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Abstract

In this paper we consider a single-server, cyclic polling system with switch-over times and
Poisson arrivals. The service disciplines that are discussed, are exhaustive and gated service.
The novel contribution of the present paper is that we consider reneging of customers at polling
instants. In more detail, whenever the server starts or ends a visit to a queue, part of the customers
waiting in each queue leave the system before having received service. The probability that a
certain customer leaves the queue, depends on the queue in which the customer is waiting, and
on the location of the server. We show that this system can be analysed by introducing customer
subtypes, depending on their arrival periods, and keeping track of the moment when they abandon
the system. In order to determine waiting time distributions, we regard the system as a polling
model with varying arrival rates, and apply a generalised version of the distributional form of
Little’s law. The marginal queue length distribution can be found by conditioning on the state of
the system (position of the server, and whether it is serving or switching).

Keywords: Polling, reneging, varying arrival rates, queue lengths, waiting times

1 Introduction

A polling system is a queueing system that consists of multiple queues being served by one server,
generally in a fixed, cyclic, order. There is a vast literature on polling systems, motivated by many
real-life applications. These applications are frequently found in production environments, where one
machine produces different part types. Typically, after the production of several parts of the same
type, the machine is reconfigured and starts producing parts of the next type. Performance measures
of interest are, e.g., the mean throughput of the machine, the number of different product orders
that are waiting to be processed, and the mean order lead time (i.e., the time between the placement
of the order and the completion of the last item in the order). Other typical application areas of
polling systems are telecommunication, where several protocols use a round-robin principle for the
communication of data packets between multiple devices, and transportation. We recommend surveys
of, e.g., Takagi [15], Levy and Sidi [12] and Vishnevskii and Semenova [16], for a better overview of
applications of polling systems, and techniques to analyse them.
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In the present paper we study synchronised reneging in polling systems. In our model, some of
the customers in any queue might grow impatient and prematurely abandon the system. However,
customers are only allowed to leave their queue in a synchronised manner, at specific moments. We
study the situation in which these moments are the visit beginnings and completions to any queue.
Reneging has hardly been studied in existing literature on polling systems. The only related work is
by Vishnevsky and Semenova [17] who study a two-queue polling system with exponential service
times and exhaustive service. In their model, each arriving customer activates a timer which indicates
the patience of the customer. When this time has elapsed before the customer is taken into service,
the customer abandons the system. They illustrate how the Power-series algorithm can be used to
find the equilibrium state probabilities, but no explicit performance measures are computed. Much
more work has been done on vacation systems, which can be considered as polling systems consisting
of only one queue. The service discipline is usually exhaustive, which means that a vacation starts
immediately after the service of the last customer in the system is completed. Altman and Yechiali
[2] study M/G/1 and M/M/c queues with server vacations, and customers growing impatient while
the server is away. Zhang et al. [19] study a similar system, but with an M/M/1/N queue. Their
model also includes balking, which means that customers may decide not to enter the system at all,
depending on the number of customers present in the queue. Madan [13] studies a system where server
vacations may start at arbitrary moments, even when customers are being served or when the system
is idle. Whenever a vacation starts, a random number of customers abandons the system immediately.
Another type of synchronised reneging is studied by Adan et al. [1], who consider a model where
each customer has the same probability of abandoning the system at synchronised reneging epochs.
They consider a queueing system with server vacations that start as soon as the queue becomes empty,
distinguishing between two cases. In the first case, customers leave the queue at visit beginnings only,
whereas in the second case impatient customers also abandon at specified, synchronised moments
during the server vacation. The model under consideration in the present paper is based on the first
case, but we extend the setting to a polling system, which has multiple visit beginnings and endings.
Synchronised reneging takes place at all of these epochs. Although our model is based on [1], our
approach is different. Our approach is based on a polling model with smart customers, cf. [3], and
has two advantages. Firstly, it is now possible to study more than just the marginal queue length
distribution (e.g., the cycle time and waiting times), and secondly, we can study the gated service
discipline as well. In a polling system with smart customers, the arrival rates of the different customer
types depend on the state of the server, where state is defined as a combination of its location, and
whether it is working or switching. The model with smart customers is subsequently used to determine
the Laplace-Stieltjes Transform (LST) of the waiting time distribution of each customer type. This
LST is determined by application of a generalised version of the distributional form of Little’s law
to the joint queue length distribution at departure epochs of customers that have not abandoned the
system prematurely, which means that this waiting time is determined only for customers that are
actually served. To determine the Probability Generating Function (PGF) of the marginal queue length
distribution of each customer type, we do need to take into account the impatient customers that
abandon the system before being served. This requires a different approach, as will be shown later in
this paper.

