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Abstract

We consider an inventory model for spare parts with two stockpoints, providing repairable
parts for a critical component of advanced technical systems. As downtime costs for these
systems are huge, ready-for-use spare parts are kept on stock, to be able to quickly respond
to a breakdown of a system. We allow for lateral transshipments of parts between the
stockpoints upon a demand arrival for a spare part. We are interested in the optimal
lateral transshipment policy.

We consider a continuous review setting, where the initial number of spare parts at
each location is given. We assume Poisson demand processes, and allow for asymmetric
demand rates and asymmetric costs structures at the two locations. Defective parts
are replaced, and returned to the stockpoint for repair. Each location has ample repair
capacity, and repair times are exponentially distributed, with the same mean repair time
for both locations. Demands are satisfied from own stock, via a lateral transshipment, or
via an emergency procedure.

Using dynamic programming, we completely characterize and prove the structure of
the optimal lateral transshipment policy, that is, the policy for satisfying demands, min-
imizing the long-run average costs of the system. This optimal policy is a threshold type
policy. In addition, we derive conditions under which the so-called hold back and com-
plete pooling policies are optimal, which are both policies that are often assumed in the
literature.

Keywords: inventory control, spare parts, lateral transshipments, pooling, optimal pol-
icy.
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1 Introduction

We study an inventory model with two stockpoints, which provide spare parts for advanced
technical systems. As down-time of these systems is highly costly, ready-for-use spare parts
are kept on stock for the critical component of these systems. We focus on a single, repairable
part, for which a repair-by-replacement strategy is executed: upon failure of a system, the
defective part is replaced by a part from inventory. The defective part is returned to the
stockpoint, where it is repaired and added to the inventory. We assume ample repair capacity
at both stockpoints, and exponentially distributed repair lead times.

The stockpoints service two groups of technical systems, where each group is assigned to
one stockpoint. In case of a breakdown of a system, the system demands for a spare part at
its dedicated stockpoint. If a demand for a spare part is directly met at the stockpoint, we
refer to this as a demand that is directly fulfilled from own stock. When a demand is not met
directly, there are two other possibilities to fulfill it. The first option is a lateral transshipment,
in which case a part is shipped from the other stockpoint. The system is down while it is
waiting for the part, and extra transportation costs are incurred. The second option is an
emergency repair procedure: the defective part is repaired in a fast repair procedure, for which
high costs are incurred, and the system is down for a longer period of time. Backordering of
demands is not allowed. The demands are observed continuously, and form a Poisson process
at each stockpoint, but the demand rates at the two stockpoints might be different. We
assume the initial number of spare parts on hand at each location to be given.

By allowing for lateral transshipments, significant costs can be saved, as the costs for a
lateral transshipment (transportation costs and costs for a short downtime of the system) are
much smaller than the costs for an emergency procedure (cost for emergency repair of a part,
extra transportation costs and costs for a long downtime of the system). Because of this cost
difference, it is beneficial to apply lateral transshipments. Kranenburg and Van Houtum [17]
show that the company ASML, an original equipment manufacturer in the semiconductor
industry, can reduce their spare parts provisioning costs by up to 50% by the efficient use of
lateral transshipments, while keeping the service at the same level. Robinson [26] shows, that
substantial costs savings can be realized by the use of lateral transshipment, even when the
transportation costs are high. Based on two case studies, in the computer and automobile
industry, Cohen and Lee [8] address stock pooling as an effective way to improve the service
levels, even with less on-hand inventory. Also, Cohen et al. [7] point out the pooling of spare
parts as one of the best way for companies to realize costs reductions.

In this paper, we focus on the optimization of the lateral transshipment policy. That
is, we determine the optimal decision on how to fulfill a demand, in order to minimize the
long-run average running costs of the system: (i) directly from own stock, (ii) via a lateral
transshipment, or (iii) via an emergency procedure. When is it beneficial to apply a lateral
transshipment, and when is it better to apply an emergency procedure? A straightforward
strategy would be to always fulfill demands from the own stockpoint if possible, and otherwise
via a lateral transshipment, if possible. This strategy is known as complete pooling (or full
pooling) of inventory. But, this strategy will turn out to be suboptimal in certain cases,
which mainly depends on the cost parameters. If a stockpoint has, for example, only one
part left on stock, it could be beneficial to hold this one back, even if the other stockpoint
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requests for a lateral transshipment. This situation can occur in case the cost parameters for
both stockpoints are equal (i.e. symmetric), but its effect may be even larger in the case of
asymmetric costs parameters. In this case it can even be better to keep one or a few items
on stock in case of a demand at the stockpoint itself, to be able to respond to a future lateral
transshipment request of the other stockpoint. This situation, where stockpoints can hold
back some inventory, is known as partial pooling.

Under the given repair strategy, we have a system with circulating stock, where the sum
of the number of parts on stock and parts in repair is constant at a stockpoint, and equal to
the initial number of parts. Besides, the model is equivalent to an inventory system with a
given base stock level (equal to the initial number of parts on hand), executing a continuous
review strategy with one-for-one replenishments (or productions), and lost sales. The repair
times in the current model resemble the replenishment, c.q. production lead times, and the
emergency procedures resemble lost sales. This would be more suitable for a setting in which
the parts are consumables.

A considerable amount of work has already been done on the use of lateral transshipments
in various settings, see e.g. Wong et al. [32] or Paterson et al. [24] for an overview. We
can distinguish between two types of work, depending on the lateral transshipment rule. It
can either be a predetermined and fixed rule, or it is subject to optimization. In most of
the literature, a given predetermined fixed rule is assumed, and performance characteristics
of the system are evaluated, either exactly or approximately, (e.g. Lee [19], Axsäter [4],
Sherbrooke [27], Tagaras and Cohen [30] and Kukreja et al. [18]), or optimal reorder policies
are derived (e.g. Robinson[26] and Olsson [23]).

More relevant in relation to our work, is the literature on the optimization of the lateral
transshipment rule. For the periodic-review case, we distinguish the following results. For
a system with two locations, Archibald et al. [3] prove the optimal transshipment policy in
case of stockouts. It states when it is optimal to apply a lateral transshipment in case of
a demand at a location with zero stock. The decision is based both on the stock level of
the other location, and on the time left until the next replenishment opportunity, where it is
assumed that the replenishments occur instantaneously (i.e., if we would let the period length
go to zero, we would get a model with zero replenishment leadtime). The costs consist of the
regular and emergency ordering costs, transshipments costs and holding costs. For multiple
locations, Archibald et al. [2] comes up with heuristics for the lateral transshipment rule.
Herer et al. [14] approximate the optimal transshipment rule for multiple locations. In Herer
and Tzur [13], an optimal transshipment policy is derived, but here lateral transshipments
are not used in reaction to stock outs, but only to balance stock because of different holding
and replenishment costs at the locations. These are so-called pro-active transshipments. Wee
and Dada [31] study the decision for a single period in a system with multiple locations and
one central warehouse, and give five protocols for a transshipment attempt in case of a stock
out. They prove that the optimal transshipment policy is described by exactly one of them,
which can be determined by evaluating a set of conditions.

For optimal lateral transshipments rules in a continuous time review setting, hardly any
results are available. Zhao et al. [34, 35] prove the optimal transshipment policy for so-called
decentralized networks, where the locations are independently owned and operated. They
find a policy where two, respectively three parameters determine when to send and when to
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accept a transshipment request. The latter resembles work of Xu et al. [33], which consider a
hold-back parameter, that limits the amount of outgoing transshipments, however, they work
with an (Q, R) replenishment policy. For the case of compound Poisson processes, Axsäter [5]
comes up with a heuristic rule determining which part of a given demand should be covered
by a lateral transshipment. Evers [9] provides two heuristics giving critical values for on-hand
inventory, above which a stock transfers should be applied. Minner et al. [22] improve these
heuristics, using an approach based on net present value.

In Zhao et al. [36] a two location make-to-stock system is considered. The demands
arrive according to two independent Poisson processes, and at each location the production is
modelled by a single-server make-to-stock queue, with exponentially distributed production
times. The optimal production and optimal transshipment policy are derived, which both
can be described by a switching curve, e.g. the optimal production decision is described
by a state-dependent stock level. In their model, demands are backordered, and lateral
transshipments can be applied both at the moment of a demand and at the moment of a
production completion. However, they do not allow inventory to be held back at a location in
order to be able to respond to future lateral transshipment requests of the other location, if it
is, or is having a large risk of, facing a stock out. The optimization of the lateral transshipment
policy in the current setting, however, has not been done before.

Our main contribution is as follows. For the described model, (a) we completely character-
ize and prove the structure of the optimal lateral transshipment policy, that is, the optimal
policy for fulfilling demands at both stockpoints. This optimal policy is a threshold type
policy. Next to this, we give conditions under which the optimal policy simplifies: (b.1) a
condition under which it is optimal to always fulfill a demand directly from own stock (op-
tion (i)), if possible, which is called a hold back policy, cf. [33]; (b.2) a similar condition under
which it is optimal to always apply a lateral transshipment (option (ii)) in case of a stock-out,
if possible. Under the latter condition, which implies the first one, (b.3) the optimal policy
applies option (i) if possible, otherwise option (ii) if possible, and otherwise option (iii). This
policy is known as a complete pooling policy, and this strategy is often assumed in the liter-
ature about lateral transshipments, see e.g. [1, 4, 10, 18, 19, 27, 29, 32, 36]. So, we present
conditions on the cost parameters under which this policy is indeed optimal.

We model the inventory problem as a Markov decision problem, see e.g. Puterman [25] for
an extensive overview on this. Based on the inventory levels, a decision has to be taken each
time a demand arises at one of the two stockpoints. The technique we use for determining
the optimal decisions, is based on Event Based Dynamic Programming, see Koole [15, 16].
Each event changing the inventory levels, i.e., a demand for a spare part or a repair of a
broken part, is represented by an operator. The n-period minimal cost function (the so-called
value function) is then composed of these operators. Proving structural properties of the
value function, such as monotonicity and multimodularity, can then be done by considering
each of these operators separately, hence reducing the complexity of the problem. From the
properties of the value function the optimal lateral transshipment policy is derived, as well
as conditions under which it simplifies.

