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ABSTRACT

We determine the distribution of the maximum level of the workload in some queueing, dam

and storage processes. The models under consideration are the following. (i) The Markov

mountain: a storage or dam model that alternates between exponentially distributed ON

and OFF periods. The buffer content increases (decreases) at some state-dependent rate

when ON (OFF). (ii) The semi-Markov mountain: as (i), but with generally distributed ON

periods. (iii) The M/G/1 queue with various forms of customer impatience.
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1 INTRODUCTION

This paper is dedicated to Shelley Zacks, in friendship and admiration. Both authors have

the pleasure of collaborating with Shelley on queueing-theoretic problems closely related

to the present paper. For him this topic is just one out of many which have received his

attention. Accordingly, the range of papers and the readership of this special issue will be

broad. Hence we shall start leisurely, by introducing some classical concepts from queueing

theory.

The classical single server queue (cf. Cohen (1982)) is a model of a service facility with a

single server, at which customers arrive with a service request. It is usually assumed that the

server works at unit speed, serving customers according to some service discipline like First-

Come-First-Served (FCFS). It is also typically assumed that successive interarrival times of

customers are independent, identically distributed (i.i.d.) random variables, and that the

service times of successive customers are also i.i.d., and independent of the arrival process.

In the case of general interarrival and service time distributions, this model is termed the

G/G/1 queue; the M/G/1 queue has exponentially distributed interarrival times, and the

G/M/1 queue has exponentially distributed service times (M for Memoryless or Markovian).

The most important performance measures under consideration in queueing theory are

the queue length distribution (a system-oriented performance measure) and the waiting

time distribution (a customer-oriented performance measure). Other important performance

measures are the distribution of the busy period, i.e., the time during which the server

is uninterruptedly working, and the distribution of the cycle maximum, i.e., the largest

amount of work present in the system during such a busy period. The cycle maximum is an

interesting quantity because, in practice, buffer sizes are finite and the cycle maximum gives

an indication for the probability that that maximum buffer size is needed or exceeded. For

example, if M denotes the maximal workload in a busy period of the M/G/1 queue with

unlimited capacity, then Pr(M < K) denotes the probability that no overflow occurs during

a busy period of the M/G/1 queue with finite capacity K.

In the sequel we shall not only consider queues, but also dams and mountains. While
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the workload in a queueing model increases instantaneously when a customer arrives, the

workload (content) in the mountain process as defined in Boxma et al. (2005) both decreases

and increases gradually: during OFF (ON) periods it decreases (increases) with some general

rate which depends on the current level. See Figure 1 in Section 2 for an example. If one

deletes the ON periods from the mountain process, one gets a so-called dam process, but

with jumps upward which are not i.i.d. (because of the above-mentioned level-dependent

increment rate). If one deletes the OFF periods from the mountain process, one gets a

general risk (or inventory/production) process, but with jumps downward which are not

i.i.d.

This paper is devoted to the study of cycle maxima of some queueing, dam and mountain

processes. In all these processes, the cycle maximum is the maximal workload in the system

during a busy period. It is not only a key performance measure for queues but also for dams

and storage processes, due to its importance in extreme value theory (cf. Asmussen (1998)

or Asmussen (2003), pp. 298-301, pp. 368; here special attention is given to the probability

that the cycle maximum exceeds K, with K tending to infinity) and due to its importance

for the study of systems with a finite capacity (cf. Cohen (1968)).

The cycle maximum in the M/G/1 queue

For future reference we mention two expressions for the distribution of M in the M/G/1

queue with arrival rate λ, generic service time G with distribution G(·), and with steady-state

workload distribution V (·) with density v(·); the latter steady-state workload distribution

exists iff the offered load ρ := λE[G] < 1. These expressions were independently discovered

by Takács (1967), Section 29, and Cohen (1968). For x > 0:

Pr(M < x) = 1− 1

λ

d

dx
lnV (x) = 1− 1

λ

v(x)

V (x)
; (1)

Pr(M < x) =
V ∗G(x)

V (x)
. (2)

Here ∗ denotes a convolution. Because of PASTA, the workload distribution equals the

waiting time distribution. Hence one can write, with W and Q denoting a generic waiting
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and sojourn time:

Pr(M < x) =
Pr(Q < x)

Pr(W < x)
. (3)

Remark 1 It readily follows from (1) that (cf. Cohen (1982), pp. 618):

E[M ] =
1

λ
ln

1

1− ρ
. (4)

This is a remarkably simple expression; notice that only the mean service time plays a role

here.

if ρ = 1 then the busy period is finite with probability one, but its mean is infinite. If

ρ > 1 then there is a positive probability that a busy period is not finite. Hence one then

cannot speak of the cycle maximum of an arbitrary busy period. We refer to Cohen (1976),

Section 3.3, for the conditional cycle maximum given the busy period is finite, in the case

that ρ > 1. See Cohen (1968) for the G/M/1 case with ρ < 1, and Adan et al. (2005) for

the G/M/1 case with ρ > 1. In Asmussen and Perry (1992), the distribution of M is derived

for a single server queue with a general Markovian arrival process. See Asmussen (1998) for

a survey on cycle maxima.

A recent paper of Albrecher et al. (2009) presents a new proof of (1), as well as providing

additional motivation for studying cycle maxima. That paper is devoted to (a generalization

of) the classical Cramér-Lundberg risk model. Here

R(t) = x+ ct−
N(t)∑
i=1

Gi (5)

describes the surplus at time t of an insurance portfolio, where x is the initial capital, c is a

constant premium intensity (we choose c = 1) and {Gi}i≥1 is a sequence of independent and

identically distributed positive random variables which denote claims. The claim number

process N(t) is assumed to be a homogeneous Poisson process with intensity λ. A crucial

quantity in risk theory is the infinite-time survival probability

φ(x) = Pr(R(t) ≥ 0 ∀ t ≥ 0 |R(0) = x).
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The following lemma and its proof, from Albrecher et al. (2009), provide a direct link

between the infinite-time survival probability of the Cramér-Lundberg insurance risk process

R(t) and the maximum workload M of a busy period in the corresponding M/G/1 queue

with arrival rate λ and with generic service time G:

Lemma 1 Under the net profit condition λE(G) < 1 we have for every x ≥ 0:

Pr(M < x) = 1− 1

λ

d

dx
log φ(x). (6)

Proof. The risk process R(t) starting in x can only survive if after the first claim, occurring

at some surplus level y, the level y will be reached again before ruin occurs. This is equivalent

to: the maximum workload M of the corresponding M/G/1 queue does not exceed y. Since

we are only concerned about eventual survival, the part until the process returns to y (which

is a busy period of the corresponding M/G/1 queue, turned upside down) can be cut out.

So the survival probability φ(x) simply is the probability of zero events during [x,∞) of an

inhomogeneous Poisson process with time-dependent rate λ(t) = λPr(M > t), which implies

φ(x) = exp

(
−
∫ ∞
x

λ(t) dt

)
= exp

(
−λ
∫ ∞
x

Pr(M > t) dt

)
, (7)

yielding (6). It is well known (see pp. 30-32 of Asmussen (2000)) that the survival probabil-

ity φ(x) in the Cramér-Lundberg risk model equals the steady-state workload distribution

V (x) in the corresponding M/G/1 queue. (1) now immediately follows from (6).

The models to be considered in this paper

In Boxma et al. (1999) a fluid queue or dam was studied with a buffer content that varies

linearly during periods that are generated by a three-state semi-Markov process. Two cases

were distinguished for this “mountain process”: (i) two upward slopes and one downward

slope, and (ii) one upward slope and two downward slopes. In both cases, the length of at

least one of the three periods has a general distribution. The cycle maximum or top of the

mountain, i.e., the maximal buffer content during a busy period, was one of the quantities

which were studied in Boxma et al. (1999) for these two cases.
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In the present paper, we consider the top of the mountain for another mountain process:

a storage or dam model that alternates between ON and OFF periods. When ON, the

buffer content increases at some state-dependent rate α(x). When OFF, the buffer content

decreases at some state-dependent rate β(x), x > 0; when it reaches zero, it stays at zero

until another ON period begins. The steady-state buffer content of this process, as well

as conditions for its existence and uniqueness, were studied in Boxma et al. (2005). In

the present paper, we focus on the top of the mountain, for the special case that the ON

and OFF periods are all independent and exponentially distributed. We call this model the

Markov mountain. We obtain very explicit results for the hazard rate of the cycle maximum

(top of the mountain), and for its distribution. We subsequently extend this model to the

case in which the ON periods have a general distribution, the semi-Markov mountain. The

distribution of the cycle maximum is expressed in the workload distribution in two different

ways. The results are less explicit than for the Markov mountain, in the sense that the

workload distribution is only determined as the solution of some Volterra integral equation.