The structure of the present paper is as follows. In the next section we describe the model and the
notation in more detail. In Section 3 we introduce an alternative model with smart customers that
is used to determine the cycle time and waiting time of served customers in the original model. The
stability condition is also presented in this section. The marginal queue length distributions are studied
in Section 4, because this requires a different approach. Section 5 discusses a special case of the model
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under consideration, a polling system with only one queue and exhaustive service. This queueing
system with server vacations, has been studied in [1]. We show that the queue length PGF obtained in
Section 4 agrees with their result, and we mention some further results that have not been discussed
in [1], like the cycle time and sojourn times of all customers, which all reduce to elegant expressions
when the system consists of only one queue. The last section discusses some numerical examples to
illustrate typical features of a polling model with synchronised reneging at polling instants.

2 Model and notation

The polling model under consideration contains N queues, Q1, . . . , QN . These queues are served by
one server in a fixed, cyclic order. The time that is required to switch from Qi to Qi+1 is denoted by Si ,
which is called a switch-over time, with LST σi (·). Throughout the paper, all indices are modulo N , so
QN+1 refers to Q1 and so on. The arrival process of customers in Qi , denoted by type i customers, is
a Poisson process with parameter λi . The service time of a type i customer is denoted by Bi , with LST
βi (·). The switch-over times, interarrival times and service times are all assumed to be independent
of each other. The service discipline of each queue determines when the server switches to the next
queue. The following property, which is defined in [14] and [9], plays a key role in the analysis of
polling systems.

Property 2.1 If the server arrives at Qi to find ki customers there, then during the course of the
server’s visit, each of these ki customers will effectively be replaced in an i.i.d. manner by a random
population having probability generating function hi (z1, . . . , zN ), which can be any N -dimensional
probability generating function.

Performance measures, like queue length distributions and waiting times, can be determined for
polling systems with all queues satisfying Property 2.1, whereas only very few, exceptional, polling
systems can be analysed if the service disciplines do not satisfy this property. In the present paper
we discuss the two most common service disciplines satisfying this branching property, exhaustive
and gated service. A queue with exhaustive service is served until it is completely empty. In a
queue with gated service only those customers are served, that are present at the beginning of a visit
to this queue. The PGF hi (z1, . . . , zN ) in Property 2.1 is βi

(∑N
j=1 λ j (1 − z j )

)
for gated service,

and πi
(∑

j 6=N λ j (1 − z j )
)

for exhaustive service, where πi (·) is the LST of a busy period distri-
bution in an M/G/1 system with only type i customers, so it is the root in (0, 1] of the equation
πi (ω) = βi (ω + λi (1− πi (ω))), ω ≥ 0 (cf. [7], p. 250). Define θi (·) as the LST of the time that the
server spends at Qi due to the presence of one customer there. For gated service θi (·) = βi (·), and for
exhaustive service θi (·) = πi (·).

A cycle consists of the visit times of all queues, denoted by V1, . . . , VN , and the switch-over times
S1, . . . , SN . The distribution of the length of one cycle depends on the starting point of this cycle. We
use the notation Ci for the time between two successive visit beginnings to Qi , with LST γi (·), and C∗i
for the time between two successive visit completions to Qi , with LST γ ∗i (·). When studying a queue
with gated service, it turns out that Ci plays an important role, whereas C∗i is used in the analysis of
queues receiving exhaustive service. The intervisit time Ii is the time between a visit completion of
Qi and the next visit beginning at Qi .