The inventory model we consider is closely related to a queueing system. By viewing the
stockpoints as multi-server queues, demands as arriving customers and repairs as service times,
the problem translates into a routing problem in a queueing model with two parallel queues.
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These problems are often modelled as a Markov decision problem, as is the case in the current
paper. For an overview on these on related problems for the control of (networks of) queues,
see e.g. Stidham and Weber [28]. For example, Menich and Serfozo [21] show optimality of
a join-the-shortest-queue routing policy, and Brouns [6] gives a partial characterization of
the optimal routing policy to two two parallel multiserver queues with no buffers, which is
related to our work. The main difference is however, that in these kind of problems from the
queueing literature, no costs are incurred for the routing of customers.

The outline of this paper is as follows. In Section 2 we describe the model in more detail
and we introduce the notation. We model it as a Markov decision problem, and introduce
the technique of Event Based Dynamic Programming. In Section 3 we give the structural
properties of the event operators and of the value function. This leads to the characterization
of the structure of the optimal policy, which is a threshold type policy. Conditions are given
under which certain simple policies are optimal, and some some examples are shown. In
Section 4 we consider an extension to the model, namely we limit the repair capacity. Finally
we summarize the results, and indicate possibilities for further research in Section 5.

2 Model and notation

In Section 2.1 we introduce the problem, followed by its modelling as a Markov decision
problem in Section 2.2. We introduce the value function (the n-period minimal cost function)
and two types of event operators (for the demands and for the repairs), by which the value
function can be recursively expressed.

2.1 Problem description

We consider a spare part inventory system consisting of two stockpoints, which provision
a single spare part for the critical component of an advanced technical system. Initially,
each stockpoint has a predetermined number of ready-for-use spare parts on stock of a given
stockkeeping unit (SKU), Si ∈ N ∪ {0} at stockpoint i, i = 1, 2. There are two groups
of systems, where each group is assigned to one stockpoint. When a system breaks down,
the critical component has to be replaced by a spare part, i.e., the system demands for a
spare part at its designated stock point. The demands arrive continuously, according to two
independent Poisson processes with arrival rate λi ≥ 0 at stockpoint i, such that λ1 +λ2 > 0.
A demand can be fulfilled in one of the following three ways: (i) directly from own stock, (ii)
via a lateral transshipment, or (iii) via an emergency procedure. In either of the three cases,
the defective part is returned to the stockpoint the spare part originated from. The repair
times of broken parts are exponentially distributed with mean 1/µi, where µi > 0, and both
stockpoints have ample repair capacity. In order to derive the structural results, it will appear
that we have to require µ1 = µ2. We assume that parts can be repaired an unlimited number
of times and repaired parts attain their original quality. The interarrival and replenishment
times are all mutually independent.

Our goal is to minimize the long-run average costs. The costs are composed of the costs for
the lateral transshipments, emergency procedures and the downtimes of the systems. We are
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only interested in the influence of the decisions on the costs, i.e., in the extra costs a lateral
transshipment or an emergency procedure causes, compared to a fulfillment of a demand
directly from stock. The number of spare parts S1 and S2 is given, and we do not take into
account the acquisition costs of these. Neither do we take into account holding costs, as we
have circulating stock. We set the costs when a demand is met directly from own stock to zero.
These would be the costs for the downtime of the machine and for the shipment of the spare
part to the system, and replacing, shipping back and repairing the broken part. But these
costs are made in any case, independently of the chosen action. If a lateral transshipment
is applied, higher transportation costs are incurred and as the system is down during the
transportation time, extra costs for loss of production are incurred too. All these extra costs
for applying a lateral transshipment from the other stockpoint to stockpoint i, are put together
in the penalty costs for a lateral transshipment to stockpoint i, denoted by PLTi

. The third
option for fulfilling a demand, is an emergency procedure. The broken part is repaired in a
fast repair procedure, during which the machine is down, which can be a considerable amount
of time. These extra costs form the penalty costs for an emergency procedure for a demand
at stockpoint i, denoted by PEPi

. We assume PEPi
≥ PLTi

≥ 0, i = 1, 2.

Under the given repair strategy, we have a system with circulating stock. The inventory
position (the total number of parts on stock and parts in repair) is constant at each stockpoint,
and equal to the initial amount of spare parts, which is Si at stockpoint i.

The model is equivalent to an inventory system consisting of two stockpoints executing
a continuous review base stock strategy with basestock levels Si, the possibility of lateral
transshipments, and lost sales for unmet demands.

2.2 Dynamic Programming formulation

The state x of the system is given by the inventory levels at both stockpoints: x = (x1, x2),
where xi ∈ {0, 1, . . . , Si} is the on-hand stock at stockpoint i. The state space S is given by all
possible inventory levels, S = {0, 1, . . . , S1} × {0, 1, . . . , S2}. Upon a demand at stockpoint i,
a decision has to be taken how to fulfill it, in one of the following three ways: (0) directly from
own stock, (1) via a lateral transshipment or (2) via an emergency procedure. The action
taken for a demand at i when in state x, is denoted by ai(x) ∈ {0, 1, 2}, respectively, and an
optimal action is denoted by a∗i (x). Backorders are not allowed. Hence the decision space
of each ai(x) consist of the decisions under which x1 and x2 remain greater than or equal to
zero.

As the interarrival times of demands as well as the replenishment times are independent
exponentially distributed random variables, we can apply uniformization (cf. Lippman [20])
to convert the semi-Markov decision problem into an equivalent Markov decision problem
(MDP).

The existence of a long-run average optimal policy is given by Puterman [25, Theorem
8.4.5a], which states, that if the state space and action space for every state are finite, the costs
are bounded, and the model is unichain, then there exists a stationary average optimal policy.
A model is said to be unichain, if the transition matrix of every (deterministic) stationary
policy is unichain, that is, it consists of a single recurrent class plus a, possibly empty, set of
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transient states. The current model is unichain, as the state (S1, S2) is accessible from every
state (x1, x2) ∈ S for every stationary policy.

When facing a decision, we should take into account the direct costs for a decision, as
well as the future expected costs this decision brings along. For the expected costs from a
state, we introduce the value function (see e.g. Puterman [25]) Vn : S 7→ R

+. Vn(x1, x2) is
the minimum expected total costs when there are n events (demands or repairs) left, starting
in state (x1, x2) ∈ S. This Vn can be recursively expressed. The two types of operators it
consists of (Gi for the repairs at a stockpoint, and Hi for the demands) are defined below.

Vn+1(x1, x2) =
1

ν

(

2
∑

i=1

µiGiVn(x1, x2) +
2
∑

i=1

λiHiVn(x1, x2)

)

, for (x1, x2) ∈ S, n ≥ 0, (1)

starting with V0 ≡ 0, and ν = λ1 +λ2 +S1µ1 +S2µ2 is the uniformization rate. Decisions are
only made in the way of fulfilling demands (in the operator Hi). The decision is taken each
time a demand arrives, and is based on the inventory levels. For the repairs no decisions are
taken.

The operator G1 models the repairs at stockpoint 1, and is defined by

G1f(x1, x2) =

{

(S1 − x1)f(x1 + 1, x2) + x1f(x1, x2) if x1 < S1,

S1f(x1, x2) if x1 = S1,
(2)

where f is an arbitrary function f : S 7→ R
+. G2 is defined analogously. If the inventory level

is x1, there are S1 − x1 outstanding repairs, hence the repairs occur at a rate proportional to
S1 − x1. The term x1f(x1, x2) corresponds to fictitious transitions. In this way, we assure
that the total rate at which G1 occurs is always equal to S1.

The operator H1 models the demands at stockpoint 1, and is defined by

H1f(x1, x2)

=























PEP1
+ f(x1, x2) if x1 = 0, x2 = 0,

min{f(x1 − 1, x2), PEP1
+ f(x1, x2)} if x1 > 0, x2 = 0,

min{PLT1
+ f(x1, x2 − 1), PEP1

+ f(x1, x2)} if x1 = 0, x2 > 0,

min{f(x1 − 1, x2), PLT1
+ f(x1, x2 − 1), PEP1

+ f(x1, x2)} if x1 > 0, x2 > 0.

(3)

H2 is defined analogously. If a demand occurs, it has to be decided how to fulfill it. There are
three options for this: directly from stock, via a lateral transshipment, or via an emergency
procedure. Hi takes the costs-minimizing action, where the costs consist of the direct costs
for an action and the expected remaining costs from the state the system is in after taking
that action. Depending on the stock levels x1 and x2, four cases are distinguished over which
the minimization is carried out, as stock levels cannot become negative.

3 Structural results

In this section we prove our main result: the structure of the optimal policy. For this we first
prove that the value function Vn satisfies certain structural properties, like monotonicity and
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multimodularity. We show that the operators Vn is composed of, all preserve these properties.
Then, as V0 satisfies them, it follows directly by induction, that the property holds for Vn

for all n ≥ 0. A framework for this was introduced by Koole [15] (see also [16]), as Event
Based Dynamic Programming. The main advantage of this approach is that one can prove the
propagation of properties for each of the event operators separately, reducing the complexity
of the problem. Changes or extensions to the model can easily be made by replacing or adding
events.

In Section 3.1 we introduce the properties and prove that G1, G2, H1 and H2 preserve these
properties. It then follows that Vn, for all n ≥ 0, satisfies them as well. From this we derive
in Section 3.2 the structure of the optimal lateral transshipment policy, which is a threshold
type policy. We give conditions under which it reduces to a simple policy, such as a hold back
or a complete pooling strategy, in Section 3.3. Some examples are given in Section 3.4, and
the special case with symmetric system parameters is considered in Section 3.5. All proofs
are given in the appendix.

3.1 Properties of operators and value function

Consider the following properties of a function f , defined for all x such that the states ap-
pearing in the right-hand and left-hand side of the inequalities exist in S:

Decr(1) : f(x1, x2) ≥ f(x1 + 1, x2), (4)

Decr(2) : f(x1, x2) ≥ f(x1, x2 + 1), (5)

Conv(1) : f(x1, x2) + f(x1 + 2, x2) ≥ 2f(x1 + 1, x2), (6)

Conv(2) : f(x1, x2) + f(x1, x2 + 2) ≥ 2f(x1, x2 + 1), (7)

Supermod : f(x1, x2) + f(x1 + 1, x2 + 1) ≥ f(x1 + 1, x2) + f(x1, x2 + 1), (8)

SuperC(1, 2) : f(x1 + 2, x2) + f(x1, x2 + 1) ≥ f(x1 + 1, x2) + f(x1 + 1, x2 + 1), (9)

SuperC(2, 1) : f(x1, x2 + 2) + f(x1 + 1, x2) ≥ f(x1, x2 + 1) + f(x1 + 1, x2 + 1). (10)

Decr(i) stands for (non-strict) decreasingness of f in xi. Conv(i) stands for convexity of f
in xi, that is the difference f(x) − f(x + ei) is decreasing in xi, where ei denotes the unit
vector consisting of all zeros except for a 1 at position i. Supermod is supermodularity,
the definition of which is symmetric in x1 and x2. SuperC(i, j) stands for superconvexity,
adopting the terminology of [16]. It is straightforward that Supermod and SuperC(i, j) imply
Conv(i), by adding the respective inequalities and cancelling identical terms.

