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Abstract. In this paper, we study the transient behavior of a level dependent
PH/PH/1/K queue during the busy period. We derive in closed-form the joint
transform of the length of the busy period, the number of customers served during
the busy period, and the number of losses during the busy period. We differentiate
between two types of losses: the overflow losses that are due to a full queue and
the losses due to an admission controller. For the M/PH/1/K, M/PH/1/K under
a threshold policy, and PH/M/1/K queues we determine simple expressions for
their joint transform.
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1. Introduction

In practice, it is often the case that arrivals and their service times depend on the
system state. For example, in telecommunication systems this happens at the packet
switch (router): when its buffer size increases, a controller drops the arriving packets
with an increasing probability. In human based service systems, it is known that
there is a strong correlation between the volume of work demanded from a human
and her/his productivity. Moreover, the transient performance measures of a system
are important for understanding the system evolution. All these facts motivate us
to study the transient measures of a state dependent queueing system.

The transient regime of queueing systems is much more difficult to analyze than the
steady state regime. This explains the scarcity of transient research results in this
field compared to the steady state regime. A good exception is the M/M/1 queue
which has been well studied in both transient and steady state regimes. This paper
is devoted to the study of the more general case of the transient behavior of the
state dependent PH/PH/1/K, i.e., the state dependent PH/PH/1 queue with finite
waiting room of size K − 1. In particular, we shall analyze the transient measures
related to the busy period.

Takács in [14, Chap 1] was among the first to derive the transient probabilities of the
M/M/1/K, referred to as Pij(t). Basically, these are the probabilities that at time
t the queue length is j given it was i at time zero. Building on these probabilities
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Takács also determined the transient probabilities of the M/M/1 queue by taking the
limit of Pij(t) for K →∞. For the M/G/1/K, Cohen [6, Chap III.6] computed the
Laplace transform of Pij(t) and the bivariate transform of the number of customers
served and number of losses due to overflow during the busy period. This is done
using complex analysis. Specifically, the joint transform is presented as a fraction of
two contour integrals that involve K and the Laplace-Stieltjes transform (LST) of
the customers’ service time. Rosenlund in [12] extended Cohen’s result by deriving
the joint transform of the busy period length, the number of customers served and
the number of losses during the busy period. In a similar way to [12], Rosenlund
in [13] analyzed the G/M/1/K and gave the trivariate transform. The approach of
Rosenlund is more probabilistic than Cohen’s analysis. However, Rosenlund’s final
results for the trivariate transform for M/G/1/K and G/M/1/K are represented
as a fraction of two contour integrals. For more recent works on the busy period
analysis of M/G/1/K we refer to [7, 15]. Recently, there was an increased interest
in the expected number of losses during the busy period in the M/G/1/K queue
with equal arrival and service rate; see, e.g., [1, 11, 16]. In this case, the interesting
phenomenon is that the expected number of losses during the busy period in the
M/G/1/K equals one for all values of K ≥ 1.

In this paper, we shall assume that the distribution of the inter-arrival times and
service times is phase-type. For this reason, the embedding of the queue length
process at the instants of departures or arrivals becomes unnecessary in order to
analyze its steady state distribution. We emphasize that is a key difference between
our approach and those used in [6, 12, 13]. For an algorithmic method of the LST
of the busy period in the PH/PH/1 queue see, e.g., [9, 10]. Bertsimas et al. in [4]
derived in closed form the LST of the busy period in the PH/PH/1 queue as a
function of the roots of a specific function that involves the LST of the inter-arrival
and service times.

In [2], we extended the results of Rosenlund in [12] for the M/M/1/K in several ways.
First, we studied a state dependent M/M/1/K with admission control. Second, we
considered the residual busy period that is initiated with n ≥ 1 customers. Moreover,
we derived the distribution of the maximum number of customers during the busy
period and other related performance measures. In this paper, we shall extend
these results by considering the level dependent PH/PH/1/K queue. In a similar
way to [2], this shall be done using the theory of absorbing Markov chains. The key
point is to model the event that the system becomes empty as absorbing. Contrary
to the analysis in [2], the derivation of the joint transform shall not use the explicit
inverse of some Toeplitz matrices, however, we shall here proceed with a different
approach that is based on the analyticity of probability generating functions.

The paper is organized as follows. In Section 1.1, we give a detailed description of
the model and the assumptions made. Section 2 reports our results that shall be
presented in a number of different Theorems, Propositions, and Corollaries. More
precisely, Theorem 1 gives our main result for the four variate transform as function
of the inverse of a specific matrix. Proposition 1 presents a numerical recursion to
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invert this matrix. In Propositions 2, 3, and 4, we derive the closed form expressions
for the four variate transform for the M/PH/1/K, the level dependent M/PH/1/K,
and PH/M/1/K queues.

1.1. Model. We consider a level dependent PH/PH/1/K queueing system, i.e., a
level dependent PH/PH/1 queue with finite waiting room of size K − 1 customers.
The arrival process is a renewal process with phase-type inter-arrival times distribu-
tion and with Laplace-Stieltjes transform (LST) φi(w), Re(w) ≥ 0, in the case where
the queue length is i ∈ {0, 1, . . . , K}. The service times distribution is phase-type
with LST ξi(w), in the case where the queue length is i ∈ {0, 1, . . . , K}. A phase-
type distribution can be represented by an initial distribution vector π, a transient
generator F, and an absorption rate vector F o, i.e., F−1F 0 = −eT , where eT is a
column vector with all entries equal to one. For more details we refer, e.g., to [9,
p. 44]. Then, it is well-known that the LST of the inter-arrival times can be written
as follows

φi(w) = fi(wI− Fi)
−1F o

i , Re(w) ≥ 0, (1)

where the initial probability distribution fi is a row vector of dimension Ma, the
transient generator Fi is an Ma-by-Ma matrix, and the absorption rate vector F o

i is
a column vector of dimension Ma. Similarly, the LST of the service times reads

ξi(w) = si(wI− Si)
−1So

i , Re(w) ≥ 0, (2)

where si is a row vector of dimension Ms, Si is an Ms-by-Ms matrix, and So
i is a

column vector of dimension Ms.

We assume that an admission controller is installed at the entry of the queue that
has the duty of dropping the arriving customers with probability pi when the queue
length is i ∈ {0, 1, . . . , K}. In other words, the customers are admitted in the queue
with probability qi = 1− pi when its queue length is i. The arrivals to the queue of
size K are all lost. It should be clear that in this case pK = 1 and qK = 0.

We are interested in the queue behavior during the busy period which is defined as:
the time interval that starts with an arrival that joins an empty queue and ends at
the first time the queue becomes empty again. We note that an arrival to an empty
queue is admitted in the system with probability q0, 0 < q0 ≤ 1. Similarly, we
define the residual busy period as the busy period initiated with n ≥ 1 customers.
Note that for n = 1 the residual busy period and the busy period are equal. In
the following, we shall assume that, unless otherwise stated, at the beginning of the
residual busy period the distribution vector of the phase of the inter-arrival times
and service times is distributed according to fn and sn.

Consider an arbitrary residual busy period. Let Bn denote its length. Let Sn denote
the total number of served customers during Bn. Let Ln denote the total number of
losses, i.e. arrivals that are not admitted in the queue either due to the admission
control or to the full queue, during Bn. We shall differentiate between the two
types of losses. Let Lc

n denote the total number of losses that are not admitted
in the queue due to the admission control, during Bn. Let Lo

n denote the total
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number of the overflow losses that are not admitted in the queue because it is full,
i.e. due to pK = 1, during Bn. In this paper, we determine the joint transform
E

[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
, Re(w) ≥ 0, |z1| ≤ 1, |z2| ≤ 1, and |z3| ≤ 1. We will use the

theory of absorbing Markov chains. This is done by modeling the event that ”the
queue jumps to the empty state” as an absorbing event. Tracking the number of
customers served and losses before the absorption occurs gives the desired result.

A word on the notation: throughout x := y will designate that by definition x is
equal to y, 1{E} the indicator function of any event E (1{E} is equal to one if E
is true and zero otherwise), xT the transpose vector of x, ei the unit row vector
of appropriate dimension with all entries equal to zero except the i-th entry that is
one, and I the identity matrix of appropriate dimension. We use ⊗ as the Kronecker
product operator defined as follows. Let X and Y be two matrices and x(i, j) and
y(i, j) denote the (i, j)-entries of X and Y respectively then X⊗Y is a block matrix
where the (i, j)-block is equal to x(i, j)Y.