The model discussed in the present paper is different from models in existing literature because cus-
tomers grow impatient and may decide to leave the waiting line before actually being served. This is
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called reneging. The moments at which customers are allowed to leave the system, are only those mo-
ments when a new visit or switch-over time starts. For this reason, we refer to this model as a polling
model with synchronised reneging at polling instants. Now we give a more formal description. As
stated before, a cycle consists of the periods V1, S1, . . . , VN , SN . Now let P ∈ {V1, S1, . . . , VN , SN }.
At the moment that P starts, each customer waiting in Qi immediately leaves the system with proba-
bility p(P)i , i = 1, . . . , N . We denote the probability that a customer stays by q(P)i = 1 − p(P)i . The
difficulty in the analysis of this model, is that customers in a certain queue may leave the system at
more than just one occasion. We use different ways to circumvent this problem in order to find the
performance measures of interest. An important part in the analysis, is the fact that we artificially split
each visit time and switch-over time into two parts, a and b. Visit time Vi is split into Via and Vib.
We consider Via as the subperiod in which all the customers abandon the system, right before the start
of the actual service of the type i customers, which takes place during Vib. So during Via , first each
type 1 customer abandons the system with probability p(Vi )

1 , followed by the type 2 customers, and so
on, until the reneging of the type N customers. This requires no time, so E[Via] = 0. During Vib the
service of the type i customers that remain in the system takes place, so E[Vib] = E[Vi ]. Similarly,
the switch-over time Si is also split into Sia and Sib, with E[Sia] = 0, and E[Sib] = E[Si ]. During Sia

the reneging of the customers that abandon the system before the beginning of Si takes place. We need
this way of looking at the system, because the queue lengths at the beginning of Via are different from
the queue lengths at the beginning of Vib (and the same holds for the switch-over times). In fact, one
can regard Via , for i = 1, . . . , N , as separate visit periods during which subsequently type 1, . . . , N
customers are served with probability p(Vi )

1 , . . . , p(Vi )
N (or probability p(Si )

1 , . . . , p(Si )
N for Sia), with all

service times equal to 0.

3 Cycle time, visit times and waiting time distributions

In the present section we study the LSTs of the cycle time distribution, visit time distributions, and
of the waiting time distribution of each customer type. The section ends with a note on the stability
condition of the model. The waiting time of a customer is the time between the moment of arrival,
and the moment that the customer is taken into service. The waiting time is only determined for
customers that have not prematurely abandoned the system. The time that all, including reneging,
customers spend in the system, requires a different approach and is not discussed in detail in the
present paper. We only show in an example in Section 5 how this can be done.

In this section we introduce a different way of looking at the system. Obviously, the length of a
visit Vi is solely determined by those type i customers that have not abandoned the system at any
of the moments where this had been possible. A logical consequence is that only customers that are
eventually served, contribute to the cycle time and determine whether the system is stable or not. This
observation forms the basis of the analysis in this section. If we remove reneging customers from the
system and focus on the remaining customers only, we can show that the system can be viewed as a
polling system where the arrival rates of the N customer types depend on the state of the server, i.e.,
its location and whether it is serving or switching. This type of model is called a polling system with
smart customers, introduced in [5], and analysed in more detail in [3]. The present section uses results
from these papers and applies them to a polling model with reneging at polling instants.

