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Abstract: We propose a new proof of the following variation of the Burkholder-

Davis-Gundy inequality. Let b(s), s ∈ [0, t], be a progressively measurable

process, b ∈ L2[0, T ], t ≤ T . Then for every n ≥ 2 there exists constants

C1 > 0, C2 > 0 such that

C1 E
(∫ t

0

b2(s) ds

)n

≤ E
(∫ t

0

b(s) dW (s)

)2n

≤ C2 E
(∫ t

0

b2(s) ds

)n

.

Our proof is based on using qualitative properties of roots of algebraic poly-

nomials from certain general classes.
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1. Introduction

Connections between special algebraic polynomials and stochastic integrals have

a long history (see Wiener [1938], Itô [1951]), and received considerable atten-

tion in stochastic analysis (Ikeda and Watanabe [1989], Carlen and Krée [1991],

Borodin and Salminen [2002]). Fruitful applications of special polynomials have

been found in the theory of Markov processes (Kendall [1959], Karlin and Mc-
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Gregor [1957]), financial mathematics (Schoutens [2000]), statistics (Diaconis

and Zabell [1991]). The book Schoutens [2000] contains an extensive overview

of this field of stochastic analysis and its applications.

In this paper, we study a different type of applications of polynomials to

stochastic integration. We show that not only properties of special systems of

orthogonal polynomials can be used in stochastic analysis, but in fact that

elementary properties of many general classes of polynomials lead to fruitful

applications in stochastics.

2. The main result

We propose an algebraic proof for the following classic variation of the Burkholder-

Davis-Gundy inequality.

Theorem 1. Let b(s), s ∈ [0, t], be a progressively measurable process, b ∈

L2[0, T ], t ≤ T . Then for every n ≥ 2 there exists constants C1 > 0, C2 > 0

such that

C1 E
( ∫ t

0

b2(s) ds

)n

≤ E
( ∫ t

0

b(s) dW (s)
)2n

≤ C2 E
( ∫ t

0

b2(s) ds

)n

.

(1)

The constants C1 and C2 depend on the choice of n, but not on b.

The specific feature of our approach is that we make a heavy use of properties

of algebraic polynomials.

Proof. In the proof below we can assume that b is bounded, since the general

case follows by the usual truncation argument.

We denote for brevity

∫ t

0

b2(s) ds =
∫

b2 ds ,

∫ t

0

b(s) dW (s) =
∫

b dW .

Let us write for n ≥ 1
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ρ2n(t) = H2n

( ∫
b2 ds ,

∫
b dW

)
=

∑
0≤k≤n

(−1)k
ak

( ∫
b dW

)2n−2k( ∫
b2 ds

)k

, (2)

where we denote

ak =
1

2kk!(2n− 2k)!
.

Taking in (2) the expectation of both sides and noting that E ρ2n = 0 (see

Borodin and Salminen [2002] or Ikeda and Watanabe [1989]), we get

∑
0≤k≤n

(−1)k
akE

{( ∫
b dW

)2n−2k( ∫
b2 ds

)k}
= 0 . (3)

Lemma 2. Let b(s), s ∈ [0, t], be progressively measurable process, b ∈ L2[0, T ],

t ≤ T . Then for all k ≥ 1

E
{( ∫

b dW

)2n−2k( ∫
b2 ds

)k}
≤ (4)

≤ E
n−k

n

( ∫
b dW

)2n

E
k
n

( ∫
b2 ds

)n

.

Proof. (Lemma 2) This lemma follows by applying the Jensen inequality for∫
b dW and

∫
b2 ds with powers p = n/(n− k) and q = n/k respectively.

Part I. Consider first the case of even n, and let n = 2m in (1). Since ak ≥ 0

for all k, and also

E
{( ∫

b dW

)2n−2k( ∫
b2 ds

)k}
≥ 0

for all k, after throwing out from (3) all the summands with even k, except for

k = 0 and k = n, we get
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a0 E
( ∫

b dW

)2n

−
∑

0≤2l+1≤n

a2l+1E
{( ∫

b dW

)2n−2k(l)( ∫
b2 ds

)k(l)}

+ an E
( ∫

b2 ds

)n

≤ 0 , (5)

where for integer l ≥ 0 we denoted k(l) = 2l + 1.

Applying Lemma 2 to (5), we get

a0 E
( ∫

b dW

)2n

−
∑

0≤2l+1≤n

a2l+1E
n−k(l)

n

( ∫
b dW

)2n

E
k(l)

n

( ∫
b2 ds

)n

+ an E
( ∫

b2 ds

)n

≤ 0 . (6)

Divide both parts of (6) by E
( ∫

b2 ds
)n and put

z :=
E1/n

( ∫
b dW

)2n

E1/n
( ∫

b2 ds
)n , (7)

then we obtain

a0 zn −
∑

0≤2l+1≤n

a2l+1z
n−k(l) + an ≤ 0 ,

or equivalently

a0 zn + an ≤
∑

0≤2l+1≤n

a2l+1z
n−k(l) . (8)

Lemma 3. Consider real polynomials

P1(z) =
2m∑
k=0

bkz2k and P2(z) = z

2m1∑
i=0

ciz
2i , (9)

where m1 < m is integer and nonnegative, bk ≥ 0 for all k, b0 > 0, bm > 0,

ci ≥ 0 for all i. Then there exists d1 > 0, d2 > 0 such that only for z ∈ [d1, d2]

one can have P1(z) ≤ P2(z), but for z /∈ [d1, d2] one has P1(z) > P2(z).
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Fig 1. Illustration for Lemma 3.