2. Results

Before reporting our main result we shall first introduce a set of matrices, then
we define our key absorbing Markov chain (AMC), and finally we order the AMC
states in a proper way that yields a nice structure. The event that the queue
becomes empty, i.e. the end of the busy period, is modeled as an absorbing event
which justifies the need of the theory of absorbing Markov chains.

Let us define the following K-by-K block matrices: the matrix A that is an upper
bidiagonal block matrix with i-th upper element equal to qi(F

o
i fi) ⊗ I and i-th

diagonal element equal to Fi ⊗ I + I ⊗ Si, the matrix B that is a lower diagonal
matrix with i-th lower diagonal element equal to I⊗(So

i si), and the matrix C that is
a diagonal matrix with i-th diagonal element, i = 1, . . . , K−1, equal to pi(F

o
i fi)⊗ I

and K-th element equal to 0, and the matrix D that is a zero block matrix with
(K,K)-block element equal to (F o

KfK) ⊗ I. Note that T o
i is a column vector and

fi is a row vector thus F o
i fi is a matrix. Similarly, So

i si is a matrix. Moreover,
note that A + B represents the generator of a level dependent PH/PH/1/K queue
restricted to strictly positive queue length, see, e.g., [9, Chap. 3]. Let us denote
QK(w, z1, z2, z3) = wI −A − z1B − z2C − z3D. For ease of presentation, we shall
refer to QK(w, z1, z2, z3) as QK .

Let Q(t) :=
(
Phs(t), Pha(t), N(t), S(t), Lc(t), Lo(t)

)
denote the continuous-time

Markov process with discrete state-space ξ := {1, · · · ,Ms}×{1, · · · ,Ma}×{0, 1, · · · ,
K}×N×N×N, where Phs(t) represents the phase of the (if any) customer in service
at time t, Pha(t) the phase of the inter-arrival time at time t, N(t) represents the
number of customers in the queue at time t, S(t) the number of served customers
from the queue until t, Lc(t) the number of losses due to admission control in the
queue until t, Lo(t) the number of overflow losses in the queue until t, and N the
set of non-negative integers. States with N(t) = 0 are absorbing. We refer to this
absorbing Markov process by AMC. The absorption of AMC occurs when the queue
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becomes empty, i.e., N(t) = 0. By setting the initial state of AMC at t = 0 to
(ps, pa, n, 0, 0, 0), n ≥ 1, ps ∈ {1, · · · ,Ms} with distribution vector equal to sn and
pa ∈ {1, · · · ,Ma} with distribution vector equal to fn, the time until absorption is
equal to Bn, the residual busy period length. Moreover, it is clear that Sn (resp. Lo

n

and Lc
n), the total number of departures (resp. losses) during the residual busy pe-

riod, is equal to S(Bn + ε) = Sn (resp. Lc(Bn + ε) = Lc
n and Lo(Bn + ε) = Lo

n),
ε > 0.

During a residual busy period, the processes S(t), Lc(t), and Lo(t) are counting
processes. To take advantage of this property, we order the transient states of
the AMC, i.e. (i, j, k, l, m, o) ∈ ξ \ {(·, ·, 0, ·, ·, ·)}, increasingly first according to o,
then m, l, k, j, and finally according to i. In the following, we shall express the
generator of AMC as a function of the aforementioned matrices A, B, C, and D.
The proposed ordering induces that the generator matrix of the transitions between
the transient states of AMC, denoted by G, is an infinite upper-diagonal block
matrix with diagonal blocks equal to G0 and upper-diagonal blocks equal to U0,
i.e.,

G =




G0 U0 · · · · · · · · ·
0 G0 U0 · · · · · ·
...

. . . . . . . . . . . .


 . (3)

We note that G0 denotes the generator matrix of the transitions which do not
induce any modification in the number of overflow losses, i.e., Lo

n(t). Moreover, U0

denotes the transition rate matrix of the transitions that represent an arrival to a
full queue (an overflow), i.e., transitions between the transient states (i, j, K, l,m, o)
and (i, j′, K, l,m, o + 1), where j′ is the initial phase of the next inter-arrival time
after an overflow loss. For this reason, U0 is a block diagonal matrix with diagonal
blocks equal to U00. The blocks U00 are in turn diagonal block matrices with entries
equal to D. The block matrix G0 is also an infinite upper-diagonal block matrix
with diagonal blocks equal to G1, and upper-diagonal blocks equal to U1. Therefore,
G0 has the following canonical form:

G0 =




G1 U1 · · · · · · · · ·
0 G1 U1 · · · · · ·
...

. . . . . . . . . . . .


 , (4)

where U1 denotes the transition rate matrix of the transitions that represent a
dropped arriving customer by the admission controller, i.e., transitions between the
transient states (i, j, k, l, m, o) and (i, j′, k, l, m+1, o). For this reason, U1 is a block
matrix of diagonal entries equal to C. The matrix G1 is the generator matrix of the
transition between the transient states (i, j, k, l, m, o) and (i′, j′, k′, l′, m, o), i.e. the
transitions that do not induce any modification in the number of overflow losses
and of losses due to the admission controller. Observe that G1 has the following
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canonical form:

G1 =




G2 B · · · · · · · · ·
0 G2 B · · · · · ·
...

. . . . . . . . . . . .


 . (5)

The upper-diagonal blocks of G1 represent the transition between the transient
states (i, j, k, l ,m, o) and (i′, j, k − 1, l + 1,m, o), i.e. a transition that models a
departure from the queue. For this reason, the upper-diagonal blocks are equal
to the aforementioned matrix B, which is a lower diagonal matrix of i-th element
equal to So

i si ⊗ I. The matrix G2 represents the transitions due to a modification
in the inter-arrival phase, service phase, or an arrival that is admitted in the queue.
Therefore, G2 is equal to the previously mentioned matrix A, which is an upper-
diagonal matrix of the following form:

G2 =




F1 ⊗ I + I⊗ S1 q1F
o
1 f1 ⊗ I · · · · · · · · ·

0 F2 ⊗ I + I⊗ S2 q2F
o
2 f2 ⊗ I · · · · · ·

...
. . . . . . . . . . . . . . .
· · · · · · · · · · · · FK ⊗ I + I⊗ SK


 .

(6)

In the following we model the event that the queue becomes empty, i.e. the end of the
busy period, as an absorbing event. The joint transform is deduced by determining
the last state visited before absorption.

We are now ready to formulate our main result.

Theorem 1 (Level dependent queue). Assume that the residual busy period starts
with n customers at time zero, and at time zero the phases of the inter-arrival time
and the service time are distributed according to fn and sn. The joint transform of
Bn, Sn, and Ln is then given by

Ed

[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= z1en ⊗ fn ⊗ snQ

−1
K (e1 ⊗ e)T ⊗ So

1 .

Proof: Let us denote

πi,j,k,l,m,o(t) := P
(
Q(t) = (i, j, k, l,m, o) | (ps, pa, n, 0, 0, 0)

)
.

The Laplace transform of πi,j,k,l,m,o(t) denotes

π̃i,j,k,l,m,o(w) =

∫ ∞

t=0

e−wtπi,j,k,l,m,o(t)dt, Re(w) ≥ 0.

Moreover, let us define the following row vectors:

Π̃j,k,l,m,o(w) =
(
π̃1,j,k,l,m,o(w), · · · , π̃Ms,j,k,l,m,o(w)

)
,

Π̃k,l,m,o(w) =
(
Π̃1,k,l,m,o(w), · · · , Π̃Ma,k,l,m,o(w)

)
,

Π̃l,m,o(w) =
(
Π̃1,l,m,o(w), · · · , Π̃K,l,m,o(w)

)
.

The Kolmogorov backward equation of the absorbing state (i, j, 0, l, m, o) reads

d

dt
πi,j,0,l,m,o(t) = πi,j,1,l−1,m,o(t)S

o
1(i), (7)
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where So
1(i) is the i-th entry of So

1 . Since (i, j, 0, l, m, o) is an absorbing state it is
easily seen that

πi,j,0,l,m,o(t) = P
(
Bn < t, Phs(Bn) = i, Pha(Bn) = j, Sn = l, Lc

n = m,

Lo
n = o | (ps, pa, n, 0, 0, 0)

)
.