Decr stands for the combination of Decr(1) and Decr(2), i.e., Decr = Decr(1) ∩ Decr(2).
Similarly, Conv = Conv(1) ∩ Conv(2) and SuperC = SuperC(1, 2) ∩ SuperC(2, 1).

Multimodularity (MM), introduced by [12], is, for the case of a two-dimensional domain,
equal to the combination of Supermod and SuperC:

MM = Supermod ∩ SuperC. (11)

The following two lemmas give useful properties of the operators Gi and Hi, which enable
us to derive the structure of the optimal policy.

8



Lemma 3.1. a) Operator Gi, i = 1, 2, preserves each of the following properties:
(i) Decr; (ii) Conv; (iii) Supermod.
b) The sum of the operators G1 + G2 preserves each of the following properties:
(i) Decr; (ii) Conv; (iii) Supermod; (iv) SuperC; (v) MM.

Note that SuperC (and hence MM), is only preserved by the sum of the operators G1+G2,
and not by G1 and G2 separately. When G1 +G2 is applied to (9) and (10) respectively, some
terms introduced by G1 cancel out against terms introduced by G2.

Lemma 3.2. Operator Hi, i = 1, 2, preserves each of the following properties:
(i) Decr, (ii) MM.

By induction on n, and using the results of Lemmas 3.1 and 3.2, the next theorem imme-
diately follows.

Theorem 3.3. If µ1 = µ2, then Vn satisfies (4)–(10) for all n ≥ 0.

The properties (4)–(10) of Vn are the key in classifying the structure of the optimal policy.
The condition of equal µi’s is required, because of the fact that only G1 + G2 preserves MM.
Hence in the sequel we make this assumption. This is a sufficient assumption, but not a
necessary one, as we can easily construct examples with µ1 6= µ2 for which the structural
results, proven in the next section, do hold. However, there are also examples with µ1 6= µ2

for which the structural results fail to hold, see Section 3.4, Example 3.

Assumption. The repair rates are identical: µ1 = µ2 =: µ.

3.2 Structure of optimal policy

We now characterize the structure of the optimal policy in the following two theorems. We
state the optimal policy for fulfilling a demand at stockpoint 1; for stockpoint 2, analogous
results hold. First we give the result for x2 fixed, next for x1 fixed.

Theorem 3.4. The optimal policy for fulfilling a demand at stockpoint 1 for fixed x2 is a
threshold type policy: for each x2 ∈ {0, 1, . . . , S2}, there exist thresholds T lt

1 (x2) ∈ {0, 1, . . . , S1+
1} and T di

1 (x2) ∈ {1, . . . , S1 + 1}, with T lt
1 (x2) ≤ T di

1 (x2), such that:

a∗1(x) = 2 (emergency procedure), for 0 ≤ x1 ≤ T lt
1 (x2) − 1;

a∗1(x) = 1 (lateral transshipment), for T lt
1 (x2) ≤ x1 ≤ T di

1 (x2) − 1;

a∗1(x) = 0 (directly from own stock), for T di
1 (x2) ≤ x1 ≤ S1,

where T lt
1 (0) = T di

1 (0) ≥ 1.
The analogous result holds for demands at stockpoint 2 under a fixed x1 ∈ {0, 1, . . . , S1}.

This structure is graphically represented in Figure 1. For each x2, the thresholds divide
the set {0, . . . , S1} into (at most) three subsets. In the first subset, where x1 is small, an
emergency procedure is optimal, in the second one a lateral transshipment, and in the third
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Figure 1: Optimal policy for a demand at stockpoint 1 for fixed x2.

one, where x1 is large, it is optimal to take a part from stock. A threshold can be equal
to S1 + 1, hence implying that for a given x2 taking parts from stock or applying lateral
transshipments is never optimal.

A special case is x2 = 0: as lateral transshipments are not possible at stockpoint 1, we
have T lt

1 (0) = T di
1 (0), where T di

1 (0) ≥ 1. In this case, there are (at most) two subsets: an
emergency procedure is applied for 0 ≤ x1 < T di

1 (0), and demand is directly delivered from
stock for T di

1 (0) ≤ x1 ≤ S1.

A similar characterization can be made for fixed x1.

Theorem 3.5. For the optimal policy for fulfilling a demand at stockpoint 1 for fixed x1 ∈
{0, 1, . . . , S1}, there exist T̂ di

1 (x1) ∈ {0, 1, . . . , S2 + 1} and T̂ lt
1 (x1) ∈ {1, . . . , S2 + 1}, with

T̂ di
1 (x1) ≤ T̂ lt

1 (x1), such that:

a∗1(x) = 2 (emergency procedure), for 0 ≤ x2 ≤ T̂ di
1 (x1) − 1;

a∗1(x) = 0 (direct from own stock), for T̂ di
1 (x1) ≤ x2 ≤ T̂ lt

1 (x1) − 1;

a∗1(x) = 1 (lateral transshipment), for T̂ lt
1 (x1) ≤ x2 ≤ S2,

where T̂ di
1 (0) = T̂ lt

1 (0) ≥ 1.
The analogous result holds for demands at stockpoint 2 under a fixed x2 ∈ {0, 1, . . . , S2}.

This structure is graphically represented in Figure 2. Now for a given x1 the set {0, . . . , S2}
is divided into subsets, such that in each subset one of the three decisions is optimal. Again,
a T̂ di

1 (x1), T̂ lt
1 (x1) larger than the maximum stock level, indicates that a certain subset is

empty, and hence that decision is never optimal. A special case is x1 = 0, when it is not
possible to deliver a demand directly from stock. Hence T̂ di

1 (0) = T̂ lt
1 (0), where T̂ lt

1 (0) ≥ 1.

Combining Theorem 3.4 and Theorem 3.5 restricts the possibilities for the optimal policy
significantly. The states where an emergency procedure is an optimal action for a demand
at stockpoint 1, i.e. the subset EP = {x ∈ S | a∗1(x) = 2}, form a connected part of the
state space, located in the lower left corner. This follows as given that a∗1(x̃) = 2 for some
x̃, we have a∗1(x) = 2 for all x with x1 ≤ x̃1 (by Theorem 3.4), and all x with x2 ≤ x̃2 (by
Theorem 3.5). For the remaining states, a lateral transshipment or a delivery from stock
is optimal. The curve dividing these two subsets, LT = {x ∈ S | a∗1(x) = 1} respectively
DI = {x ∈ S | a∗1(x) = 0}, is non-decreasing in x1. This implies that the general structure of
the optimal policy is as given in Figure 3.
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Figure 2: Optimal policy for a demand at stockpoint 1 for fixed x1

3.3 Conditions simplifying the optimal policy

Under simple, sufficient conditions for the cost parameters, the structure of the optimal policy
simplifies. We give two such conditions: under the first one, (i) it is optimal to fulfill a demand
directly from own stock, whenever possible, but with a parameter limiting the amount of
outgoing lateral transshipment. We refer to this as a hold back policy, see e.g. [33], as the
parameters indicate the amount of stock that is hold back from a transshipment request.
Hence we refer to these as the hold back levels. Next to this, under the second one, (ii) it
is optimal to fulfill a demand directly from own stock, whenever possible, and otherwise to
apply a lateral transshipment, whenever possible. This is called the complete pooling policy,
in which no stock is hold back in any case. We refer to a policy both for an individual
stockpoint, as well as for the whole system.

The following theorem states conditions under which it is optimal to always fulfill a de-
mand directly from own stock:

Theorem 3.6. 1a) If

PEP2
≤ PLT2

+

(

1 +
µ

λ2

)

PEP1
, (12)

then T di
1 (x2) = 1 for all x2 ∈ {0, 1, . . . , S2}, i.e. a hold back policy is optimal at stockpoint 1.

b) If

PEP1
≤ PLT1

+

(

1 +
µ

λ1

)

PEP2
, (13)

then T di
2 (x1) = 1 for all x1 ∈ {0, 1, . . . , S1}, i.e. a hold back policy is optimal at stockpoint 2.

2) If (12) and (13) hold, then it is optimal for both stockpoints to execute a hold back policy.

Under condition (12), whenever there are items on stock at stockpoint 1, they should
always be used in case of a demand at stockpoint 1, see Figure 4(a). However, stock can

11
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Figure 3: General structure of the optimal policy for a demand at location 1.

possibly be hold back from lateral transshipment requests. If both stockpoints execute a hold
back policy, the entire policy is prescribed by only 2 parameters (T̂ lt

1 (0) and T̂ lt
2 (0)). The case

of symmetric costs at both stockpoints, i.e. PLT1
= PLT2

and PEP1
= PEP2

, clearly satisfies
conditions (12) and (13).

Next we give conditions under which the application of a lateral transshipments, when
possible, is optimal, in case of a stock-out:

Theorem 3.7. 1a) If

PLT1
+

λ2

λ2 + µ
PEP2

≤ PEP1
, (14)

then T̂ lt
1 (0) = 1, i.e. a complete pooling policy is optimal at stockpoint 1.

1b) If

PLT2
+

λ1

λ1 + µ
PEP1

≤ PEP2
, (15)

then T̂ lt
2 (0) = 1, i.e. a complete pooling policy is optimal at stockpoint 2.

2) If (14) and (15) hold, then it is optimal for both stockpoints to execute a complete pooling
policy.