We also consider the cycle maximum for M/G/1-type queues with restricted accessibility.

We distinguish three cases: (i) customers are not admitted (become impatient) when their

waiting time exceeds a certain patience time (Model 1 ; the patience time is the time a

customer is willing to wait before becoming impatient and leaving the system); (ii) customers

are partially admitted when their waiting time is less than a certain patience time but their

waiting plus service time exceeds that patience time (Model 2 ); (iii) customers are not

admitted when their waiting plus service time exceeds a certain patience time. In each case

it is assumed that the waiting and service time are observable at the moment of arrival.

The rest of the paper is organized as follows. The Markov mountain is studied in Section

2, and the semi-Markov mountain in Section 3. Section 4 is devoted to the study of the cycle

maximum for the three M/G/1-type queues with restricted accessibility.
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2 THE MARKOV MOUNTAIN

Consider a special case of the mountain process as introduced in Boxma et al. (2005). That is,

we assume a mountain process with intermittent ON and OFF periods. This intermittence

of ON and OFF periods generates an alternating renewal process such that within each

ON-OFF cycle the ON period and the OFF period are independent and exponentially(µ),

respectively exponentially(λ), distributed. The mountain process X = {X(t) : t ≥ 0} is a

regenerative nonnegative process whose cycle starts at an ON period with X(0) = 0. The

hilly period of the mountains (uninterrupted period with a positive level) is equivalent to

the wet period of dams, to the production period for inventories and to the busy period in

queues. Similarly, the sea level period of the mountains is equivalent to the dry period of

dams, to the unsatisfied demand period for inventories and to the idle period in queues.

Formally, we define the end of a hilly period by τ = inf{t > 0 : X(t) = 0} and the end

of a sea level period I by τ + I, where I = inf{t > 0 : X(τ + t) > 0}. Then, T = τ + I is

the length of a cycle. In this study we consider a special case of Boxma et al. (2005) in the

sense that only the increase rate α(x) during ON periods and the decrease rate β(x) during

OFF periods are state dependent (in Boxma et al. (2005) the lengths of the ON and OFF

periods are also state dependent). A typical realization of the mountain process is depicted

in Figure 1.

We focus on the analysis of M = max{X(t) : 0 < t < T} which is the top of the mountain

during one cycle. To this end we construct the dam process D = {D(t) : t ≥ 0} by deleting

the ON periods from X and gluing together the OFF periods. Note that D is a special

Markov dam with Poisson arrivals at rate λ. However, the jumps are state dependent; they

are neither independent nor identically distributed. In any case, by construction, M is the

cycle maximum of both X and D. We therefore apply the stochastic analysis of M associated

with the dam D and the fact that the ON periods of X are exp(µ) leads to the following

obvious

Criterion 1 The hazard rate function of the jump size at any level x in D is µ/α(x).
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Figure 1: The Markov mountain

It is clear that the cycle maximum of D occurs at a moment of a jump and it must be

a record value. Furthermore, in order that M is the cycle maximum of D it must be the

last record value during the cycle of D and thus also during the wet period of D. In other

words, level x is the cycle maximum of D if and only if it is a record value such that after

reaching level x the dam D will reach level 0 before upcrossing level x again. Let θ(x) be

the probability of the latter event. In the proof of the next theorem we use an argument

similar to that used in the proof of Theorem 5 of Adan et al. (2005).

Theorem 1 Let rM(x) be the hazard rate function of M at x. Then

rM(x) =
µ

α(x)
θ(x).

Proof. Since the ON times in the mountain X are exp(µ) distributed, µdx/α(x) is the

infinitesimal probability that an arbitrary record value of D lands in [x, x + dx). But M ∈

[x, x+dx) if and only if the latter record value is the last record value in the busy period and

the probability of the latter event is θ(x). By the strong Markov property, we find rM(x)dx

by taking the product of µdx/α(x) and θ(x).