Hence, the Laplace transform of the l.h.s. of (7) is equal to the joint transform
Ed

[
e−wBn1{Phs(Bn)=i} · 1{Pha(Bn)=j} · 1{Sn=l} · 1{Lc

n=m} · 1{Lo
n=o}

]
. Taking the Laplace

transform on both sides in (7) and summing over all values of i and j gives that

Ed

[
e−wBn · 1{Sn=l} · 1{Lc

n=m} · 1{Lo
n=o}

]
=

Ma∑
j=1

Π̃j,1,l−1,m,o(w)So
1

= Π̃1,l−1,m,o(w)eT ⊗ So
1

= Π̃l−1,m,o(w)(e1 ⊗ e)T ⊗ So
1 .

Removing the condition on Sn, Lc
n, and Lo

n we deduce that

Ed

[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
=

∞∑

l=1

∞∑
m=0

∞∑
o=0

zl
1z

m
2 zo

3Π̃l−1,m,o(w)(e1 ⊗ e)T ⊗ So
1

= z1

∞∑

l=0

zl
1

∞∑
m=0

zm
2

∞∑
o=0

zo
3Π̃l,m,o(w)(e1 ⊗ e)T ⊗ So

1 . (8)

We now derive the r.h.s. of Ed

[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
. Taking the Laplace transforms of

the Kolmogorov backward equations of AMC we find that

Π̃l,m,o(w)(wI−A) = 1{l,m,o=0}en ⊗ fn ⊗ sn + 1{l≥1}Π̃l−1,m,o(w)B

+1{m≥1}Π̃l,m−1,o(w)C + 1{o≥1}Π̃l,m,o−1(w)D, (9)

where en ⊗ fn ⊗ sn represents the initial state vector of AMC. Multiplying (9) by
zl
1z

m
2 zo

3 and summing the result first over all o, then m, and finally l yields that

∞∑

l=0

zl
1

∞∑
m=0

zm
2

∞∑
o=0

zo
3Π̃l,m,o(w)(wI−A− z1B− z2C− z3D) = en ⊗ fn ⊗ sn. (10)

Note that (wI − A − z1B − z2C − z3D), Re(w) > 0, is invertible since it has a
dominant main diagonal. Inserting (10) into (8) completes the proof. ¤

Remark 1. Assume that the residual busy period starts with n customers at time
zero, and at time zero the phases of the inter-arrival time and the service time are
distributed according to some distribution vectors fn0 and sn0. The joint transform
of Bn, Sn, and Ln is then given by

Ed

[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= z1en ⊗ fn0 ⊗ sn0Q

−1
K (e1 ⊗ e)T ⊗ So

1 .
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Proposition 1. The joint transform B1, S1, Lc
1, and Lo

1 is given by

Ed

[
e−wB1zS1

1 z
Lc

1
2 z

Lo
1

3

]
= z1f1 ⊗ s1

(
X1

)−1
eT ⊗ So

1 ,

where Xi, i = 1, . . . , K − 1, satisfies the following (backward) recursion

Xi = wI− Fi ⊗ I− I⊗ Si − z2piF
o
i fi ⊗ I− z1qiF

o
i fi ⊗ I

(
Xi+1

)−1
I⊗ So

i+1si+1,

with

XK = wI− FK ⊗ I− I⊗ SK − z3F
o
KfK ⊗ I.

Proof: According to Theorem 1 the joint transform of B1, S1, Lc
1, and Lo

1 can be
written as

Ed

[
e−wB1zS1

1 z
Lc

1
2 z

Lo
1

3

]
= z1f1 ⊗ s1QK(1, 1)eT ⊗ So

1 ,

where QK(1, 1) is the (1, 1)-block entry of Q−1
K . Let us partition the matrix QK as

follows

QK =

(
F11 F12

F21 QK−1

)
, (11)

where F11 := wI − F1 ⊗ I − I ⊗ S1 − z2p1F
o
1 f1 ⊗ I, F12 := −e1 ⊗ q1F

o
1 f1 ⊗ I,

F21 := −z1(e1)
T ⊗ I ⊗ So

2s2, QK−1 is obtained from the matrix QK by removing
its first blocks row and first blocks column. A simple linear algebra gives that the
inverse of QK reads

Q−1
K =

(
(F∗11)

−1 −F−1
11 F12(F

∗
22)

−1

−F−1
22 F21(F

∗
11)

−1 (F∗22)
−1

)
, (12)

where F∗11 := F11 − F12Q
−1
K−1F21 and F∗22 := QK−1 − F21F

−1
11 F12. It is readily seen

that

Ed

[
e−wB1zS1

1 z
Lc

1
2 z

Lo
1

3

]
= z1f1 ⊗ s1(F

∗
11)

−1eT ⊗ So
1

= z1f1 ⊗ s1(F11 − F12(QK−1)
−1F21)

−1eT ⊗ So
1

= z1f1 ⊗ s1

(
wI− F1 ⊗ I− I⊗ S1 − z2p1F

o
1 f1 ⊗ I

−q1F
o
1 f1 ⊗ IQK−1(1, 1)I⊗ So

2s2

)−1

eT ⊗ So
1 , (13)

where QK−1(1, 1) is the (1,1)-block entry of Q−1
K−1. QK−1 is a tridiagonal block

matrix. Repeating the same way of partitioning the matrix QK to QK−1 one can
show that

QK−1(1, 1) = wI− F2 ⊗ I− I⊗ S2 − z2p2F
o
2 f2 ⊗ I− q2F

o
2 f2 ⊗ IQK−2(1, 1)I⊗ So

3s3.

QK−2(1, 1) is the (1,1)-block entry of Q−1
K−2 and QK−2 is obtained from the matrix

QK−1 by removing its first row and first column. For this reason, we deduce by

induction that Ed

[
e−wB1zS1

1 z
Lc

1
2 z

Lo
1

3

]
satisfies the recursion defined in Proposition 1.

¤



BUSY PERIOD ANALYSIS OF THE LEVEL DEPENDENT PH/PH/1/K QUEUE 9

2.1. M/PH/1/K Queue. For the M/PH/1/K we have that −Fi = F o
i fi = λ, i =

1, · · · , K, Si = S and So
i si = Sos, i = 1, · · · , K. Let ξ(w) = s(wI− S)−1So denote

the LST of the service times. Moreover, we assume that qi = q, i = 1, · · · , K − 1.

Lemma 1. The function x− z1ξ
(
w + λ(1− qx− pz2)

)
has Ms + 1 distinct non-null

roots r1, · · · , rMs+1, such that 0 < |r1| < |r2| < · · · < |rMs+1|.

Proof. It is well known that ξ(w), the LST of the service times which has a phase-
type distribution of Ms phases, is a rational function. Therefore, the denominator of
ξ(w) is a polynomial in w of degree Ms and the numerator is a polynomial of degree
< Ms. For this reason, the numerator of x−z1ξ(w+λ(1−qx−pz2)) is a polynomial
in x of degree Ms + 1. Therefore, the function x − z1ξ

(
w + λ(1 − qx − pz2)

)
has

Ms + 1 roots. It is easily checked that zero is not a root of this function.

For the sake of clarity of the presentation, we will assume that these roots are
distinct. In Section 3 we shall relax this assumption by considering that ri+l = ri+lε,
ε > 0, i ∈ {1, . . . , Ms + 1} and l = 0, . . . , L − 1, and taking the limit in our final
result for ε → 0. This means, we have that ri is a root of multiplicity L. ¤

Proposition 2 (M/PH/1/K Queue). The joint transform of Bn, Sn, Lo
n, and Lc

n

for the M/PH/1/K queue is given by

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
=

1
2πi

∫
Dα

1
xK−1−n

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

1
2πi

∫
Dα

1
xK−1

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

,

where Dα denotes the circle with center at the origin and with radius |α|,
∣∣∣pz2−z3

q

∣∣∣ <

|α| < |r1|, r1 is the root with the smallest absolute value of

x− z1ξ
(
w + λ(1− qx− pz2)

)
= 0. (14)

Proof: According to Theorem 1 the joint transform Bn, Sn, Lc
n, and Lo

n for the
M/PH/1/K queue can be reduced as follows: (due to the Poisson arrivals we have
that fn = 1 and the vector e is of dimension one, i.e., e = 1 in Theorem 1),

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= z1en ⊗ sQ−1

K eT
1 ⊗ So, (15)

where QK in this case is a K-by-K tridiagonal block matrix with upper diagonal
blocks equal to E0 = −qλI, i-th diagonal blocks equal to E1 = wI+λ(1−pz2)I−S,
i = 1, · · · , K − 1, and K-th diagonal block equal to E∗

1 = wI + λ(1− z3)I− S, and
lower-diagonal blocks equal to E2 = −z1S

os. Let u = (u1, · · · , uK) := en ⊗ sQ−1
K .