Under condition (14), stockpoint 2 should not hold back stock if stockpoint 1 requests for
a lateral transshipment when it is out-of-stock, see Figure 4(b). As condition (14) is stronger
than condition (12), i.e. (14) implies (12), it follows that under condition (14) a complete
pooling policy is optimal, see Figure 4(c). Under a complete pooling policy, a demand is
directly met from own stock if possible, and otherwise always via a lateral transshipment, if
possible. No stock is hold back in any case. A complete pooling policy is often assumed in
the literature, see e.g. [1, 4, 10, 18, 19, 27, 29, 32, 36], to mention only a few. Theorem 3.7
gives sufficient conditions under which such a policy is indeed optimal.

The implication of (12) by (14) can be seen as follows. Rewriting (14) gives λ2

λ2+µ
PEP2

≤

PEP1
−PLT1

, but this implies λ2

λ2+µ
PEP2

≤ PEP1
+ λ2

λ2+µ
PLT2

(as both PLT1
and λ2

λ2+µ
PLT2

are
nonnegative), which is equivalent to (12). Analogously, (15) implies (13).

12
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Figure 4: (a) Always DI (hold back policy, Theorem 3.6); (b) Always LT if out-of-stock
(Theorem 3.7); (c) Complete pooling (again Theorem 3.7, as it implies Theorem 3.6).

The given conditions in Theorem 3.6 and Theorem 3.7 are, in general, sufficient, but not
necessary. For the cases S1 = 1, S2 = 0, respectively S1 = 0, S2 = 1, the conditions are
necessary and sufficient. There exist examples not satisfying these conditions, in which case
the optimal policy is neither a hold back nor a complete pooling policy (see Section 3.4,
Example 1).

There is an interesting relation between the conditions, when considered for both stock-
points: either condition (12), or condition (15) holds (or both hold); and either condition (13),
or condition (14) holds (or both hold). These statements follow from the following (e.g. for
the first one): (i) if condition (15) does not hold, then surely condition (12) holds; and (ii) if
condition (15) does not hold, then surely condition (12) holds. This follows by rewriting the
conditions, e.g., for (i) we have: if (12) does not hold, then PEP2

≥ PLT2
+ λ2+µ

λ2
PEP1

, but this

implies PEP2
≥ PLT2

+ λ1

λ1+µ
PEP1

(as λ2+µ
λ2

≥ 1, but λ1

λ1+µ
≤ 1), which is exactly (15). And

(ii) follows as λ1

λ1+µ
≤ 1 in (15), but 1 + µ

λ2
≥ 1 in (12). The analogous reasoning holds for

conditions (13) and (14). Combined with the properties that (14) implies (12), and that (15)
implies (13), this immediately leads to the following corollary.

Corollary 3.8. The optimal lateral transshipment policy is

(i) either (at least) a holdback policy at both locations;

(ii) or a complete pooling policy for (at least) one location.

Here, by ‘at least’ a holdback policy we mean a either a holdback policy or a complete
pooling policy. In the second case, the optimal policy for one location is a complete pooling
policy, and the optimal policy for the other location can be a holdback policy, a complete
pooling policy, or neither of the two.
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Figure 5: Optimal policy for the case with S1 = S2 = 4, λ1 = 2, λ2 = 1, µ1 = µ2 = 1/3 and
penalty costs PEP1

= 25, PLT1
= 5, PEP2

= 10, PLT2
= 2.

3.4 Examples

We illustrate our results by two examples, and we give an example showing that if the as-
sumption µ1 = µ2 is not satisfied, the structural results do not necessarily have to hold.

Example 1

Consider the following example: S1 = S2 = 4, and λ1 = 2, λ2 = 1, µ1 = µ2 = 1/3, and cost
parameters given by PEP1

= 25, PLT1
= 5 and PEP2

= 10, PLT2
= 2. Hence an emergency

procedure is five times as expensive as a lateral transshipment, and at location 1, the demand
rate as well as the costs are higher. The optimal policy is given in Figure 5.

At stockpoint 1 a complete pooling policy is optimal: the demands are fulfilled directly
from own stock if possible (a∗1(x1, x2) = 0 for x1 > 0), or via a lateral transshipment in case
of a stock-out (a∗1(0, x2) = 1, for x2 > 0). Only if stockpoint 2 is stocked-out as well, an
emergency procedure is applied (a∗1(0, 0) = 2). This structure is implied by the fact that the
parameters satisfy condition (14), and hence part 1a) of Theorem 3.7 holds.

For stockpoint 2, no further conclusions can be drawn for the optimal policy. Demands are
only fulfilled directly from stock if the sum of the inventory levels at both locations, is large
enough, i.e. if x1 + x2 ≥ 3 (and x2 > 0), otherwise an emergency procedure is applied. This
can be explained in the following way. The costs for lateral transshipments to and emergency
procedures at stockpoint 1 are much higher than those at stockpoint 2. This results in the fact
that stockpoint 2 will hold back parts, even when it faces a demand. By holding back parts,
the expensive costs for an emergency procedure at stockpoint 1 are saved, at the expense of
a lateral transshipments from 2 and possibly an emergency procedures at 2, but these being
less costly.

The optimal policy at location 2 resembles a so-called critical level policy, which is common

14
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Figure 6: Optimal policy for example 1, now with PEP2
= 20, PLT2

= 4.

in stock rationing problems for single inventory point, see e.g. Ha [11]. One stockpoint satisfies
demands of two (or more) types of customers, which differs in penalty costs for lost sales. In
the typical optimal policy, demands from the most expensive customers are always satisfied,
and there exists a threshold (called the critical level) for the inventory level, from which on
demands for the less expensive customers are also satisfied. In this example we have such a
critical level for the sum of the stocklevels at 1 and 2, which determines whether a demand
at location 2 is directly satisfied, or ‘lost’ (i.e. satisfied by an emergency procedure).

The optimal policy gives expected average costs per time unit of 18.2. Without lateral
transshipments, these costs would be 25.5, hence the optimal policy reduces this by almost
29%. A complete pooling policy has expected average costs per time unit of 20.0 in this case,
so the optimal policy reduces this by 9.4%.

Example 2

In Example 1, condition (14) (and hence condition (12)) was satisfied for stockpoint 1, but
not for stockpoint 2. By doubling the penalty costs at 2, into PEP2

= 20 and PLT2
= 4,

condition (13) is satisfied as well, and hence, by Theorem 3.6, this results in the optimality
of a hold back policy at both locations (with still complete pooling at 1). The optimal policy
is given in Figure 6.

The two thresholds (the hold back levels), determine the entire policy, and are given by
T̂ lt

1 (0) = 1 and T̂ lt
2 (0) = 2, the inventory levels from which on lateral transshipments (a∗i = 1)

are applied instead of emergency procedures (a∗i = 2). The expected average costs per time
unit in this case are 22.9. For a policy without lateral transshipments these would be 27.6
(almost 17% reduction for optimal policy), and complete pooling would give 23.2. This is
only 1.4% reduction, but this policy differs from the optimal policy only in a2(1, 0).
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Figure 7: Example in which µ1 6= µ2, and the structural properties of the optimal policy does
not hold.

Example 3 (µ1 6= µ2)

The following simple example illustrates that if the assumption µ1 = µ2 is not satisfied, the
structural results do not necessarily have to hold. Let S1 = 1, S2 = 2, λ1 = λ2 = 1, and
µ1 = 1/3 6= µ2 = 1. Further, let PEP1

= 1000, PLT1
= 175 and PEP2

= PLT2
= 10. The

(unique) optimal policy is given in Figure 7. Clearly, for demands at stockpoint 1 when
x1 = 1, the structure of the optimal policy is not the threshold type policy as described by
Theorem 3.4.

3.5 Symmetric parameters

A special case is the system in which all parameters are symmetric, i.e. in which all parameters
for both stockpoints are equal: S1 = S2 =: S, λ1 = λ2 =: λ, µ1 = µ2 =: µ, PLT1

= PLT2
=:

PLT , PEP1
= PEP2

=: PEP . It is straightforward that in this case there exists a symmetric
optimal policy. As the conditions of Theorem 3.6 are clearly satisfied, it follows that for both
stockpoints a hold back policy is optimal. The entire policy can now be described by a single
(for both stockpoints equal) hold back level T̂ lt

1 (0) = T̂ lt
2 (0) =: T ∈ {1, 2, . . . , S + 1}, see

Figure 8. T = 1 indicates complete pooling, T = 2 indicates that one part is hold back, and
so on, and T = S + 1 indicates that no stock in shared in any way, i.e. there is no interaction
between the stockpoints. Hence, there are only S + 1 possible optimal policies.

Given λ/µ, it turns out that the optimal policy is now determined by only the ratio
PLT /PEP . For S = 4 it is indicated in Figure 9(a) when each of the five possible policies is
optimal. These areas are determined by solving the steady state distribution of the Markov
process for each of the policies, and deriving the average costs of a policy from this.

For the symmetric case Theorem 3.7 reduces to the following corollary, which also holds
when S1 6= S2.

Corollary 3.9. In case of symmetric system parameters, and if

PLT ≤
µ

λ + µ
PEP , (16)

a complete pooling policy is optimal.
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Figure 8: For symmetric system parameters, the optimal policy can be described by only one
threshold T (e.g., here T = 3).

In Figure 9(a) the curve µ/(λ + µ) = 1/(1 + λ/µ) is plotted as well. The condition is a
sufficient condition, however, from the figure it turns out that it covers a large part of the
exact area in which complete pooling is optimal.

4 Limited repair capacity

A variant of the described system is a system in which there is limited repair capacity: at each
stockpoint there is only one server to repair the parts. The repair times remain exponentially
distributed with mean 1/µi at stockpoint i, where we allow for non-identical repair rates at
both locations. We only have to change the operator Gi into, say, G̃i, where:

G̃1f(x1, x2) =

{

f(x1 + 1, x2) if x1 < S1,

f(x1, x2) if x1 = S1,
(17)

and G̃2 analogously. The value function Ṽn becomes

Ṽn+1(x1, x2) =
1

ν̃

(

2
∑

i=1

µiG̃iṼn(x1, x2) +
2
∑

i=1

λiHiṼn(x1, x2)

)

, for (x1, x2) ∈ S, n ≥ 0,

with Ṽ0 ≡ 0, ν̃ = λ1 + λ2 + µ1 + µ2, and S and Hi, i = 1, 2, unchanged. The following holds
for G̃j :

Lemma 4.1. The operator G̃j, j = 1, 2, preserves each of the following properties:
(i) Decr; (ii) Conv and Decr(j); (iii) Supermod; (iv) SuperC and Conv(j + 1); (v) MM and
Conv(j + 1).

