. (37)

Inserting (37) into (35) we find that

E
[
zNe

11{timer} | Nb
1

]
= −α1

( M∏

n=2

zin
n

)[
zi1
1 + u1(1)T 0

1

]
π1R−1eT

= α1z1

( M∏

n=2

zin
n

) [zi1
1 + u1(1)T 0

1 ][1− B̃1

(
s1(z)

)
]

s1(z)[z1 − B̃1

(
s1(z)

)
]

, (38)

where the second equality follows from (26) and s1(z) = θ − λ1D̂1(z1). Because the
joint moment generating function E

[
zNe

11{timer} | Nb
1

]
in (38) has a singular point at

z1 = r1(z2, . . . , zM ), |r1(z2, . . . , zM )| < 1, it should be removable. Thus,

u1(1)T 0
1 = −r1(z2, . . . , zM )i1 , (39)

where r1(z2, . . . , zM ) = B̃1

(
s1(r1(z2, . . . , zM ), z2, . . . , zM )

)
. Inserting u1(1)T 0

1 into (38)

readily gives E
[
zNe

11{timer}
∣∣∣Nb

1

]
. ¤

Lemma 8. The joint moment of the p.g.f. of Ne
1 and the event that the absorption is due

to empty Q1, given Nb
1 = (i1, . . . , iM ), is given by

E
[
zNe

11{timer}
∣∣∣Nb

1

]
= r1(z2, . . . , zM )i1

M∏

n=2

zin
n , (40)

where r1(z2, . . . , zM ) = B̃1

(
s1(r1(z2, . . . , zM ), z2, . . . , zM )

)
and s1(z) = α1 +

∑M
i=1 λi(1 −

D̂i(zi)).

Proof. The joint moment of the p.g.f. of Ne
1 and the event that the absorption is due to

Q1 being empty, is given by

E
[
zNe

11{Q1 empty}
∣∣∣Nb

1

]
= −

M∏

n=2

zin
n c1QT(z)−1eT

1 ⊗ T 0
1

= −
M∏

n=2

zin
n u1(1)T 0

1

= r1(z2, . . . , zM )i1

M∏

n=2

zin
n ,

where u1 = c1(QT(z))−1 and the last equality follows from (39). ¤
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Combining Lemmas 7 and 8 we obtain our main theorem for the time-limited discipline.

Theorem 3 (Time-limited discipline). The generating function of the joint queue-length
of Q1, . . ., QM at the end of the server visit to Q1 is given by

γT
1 (z) = pT

1 (z)βT
1 (z∗1) + qT

1 (z)βT
1 (z),

where z = (z1, . . . , zM ), z∗1 =
(
r1(z2, . . . , zM ), z2, . . . , zM

)
,

pT
1 (z) = 1− α1

s1(z)
× z1

(
1− B̃1(s1(z))

)

z1 − B̃1(s1(z))
, qT

1 (z) =
α1

s1(z)
× z1

(
1− B̃1(s1(z))

)

z1 − B̃1(s1(z))
,

where s1(z) = αi+
∑M

i=1 λi(1−D̂i(zi)) and r1(z2, . . . , zM ) is the root with smallest absolute
value of: (solving according to z1)

z1 = B̃1

(
s1(z)

)
.

We deduce that for a server visit to Qi, i = 1, . . . , M ,

γT
i (z) = pT

i (z)βT
i (z∗i ) + qT

i (z)βT
1 (z), (41)

where z∗i = (z1, . . . , zi−1, ri(z1, . . . , zi−1, zi+1, . . . , zM ), zi+1, . . . , zM ),

pT
i (z) = 1− α1

s1(z)
× z1

(
1− B̃1(s1(z))

)

z1 − B̃1(s1(z))
, qT

i (z) =
α1

s1(z)
× z1

(
1− B̃1(s1(z))

)

z1 − B̃1(s1(z))
,

where si(z) = αi +
∑M

i=1 λi(1− D̂i(zi)), and where ri(z1, . . . , zi−1, zi+1, . . . , zM ) is the root
with smallest absolute value of:

zi = B̃i

(
si(z)

)
.