To compute θ(x) we use an argument similar to that used in Adan et al. (2005) and

Asmussen and Perry (1992). In the following calculations we omit o(dx) terms. First note
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that, due to the fact that D is a Markov process, we have for all x > 0 the equation

θ(x+ dx) =

[
1− λdx

β(x)

] [
θ(x) + (1− θ(x))

µdx

α(x)
θ(x)

]
. (8)

To better understand the right hand side of (8) note that the paths with arrivals in

[0, dx
β(x)

) do not provide a contribution to the content level of D since they have probability

λdx and will upcross level x + dx unless the further event of service termination in [0, dx
β(x)

)

(having probability µdx
α(x)

) occurs. The term θ(x) in (8) then corresponds to paths which

downcross level x and do not upcross again. The term (1− θ(x)) µdx
α(x)

θ(x) corresponds to

paths which downcross level x and upcross again before hitting level 0 with jump terminating

at u ∈ (x, x + dx], where the value of u does not matter since θ(u) = θ(x) + O(dx). Hence,

from (8) we get

θ′(x) = −λθ(x)

β(x)
+
µθ(x)

α(x)
− µθ2(x)

α(x)
. (9)

To simplify (9) substitute

η(x) = 1/θ(x).

We get after some elementary algebra

η′(x) + η(x)

(
µ

α(x)
− λ

β(x)

)
=

µ

α(x)
. (10)

Let

A(x) =

∫ x

0

[1/α(y)]dy, and B(x) =

∫ x

0

[1/β(y)]dy. (11)

By multiplying both sides of (10) by eµA(x)−λB(x) we get

eµA(x)−λB(x)

[
η′(x) + η(x)

(
µ

α(x)
− λ

β(x)

)]
= eµA(x)−λB(x) µ

α(x)
. (12)

Solving for η(x) in (12) we get

η(x) = H(x)e−µA(x)+λB(x) + k0e
−µA(x)+λB(x),

where H(x) =
∫ x

0
eµA(y)−λB(y) µ

α(y)
dy and k0 is a constant. Obviously, η(0) = 1 so that k0 = 1.

We thus get

η(x) = [H(x) + 1]e−µA(x)+λB(x). (13)
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Substituting (13) in Theorem 1 we obtain

rM(x) =
µeµA(x)−λB(x)

α(x)[H(x) + 1]
.

From Theorem 1 we conclude, using the familiar relation Pr(M > x) = e−
R x
0 rM (y)dy between

a distribution and its hazard rate function:

Theorem 2

Pr(M > x) = e−
R x
0
µeµA(y)−λB(y)

α(y)[H(y)+1]
dy. (14)

Theorems 1 and 2 show (i) that the distribution of the cycle maximum is directly related to

the probability θ(x) of reaching level 0 starting from x, before reaching level x again, and (ii)

how this distribution can be expressed in the rate α(x) and the integrals A(x) =
∫ x

0
[1/α(y)]dy

and B(x) =
∫ x

0
[1/β(y)]dy.

3 THE SEMI-MARKOV MOUNTAIN

In this section we extend the model introduced in Section 2 to the case of a semi-Markov

mountain. We assume that the ON period is not necessarily exponentially distributed. The

trade-off that stems from this generalization is clear due to the type of the final results in

the generalized model. That is, while the distribution of M is given explicitly in (14) in

the Markov case, for the semi-Markov case we only manage to express P (M > x) in terms

of θ(x) and f(x), the steady-state density of the dam associated with the mountain. The

latter density is the solution of a Volterra-type integral equation. We have not obtained

an expression for θ(x) in the general case. In the special case α(x) ≡ 1, θ(x) and hence

P (M > x) are known; cf. Remark 2 below.

In our general model we assume that the distribution of the ON period, G(·), is absolutely

continuous with density g(·), while the OFF period is still exp(λ). We also assume that∫ x

0

1

β(y)
dy <∞
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so that level 0 can be reached with probability 1 from any level x and without getting into

details we assume that the necessary and also sufficient conditions for stability hold so that

the mountain is a regenerative process.