Here j+1 should be read as j+1 mod 2, and e.g. (ii) states that if f is Conv and Decr(j),
then G̃jf is so as well. However, it does not hold that f Conv implies G̃jf Conv.
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Figure 9: For S = 4 and symmetric system parameters, the S + 1 regions where each of the
thresholds T is optimal.

Corollary 4.2. Ṽn satisfies (4)–(10) for all n ≥ 0.

The following theorem is a direct consequence of this corollary.

Theorem 4.3. In case of a single repair server at both locations, the same structural results
for the optimal policy hold for this system, i.e. Theorem 3.4 and Theorem 3.5 still hold, even
without the assumption of equal µi’s.

For Theorem 4.3 we do not need equal µi’s, as G̃1 and G̃2 separately preserve MM, and
not only the sum of both. For the symmetric case, we compare the optimal policy with the
case of ample repair capacity, see Figure 9(b). By comparing the two graphs of Figure 9, it
follows that the set of system parameters where one can benefit from lateral transshipments,
is much smaller now.

5 Conclusion

In this paper, we proved that the structure of the optimal lateral transshipment policy is a
threshold type policy, and we gave sufficient conditions under which a hold back policy or a
complete pooling policy is optimal.

Interesting problems for further research would be the extension to three or more stock-
points, variations in the repair time distribution (such as Erlangk distributed repair times, or
state dependent repair rates), and the incorporation of so-called pro-active lateral transship-
ments, i.e. rebalancing of the stocklevels triggered by a replenishment.
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A Appendix

A.1 Proof of Lemma 3.1

Proof. a) We give the proofs for the operator G1. By interchanging the numbering of the locations, the results
directly follow for the operator G2 as well.

(i) It is straightforward to check that if f is Decr(1) (cf. (4)), then G1f is Decr(1) as well, i.e. if f(x1, x2) ≥
f(x1 + 1, x2), then G1f(x1, x2) ≥ G1f(x1 + 1, x2), for all (x1, x2) such that the states appearing exists ∈ S.
Along the same lines it follows that if f is Decr(2) (cf. (5)), then G1f is Decr(2) as well, i.e. then G1f(x1, x2) ≥
G1f(x1, x2 + 1). Combining this proves that the operator G1 preserves Decr.

(ii) Assume that f is Conv(1) (cf. (6)), then we show that G1f is Conv(1) as well. For x1 + 2 < S1:

G1f(x1, x2) + G1f(x1 + 2, x2)

= (S1 − x1)f(x1 + 1, x2) + x1f(x1, x2)

+ (S1 − x1 − 2)f(x1 + 3, x2) + (x1 + 2)f(x1 + 2, x2)

= (S1 − x1 − 2)
[

f(x1 + 1, x2) + f(x1 + 3, x2)
]

+ x1

[

f(x1, x2) + f(x1 + 2, x2)
]

+ 2f(x1 + 1, x2) + 2f(x1 + 2, x2)

≥ 2 (S1 − x1 − 2)f(x1 + 2, x2) + 2 x1f(x1 + 1, x2) + 2f(x1 + 1, x2) + 2f(x1 + 2, x2)

= 2 (S1 − x1 − 1)f(x1 + 2, x2) + 2 (x1 + 1)f(x1 + 1, x2)

= 2 G1f(x1 + 1, x2),

where the inequality holds by applying that f is Conv(1) on the parts between brackets. And for x1 + 2 = S1:

G1f(S1 − 2, x2) + G1f(S1, x2)

= 2f(S1 − 1, x2) + (S1 − 2)f(S1 − 2, x2) + S1f(S1, x2)

= 2f(S1 − 1, x2) + (S1 − 2)[f(S1 − 2, x2) + f(S1, x2)] + 2 f(S1, x2)

≥ 2f(S1 − 1, x2) + 2 (S1 − 2)f(S1 − 1, x2) + 2 f(S1, x2)

= 2 f(S1, x2) + 2 (S1 − 1)f(S1 − 1, x2)

= 2 G1f(S1 − 1, x2),

where again the inequality holds by applying that f is Conv(1) on the part between brackets.

It is straightforward to check that if f is Conv(2) (cf. (7)), then G1f is Conv(2) as well, i.e. then
G1f(x1, x2) + G1f(x1, x2 + 2) ≥ 2 G1f(x1, x2 + 1). Combining this proves that the operator G1 preserves
Conv.

(iii) Along the same lines of the proof of (ii) one can prove that if f is Supermod (cf. (8)), then G1f is
Supermod as well. Hence the operator G1 preserves Supermod.

b) (i)–(iii) trivially follow from part a).

(iv) We show that G1 + G2 preserves SuperC(1, 2); then SuperC(2, 1) follows by interchanging the num-
bering of the locations. Assume that f is SuperC(1, 2) (cf. (9)), then, for x1 + 2 < S1 and x2 + 1 < S2:

(G1 + G2)f(x1, x2 + 1) + (G1 + G2)f(x1 + 2, x2)

= (S1 − x1 − 2)
[

f(x1 + 1, x2 + 1) + f(x1 + 3, x2)
]

+ 2f(x1 + 1, x2 + 1)

+ x1

[

f(x1, x2 + 1) + f(x1 + 2, x2)
]

+ 2f(x1 + 2, x2)

+ (S2 − x2 − 1)
[

f(x1, x2 + 2) + f(x1 + 2, x2 + 1)
]

+ f(x1 + 2, x2 + 1)

+ (x2 + 1)
[

f(x1, x2 + 1) + f(x1 + 2, x2)
]

− f(x1 + 2, x2).
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Now we use that f is SuperC(1, 2), and apply this to the terms between brackets. This gives

(G1 + G2)f(x1, x2 + 1) + (G1 + G2)f(x1 + 2, x2)

≥ (S1 − x1 − 2)
[

f(x1 + 2, x2) + f(x1 + 2, x2 + 1)
]

+ 2f(x1 + 1, x2 + 1)

+ x1

[

f(x1 + 1, x2) + f(x1 + 1, x2 + 1)
]

+ 2f(x1 + 2, x2)

+ (S2 − x2 − 1)
[

f(x1 + 1, x2 + 1) + f(x1 + 1, x2 + 2)
]

+ f(x1 + 2, x2 + 1)

+ (x2 + 1)
[

f(x1 + 1, x2) + f(x1 + 1, x2 + 1)
]

− f(x1 + 2, x2)

= (S1 − x1 − 1)f(x1 + 2, x2) + (x1 + 1)f(x1 + 1, x2)

+ (S1 − x1 − 1)f(x1 + 2, x2 + 1) + (x1 + 1)f(x1 + 1, x2 + 1)

+ (S2 − x2)f(x1 + 1, x2 + 1) + x2f(x1 + 1, x2)

+ (S2 − x2 − 1)f(x1 + 1, x2 + 2) + (x2 + 1)f(x1 + 1, x2 + 1)

= (G1 + G2)f(x1 + 1, x2) + (G1 + G2)f(x1 + 1, x2 + 1).

The cases x1 + 2 = S1 and/or x2 + 1 = S2 are along the same lines.

(v) As MM = Supermod ∩ SuperC (cf. (11)), it directly follows from parts (iii) and (iv) that G1 + G2

preserves MM.

A.2 Proof of Lemma 3.2

Proof. (i) It is straightforward to check that if f is Decr(j), then Hif is Decr(j), for i, j = 1, 2.
(ii) In order to prove that Hi preserves MM, we prove (cf. (11)) that it preserves Supermod, SuperC(1, 2) and
SuperC(2, 1) (cf. (8)–(10)) together, that is, given that f is Supermod, SuperC(1, 2) and SuperC(2, 1), we show
that Hif is Supermod, SuperC(1, 2) and SuperC(2, 1) as well. We show this for H1; then for H2 it follows by
interchanging the numbering of the locations. Recall that Supermod and SuperC(i, j) imply Conv(i) (cf. (6)
and (7)).

The proofs come down to case checking: applying H1 to f(x) introduces a minimization over three terms,
so the sum of two gives a total of 3 × 3 = 9 possibilities, which we all check separately. For this we use the
trivial result:

a ≥ min{a, b}, ∀a, b ∈ R.

The proofs are given for x1 > 0, x2 > 0, but it is straightforward to check that they also hold for the cases
x1 = 0, x2 > 0, and x1 > 0, x2 = 0, and x1 = 0, x2 = 0.

Assume that f is Supermod, SuperC(1, 2) and SuperC(2, 1), which implies that f is also Conv(1) and
Conv(2). Below we prove that H1 preserves (i) Supermod, (ii) SuperC(1, 2), and (iii) SuperC(2, 1).

(i) Supermod
For x1 > 0, x2 > 0 :

H1f(x1, x2) + H1f(x1 + 1, x2 + 1)

= min
{

f(x1 − 1, x2), f(x1, x2 − 1) + PLT1
, f(x1, x2) + PEP1

}

+ min
{

f(x1, x2 + 1), f(x1 + 1, x2) + PLT1
, f(x1 + 1, x2 + 1) + PEP1

}

= min
{

f(x1 − 1, x2) + f(x1, x2 + 1), f(x1 − 1, x2) + f(x1 + 1, x2) + PLT1
,

f(x1 − 1, x2) + f(x1 + 1, x2 + 1) + PEP1
, f(x1, x2 − 1) + PLT1

+ f(x1, x2 + 1),

f(x1, x2 − 1) + PLT1
+ f(x1 + 1, x2) + PLT1

, f(x1, x2 − 1) + PLT1
+ f(x1 + 1, x2 + 1) + PEP1

,

f(x1, x2) + PEP1
+ f(x1, x2 + 1), f(x1, x2) + PEP1

+ f(x1 + 1, x2) + PLT1
,

f(x1, x2) + PEP1
+ f(x1 + 1, x2 + 1) + PEP1

}

.
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It holds that:

f(x1 − 1, x2) + f(x1, x2 + 1) ≥ f(x1, x2) + f(x1 − 1, x2 + 1) (by (8)),

f(x1 − 1, x2) + f(x1 + 1, x2) + PLT1
≥ 2 f(x1, x2) + PLT1

(by (6)),

f(x1 − 1, x2) + f(x1 + 1, x2 + 1) + PEP1
≥ 2 f(x1, x2) − f(x1 + 1, x2) + f(x1 + 1, x2 + 1) + PEP1

≥ f(x1, x2) + f(x1, x2 + 1) + PEP1
(by (6), resp. (8)),

f(x1, x2 − 1) + PLT1
+ f(x1, x2 + 1) ≥ 2 f(x1, x2) + PLT1

(by (7)),

f(x1, x2 − 1) + PLT1
+ f(x1 + 1, x2) + PLT1

≥ f(x1, x2) + PLT1
+ f(x1 + 1, x2 − 1) + PLT1

(by (8)),

f(x1, x2 − 1) + PLT1
+ f(x1 + 1, x2 + 1) + PEP1

≥ 2 f(x1, x2) − f(x1, x2 + 1) + PLT1
+ f(x1 + 1, x2 + 1) + PEP1

≥ f(x1, x2) + PLT1
+ f(x1 + 1, x2) + PEP1

(by (7), resp. (8)),

f(x1, x2) + PEP1
+ f(x1 + 1, x2 + 1) + PEP1

≥ f(x1 + 1, x2) + PEP1
+ f(x1, x2 + 1) + PEP1

(by (8)).