We start by introducing the joint queue length PGF at the beginning of all subperiods, denoted by
L̃B(P)(z1, . . . , zN ), where subperiod P ∈ {V1a, V1b, S1a, S1b, . . . , VNa, VNb, SNa, SNb}. The PGFs of
the joint queue length distributions at the beginnings of the various subperiods in the cycle can be
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related to each other in the following way:

L̃B(Vib)
(z) = L̃B(Via)

(
q(Vi )

1 z1 + p(Vi )
1 , . . . , q(Vi )

N zN + p(Vi )
N

)
, (3.1)

L̃B(Sia)
(z) = L̃B(Vib)

(
z1, . . . , zi−1, hi (z), zi+1, . . . , zN

)
, (3.2)

L̃B(Sib)
(z) = L̃B(Sia)

(
q(Si )

1 z1 + p(Si )
1 , . . . , q(Si )

N zN + p(Si )
N

)
, (3.3)

L̃B(V(i+1)a)
(z) = L̃B(Sib)

(z) σi
( N∑

j=1

λ j (1− z j )
)
, (3.4)

where we use the shorthand notation z for the vector (z1, . . . , zn). Successive substitution leads to
a recursive expression for the joint queue length PGF at an arbitrary polling epoch. In, e.g., [14] it
is discussed how this recursive expression leads to the PGF of the joint queue length distribution at
polling epochs, written as an infinite product. The recursive equation itself can be used to compute the
moments of this joint queue length distribution explicitly. For now, we are more interested in a nice
property of the Poisson arrival processes. During the actual visit period Vib, the type i customers that
have not abandoned the system are served. For the moment, assuming exhaustive service, we focus on
the end of Vi , when there are no type i customers present in the system. Then the PGF of the number
of type i customers present at the end of Si (which coincides with the beginning of Vi+1) is

L̃B(V(i+1)a)
(1, . . . , 1, zi , 1, . . . , 1) = σi

(
λi (1− zi )

)
.

Each of these customers abandons the system before the start of Vi+1 with probability p(Vi+1)
i , so the

PGF of the number of type i customers that are still in the system at the beginning of Vi+1 is:

L̃B(V(i+1)b)
(1, . . . , 1, zi , 1, . . . , 1) = L̃B(V(i+1)a)

(1, . . . , 1, q(Vi+1)
i zi + p(Vi+1)

i , 1, . . . , 1)

= σi
(
λi (1− q(Vi+1)

i zi − p(Vi+1)
i )

)
= σi

(
λi q

(Vi+1)
i (1− zi )

)
.

This short example illustrates that, as far as the joint queue lengths at polling epochs is concerned,
and only focussing on the customers that did not abandon the system prematurely, we can view the
system as a polling model with Poisson arrivals, but with varying arrival rates (in the example, we
have that the new arrival rate is λi q

(Vi+1)
i during Si ). Just before the start of Si+1 each type i customer

in the system reneges with probability p(Si+1)
i . This implies that a customer that arrived during Si

is still in the system at the beginning of Si+1 with probability q(Vi+1)
i q(Si+1)

i . Hence, the number of
type i customers present at the beginning of Si+1 is the same as in a polling system without reneging,
but with arrival rates q(Vi+1)

i q(Si+1)
i λi during Si , and q(Si+1)

i λi during Vi+1. This observation makes it
possible to analyse the polling system with reneging by regarding a dual system, without reneging but
with varying arrival rates. For the remainder of this section, we consider this dual system. A system
with arrival rates that depend on the location of the server, is studied in [3], where it is referred to as a
polling system with smart customers. We apply their results and adopt their notation. Let λ(P)i denote
the arrival intensity of type i customers during period P ∈ {V1, S1, . . . , VN , SN }. In order to create a
similar system as the original polling system with reneging, we define these arrival intensities in the
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following way:

λ
(Si−1)
i = λi q

(Vi )
i ,

λ
(Vi−1)
i = λi q

(Si−1)
i q(Vi )

i ,

λ
(Si−2)
i = λi q

(Vi−1)
i q(Si−1)

i q(Vi )
i ,

... (3.5)

λ
(Si−N )
i = λi q

(Vi )
i

N−1∏
j=1

q(Vi− j )

i q(Si− j )

i ,

λ
(Vi−N )
i =

{
λi
∏N

j=1 q(Vi− j )

i q(Si− j )

i , if Qi receives gated service,
λi , if Qi receives exhaustive service.