Note that the entries of the row vector u are in their turns a row vectors of dimension
Ms and are all functions of w, z1, z2, and z3. Then (15) in terms of u rewrites

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= z1u1S

o. (16)

The definition of u gives that uQK = en ⊗ s. Developing the latter equation yields

1{i≥2}ui−1E0 + ui

[
1{i≤K−1}E1 + 1{i=K}E

∗
1

]
+ 1{i≤K−1}ui+1E2 = 1{i=n}s, (17)
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where i = 1, · · · , K. Since u1 is analytic we deduce from (17) that ui, i = 2, · · · , K,
are analytic. Multiplying (17) by xi and summing it over i we find that

K∑
i=1

uix
i =

(
u1E2 + xKuK(xE0 + E1 − E∗

1) + xns
)(

xE0 + E1 +
1

x
E2

)−1

=
(
z1u1S

os− xns + λxK(qx + pz2 − z3)uK

)(
S− ρI +

z1

x
Sos

)−1

,(18)

where ρ := w + λ(1 − qx − pz2). Let S∗ := S − ρI. Note that under the condition
Re[ρ] ≥ 0 the matrix S∗ is nonsingular. Hence, the Sherman-Morrison formula, see,
e.g., [3, Fact 2.14.2, p. 67], yields that

(
S∗ +

z1

x
Sos

)−1

= S−1
∗ − z1

x + z1sS
−1∗ So

S−1
∗ SosS−1

∗ . (19)

The multiplication to the right of (18) with the column vector So and (19) give

K∑
i=1

uix
iSo =

x

x + z1sS
−1∗ So

(
z1u1S

os− xns + λxK(qx + pz2 − z3)uK

)
S−1
∗ So, (20)

From (2) we know that sS−1
∗ So = −ξ(ρ) and S−1

∗ So = −(
ξ1(ρ), · · · , ξMs(ρ)

)T
, where

ξi(ρ) = ei(ρI − S)−1So. Therefore, ξ(ρ) = s(ξ1(ρ), · · · , ξMs(ρ)
)T

is a linear combi-
nation of ξi(ρ), i = 1, · · · ,Ms. Inserting sS−1

∗ So and S−1
∗ So into (20) yields

K∑
i=1

uix
iSo =

−x

x− z1ξ(ρ)

[
(z1u1S

o − xn)ξ(ρ) + λxK(qx + pz2 − z3)
Ms∑
j=1

uKjξ
j(ρ)

]
,(21)

where uK = (uK1, · · · , uKMs). We recall that uiS
o is a joint transform function. For

this reason, the l.h.s. of (21) should be analytical for any finite x. This gives that
the singular points, roots of x− z1ξ(ρ), on the r.h.s. of (21) are removable.

Lemma 1 and the analyticity of
∑K

i=1 uix
iSo gives that

z1u1S
oξ(ρi) + λrK

i (qri + pz2 − z3)
Ms∑
j=1

uKjξ
j(ρi) = rn

i ξ(ρi), i = 1, · · · ,Ms + 1,(22)

where ρi := w + λ(1 − qri − pz2). The system of equations in (22) has Ms + 1
equations with Ms + 1 unknowns which are z1u1S

o, uK1, · · · , uKMs . Using Cramer’s
rule we find that

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= z1u1S

o =
det(M1)

det(M)
, (23)

where det(M) is the determinant of the (Ms + 1)-by-(Ms + 1) matrix M with i-th
row equal to

(
ξ(ρi)/[λrK

i (qri + pz2 − z3)], ξ
1(ρi), · · · , ξMs(ρi)

)
, i = 1, · · · ,Ms + 1,

and M1 is obtained from M by replacing its first column by
( ξ(ρ1)

λrK−n
1 (qr1 + pz2 − z3)

, · · · ,
ξ(ρMs+1)

λrK−n
Ms+1(qrMs+1 + pz2 − z3)

)T

.
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The Laplace expansion of the determinant along the first column of M and M1 gives
that

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
=

∑Ms+1
i=1

ξ(ρi)(−1)i+1

λrK−n
i (qri+pz2−z3)

det
(
M1(i, 1)

)
∑Ms+1

i=1
ξ(ρi)(−1)i+1

λrK
i (qri+pz2−z3)

det
(
M(i, 1)

)

=

∑Ms+1
i=1

(−1)i

rK−1−n
i (qri+pz2−z3)

det
(
M(i, 1)

)
∑Ms+1

i=1
(−1)i

rK−1
i (qri+pz2−z3)

det
(
M(i, 1)

) , (24)

where M(i, 1) is the Ms-by-Ms matrix that results by deleting the i-th row and
the first column of M, and the second equality follows from ξ(ρi) = ri/z1 and
M1(i, 1) = M(i, 1).

Let Dα denote the circle with center at the origin and with radius equal to |α|.
Assume that

∣∣∣pz2−z3

q

∣∣∣ < |α| < |r1|. Let us define fi(x) ∼i gi(x) if fi(x)/gi(x) = h(x)

that is independent of i. Therefore, for K−1−n ≥ 1 or q > 0 the following equality
holds
∑Ms+1

i=1
(−1)i

rK−1−n
i (qri+pz2−z3)

det
(
M(i, 1)

)
∑Ms+1

i=1
(−1)i

rK−1
i (qri+pz2−z3)

det
(
M(i, 1)

) =

1
2πi

∫
Dα

1
xK−1−n

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

1
2πi

∫
Dα

1
xK−1

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

,

(25)
if and only if

Resri

1

x− z1ξ
(
w + λ(1− qx− pz2)

) ∼i (−1)idet
(
M(i, 1)

)
, (26)

where Resaf(z) is the residue of the complex function f(z) at point a. In the
following we shall prove condition (26).

Since the service times have a phase-type distribution, ξ(w) is a rational function
with denominator, Q(w), of degree Ms and numerator of degree < Ms. Note that
by Lemma 1 the roots of x − z1ξ

(
w + λ(1 − qx − pz2)

)
are distinct. Therefore, we

deduce that

Resri

1

x− z1ξ
(
w + λ(1− qx− pz2)

) =
Q(w + λ(1− qri − pz2)

)

(−λq)Ms
∏Ms+1

j=1,j 6=i(ri − rj)

=
Q(ρi)∏Ms+1

j=1,j 6=i(ρi − ρj)
.

M(i, 1) is an Ms-by-Ms matrix of j-th row equal to
(
ξ1(ρj), · · · , ξMs(ρj)

)
for j =

1, · · · ,Ms + 1 and j 6= i. We have that (see the appendix for the proof)

det
(
M(i, 1)

)
= C

∏Ms

j=1,j 6=i

∏Ms+1
k=j+1,k 6=i(ρk − ρj)∏Ms+1

j=1,j 6=i Q(ρj)
, (27)
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where C is a constant, see the Appendix. It is easily checked that

Ms∏

j=1,j 6=i

Ms+1∏

k=j+1,k 6=i

(ρk − ρi) = (−1)i−1

∏Ms

j=1

∏Ms+1
k=j+1(ρk − ρj)∏Ms+1

j=1,j 6=i(ρj − ρi)
. (28)

Substituting the last equation into (27) yields

det
(
M(i, 1)

)
= C(−1)i−1

∏Ms

j=1

∏Ms+1
k=j+1(ρk − ρj)∏Ms+1

j=1 Q(ρj)
× Q(ρi)∏Ms+1

j=1,j 6=i(ρj − ρi)

∼i (−1)i Q(ρi)∏Ms+1
j=1,j 6=i(ρi − ρj)

.

The latter equation yields (26) which completes the proof. ¤

Remark 2. We emphasize that Proposition 2 extends the result of Rosenlund [12]
on the M/G/1/K in two ways. First, it gives the four variate joint transform of
Bn, Sn, Lc

n, and Lo
n, for the case when n > 1. Second, it allows the dropping of

customers even when the queue is not full.