This implies that:

H1f(x1, x2) + H1f(x1 + 1, x2 + 1)

≥ min
{

f(x1, x2) + f(x1 − 1, x2 + 1), 2 f(x1, x2) + PLT1
,

f(x1, x2) + f(x1, x2 + 1) + PEP1
, f(x1, x2) + f(x1 + 1, x2 − 1) + 2 PLT1

,

f(x1, x2) + PLT1
+ f(x1 + 1, x2) + PEP1

, f(x1 + 1, x2) + f(x1, x2 + 1) + 2 PEP1

}

≥ min
{

f(x1, x2), f(x1 + 1, x2 − 1) + PLT1
, f(x1 + 1, x2) + PEP1

}

+ min
{

f(x1 − 1, x2 + 1), f(x1, x2) + PLT1
, f(x1, x2 + 1) + PEP1

}

= H1f(x1 + 1, x2) + H1f(x1, x2 + 1).

(ii) SuperC(1,2)
For x1 > 0, x2 > 0 :

H1f(x1 + 2, x2) + H1f(x1, x2 + 1)

= min
{

f(x1 + 1, x2), f(x1 + 2, x2 − 1) + PLT1
, f(x1 + 2, x2) + PEP1

}

+ min
{

f(x1 − 1, x2 + 1), f(x1, x2) + PLT1
, f(x1, x2 + 1) + PEP1

}

= min
{

f(x1 + 1, x2) + f(x1 − 1, x2 + 1), f(x1 + 1, x2) + f(x1, x2) + PLT1
,

f(x1 + 1, x2) + f(x1, x2 + 1) + PEP1
, f(x1 + 2, x2 − 1) + PLT1

+ f(x1 − 1, x2 + 1),

f(x1 + 2, x2 − 1) + PLT1
+ f(x1, x2) + PLT1

, f(x1 + 2, x2 − 1) + PLT1
+ f(x1, x2 + 1) + PEP1

,

f(x1 + 2, x2) + PEP1
+ f(x1 − 1, x2 + 1), f(x1 + 2, x2) + PEP1

+ f(x1, x2) + PLT1
,

f(x1 + 2, x2) + PEP1
+ f(x1, x2 + 1) + PEP1

}
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It holds that:

f(x1 + 1, x2) + f(x1 − 1, x2 + 1) ≥ f(x1, x2) + f(x1, x2 + 1) (by (9)),

f(x1 + 2, x2 − 1) + PLT1
+ f(x1 − 1, x2 + 1) ≥ f(x1 + 1, x2 − 1) + f(x1 + 1, x2) − f(x1, x2)

+ PLT1
+ f(x1 − 1, x2 + 1)

≥ f(x1 + 1, x2 − 1) + PLT1
+ f(x1, x2 + 1) (by twice (9)),

f(x1 + 2, x2 − 1) + PLT1
+ f(x1, x2) + PLT1

≥ f(x1 + 1, x2 − 1) + PLT1
+ f(x1 + 1, x2) + PLT1

(by (9)),

f(x1 + 2, x2 − 1) + PLT1
+ f(x1, x2 + 1) + PEP1

≥ f(x1 + 1, x2 − 1) + f(x1 + 1, x2) − f(x1, x2) + PLT1

+ f(x1, x2 + 1) + PEP1

≥ 2 f(x1 + 1, x2) + PLT1
+ PEP1

(by (9), resp. (10)),

f(x1 + 2, x2) + PEP1
+ f(x1 − 1, x2 + 1) ≥ f(x1 + 1, x2) + f(x1 + 1, x2 + 1) − f(x1, x2 + 1) + PEP1

+ f(x1 − 1, x2 + 1)

≥ f(x1 + 1, x2) + f(x1, x2 + 1) + PEP1
(by (9), resp. (6)),

f(x1 + 2, x2) + PEP1
+ f(x1, x2) + PLT1

≥ 2 f(x1 + 1, x2) + PEP1
+ PLT1

(by (6)),

f(x1 + 2, x2) + PEP1
+ f(x1, x2 + 1) + PEP1

≥ f(x1 + 1, x2) + PEP1
+ f(x1 + 1, x2 + 1) + PEP1

(by (9)).

This impies that:

H1f(x1 + 2, x2) + H1f(x1, x2 + 1)

≥ min
{

f(x1, x2) + f(x1, x2 + 1), f(x1 + 1, x2) + f(x1, x2) + PLT1
,

f(x1 + 1, x2 − 1) + f(x1, x2 + 1) + PLT1
, f(x1 + 1, x2 − 1) + f(x1 + 1, x2) + 2 PLT1

,

f(x1 + 1, x2) + f(x1, x2 + 1) + PEP1
, 2 f(x1 + 1, x2) + PLT1

+ PEP1
,

f(x1 + 1, x2) + f(x1 + 1, x2 + 1) + 2 PEP1

}

≥ min
{

f(x1, x2), f(x1 + 1, x2 − 1) + PLT1
, f(x1 + 1, x2) + PEP1

}

+ min
{

f(x1, x2 + 1), f(x1 + 1, x2) + PLT1
, f(x1 + 1, x2 + 1) + PEP1

}

= H1f(x1 + 1, x2) + H1f(x1 + 1, x2 + 1).

(iii) SuperC(2,1)
For x1 > 0, x2 > 0 :

H1f(x1, x2 + 2) + H1f(x1 + 1, x2)

= min
{

f(x1 − 1, x2 + 2), f(x1, x2 + 1) + PLT1
, f(x1, x2 + 2) + PEP1

}

+ min
{

f(x1, x2), f(x1 + 1, x2 − 1) + PLT1
, f(x1 + 1, x2) + PEP1

}

= min
{

f(x1 − 1, x2 + 2) + f(x1, x2), f(x1 − 1, x2 + 2) + f(x1 + 1, x2 − 1) + PLT1
,

f(x1 − 1, x2 + 2) + f(x1 + 1, x2) + PEP1
, f(x1, x2 + 1) + PLT1

+ f(x1, x2),

f(x1, x2 + 1) + PLT1
+ f(x1 + 1, x2 − 1) + PLT1

, f(x1, x2 + 1) + PLT1
+ f(x1 + 1, x2) + PEP1

,

f(x1, x2 + 2) + PEP1
+ f(x1, x2), f(x1, x2 + 2) + PEP1

+ f(x1 + 1, x2 − 1) + PLT1
,

f(x1, x2 + 2) + PEP1
+ f(x1 + 1, x2) + PEP1

}

.
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It holds that:

f(x1 − 1, x2 + 2) + f(x1, x2) ≥ f(x1 − 1, x2 + 1) + f(x1, x2 + 1) (by (10)),

f(x1 − 1, x2 + 2) + f(x1 + 1, x2 − 1) + PLT1
≥ f(x1 − 1, x2 + 1) + f(x1, x2 + 1) − f(x1, x2)

+ f(x1 + 1, x2 − 1) + PLT1

≥ f(x1 − 1, x2 + 1) + f(x1 + 1, x2) + PLT1
(by twice (10)),

f(x1 − 1, x2 + 2) + f(x1 + 1, x2) + PEP1
≥ f(x1 − 1, x2 + 1) + f(x1, x2 + 1) − f(x1, x2)

+ f(x1 + 1, x2) + PEP1

≥ 2 f(x1, x2 + 1) + PEP1
(by (10), resp. (9)),

f(x1, x2 + 1) + PLT1
+ f(x1 + 1, x2 − 1) + PLT1

≥ f(x1, x2) + f(x1 + 1, x2) + 2 PLT1
(by (10)),

f(x1, x2 + 2) + PEP1
+ f(x1, x2) ≥ 2 f(x1, x2 + 1) + PEP1

(by (7)),

f(x1, x2 + 2) + PEP1
+ f(x1 + 1, x2 − 1) + PLT1

≥ f(x1, x2 + 1) + f(x1 + 1, x2 + 1) − f(x1 + 1, x2) + PEP1

+ f(x1 + 1, x2 − 1) + PLT1

≥ f(x1, x2 + 1) + PLT1
+ f(x1 + 1, x2) + PEP1

(by (10), resp. (7)),

f(x1, x2 + 2) + PEP1
+ f(x1 + 1, x2) + PEP1

≥ f(x1, x2 + 1) + f(x1 + 1, x2 + 1) + 2 PEP1
(by (10)).

This impies that:

H1f(x1, x2 + 2) + H1f(x1 + 1, x2)

≥ min
{

f(x1 − 1, x2 + 1) + f(x1, x2 + 1), f(x1 − 1, x2 + 1) + f(x1 + 1, x2) + PLT1
,

f(x1, x2 + 1) + PLT1
+ f(x1, x2), f(x1, x2) + f(x1 + 1, x2) + 2 PLT1

,

2 f(x1, x2 + 1) + PEP1
, f(x1, x2 + 1) + PLT1

+ f(x1 + 1, x2) + PEP1
,

f(x1, x2 + 1) + f(x1 + 1, x2 + 1) + 2 PEP1

}

≥ min
{

f(x1 − 1, x2 + 1), f(x1, x2) + PLT1
, f(x1, x2 + 1) + PEP1

}

+ min
{

f(x1, x2 + 1), f(x1 + 1, x2) + PLT1
, f(x1 + 1, x2 + 1) + PEP1

}

= H1f(x1, x2 + 1) + H1f(x1 + 1, x2 + 1).