Finally, introducing the switch-over times from Qi−1 to Qi, thus by using that E
[
zNb

i
]

=
E

[
zNe

i−1
]
Ci−1(z), where Ci−1(z) is the p.g.f. of the number of Poisson batch arrivals during

Ci−1, we obtain

γT
i (z) = pT

i (z)γT
i−1(z

∗
i )C

i−1(z∗i ) + qT
i (z)γT

i−1(z)C
i−1(z). (42)

Remark 2. In the particular case where D̂i(zi) = zi, i.e. the arriving batches are all of
size one, Eq. (41) agrees with [7, Theorem 5.10].

Remark 3. Exhaustive discipline. Taking the limit of (41) for αi → 0 the time-limited
discipline is equivalent to the exhaustive discipline. We find that

E
[
zNe

i
]

= E
[
(z∗i )

Nb
i
]
, (43)

where z∗i := (z1, . . . , zi−1, yi, zi+1, . . . , zM ) and yi is the root of

zi = B̃i

( M∑

i=1

λi(1− D̂i(zi))
)
. (44)

Eq. (43) is equivalent to the well-known relation of exhaustive discipline in (see, e.g., [9,
Eq. (24)]).
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5. Iterative scheme

In this section, we will explain how to obtain the joint queue-length distribution using an
iterative scheme. First, we obtain γi(z) as function γi−1(z), where z = (z1, . . . , zM ).

Note that γi(z) is a function of γi−1(z) and γi−1(z∗i ) where z∗i = (z1, . . . , zi−1, a, zi+1 . . . , zM )
with |zi| = 1, i = 1, . . . , M and |a| ≤ 1. Moreover, we note that a is function of zl for
all l = 1, . . . , M and l 6= i. Since γi−1(z) is a p.g.f. it should be analytic in zi for all
z1, . . . , zi−1, zi+1, . . . , zM . Hence, we can write

γi−1(z) =
∞∑

n=0

gin(z1, . . . , zi−1, zi+1 . . . , zM )zn
i , |zi| ≤ 1,

where gin(.) is again an analytic function. From complex function theory, it is well known
that (see, e.g., [19])

γi−1(z∗i ) =
1

2πi

∮

C

γi−1(z)
zi − a

dzi, |a| ≤ 1,

where C is the unit circle and i2 = −1. In addition, we have that

gin(z1, . . . , zi−1, zi+1 . . . , zM ) =
1

2πi

∮

C

γi−1(z)
zn+1
i

dzi,

where n = 0, 1, . . . . These formulas show that we only need to know the p.g.f. γi−1(z) for
all z with |zi| = 1, to be able to compute γi(z).

When there is an incurred switch-over time from queue i − 1 to i the p.g.f. of the joint
queue-length at the end of the n-th server visit to Qi, denoted by γn

i (z), can be computed
as function of γn

i−1(z), see Eq. (32) and (42). The main step is to iterate over all queues in
order to express γn+1

i (z) as function of γn
i (z). Assuming that the system is in steady-state

these two latter quantities should be equal. Thus, starting with an empty system at the
first service visit to Qi and repeating the latter main step we can compute γ2

i (z), γ3
i (z),

and so on. This iteration is stopped when γn
i (z) converges.

6. Discussion and Conclusion

In this paper, we have developed a general framework to analyze polling systems with
Poisson batch arrivals and phase-type service times for the autonomous-server and the
time-limited service discipline. The framework is based on the key idea of relating directly
the joint queue-length distribution at the beginning and the end of a server visit. In
order to do so, we used the theory of absorbing Markov chains. We have illustrated our
framework for the autonomous-server and the time-limited service discipline. The analysis
presented in this paper is restricted to the case of a single job service at a time. We
emphasize that the analysis can be extended to the more general batch service disciplines,
see [6, Chap. III.2]. For instance, Lemma 6 holds in this case, however, the matrix A2

becomes a full block matrix.

In this paper we have showed that our framework is applicable to disciplines that do not
satisfy the branching property that are, in general, considered to be hard to analyze.
Our framework is also applicable to branching type polling systems such as the exhaustive
discipline. Moreover, we claim that with an extra effort one can analyze the gated discipline
for which there already exist results in the literature.
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