2.2. M/PH/1/K queue under threshold policy. Let m ∈ {1, . . . , K} denote
the threshold of the M/PH/1/K queue length. According to the threshold policy
if the queue length at time t is i the inter-arrival times and service times are then
defined as follows. For i ≤ m − 1, we have that −Fi = F o

i f = λ0, Si = S0, si = s,
and pi = p0. For m ≤ i ≤ K − 1, we have that −Fi = F o

i f = λ1, Si = S1 and
si = s, and pi = p1 and pK = 1.

Let ξi(w) = s(wI− Si)
−1So

i = Pi(w)/Qi(w), i = 0, 1, denote the LST of the service
times when the queue length is below the threshold or above it. Moreover, we let
ξl
i(w) = el(wI − Si)

−1So
i = P l

i (w)/Ql
i(w), i = 0, 1. Note that since Q0(w) is the

common denominator of ξl
0(w) we have that ξl

0(w) = P l
0(w)/Q0(w) is a rational

function where P l
0(w) is polynomial of degree < Ms. Let C0 denote the matrix

with (j, l)-entry equal to the coefficient of wj−1 of the polynomial P l
0(w). In the

following, we shall assume that the matrix C0 is invertible. Note that the Erlang,
hyper-exponential, and Coxian distribution satisfy the latter assumption.

Lemma 2. The function x−z1ξi

(
w+λ(1−qix−piz2)

)
, i = 0, 1, has Ms +1 distinct

non-null roots r1i, · · · , r(Ms+1)i, such that 0 < |r1i| < · · · < |r(Ms+1)i|.

Proof. By analogy with the proof of Lemma 1. ¤

We are now ready to state our first result.

Proposition 3 (M/PH/1/K under Threshold Policy). The joint transform of B1,
S1, Lc

1,and Lo
1 in the M/PH/1/K queue operating under the threshold policy is given

by
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E
[
e−wB1zS1

1 z
Lc

1
2 z

Lo
1

3

]
=

∑Ms+1
i=1

z1−β(i)

rm−2
i1

Q0(ρi0)∏Ms+1
j=1,j 6=i(ρi0−ρj0)∑Ms+1

i=1
z1−β(i)

rm−1
i1

Q0(ρi0)∏Ms+1
j=1,j 6=i(ρi0−ρj0)

, (29)

where, ri0, i = 1, · · · ,Ms + 1, are the roots of

x− z1ξ0

(
w + λ0(1− q0x− p0z2)

)
= 0,

ρi0 = w + λ0(1− q0ri0 − p0z2), Q0(w) is the denominator of ξ0(w),

β(i) =
Ms∑

l=1

v(l)
Ms+1∑

m=1,m6=i

Q0(ρm0)
Ms∑

k=1

c0(l, k)v0(k,m),

where c0(l, k) is the (l, k)-entry of C−1
0 ,

v0(k, m) =
(−1)k−1

∏Ms

l=1,l 6=m ul − um

∑
um10 × · · · × umMs−k0, k, m = 1, · · · ,Ms (30)

where 1 ≤ m1 < · · · < mMs−k ≤ Ms, m1, · · · ,mMs−k 6= k, and (u1, · · · , uMs) =
(ρ10, · · · , ρ(i−1)0, ρ(i+1)0, · · · , ρ(Ms+1)0) (for k = Ms,

∑
um10 × · · · × umMs−k0 := 1),

and

v(l) = z1

1
2πi

∫
Dα1

1
xK−m

ξl
1(w+λ(1−q1x−p1z2))

q1x+p1z2−z3

dx
x−z1ξ1(w+λ(1−q1x−p1z2))

1
2πi

∫
Dα1

1
xK−m

1
q1x+p1z2−z3

dx
x−z1ξ1(w+λ(1−q1x−p1z2))

, (31)

where Dα1 denotes the circle with center at the origin and with radius |α1|, |p1z2−z3|
q1

<

|α1| < |r11|, r11 is the root with the smallest absolute value of

x− z1ξ1

(
w + λ1(1− q1x− p1z2)

)
= 0.

Proof: By analogy with Proposition 2 the joint transform B1, S1, Lc
1, and Lo

1 for
the M/PH/1/K queue can written as follows:

E
[
e−wB1zS1

1 z
Lc

1
2 z

Lo
1

3

]
= z1e1 ⊗ sQ−1

K eT
1 ⊗ So

0 , (32)

where in this case QK has the following canonical form

QK =

(
F00 F01

F10 F11

)
.

The matrix Fll, l = 0, 1, is a block tridiagonal matrix with upper diagonal blocks
equal to E0l = −qlλlI, diagonal blocks equal to E1l = wI + λl(1 − plz2)I − Sl and
lower-diagonal blocks equal to E2l = −z1S

o
l s. Note that F00 is an (m−1)-by-(m−1)

block matrix and F11 is an (K−m+1)-by-(K−m+1) block matrix. Moreover, the
(K−m+1, K−m+1)-block entry of F11 is equal to E∗

11 = wI+λ1(1−z3)I−S1. The
matrix F01 is a block matrix with all its blocks equal to the zero matrix except the
(m−1, 1)-block that is E00 = −q0λ0I. Finally, the matrix F10 is a block matrix with
all blocks equal to the zero matrix except the (1,m−1)-block that is E21 = −z1S

o
1s.
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Equations (12) and (32) yield that

E
[
e−wB1zS1

1 z
Lc

1
2 z

Lo
1

3

]
= z1e1 ⊗ s

(
F00 − F01F

−1
11 F10

)−1
eT
1 ⊗ So

0

= z1e1 ⊗ s
(
F00 − q0λ0z1F

−1
11 (1, 1)So

1sU
T U

)−1
eT
1 ⊗ So

0 ,(33)

where U is a row vector of blocks with all entries equal to zero except the last that
is I and F−1

11 (1, 1) is the (1, 1)-block entry of F−1
11 .

We shall now derive an expression for z1F
−1
11 (1, 1)So

1. First, observe that F11 has the
same structure as the matrix QK in (15) with K replaced by K −m + 1, λ by λ1,
S by S1, and Sos by So

1s. Second, note that z1F
−1
11 (1, 1)So

1 is a column vector with
size Ms and with j-th entry, referred to as v(j), that reads

v(l) = z1e1 ⊗ el(F11)
−1eT

1 ⊗ So
1 , j = 1, · · · , Ms. (34)

Therefore, by analogy with the proof of Proposition 2 we find that v(l) satisfies (31).

Note that F00 has the same structure as the matrix QK in (15) with K = m − 1,
E0 = E00, E1 = E10, E2 = E20, and E∗

1 = E10 − q0λ0vsUT U . Moreover, (33) has
the same form as (15). By analogy with the proof of Proposition 2 we find that

K∑
i=1

oix
iSo

0 =
−x

x− z1ξ0(ρ)

[
(z1u1S

o
0 − x)ξ0(ρ) + λ0q0x

m−1

Ms∑
j=1

om−1j

(
xξj

0(ρ)

−v(j)ξ0(ρ)
)]

,

where o = (o1, · · · , om−1) := e1 ⊗ s
(
F00 − q0λ0vsUT U

)−1
, om−1 = (om−11, · · · ,

om−1Ms), and ρ = w + λ0(1− q0x− p0z2). Let us denote ri0, i = 0, · · · ,Ms + 1, the

roots of x− z1ξ0(w + λ0(1− q0x− p0z2)). The analyticity of
∑K

i=1 oix
iSo

0 gives that

z1o1S
o
0ξ0(ρi0) + λ0q0r

m−1
i0

Ms∑
j=1

om−1j

(
ri0ξ

j
0(ρi0)− v(j)ξ0(ρi0)

)
= ri0ξ0(ρi0),

where i = 1, · · · , Ms + 1 and ρi = w + λ0(1− q0x− p0z2). Cramer’s rule yields that

E
[
e−wB1zS1

1 z
Lc

1
2 z

Lo
1

3

]
= z1o1S

o
0 =

∑Ms+1
i=1

ξ0(ρi0)(−1)i

rm−1
i1

det
(
M0(i)

)
∑Ms+1

i=1
ξ0(ρi0)(−1)i

rm
i0

det
(
M0(i)

)

=

∑Ms+1
i=1

(−1)i

rm−2
i1

det
(
M0(i)

)
∑Ms+1

i=1
(−1)i

rm−1
i0

det
(
M0(i)