A.3 Proof of Theorem 3.4

Proof. Consider a demand at stockpoint 1. For (x1, x2) ∈ S and u ∈ {0, 1, 2}, define

w(u, x1, x2) :=











Vn(x1 − 1, x2) if u = 0,

Vn(x1, x2 − 1) + PLT1
if u = 1,

Vn(x1, x2) + PEP1
if u = 2,

(18)

where Vn(x1, x2) := ∞ if (x1, x2) /∈ S. Hence H1Vn(x1, x2) = minu∈{0,1,2} w(u, x1, x2). Define, for u ∈ {0, 1, 2}
and x1 ∈ {0, 1, . . . S1 − 1}, x2 ∈ {0, 1, . . . S2}:

∆wx1
(u, x1, x2) := w(u, x1 + 1, x2) − w(u, x1, x2).

Then for each n ≥ 0, and for x2 > 0:

∆wx1
(1, x1, x2) − ∆wx1

(0, x1, x2) = Vn(x1 + 1, x2 − 1) − Vn(x1, x2 − 1) − Vn(x1, x2) + Vn(x1 − 1, x2) ≥ 0

(as, by Theorem 3.3, Vn is SuperC(1, 2)), and:

∆wx1
(2, x1, x2) − ∆wx1

(1, x1, x2) = Vn(x1 + 1, x2) − Vn(x1, x2) − Vn(x1 + 1, x2 − 1) + Vn(x1, x2 − 1) ≥ 0
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(as Vn is Supermod). So, for x2 > 0, ∆wx1
(u, x1, x2) is increasing in u:

∆wx1
(2, x1, x2) ≥ ∆wx1

(1, x1, x2) ≥ ∆wx1
(0, x1, x2).

This implies that, for every n ≥ 0, there exists a threshold for the inventory level x1, which can depend
on x2, say T di

n,1(x2), from which on it is optimal to fulfill demands directly from stock. Next there exists a
threshold, say T lt

n,1(x2), such that T lt
n,1(x2) ≤ T di

n,1(x2), from which on (until T di
n,1(x2)−1) it is optimal to fulfill

demands via a lateral transshipment, and on the interval x1 = 0 up till T lt
n,1(x2) − 1 an emergency procedure

is optimal. Hence, if fn+1 is the minimizing policy in (1), then fn+1 is a threshold policy. Note that the
transition probability matrix of every stationary policy is unichain (since every state can access (S1, S2)) and
aperiodic (since the transition probability from state (S1, S2) to itself is positive). Then, by Puterman [25,
Theorem 8.5.4], the long run average costs under the stationary policy fn+1 converges to the minimal long
run average costs as n tends to infinity. Since there are only finitely many stationary threshold policies, this
implies that there exists an optimal stationary policy that is a threshold type policy.

For x2 = 0, lateral transshipments (u = 1) are not possible, and we have, for each n ≥ 0:

∆wx1
(2, x1, x2) − ∆wx1

(0, x1, x2) = Vn(x1 + 1, x2) − Vn(x1, x2) − Vn(x1, x2) + Vn(x1 − 1, x2) ≥ 0,

(as Vn is Conv(1)). Hence ∆wx1
(2, x1, 0) ≥ ∆wx1

(0, x1, 0), and so, for the special case x2 = 0, there exists
only one threshold. By the analouguous reasoning as for x2 > 0, it follows that there exists a T di

1 (0) (which is
equal to T lt

1 (0)). As it is only possible to deliver directly from stock if x1 ≥ 1, it follows that T di
1 (0) ≥ 1.

By interchanging the numbering of the stockpoints, the analogous results for stockpoint 2 directly follow.

A.4 Proof of Theorem 3.5

Proof. Analogously to the proof of Theorem 3.4, consider a demand at stockpoint 1, and define:

∆wx2
(u, x1, x2) := w(u, x1, x2 + 1) − w(u, x1, x2),

where w(u, x1, x2) is as defined in (18). Then for each n ≥ 0, and for x1 > 0:

∆wx2
(0, x1, x2) − ∆wx2

(1, x1, x2) = Vn(x1 − 1, x2 + 1) − Vn(x1 − 1, x2) − Vn(x1, x2) + Vn(x1, x2 − 1) ≥ 0

(as, by Theorem 3.3, Vn is SuperC(2, 1)), and:

∆wx2
(2, x1, x2) − ∆wx2

(0, x1, x2) = Vn(x1, x2 + 1) − Vn(x1, x2) − Vn(x1 − 1, x2 + 1) + Vn(x1 − 1, x2) ≥ 0

(as Vn is Supermod). Hence, for x1 > 0:

∆wx2
(2, x1, x2) ≥ ∆wx2

(0, x1, x2) ≥ ∆wx2
(1, x1, x2).

Analogously to the reasoning in the proof of Theorem 3.4, it now follows that, for n to infinity, there exist
two thresholds T̂ di

2 (x1) and T̂ lt
2 (x1), where T̂ di

2 (x1) ≤ T̂ lt
2 (x1), such that from T̂ lt

2 (x1) lateral transshipments
are optimal, from T̂ di

2 (x1) to T̂ lt
2 (x1) − 1 direct delivering from stock is optimal, and from 0 to T̂ di

2 (x1) − 1
emergency procedures are optimal.

For x1 = 0, directly satisfying a demand from stock (u = 0) is not possible, and we have, for each n ≥ 0:

∆wx2
(2, x1, x2) − ∆wx2

(1, x1, x2) = Vn(x1, x2 + 1) − Vn(x1, x2) − Vn(x1, x2) + Vn(x1, x2 − 1) ≥ 0,

(as Vn is Conv(2)). Hence ∆wx1
(2, x1, 0) ≥ ∆wx1

(0, x1, 0), and so, for the special case x1 = 0, there exists
only one threshold: T̂ lt

2 (0) (which is equal to T̂ di
2 (0)). As it is only possible to apply a lateral transshipment

if x2 ≥ 1, it follows that T̂ lt
2 (0) ≥ 1.

By interchanging the numbering of the stockpoints, the analogous results for stockpoint 2 directly follow.
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A.5 Proof of Theorem 3.6

Proof. We prove part 1a). Part 1b) then directly follows by interchanging the stockpoints, and 2) is a trivial
consequence of 1a) and 1b).

For 1a), we prove that a∗
1(1, x2) = 0 for all x2 ∈ {0, 1, . . . , S2}, then it follows by Theorem 3.4 that

T di
1 (x2) = 1 for all x2. It suffices to prove that, for all n ≥ 0:

Vn(1, x2) + PEP1
≥ Vn(0, x2), for x2 ∈ {0, . . . , S2}, (19)

Vn(1, x2 − 1) + PLT1
≥ Vn(0, x2), for x2 ∈ {1, . . . , S2}. (20)

For S1 = 0 trivially T di
1 (x2) = 1 for all x2, and for S1 > 0, S2 = 0 we only have to prove (19).

We prove the inequalities by induction, using that, by Theorem 3.3, Vn satisfies (4)–(10). For V0 ≡ 0 both
inequalities trivially hold. We first prove (i) the induction step of (19), then (ii) that of (20), both for S1 > 0.
All given inequalties hold by the induction hypothesis, unless stated otherwise.

(i) Assume that (19) holds for a given n (induction hypothesis), and let S1 > 0. We consider the opera-
tors H1, H2, G1 and G2 separately.

For x2 = 0:

H1Vn(1, 0) + PEP1
= min{PEP1

+ Vn(0, 0), 2 PEP1
+ Vn(1, 0)}

≥ min{PEP1
+ Vn(0, 0), PEP1

+ Vn(0, 0)}

= PEP1
+ Vn(0, 0) = H1Vn(0, 0);

and for x2 ∈ {1, 2, . . . , S2}:

H1Vn(1, x2) + PEP1
= min{PEP1

+ Vn(0, x2), PEP1
+ PLT1

+ Vn(1, x2 − 1), 2 PEP1
+ Vn(1, x2)}

≥ min{PLT1
+ Vn(0, x2 − 1), PEP1

+ Vn(0, x2)} = H1Vn(0, x2).

For x2 = 0:

H2Vn(1, 0) + PEP1
= min{PEP1

+ PLT2
+ Vn(0, 0), PEP1

+ PEP2
+ Vn(1, 0)}

≥ min{PEP1
+ PLT2

− PEP2
+ H2Vn(0, 0), H2Vn(0, 0)}

= H2Vn(0, 0) + min{PEP1
+ PLT2

− PEP2
, 0};

and for x2 ∈ {1, 2, . . . , S2}:

H2Vn(1, x2) + PEP1
= min{PEP1

+ Vn(1, x2 − 1), PEP1
+ PLT2

+ Vn(0, x2), PEP1
+ PEP2

+ Vn(1, x2)}

≥ min{Vn(0, x2 − 1), PEP1
+ PLT2

+ Vn(0, x2), PEP2
+ Vn(0, x2)}

≥ H2Vn(0, x2) + min{PEP1
+ PLT2

− PEP2
, 0},

as H2Vn(0, x2) = min{Vn(0, x2 − 1), PEP2
+ Vn(0, x2)}.

For the operator G1 we obtain:

G1Vn(1, x2) + (S1 − 1)PEP1
= (S1 − 1)Vn(2, x2) + Vn(1, x2) + (S1 − 1)PEP1

= (S1 − 1)[Vn(2, x2) − Vn(1, x2)] + S1Vn(1, x2) + (S1 − 1)PEP1

≥ (S1 − 1)[Vn(1, x2) − Vn(0, x2)] + S1Vn(1, x2) + (S1 − 1)PEP1

≥ S1Vn(0, 1) = G1Vn(0, x2),

where the first inequaltiy holds as Vn is Conv(1) (cf. Theorem 3.3).

For x2 ∈ {0, 1, . . . , S2 − 1} we obtain:

G2Vn(1, x2) + S2PEP1
= (S2 − x2)Vn(1, x2 + 1) + x2Vn(1, x2) + S2PEP1

≥ (S2 − x2)Vn(0, x2 + 1) + x2Vn(0, x2) = G2Vn(0, x2);
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and for x2 = S2 trivially:

G2Vn(1, S2) + S2PEP1
= S2Vn(1, S2) + S2PEP1

≥ S2Vn(0, S2) = G2Vn(0, S2).