For this general case we apply the same approach as in Section 2 and construct the Dam

D from the Mountain X by deleting the ON periods and gluing the OFF periods together.

The release function of the resulting dam is β(·) but the jumps are neither independent nor

identically distributed. In fact, the conditional probability that the process after the jump

stays below x given it starts at level w is G(A(x)− A(w)) where A(·) is defined in (11).

Let F (·) be the steady-state distribution of the content level of D. By Level Crossing

Theory (LCT), F (·) is an absolutely continuous distribution with density f(·) and the

balance equation of Pollaczek-Khintchine type is given by

β(x)f(x) = λ
∫ x

0
[1−G(A(x)− A(w))]dF (w)

= λ
∫ x

0
[1−G(A(x)− A(w))]f(w)dw + λπ[1−G(A(x))],

(15)

where

π = lim
t→∞

Pr(D(t) = 0).

For future reference we shall rewrite the first equality in (15) as

β(x)f(x) = λ[F (x)− (F ~G)(x)]. (16)

The balance equation (15) is a Volterra-type equation which is known to be uniquely solvable

by a Neumann series in the space of continuous functions (for example, see Harrison and

Resnick (1976)). To solve for f(·) we use the notation

f(x) =

∫ x

0

f(w)Q(w, x)dw + πQ(0, x),

where

Q(w, x) := Q∗1(w, x) :=
λ[1−G(A(x)− A(w))]

β(x)
.

Define

Q∗(n+1)(0, x) :=

∫ x

0

Q∗n(0, y)Q(y, x)dy.
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The Neumann series yields:

f(x) = π
∞∑
n=1

Q∗n(0, x), (17)

where π can be calculated from the normalizing condition∫ ∞
0

f(x)dx = 1− π.

We thus obtain

f(x) =

∑∞
n=1Q

∗n(0, x)

1 +
∫∞

0

∑∞
n=1Q

∗n(0, y)dy
. (18)

We are now in position to introduce a fundamental proportionality result based on Level

Crossing Theory. To this end we define Dx(T ) as the number of downcrossings of level x

during the cycle T , where T is defined just like in Section 2.

By conditioning on whether the event {M ≤ x} occurred or not we get by the law of

total probability:

EDx(T ) = E[Dx(T ) |M ≤ x] Pr(M ≤ x) + E[Dx(T ) |M > x] Pr(M > x).

Clearly, E[Dx(T ) |M ≤ x] = 0 and by the strong Markov property the conditional number

of downcrossings of level x given the event {M > x} occurred is geometrically (1 − θ(x))

distributed so that

E[Dx(T ) |M > x] =
1

θ(x)
,

and hence

Pr(M > x) = θ(x)EDx(T ). (19)

Let Dx be the long-run average number of downcrossings of level x > 0 by D. On the one

hand we get by the renewal reward theorem:

Dx =
EDx(T )

ET
. (20)

On the other hand, by LCT,

Dx = β(x)f(x). (21)
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Combining (16), (19), (20) and (21), and using that Pr(M > 0) = 1, we get the following

theorem, in which P (M > x) is expressed in terms of θ(x) and the steady-state density f(x)

of the workload of the dam associated with the mountain:

Theorem 3

Pr(M > x) = θ(x)
β(x)f(x)

β(0)f(0)

=
λ

β(0)f(0)
θ(x)[F (x)− (F ~G)(x)]. (22)

Remark 2 In general it is difficult to determine θ(x). θ(x) is known in the special case that

α(x) ≡ 1, so A(x) = x; cf. Formula (14) of Lee (2007):

θ(x) =
1

1 +
∫ x

0

∑∞
n=1Q

∗n(0, y)dy
. (23)

Comparison of this formula and (17) reveals that, in this case,

θ(x) =
π

π +
∫ x

0
f(y)dy

=
F (0)

F (x)
. (24)

Hence in this case of the M/G/1 queue with release rate β(x), we retrieve a formula that

was already obtained by Bekker and Zwart (2005) (notice that F ~G reduces to F ∗G when

A(x) = x):

Pr(M > x) =
λF (0)

β(0)f(0)

F (x)− (F ∗G)(x)

F (x)
. (25)

Since λF (0) = β(0)f(0), cf. (16), we have

Pr(M < x) =
(F ∗G)(x)

F (x)
. (26)

(26) should be compared with (2).