) , (35)

where M0(i) is an Ms-by-Ms matrix with j-th row, j = 1, · · · ,Ms + 1 and j 6= i,
equal to

(
ξ1
0(ρj0) − v(1)/z1, · · · , ξMs

0 (ρj0) − v(Ms)/z1

)
. It is easily seen that M0(i)

can be decomposed as follows

M0(i) = V(i)− 1

z1

eT v,
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where V(i) is an Ms-by-Ms matrix with j-th row, j = 1, · · · ,Ms+1 and j 6= i, equal
to

(
ξ1
0(ρj0), · · · , ξMs

0 (ρj0)
)
. Since ξl

0(w) = P l
0(w)/Q0(w), l = 1, · · · ,Ms, are rational

functions with common denominator Q0(w) the matrix V(i) can be decomposed as
follows

V(i) = D(i)V0(i)C0,

where D(i) is an Ms-by-Ms diagonal matrix with j-th diagonal element, j = 1, · · · ,
Ms +1 and j 6= i, equal to 1/Q0(ρj0), V0(i) is a Vandermonde matrix with j-th row,
j = 1, · · · , Ms + 1 and j 6= i, equal to

(
1, ρj0, · · · , ρMs−1

j0

)
, and C0 is a matrix with

(j, l)-entry equal to the coefficient of wj−1 of the polynomial P l
0(w). By Sylvester’s

determinant we have that

det
(
M0(i)

)
=

1

z1

det
(
V(i)

)(
z1 − vV(i)−1eT

)

=
1

z1

det
(
V(i)

)(
z1 − vC−1

0 V0(i)
−1D(i)−1eT

)

=
1

z1

det
(
V(i)

)(
z1 − vC−1

0 V0(i)
−1d

)
, (36)

where d is a column vector of dimension Ms with d(j), j-th entry j = 1, · · · ,Ms + 1
and j 6= i, equal to Q0(ρj0). By analogy with the Appendix we find that

det
(
V0(i)

)
= det

(
C0

)∏Ms

j=1,j 6=i

∏Ms+1
k=j+1,k 6=i(ρk0 − ρj0)∏Ms+1

j=1,j 6=i Q0(ρj0)

= det
(
C0

)
(−1)Ms+i−1

∏Ms

j=1

∏Ms+1
k=j+1(ρk0 − ρj0)∏Ms+1

j=1,j 6=i(ρi0 − ρj0)

Q0(ρi0)∏Ms+1
j=1 Q0(ρj0)

,(37)

where the last equality follows from (28). Let v0(k, l) denote the (k, l)-entry of
V0(i)

−1 which is of Vandermonde type. Note that the inverse of a Vandermonde
matrix is known in closed form, see e.g. [8]. We deduce from [8] that the values of
v0(k, l) given in (30). Let us denote c0(i, j) the (i, j)-entry of C−1

0 it then follows
right away that

vC−1
0 V0(i)

−1d =
Ms∑

l=1

v(l)
Ms∑

m=1

Q0(ρm0)
Ms∑

k=1

c0(l, k)v0(k, m).

Substituting the last equation into (35) gives (29), which completes the proof. ¤

2.3. PH/M/1/K Queue. For the level independent PH/M/1/K we have that
−Si = So

i si = µ, i = 1, · · · , K, Fi = F and F o
i fi = F of , i = 1, · · · , K. Let

φ(w) = f(wI − F)−1F o denote the LST of the inter-arrival times. Moreover, we
assume that qi = q, i = 1, · · · , K − 1, and qK = 0.

Lemma 3. The function x−(q+xpz2)φ
(
w+µ(1−z1x)

)
has Ma+1 distinct non-null

roots o1, · · · , oMa+1, such that 0 < |o1| < |o2| < · · · < |oMa+1|.

Proof. By analogy with Lemma 1. ¤
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Proposition 4 (PH/M/1/K Queue). The joint transform of Bn, Sn, Lo
n, and Lc

n

for the PH/M/1/K queue with p > 0 and n = 1, · · · , K is given by

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
=

(
(w + µ)(1− pz2)− qµz1

)(
R + f(α) +

g(α)I(α)

h(α)

)
, (38)

where, |α| ∈ C with q
p|z2| < |α| < |o1| and o1 is the root with the smallest absolute

value of

x− (q + z2px)φ
(
w + µ(1− z1x)

)
= 0, (39)

and where

f(α) =
1

2πi

∫

Dα

1

xn−1

1

q + pz2x

1

w + µ(1− z1x)

dx

x− (q + pz2x)φ
(
w + µ(1− z1x)

) ,

(40)

g(α) =
1

2πi

∫

Dα

1

xn−1

1

q + pz2x

dx

x− (q + pz2x)φ
(
w + µ(1− z1x)

) , (41)

h(α) =
1

2πi

∫

Dα

q + (pz2 − z3)x

xK(q + pz2x)

dx

x− (q + pxz2)φ
(
w + µ(1− z1x)

) , (42)

I(α) =
1

2πi

∫

Dα

q + (pz2 − z3)x

xK(q + pz2x)

1

w + µ(1− z1x)

dx

x− (q + pxz2)φ
(
w + µ(1− z1x)

) ,

(43)

Dα denotes the circle with center at the origin and with radius to |α|, and finally

R = − (µz1)
n

(w + µ)n−1

1

qµz1 + p(w + µ)z2

1

(w + µ)(1− pz2)− qµz1

. (44)

Proof. According to Theorem 1 the joint transform Bn, Sn, Lc
n, and Lo

n in this case
can be written as follows: (due to the exponential service times we have that sn = 1
and So

1 = µ in Theorem 1),

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= µz1en ⊗ fQ−1

K eT
1 ⊗ e, (45)

where QK in this case is a K-by-K tridiagonal block matrix with upper diagonal
blocks equal to E0 = −qF of , i-th diagonal blocks equal to E1 = (w + µ)I − F −
pz2F

of , i = 1, · · · , K − 1, and K-th diagonal block equal to E∗
1 = (w + µ)I − F −

z3F
of , and lower-diagonal blocks equal to E2 = −z1µI. Let u = (u1, · · · , uK) :=

en ⊗ fQ−1
K . Note that the entries of the row vector u are in their turn row vectors

of dimension Ma and are all functions of w, z1, z2, and z3. Eq. (45) in terms of u
rewrites

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= µz1u1e

T = µz1

Ma∑
i=1

u1j. (46)
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By analogy with the proof in Proposition 2 we find that

K∑
i=1

uix
i =

(
u1E2 + xKuK(xE0 + E1 − E∗

1) + xnf
)(

xE0 + E1 +
1

x
E2

)−1

=
(
µz1u1 − xnf + xK(qx + pz2 − z3)uKF of

)(
F− θI + (qx + pz2)F

of
)−1

,

where θ := w + µ(1 − z1/x). Let F∗ := F − θI. Note that under the condition
Re[θ] ≥ 0 the matrix F∗ is nonsingular. Hence, the Sherman-Morrison formula, see,
e.g., [3, Fact 2.14.2, p. 67], yields

(
F∗ + (qx + pz2)F

of
)−1

= F−1
∗ − qx + pz2

1 + (qx + pz2)tF
−1∗ F o

F−1
∗ F ofF−1

∗ . (47)

Multiplying to the right of
∑K

i=1 uix
i with the column vector F o and using (47) gives

K∑
i=1

uix
iF o =

1

1 + (qx + pz2)fF−1∗ F o

(
µ1z1u1−xnf +xK(qx+pz2−z3)uKF of

)
F−1
∗ F o.

(48)

From (1) we have that fF−1
∗ F o = −φ(θ) and F−1

∗ F o = −(
φ1(θ), · · · , φMa(θ)

)T
,

where φi(θ) = ei(θI − F)−1F o. Therefore, φ(θ) = f(φ1(θ), · · · , φMa(θ)
)T

is a linear
combination of φi(θ), i = 1, · · · ,Ma. Inserting fF−1

∗ F o and F−1
∗ F o into (48) yields

K∑
i=1

uix
iF o = −xK(qx + pz2 − z3)φ(θ)uKF o + µ1z1

∑Ma

j=1 u1jφ
j(θ)− xnφ(θ)

1− (qx + pz2)φ(θ)
, (49)

where uK = (u11, · · · , u1Ma). Note that uiF
o is a joint transform function. For this

reason, the l.h.s. of (49) is analytical for any finite x and the poles on the r.h.s. of (49)
should be removable. Note that the roots of 1 − (qx + pz2)φ

(
w + µ(1 − z1/x)

)
are

equal to the inverse of the roots of x− (q + xpz2)φ
(
w + µ(1− z1x)

)
.