The only difference for gated service, compared to exhaustive service, is that type i customers arriving
during Vi have to wait until the next visit period of type i customers before they are served. Thus,
type i customers that arrive during Vi , abandon the system before the start of Si with probability p(Si )

i ,
whereas for exhaustive service all of these customers would be served during the visit period in which
they arrive.

Cycle time

The cycle time distribution of this dual system is the same as in the original system with reneging.
Theorem 5.1 from [3], applied to the dual system with arrival intensities as defined in (3.5), gives the
LSTs of distributions of the cycle time C1 and the intervisit time I1:

E
[
e−ωC1

]
= L̃B(V1b)

(
θ1(ψ

(V1)(ω)), . . . , θN (ψ
(VN )(ω))

) N∏
i=1

σi
(
ψ (Si )(ω)

)
,

E
[
e−ωI1

]
= L̃B(S1b)

(
1, θ2(ψ

(V2)(ω)), . . . , θN (ψ
(VN )(ω))

) N∏
i=1

σi
(
ψ (Si )(ω)

)
,

where the functions ψ (P)(ω) are defined in the following, recursive way:

ψ (VN )(ω) = ω,

ψ (Vi )(ω) = ω +

N∑
k=i+1

λ
(Vi )
k

(
1− θk(ψ

(Vk )(ω))
)
, i = N − 1, . . . , 1,

ψ (SN )(ω) = ω,

ψ (Si )(ω) = ω +

N∑
k=i+1

λ
(Si )
k

(
1− θk(ψ

(Vk )(ω))
)
, i = N − 1, . . . , 1.

Remark 3.1 Specifically for exhaustive and gated service, more compact expressions for the LSTs
of the cycle time and intervisit time distributions are found in Theorem 5.2 in [3]. These expressions
follow from an analysis based on subtypes of customers, where arrivals during the different periods
within a cycle mark the customer subtypes. E.g., a type i (V j ) customer is a type i customer that arrives
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during V j . Using the analysis based on customer subtypes, we can express the LSTs of the cycle time
and intervisit time in terms of the PGF of the joint queue length distribution at polling instants of all
customer subtypes, which we denote here as L̃B(Vi )

(
z(V1)

1 , . . . , z(SN )
1 , . . . , z(V1)

N , . . . , z(SN )
N

)
. We do not

repeat the complete analysis on how to obtain this PGF, but instead refer to Section 5 of [3].

For exhaustive service, the LSTs of the distributions of C∗i and Ii are:

E
[
e−ωC∗i

]
= L̃B(Vi )

(
1, . . . , 1, πi (ω)−

ω

λ
(V1)
i

, . . . , πi (ω)−
ω

λ
(SN )
i

, 1, . . . , 1
)
, (3.6)

E
[
e−ωIi

]
= L̃B(Vi )

(
1, . . . , 1, 1−

ω

λ
(V1)
i

, . . . , 1−
ω

λ
(SN )
i

, 1, . . . , 1
)
. (3.7)

If Qi receives gated service, the LST of the cycle time distribution Ci , and the LST of the intervisit
time distribution Ii , are given by:

E
[
e−ωCi

]
= L̃B(Vi )

(
1, . . . , 1, 1−

ω

λ
(V1)
i

, . . . , 1−
ω

λ
(SN )
i

, 1, . . . , 1
)
,

E
[
e−ωIi

]
= L̃B(Vi )

(
1, . . . , 1, 1, 1−

ω

λ
(S1)
i

, . . . , 1−
ω

λ
(SN )
i

, 1, . . . , 1
)
.