Proof. (Lemma 3) Note first that P1(z) is symmetric, P1(z) ≥ b0 for all z ∈ R,

and P1(z) ∼ bmz2m as z → ∞. Furthermore, P2(−z) = −P2(z), and for z ≥ 0

one has P2(z) ≥ 0, P2(0) = 0, and deg P1(z) < deg P2(z).

This implies that for z < 0 one has P1(z) > 0 > P2(z). At z = 0 it holds that

P1(0) = b0 > 0 = P2(z). This shows that all possible solutions of the inequality

P1(z) ≤ P2(z) are positive, i.e. bounded from below by a positive number d1.

Since P1(z)/P2(z) → ∞ as z → ∞, it follows that for sufficiently large

z ≥ z0 always P1(z) > P2(z). Therefore, all possible solutions of the inequality

P1(z) ≤ P2(z) lies in some interval [d1, d2] with d1 > 0 and d2 > 0.

Let us now put in (8) P1(z) = a0 zn + an, P2(z) =
∑

0≤2l+1≤n a2l+1z
n−k(l).

By Lemma 3, there exists positive constants C1, C2 such that 0 < C1 ≤ z ≤ C2,

i.e. Cn
1 ≤ zn ≤ Cn

2 , and this proves (1) for the case of n = 2m.

Part II. Consider now the case of odd n, and let n = 2m + 1 in (1). Throwing

away from (3) all the summands with even k, except for k = 0, we get

a0 E
( ∫

b dW

)2n

−
∑

0≤2l+1≤n

a2l+1E
{( ∫

b dW

)2n−2k(l)( ∫
b2 ds

)k(l)}
≤ 0 ,
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Fig 2. Illustration for Lemma 4.

(10)

and analogously to (8) we derive

a0 zn ≤
∑

0≤2l+1≤n

a2l+1z
n−k(l) , (11)

where z is defined by (7).

Lemma 4. Consider real polynomials

P1(z) = b0z
2m+1 and P2(z) = z

m1∑
i=0

ciz
2i , (12)

where m1 < m is integer and nonnegative, b0 > 0, ci ≥ 0 for all i, c0 > 0,

cm1 > 0. Then there exists d2 > 0 such that only for z ∈ [−∞, d2] one can have

P1(z) ≤ P2(z), but for z > d2 one always has P1(z) > P2(z).

Proof. (Lemma 4) The proof is analogous to the one of Lemma 3.

After applying Lemma 4 to P1(z) = a0 zn and P2(z) =
∑

0≤2l+1≤n a2l+1z
n−k(l)

in (11), we obtain from (11) that z ≤ d2 for some positive d2. Since n is odd,

this implies zn ≤ dn
2 and the upper bound in (1) follows.
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It remains only to prove the lower bound in (1) for n = 2m + 1. In this case,

we leave in (3) only the summands with even k and k = n, thus getting

∑
0≤2k<n

a2k E
{( ∫

b dW

)2n−4k( ∫
b2 ds

)2k}
− an E

{( ∫
b2 ds

)n}
≥ 0 .

(13)

Analogously to our previous derivations, this implies the inequality

∑
0≤2k<n

a2k zn−2k − an ≥ 0 , i.e.

P (z) :=
∑

0≤2k<n

a2k zn−2k ≥ an , (14)

where z is again as in (7). Since P (z) is a polynomial of the form
∑m

i=1 biz
2i+1, it

easily follows that (14) is equivalent to z ≥ C1 for some constant C1 = C1(n) >

0. Therefore, zn ≥ Cn
1 , and the lower bound in (1) is proved for n = 2m+1.

The idea of proving the Burkholder-Davis-Gundy inequality via the use of

Hermitian polynomials have been already used by different authors (see, for

example, Ikeda and Watanabe [1989] or Lecture Notes ”Stochastic Calculus” by

Andrei Borodin). However, the previous proofs used properties of polynomials

in a different way and worked only for n ≤ 4. Our proof is valid for general n.

In the above proof we have used only some elementary and entirely qualita-

tive facts about certain general types of polynomials, together with such a crude

technique as simple throwing out every second term in the starting martingale

identity. Nontheless, we were able to prove a rather general Burkholder-Davis-

Gundy theorem. This shows that our approach can lead to substantially stronger

results in estimation of stochastic integrals.
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