Lemma 3 and the analyticity of
∑K

i=1 uix
iF o gives that

q + (pz2 − z3)oi

oK+1
i

φ(θi)uKF o + µ1z1

Ma∑
j=1

u1jφ
j(θi) =

1

on
i

φ(θi), i = 1, · · · , Ma + 1, (50)

where θi := w + µ(1− z1oi). The system of equations in (50) has Ma + 1 equations
with Ma + 1 unknowns which are uKF o, u11, · · · , u1Ma . Using Cramer’s rule we find
that

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= µz1u1e

T = µz1

Ma∑
j=1

u1j = −det(H)

det(K)
, (51)
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where det(K) is the determinant of the matrix K with i-th row equal to
(

q+(pz2−z3)oi

oK+1
i

·φ(θi), φ
1(θi), · · · , φMa(θi)

)
, i = 1, · · · , Ma+1, and H is an (Ma+2)-by-(Ma+2) ma-

trix with i-th row, i = 1, · · · ,Ma +1, equal to
( q+(pz2−z3)oi

oK+1
i

φ(θi), φ
1(θi), · · · , φMa(θi),

1
on

i
φ(θi)

)
and (Ma + 2)-th row equal to (0, 1, · · · , 1, 0).

The Laplace expansion of the determinant along the first column of K and H gives
that

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
= −

∑Ma+1
i=1

q+(pz2−z3)oi

oK+1
i

φ(θi)(−1)i+1det
(
H(i, 1)

)
∑Ma+1

i=1
q+(pz2−z3)oi

oK+1
i

φ(θi)(−1)i+1det
(
K(i, 1)

)

= −
∑Ma+1

i=1
1

oK
i

q+(pz2−z3)oi

q+pz2oi
(−1)i+1det

(
H(i, 1)

)
∑Ma+1

i=1
1

oK
i

q+(pz2−z3)oi

q+pz2oi
(−1)i+1det

(
K(i, 1)

) , (52)

where a matrix X(i, 1) is obtained by deleting the i-th row and the first column of
the matrix X, and the second equality follows from φ(θi) = oi/(q + pz2oi).

Note that φ(w) is a rational function with denominator, Qφ(w), of degree d = Ma

and numerator of degree < d. By analogy with the determinant of M(i, 1) given in
(27) and (28) we find that

det
(
K(i, 1)

)
= Ck

∏Ma

j=1,j 6=i

∏Ma+1
k=j+1,k 6=i(θk − θj)∏Ma+1

j=1,j 6=i Qφ(θj)

= Ck(−1)i−1

∏Ma

j=1

∏Ma+1
k=j+1(θk − θj)∏Ma+1

j=1 Qφ(θj)

Qφ(θi)∏Ma+1
j=1,j 6=i(θj − θi)

= Ck(−1)Ma+i−1

∏Ma

j=1

∏Ma+1
k=j+1(θk − θj)∏Ma+1

j=1 Qφ(θj)

×Resoi

1

x− (q + xpz2)φ
(
w + µ(1− z1x)

) , (53)

where Ck is a constant that is a function of the polynomials parameters of the
numerators of φi(w), i = 1, · · · ,Ma. Let α ∈ C with q/|pz2| < |α| < |o1|. We find
that
∑Ma+1

i=1
1

oK
i

q+(pz2−z3)oi

q+pz2oi
(−1)i+1det

(
K(i, 1)

)
= Ck(−1)Ma

∏Ma
j=1

∏Ma+1
k=j+1(θk−θj)∏Ma+1

j=1 Qφ(θj)

(− h(α)
)
,

(54)

where h(α) is given in(42). Note that the minus sign that is next to h(α) is due to
the fact that the sum of all residues of the function

q + (pz2 − z3)x

xK(q + pz2x)

1

x− (q + pxz2)φ
(
w + µ(1− z1x)

) ,

including the residue at infinity which is equal to zero (K ≥ 1), is zero. We shall
refer to the latter property of complex functions as the Inside-Outside property.
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The expansion of the determinant of H(i, 1) along the last column yields

det
(
H(i, 1)

)
=

Ma+1∑

j=1,j 6=i

1

on−1
j

(−1)Ma+j+1

q + pz2oj

det
(
J
)
, (55)

where J is obtained by deleting the j-th row and the last column of the matrix
H(i, 1). It is easily seen that J is an Ma-by-Ma matrix with the l-th row equal to
(φ1(θl), · · · , φMa(θl)), l = 1, · · · , Ma + 1 and l 6= i, j, and the last row is equal to e.
By analogy with the determinant of M(i, 1) we find that

det
(
J
)

=
CJ

Qφ(0)

Ma+1∏

l=1,l 6=i,j

θl

Qφ(θl)

Ma∏

l=1,l 6=i,j

Ma+1∏

k=l+1,k 6=i,j

(θk − θl)

=
CJ

Qφ(0)

Ma+1∏

l=1,l 6=i,j

θl

Qφ(θl)
(−1)i+j−1

∏Ma

l=1

∏Ma+1
k=l+1(θk − θl)∏Ma+1

l=1,l 6=i(θl − θi)
∏Ma+1

l=1,l 6=i,j(θl − θj)

=
CJ(−1)i+j−1

Qφ(0)

Ma+1∏

l=1

θl

∏Ma

l=1

∏Ma+1
k=l+1(θk − θl)∏Ma+1

l=1 Qφ(θl)

Qφ(θi)

θi

∏Ma+1
l=1,l 6=i(θl − θi)

Qφ(θj)

θj

∏Ma+1
l=1,l 6=i,j(θl − θj)

,

where Qφ(0) is due to the last row of det
(
J
)

which is equal to e = (1, · · · , 1) =(
P 1

φ(0)/Q1
φ(0), · · · , PMa

φ (0)/QMa
φ (0)

)
. It follows from the definitions of the matrices

J and K that CJ = Ck. We note that
Ma+1∏

l=1

θl = (µz1)
Ma+1

Ma+1∏

l=1

(w + µ

µz1

− ol

)

= (µz1)
Ma+1

w+µ
µz1

Qφ(0)− (q + pz2
w+µ
µz1

)Pφ(0)

(−µz1)Ma

= (−1)MaQφ(0)
[
(w + µ)(1− pz2)− qµz1

]
,

where the second equality follows from the fact that ol, l = 1, · · · ,Ma + 1, are the
roots of x − (q + xpz2)φ

(
w + µ(1 − z1x)

)
and φ(w) = Pφ(w)/Qφ(w), and the last

from φ(0) = 1. Inserting det
(
J
)

and
∏Ma+1

l=1 θl into (55) yields

det
(
H(i, 1)

)
=

Ma+1∑

j=1,j 6=i

1

on−1
j

(−1)Ma+j+1

q + pz2oj

det
(
J
)

= CJ(−1)i
[
(w + µ)(1− pz2)− qµz1

]∏Ma

l=1

∏Ma+1
k=l+1(θk − θl)∏Ma+1

l=1 Qφ(θl)

Qφ(θi)

θi

∏Ma+1
l=1,l 6=i(θl − θi)

Ma+1∑

j=1,j 6=i

1

on−1
j

1

q + pz2oj

Qφ(θj)

θj

∏Ma+1
l=1,l 6=i,j(θl − θj)

.