Combining these give, for all x2 (recall ν = λ1 + λ2 + µS1 + µS2):

ν(Vn+1(1, x2) + PEP1
)

= λ1H1Vn(1, x2) + λ2H2Vn(1, x2) + µG1Vn(1, x2) + µG2Vn(1, x2) + ν PEP1

= λ1[H1Vn(1, x2) + PEP1
] + λ2[H2Vn(1, x2) + PEP1

] + µ[G1Vn(1, x2) + (S1 − 1)PEP1
]

+ µ[G2Vn(1, x2) + S2PEP1
] + µPEP1

≥ λ1H1Vn(0, x2) + λ2[H2Vn(0, x2) + min{PEP1
+ PLT2

− PEP2
, 0}] + µG1Vn(0, x2) + µG2Vn(0, x2)

≥ νVn+1(0, x2), (21)

where the last inequality holds by condition (12). This completes the induction step, and hence (19) holds for
all n ≥ 0.

(ii) Assume that (20) holds for a given n (induction hypothesis), and let S1, S2 > 0. We consider the
operators H1, H2 and G1 + G2 separately:

For x2 ∈ {2, . . . , S2}:

H1Vn(1, x2 − 1) + PLT1

= min{PLT1
+ Vn(0, x2 − 1), 2 PLT1

+ Vn(1, x2 − 2), PLT1
+ PEP1

+ Vn(1, x2 − 1)}

≥ min{PLT1
+ Vn(0, x2 − 1), PEP1

+ Vn(0, x2)} = H1Vn(0, x2);

and for x2 = 1:

H1Vn(1, 0) + PLT1

= min{PLT1
+ Vn(0, 0), PLT1

+ PEP1
+ Vn(1, 0)}

≥ min{PLT1
+ Vn(0, 0), PEP1

+ Vn(0, 1)} = H1Vn(0, 1).

For x2 ∈ {2, . . . , S2}:

H2Vn(1, x2 − 1) + PLT1

= min{PLT1
+ Vn(1, x2 − 2), PLT1

+ PLT2
+ Vn(0, x2 − 1), PLT1

+ PEP2
+ Vn(1, x2 − 1)}

≥ min{Vn(0, x2 − 1), PEP2
+ Vn(0, x2)} = H2Vn(0, x2);

and for x2 = 1:

H2Vn(1, 0) + PLT1

= min{PLT1
+ PLT2

+ Vn(0, 0), PLT1
+ PEP2

+ Vn(1, 0)}

≥ min{Vn(0, 0), PEP2
+ Vn(0, 1)} = H2Vn(0, 1).

For x2 ∈ {1, . . . , S2 − 1}:

(G1 + G2)Vn(1, x2 − 1) + (S1 + S2)PLT1

= (S1 − 1)Vn(2, x2 − 1) + Vn(1, x2 − 1)

+ (S2 − x2 + 1)Vn(1, x2) + (x2 − 1)Vn(1, x2 − 1) + (S1 + S2)PLT1

= (S1 − 1)[Vn(2, x2 − 1) − Vn(1, x2)] + (S1 − 1)Vn(1, x2) + Vn(1, x2 − 1)

+ (S2 − x2)[Vn(1, x2) − Vn(0, x2 + 1)] + Vn(1, x2) + (S2 − x2)Vn(0, x2 + 1)

+ x2[Vn(1, x2 − 1) − Vn(0, x2)] − Vn(1, x2 − 1) + x2Vn(0, x2) + (S1 + S2)PLT1

≥ (S1 − 1)[Vn(1, x2 − 1) − Vn(0, x2)] + S1Vn(1, x2)

+ (S2 − x2)[Vn(1, x2) − Vn(0, x2 + 1)] + (S2 − x2)Vn(0, x2 + 1)

+ x2[Vn(1, x2 − 1) − Vn(0, x2)] + x2Vn(0, x2) + (S1 + S2)PLT1

≥ S1Vn(1, x2) + (S2 − x2)Vn(0, x2 + 1) + x2Vn(0, x2) + PLT1

= (G1 + G2)Vn(0, x2) + PLT1
,
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where the first inequality holds as Vn is SuperC(1,2) (cf. Theorem 3.3). For x2 = S2:

(G1 + G2)Vn(1, S2 − 1) + (S1 + S2)PLT1

= (S1 − 1)Vn(2, S2 − 1) + Vn(1, S2 − 1)

+ Vn(1, S2) + (S2 − 1)Vn(1, S2 − 1) + (S1 + S2)PLT1

= (S1 − 1)[Vn(2, S2 − 1) − Vn(1, S2)] + S1Vn(1, S2)

+ S2[Vn(1, S2 − 1) − Vn(0, S2)] + S2Vn(0, S2) + (S1 + S2)PLT1

≥ (S1 − 1)[Vn(1, S2 − 1) − Vn(0, S2)] + S1Vn(1, S2)

+ S2[Vn(1, S2 − 1) − Vn(0, S2)] + S2Vn(0, S2) + (S1 + S2)PLT1

≥ S1Vn(1, S2) + S2Vn(0, S2) + PLT1
= (G1 + G2)Vn(0, S2) + PLT1

,

where the first inequality again holds as Vn is SuperC(1,2).

Combining these gives, for all x2 ∈ {1, . . . , S2}:

ν(Vn+1(1, x2 − 1) + PLT1
)

= λ1H1Vn(1, x2 − 1) + λ2H2Vn(1, x2 − 1) + µ(G1 + G2)Vn(1, x2 − 1) + ν PLT1

= λ1[H1Vn(1, x2 − 1) + PLT1
] + λ2[H2Vn(1, x2 − 1) + PLT1

] + µ[(G1 + G2)Vn(1, x2 − 1) + (S1 + S2)PLT1
]

≥ λ1H1Vn(0, x2) + λ2H2Vn(0, x2) + µ(G1 + G2)Vn(0, x2) = νVn+1(0, x2),

which completes the induction step, and hence (20) holds for all n ≥ 0.

A.6 Proof of Theorem 3.7

Proof. We again prove only part 1a), as again part 1b) directly follows by interchanging the stockpoints, and
2) is a trivial consequence of 1a) and 1b).

For 1a), analogously to the proof of Theorem 3.6, we prove that a∗
1(0, 1) = 1, then it follows by Theorem 3.5

that T̂ lt
1 (0) = 1. By induction, we prove that, for all n ≥ 0:

Vn(0, 1) + PEP1
≥ Vn(0, 0) + PLT1

. (22)

For V0 ≡ 0 this trivially holds.

Assume that (22) holds for a given n (induction hypothesis), and we consider the operators H1, H2, G1

and G2 separately:

H1Vn(0, 1) + PEP1
= min{PEP1

+ PLT1
+ Vn(0, 0), 2 PEP1

+ Vn(0, 1)}

≥ PEP1
+ PLT1

+ Vn(0, 0) = H1Vn(0, 0) + PLT1
;

H2Vn(0, 1) + PEP1
= min{PEP1

+ Vn(0, 0), PEP1
+ PEP2

+ Vn(0, 1)}

≥ min{PEP1
− PEP2

+ PEP2
+ Vn(0, 0), PEP2

+ Vn(0, 0) + PLT1
}

= H2Vn(0, 0) + min{PEP1
− PEP2

, PLT1
},

as H2Vn(0, 0) = PEP2
+ Vn(0, 0);

G1Vn(0, 1) + S1PEP1
= S1[Vn(1, 1) − Vn(1, 0) + Vn(1, 0) + PEP1

]

≥ S1[Vn(0, 1) − Vn(0, 0) + Vn(1, 0) + PEP1
]

≥ S1[Vn(1, 0) + PLT1
] = G1Vn(0, 0) + S1PLT1

,

where the first inequality holds as Vn is Supermod;

G2Vn(0, 1) + (S2 − 1)PEP1
= (S2 − 1)[Vn(0, 2) − Vn(0, 1) + PEP1

] + S2Vn(0, 1)

≥ (S2 − 1)[Vn(0, 1) − Vn(0, 0) + PEP1
] + S2Vn(0, 1)

= S2Vn(0, 1) + (S2 − 1)PLT1
= G2Vn(0, 0) + (S2 − 1)PLT1

,
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where the first inequality holds as Vn is Conv(2).

Combining these, using condition (14), gives, analogously to (21), the induction step, and hence (22) holds
for all n ≥ 0.

A.7 Proof of Lemma 4.1

Proof. We give the proofs for the operator G̃1. By interchanging the numbering of the locations, the results
directly follow for the operator G̃2 as well.

(i) It is straightforward to check that if f is Decr(1) (cf. (4)), then G̃1f is Decr(1) as well, and if f is
Decr(2) (cf. (5)), then G̃1f is Decr(2) as well. Combining this proves that G̃1 preserves Decr.

(ii) Assume that f is Conv(1) (cf. (6)), then we show that G̃1f is Conv(1) as well. For x1 + 2 < S1 this is
straightforward to check, for the case x1 + 2 = S1 we need Decr(1):

G̃1(f(x1, x2) + f(x1 + 2, x2)) = f(x1 + 1, x2) + f(x1 + 2, x2)

≥ f(x1 + 2, x2) + f(x1 + 2, x2) = 2 G̃1f(x1 + 1, x2).

The preservation of Conv(2) (cf. (7)) is again straightforward to check, and hence G̃1 preserves Conv.

(iii) It is straightforward to check that if f is Supermod (cf. (8)), then G̃1f is Supermod as well, hence G̃1

preserves Supermod.

(iv) It is straightforward to check that if f is SuperC(1,2) (cf. (9)), then G̃1f is SuperC(1,2) as well, hence
G̃1 preserves SuperC(1,2). Assume that f is SuperC(2,1) (cf. (9)), then we show that G̃1f is SuperC(2,1) as
well. For x1 + 1 < S1 this is straightforward to check, for the case x1 + 1 = S1 we need Conv(2):

G̃1(f(x1, x2 + 2) + f(x1 + 1, x2)) = f(x1 + 1, x2 + 2) + f(x1 + 1, x2)

≥ f(x1 + 1, x2 + 1) + f(x1 + 1, x2 + 1) = G̃1(f(x1, x2 + 1) + f(x1 + 1, x2 + 1)).

(v) By (11), this is a direct consequence of parts (iii) and (iv).
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