Furthermore, combination of the first line of (22) and (17) shows that

Pr(M > x) =
β(x)f(x)F (0)

β(0)f(0)F (x)
=
β(x)

λ

f(x)

F (x)
=
β(x)

λ

d

dx
lnF (x). (27)

(27) should be compared with (1).
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4 QUEUES WITH RESTRICTED ACCESSIBILITY

We focus on the three prototype models as described in earlier works (see for example

Asmussen and Perry (1992), Boxma et al. (2009), Cohen (1969) and Perry et al. (2000)).

The above models are those of single server queues of the M/G/1 type and the restricted

accessibility is based on either the waiting times or the sojourn times, but not based on the

number of waiting customers. Also, it is assumed that the service requirements, as well as

the patience of the customers, are observable. That means that customers know the waiting

times, the sojourn times and the patience at their arrivals so that they do not waste time in

line. In other words, if the waiting time (or the sojourn time) is greater than the patience,

the customer is not admitted to the system.

For all three models we designate the waiting time of the nth arriving customer by Wn,

the sojourn time by Qn, the service requirement by Sn and the patience by Yn. We assume

that S1, S2, ... and Y1, Y2, ... respectively, are sequences of i.i.d. random variables, which are

also independent of each other.

In Model 1 the accessibility is applied only to the waiting time but the service require-

ments are also the actual services.

Formally, we have for Model 1:

Qn = (Wn + Sn) · 1{Wn≤Yn}; (28)

if Wn would exceed Yn, then the nth arriving customer will not enter the system.

In Model 2 and Model 3 the accessibility is applied to the sojourn times. In Model 2 the

service might be truncated if the sojourn time is greater than the patience.

Formally, we have for Model 2:

Qn = (Wn + Sn) · 1{Wn+Sn≤Yn} + Yn · 1{Wn≤Yn≤Wn+Sn}. (29)

In Model 3 a customer is admitted to the system only if the service requirement is also the

actual service.
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Formally, we have for Model 3:

Qn = (Wn + Sn) · 1{Wn+Sn≤Yn}. (30)

In Model 1 below we express the law of M in terms of LST (see Theorem 4). Then for

Models 2 and 3 we apply Theorem 1 and compute separately the values of rM(x) and θ(x).

4.1 Model 1

In the language of queueing theory and in case that the interarrival times, the service require-

ments and the patience are general, this model is known as the G/G/1+G (see Baccelli et al.

(1984)) queueing system. In this study we restrict the attention to the M/M/1 +M special

case: We assume Poisson arrivals with rate λ, exp(µ) service requirements and independent

exp(ξ) patience. Let V = {V (t) : t ≥ 0} be the work process of the above queue and as

before let τ be the busy period. Then M = max0≤t≤τ V (t) is the cycle maximum. Let Xj

be the jth record value in the cycle for j = 1, 2, ..., N , where N is the last record value in

the cycle. Then, M = XN . Let Lj be the jth record time (with L1 = 0 and X0 = 0). In a

similar notation to that used in Section 2, we define

U−j+1 = inf{t > 0 : V (Lj + t) = 0}, U+
j+1 = inf{t > 0 : V (Lj + t) = Xj+1},

and let

γ(x) = Pr(U−j < U+
j | Xj−1 = x), (31)

where x = 0 whenever j = 1 (note that the conditional probability (31) is independent

of j since by the strong Markov property Pr(U−j < U+
j | Xj−1 = x) = Pr(U−j − Lj−1 <

U+
j − Lj−1 | Xj−1 = x)). Define

γj = Pr(U−j < U+
j ),

and observe that, because of the memoryless property of the jumps, Xj has an Erlang(j, µ)

distribution for j = 1, 2, . . . (see Figure 2). Hence

γj =

∫ ∞
0

e−µx(µx)j−1µ

(j − 1)!
γ(x)dx. (32)
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To compute γ(x) we use an argument similar to that in (8). For small dx we have the

equation (again ignoring o(dx) terms in the sequel)

γ(x+ dx) =
[
1− λe−ξxdx

]
[γ(x) + (1− γ(x))µdxγ(x)] . (33)

By definition of (31), x is a record value and γ(x) is the probability to reach level 0 before

reaching a new record value. After the record value x is reached it is a necessary condition

that arrivals in [x, x+ dx) will not be admitted to the system. The probability of the latter

event is
[
1− λe−ξxdx

]
+ o(dx). The interpretation of the expression is the same as that of

(8). This leads to the differential equation

γ′(x) = −λe−ξxγ(x) + µ(1− γ(x))γ(x).