(56)
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Note that, for p > 0 and n = 1, . . . , K, we have that

Ma+1∑

j=1,j 6=i

1

on−1
j

1

q + pz2oj

Qφ(θj)

θj

∏Ma+1
l=1,l 6=i,j(θl − θj)

= (−1)Ma

Ma+1∑
j=1

1

on−1
j

1

q + pz2oj

(θi − θj)Qφ(θj)

θj

∏Ma+1
l=1,l 6=j(θj − θl)

= (−1)Ma

[
θi

Ma+1∑
j=1

1

on−1
j

1

q + pz2oj

1

θj

Resoj

1

x− (q + pz2x)φ
(
w + µ(1− z1x)

)

−
Ma+1∑
j=1

1

on−1
j

1

q + pz2oj

Resoj

1

x− (q + pz2x)φ
(
w + µ(1− z1x)

)
]

= (−1)Ma+1
(
θi(f(α) + R) + g(α)

)
,

where the last equality follows for p > 0 from the Inside-Outside property of the
integrands of f(α) and g(α) given in (40) and (41),

R = Resw+µ
µz1

1

xn−1

1

q + pz2x

1

w + µ(1− z1x)

1

x− (q + pz2x)φ
(
w + µ(1− z1x)

)

= − (µz1)
n

(w + µ)n−1

1

qµz1 + p(w + µ)z2

1

(w + µ)(1− pz2)− qµz1

. (57)

Substituting (53) and (56) into (51) yields

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
=

(
(w + µ)(1− pz2)− qµz1

)(
R + f(α) +

g(α)I(α)

h(α)

)
,

where I(α) is given in (43), which completes the proof. ¤

Remark 3. We emphasize that Proposition 2 extends the result of Rosenlund [13]
on the G/M/1/K in two ways. First, it gives the four variate joint transform of Bn,
Sn, Lc

n, and Lo
n, for the case when n ≥ 1. Second, it allows the dropping of customers

even when the queue is not full. Note that in the particular case with n = 1 and
p = 1 − q = 0, we have that f(α) = 0, g(α) = 1, and R = −1/

(
w + µ(1 − z1)

)
.

Inserting these values into (38) yields that

E
[
e−wBnzSn

1 z
Lc

n
2 z

Lo
n

3

]
=

µz1

∑Ma+1
i=1

1−z3oi

oK
i

1−φ(w+µ(1−z1oi))
w+µ(1−z1oi)

Qφ(θi)∏Ma+1
l=1,l6=i θl−θi∑Ma+1

i=1
1

oK
i

Qφ(θi)∏Ma+1
l=1,l6=i θl−θi

=

∫
Dα

µz1(1−z3x)
xK

1−φ(w+µ(1−z1x))
w+µ(1−z1x)

dx
x−φ(w+µ(1−z1x))∫

Dα

1−z3x
xK

dx
x−φ(w+µ(1−z1x))

.

We note that the last equation is in agreement with (11) in [13].
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3. Discussion: non-distinct roots

Until now we have assumed that the roots of the equations in (14) and (39) are
distinct. We shall now relax these assumptions and show that the results in Propo-
sitions 2 and 4 still hold. In the following, we shall focus on extending the result in
Proposition 2. Similarly this can be done for Proposition 4.

Let consider that ri+l = ri + lε, ε > 0, i ∈ {1, . . . , Ms + 1} and l = 0, . . . , L − 1,
and take the limit in our final result for ε → 0. This means that ri is a root of
multiplicity L. In order to show that the results in Proposition 2 hold in this case,
it is readily seen that one needs to prove that

Resri

1

xK−1

1

qx + pz2 − z3

1

x− z1ξ(w + λ(1− qx− pz2))

= lim
ε→0

L−1∑

l=0

1

rK−1
i+l

1

qri+l + pz2 − z3

Q(ρi+l)∏Ms+1
j=1,j 6=i+l(ρi+l − ρj)

. (58)

First, note that when ri is a root of multiplicity L the complex residue reads

Resri

1

xK−1

1

qx + pz2 − z3

1

x− z1ξ(w + λ(1− qx− pz2))

=
1

(L− 1)!

dL−1

dxL−1

(
1

xK−1(qx + pz2 − z3)

(x− ri)
L

x− z1ξ(w + λ(1− qx− pz2))

)∣∣∣∣
x=ri

=
1

(−λq)L−1(L− 1)!

dL−1

dxL−1

(
1

xK−1(qx + pz2 − z3)

Q(ρ)∏Ms+1
j=1,j 6=i,··· ,i+L−1(ρ− ρj)

)∣∣∣∣
x=ri

=
1

(−λq)L−1(L− 1)!
lim
ε→0

1

εL−1

L−1∑

l=1

(
(

L− 1
l

)
(−1)L−1−l

(ri + lε)K−1(q(ri + lε) + pz2 − z3)

× Q(ρi − λqlε)∏Ms+1
j=1,j 6=i,··· ,i+L−1(ρi − λqlε− ρj)

)
, (59)

where ρ = w + λ(1 − qx − pz2), ρi = w + λ(1 − qri − pz2), and the last equality
follows from the following identity for the analytical function f(x) around x0:

dn

dxn
f(x)

∣∣∣∣
x0

= lim
ε→0

1

εn

n∑
i=0

(
n
i

)
(−1)n−if

(
x0 + iε

)
.

Note that the previous equation follows right away using the Taylor series of f(x0+iε)
around x0 and the binomial series of (x− 1)n and its derivatives.
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The r.h.s. of (58) rewrites

lim
ε→0

L−1∑

l=0

1

rK−1
i+l

1

qri+l + pz2 − z3

Q(ρi+l)∏Ms+1
j=1,j 6=i+l(ρi+l − ρj)

= lim
ε→0

L−1∑

l=0

1

(ri + lε)K−1

1

q(ri + lε) + pz2 − z3

Q(ρi − λqlε)∏Ms+1
j=1,j 6=i+l(ρi − λqlε− ρj)

, (60)

where,

Q(ρi + lε0)∏Ms+1
j=1,j 6=i+l(ρi + lε0 − ρj)

=
(−1)L−1−lQ(ρi + lε0)

εL−1
0 l!(L− 1− l)!

∏Ms+1
j=1,l 6=0,··· ,L−1(ρi + lε0 − ρj)

=

(
L− 1

l

)

(L− 1)!

(−1)L−1−lQ(ρi + lε0)

εL−1
0

∏Ms+1
j=1,l 6=0,··· ,L−1(ρi + lε0 − ρj)

,

with ε0 = −λqε. Inserting the last equation into (60) yields that the r.h.s. and
l.h.s. of (58) are equal, which completes the proof.

Appendix

M(i, 1) is an Ms-by-Ms matrix of j-th row equal to
(
ξ1(ρj), · · · , ξMs(ρj)

)
for j =

1, · · · ,Ms +1 and j 6= i. Note that ξ(ρ) is a linear combination of ξ1(ρ), · · · , ξMs(ρ),
and it is a rational function with denominator, Q(ρ), of degree d = Ms and numer-
ator of degree < d. Moreover, ξi(ρ), i = 1, · · · ,Ms, are also rational functions with
denominator of degree di ≤ Ms and numerator of degree < di.

Lemma 4.

det
(
M(i, 1)

)
= C

∏Ms

j=1,j 6=i

∏Ms+1
k=j+1,k 6=i(ρk − ρj)∏Ms+1

j=1,j 6=i Q(ρj)
, (61)

where C is a constant.

Proof. Note that Q(ρ) is the common denominator of ξi(ρ), i = 1, · · · ,Ms, which
yields

det
(
M(i, 1)

)
= det

(
P(ρ1, . . . , ρMs+1)

) Ms+1∏

j=1,j 6=i

1

Q(ρj)
,

where

P(ρ1, . . . , ρMs+1) =




P 1(ρ1) . . . PMs(ρ1)
...

...
P 1(ρi−1) . . . PMs(ρi−1)
P 1(ρi+1) . . . PMs(ρi+1)

...
...

P 1(ρMs+1) . . . PMs(ρMs+1)




,



BUSY PERIOD ANALYSIS OF THE LEVEL DEPENDENT PH/PH/1/K QUEUE 23

where P i(ρ), i = 1, · · · , Ms, are polynomials of degree < Ms. Note that P i(ρ) 6=
P j(ρ), i 6= j. Therefore, we deduce that

det
(
P(ρ1, . . . , ρMs+1)

)
= CV(ρ1, . . . , ρMs+1), (62)

where C is the determinant of the matrix with (j, l)-entry equal to the coefficient of
wj−1 of P l(w), and V(ρ1, . . . , ρMs+1) is the Vandermonde matrix:

V(ρ1, . . . , ρMs+1) =




1 ρ1 . . . (ρ1)
Ms

...
...

1 ρi−1 . . . (ρi−1)
Ms

1 ρi+1 . . . (ρi+1)
Ms

...
...

1 ρMs+1 . . . (ρMs+1)
Ms




,

It is well known that, see, e.g., [5],

det
(
V(ρ1, . . . , ρMs+1)

)
=

Ms∏

j=1,j 6=i

Ms+1∏

k=j+1,k 6=i

(ρk − ρj).

Substituting the latter equation into (62) completes the proof. ¤
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