Visit time

The LSTs of the distributions of the visit times Vi , i = 1, . . . , N , can directly be determined for
any branching-type service discipline using the function θi (·), and the joint queue length distribution
(without subtypes) at the beginning of subperiod Vib:

E[e−ωVi ] = L̃B(Vib)
(1, . . . , 1, θi (ω), 1, . . . , 1). (3.8)

The mean cycle time E[C] and mean visit times E[Vi ], which are needed later in this paper, can be
obtained by differentiating the corresponding LSTs. A numerically more efficient way to compute
them, is using MVA for polling systems with smart customers, which is described in more detail
in [3].

Waiting time

The waiting time of customers in the dual system also has the same distribution as the time that
customers in the original system have to wait before being taken into service (not taking the impa-
tient customers into account). Note that the marginal queue length distribution at departure epochs
of customers that did not renege, is not the same as the marginal queue length distribution at arbi-
trary epochs, because the arrival intensities change during the cycle. This implies that we cannot use
PASTA, and the standard distributional form of Little’s law, as discussed by, e.g., Keilson and Servi
[11], cannot be used to obtain the waiting time distribution from the queue length distribution. What
we can use though, is a slightly generalised version of the distributional form of Little’s law, that can
be applied to the joint queue length distribution at departure epochs, as discussed in the proof of The-
orem 4.3 in [3]. We mention the result here, but refer to [3], Section 4, for details on how to obtain the
PGF of the joint queue length distributions of all type i customer subtypes at a departure epoch from

Qi , E

[(
z(V1)

i

)D
(V1)
i
· · ·

(
z(SN )

i

)D
(SN )
i

]
. Here, D(P)

i is the number of type i (P) customers left behind at

a departure epoch from Qi .
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The LST of the distribution of the waiting time Wi of a type i customer, i = 1, . . . , N , is:

E
[
e−ωWi

]
=

1
βi (ω)

E

(1−
ω

λ
(V1)
i

)D
(V1)
i

· · ·

(
1−

ω

λ
(SN )
i

)D
(SN )
i

 . (3.9)

In the next section we study the queue lengths of all customers that enter the system, including those
that renege before the start of their service.

Stability condition

The stability condition of a polling model with reneging at polling instants, is the same as in the model
with smart customers, discussed in the present section. It is clear that customers leaving the system
without being served, do not contribute to the workload of the server. The stability condition of a
model with smart customers is discussed in [3, 6]. In [6] it is shown that a necessary and sufficient
condition for ergodicity is that the Perron-Frobenius eigenvalue of the matrix R − IN should be less
than 0, where IN is the N × N identity matrix, and R is an N × N matrix containing elements
ρi j := λ

(V j )

i E[Bi ].

4 Queue length distributions

In the previous section, we divided each visit period and switch-over period into two subperiods,
part a where impatient customers decide to abandon the system, and part b, where the server is
actually serving (or switching in the case of a switch-over period). The PGFs of the joint queue
length distributions at the beginnings of all these subperiods are given implicitly by (3.1)–(3.4). In
the present section we show how the marginal queue length distribution at an arbitrary epoch can be
expressed in terms of these PGFs. We denote the marginal queue length of a type i customer by L i ,
i = 1, . . . , N . The PGF of the distribution of L i is determined by conditioning on the subperiod dur-
ing which the queue is observed. The number of type i customers at an arbitrary moment in subperiod
P ∈ {V1a, V1b, S1a, S1b, . . . , VNa, VNb, SNa, SNb} is denoted by L (P)i . By conditioning on P , we have

E[zL i ] =

N∑
j=1

(
E[V j ]

E[C]
E
[

zL
(V jb)
i

]
+

E[S j ]

E[C]
E
[

zL
(S jb)
i

])
, i = 1, . . . , N , (4.1)

where we used that E[V ja] = E[S ja] = 0, E[V jb] = E[V j ], and E[S jb] = E[S j ].