Introducing ν(x) := 1
γ(x)

, we have

ν ′(x) = ν(x)
(
λe−ξx − µ

)
+ µ. (34)

Solving for ν(x) in (34) we get, using that ν(0) = γ(0) = 1:

ν(x) = e−µxe
λ
ξ
(1−e−ξx) + µ

∫ x

0

eµ(y−x)e
λ
ξ
(e−ξy−e−ξx)dy, (35)

so

γ(x) =
eµxe

−λ
ξ

(1−e−ξx)

1 + µ
∫ x

0
eµye

−λ
ξ

(1−e−ξy)dy
. (36)

Finally, in the next theorem we give the law of M in terms of Laplace-Stieltjes transforms

(LST); see also Figure 2. It is expressed in the γj, which are given by (32) with γ(x) being

determined by (36).

Theorem 4

Ee−αM =
∞∑
n=1

(
µ

µ+ α

)n
(1− γ1) · · · (1− γn−1)γn. (37)

Proof. As observed before, by the lack of memory property of the jumps, Xn is Erlang(n, µ)

distributed, so that the LST of Xn is
(

µ
µ+α

)n
. By the strong Markov property the conditional

probability that N = n given there are at least n − 1 record values is γn. Multiplying, the

result follows.
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Figure 2: Model 1

Remark 3 The LST of M is introduced in terms of an infinite sum. However, the RHS of

(37) clearly converges. This fact allows us to approximate the LST of M by summing the

RHS of (37) up to a predetermined number of terms.

4.2 Model 2

As in Theorem 2, we use that P (M > x) = e−
R x
0 rM (y)dy. In Model 2,

rM(x) = (µ+ ξ)γ(x).

Similar to Model 1 we have for small dx, ignoring o(dx) terms:

γ(x+ dx) =
[
1− λe−ξxdx

]
[γ(x) + (1− γ(x)) (µ+ ξ)dxγ(x)] .

This equation is the same as Equation (33) for Model 1, with µ replaced by µ + ξ. Hence

γ(x) is as given in (36), with µ replaced by µ + ξ. The hazard rate function rM(x), and

hence P (M > x), are now also specified.

4.3 Model 3

In a similar manner to that of Subsection 4.2, we introduce the hazard rate function

rM(x) = µe−ξxγ(x),
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where in this case

γ(x+ dx) =

[
1− λe−ξx µ

µ+ ξ
dx

]
[γ(x) + (1− γ(x))µdxγ(x)] . (38)

To better understand (38) note that by the memoryless property of the patience, λe−ξx µ
µ+ξ

dx

is the probability that a customer arrives and is admitted when the work is at level x+ dx.

Now notice that (38) is the same as Equation (33) for Model 1, with λ replaced by λ µ
µ+ξ

.

Hence γ(x) is as given in (36), with λ replaced by λ µ
µ+ξ

. Having found rM(x), P (M > x)

finally follows as before.

5 CONCLUSIONS

In this paper we have studied the cycle maximum of the following models: (i) The Markov

mountain: a storage or dam model that alternates between exponentially distributed ON and

OFF periods; the buffer content increases (decreases) at some state-dependent rate when ON

(OFF). (ii) The semi-Markov mountain: as (i), but with generally distributed ON periods.

(iii) The M/G/1 queue with three different forms of customer impatience.

We see the following problem as the main topic for further research. In the analysis of the

semi-Markov mountain, we managed to obtain the workload density f(·) (see (18)), and we

have expressed Pr(M > x) into θ(x) (see Theorem 3), but we did not yet manage to deter-

mine an explicit expression for that θ(x) except for the special case α(x) ≡ 1. It is tempting

to speculate that, for more general α(x), Formula (26) still holds, but with (F ∗G)(x) being

replaced by (F ~G)(x).
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