Since S j , j = 1, . . . , N and V j , j 6= i , are non-serving intervals for customers of type i , we use a
standard result (see, e.g., [4]) to find the PGFs of L (V jb)

i and L (S jb)

i respectively:

E
[

zL
(V jb)
i

]
=

E
[

zLB
(V jb)
i

]
− E

[
zLB

(S ja )
i

]
(1− z)

(
E[LB(S ja)

i ] − E[LB(V jb)

i ]

) , i = 1, . . . , N ; j 6= i, (4.2)

E
[

zL
(S jb)
i

]
=

E
[

zLB
(S jb)
i

]
− E

[
zLB

(V( j+1)a )
i

]
(1− z)

(
E[LB

(V( j+1)a)

i ] − E[LB(S jb)

i ]

) , i, j = 1, . . . , N , (4.3)
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where LB(V jb)

i and LB(S ja)

i are the number of type i customers at respectively a visit beginning and com-
pletion at Q j . Their PGFs are given by L̃B(V jb)

(1, . . . , 1, z, 1, . . . , 1) and L̃B(S ja)
(1, . . . , 1, z, 1, . . . , 1),

where z is the element at position i . Differentiation of these PGFs and substituting z = 1 gives the
mean values. Similarly, LB(S jb)

i and LB
(V( j+1)a)

i are the number of type i customers at respectively the
beginning and ending of S j .

It remains to compute E
[
zL

(Vi )
i

]
, i = 1, . . . , N , i.e. the PGF of the number of type i customers at

an arbitrary epoch within Vi . In order to do this, we temporarily look at a polling system without
reneging, and focus on type i customers. As far as the marginal queue length of type i customers is
concerned, the system can be viewed as a vacation queue where the intervisit time Ii corresponds to
the server vacation. In this “ordinary” polling model, we can use the Fuhrmann-Cooper decomposition
[10], which states that

E[zL i ] =
(1− λiE[Bi ])(1− z)βi

(
λi (1− z)

)
βi
(
λi (1− z)

)
− z

×

E
[
zLB

(Si )
i

]
− E

[
zLB

(Vi )
i

]
(1− z)

(
E[LB(Vi )

i ] − E[LB(Si )
i ]

) , (4.4)

where LB(Vi )
i and LB(Si )

i denote the number of type i customers at respectively the beginning and
completion of Vi . The first part in this decomposition is the PGF of the marginal queue length of an
M/G/1 queue with type i customers only. The second part, which is independent of the first, is the
PGF of the number of type i customers at an arbitrary epoch during the intervisit time Ii , which we
denote by E[zL

(Ii )
i ]. Now we focus on the visit and intervisit time of Qi separately, using the relation

E[zL i ] =
E[Vi ]
E[C]E[z

L
(Vi )
i ] +

E[Ii ]
E[C]E[z

L
(Ii )
i ]. Plugging this relation into (4.4), leads to:

E[zL
(Vi )
i ] =

1− λiE[Bi ]

λiE[Bi ]

z
(
1− βi (λi (1− z))

)
βi (λi (1− z))− z

×

E
[
zLB

(Si )
i

]
− E

[
zLB

(Vi )
i

]
(1− z)

(
E[LB(Vi )

i ] − E[LB(Si )
i ]

) . (4.5)

The second part of this decomposition is, again, the PGF of the number of customers at an arbitrary
moment during the intervisit time Ii . The first part can be recognised as the PGF of the queue length
of an M/G/1 queue with type i customers only, at an arbitrary epoch during a busy period.

Now we return to the model with synchronised reneging. The key observation is that during a visit
period, this system behaves exactly as a polling system without reneging. Equation (4.5) no longer
depends on anything that happens during the intervisit time, because this is all captured in LB(Vi )

i , the
number of type i customers at the beginning of a visit to Qi . This implies that (4.5) also holds for
the system considered in the present paper. The only difference is that the interpretation of (4.5) is
different. Obviously, the first part in (4.5) still is the PGF of the queue length of an M/G/1 queue at
an arbitrary epoch during a busy period. However, the last term can no longer be interpreted as the
PGF of the distribution of the number of type i customers at an arbitrary moment during the intervisit
time Ii . For this reason, the Fuhrmann-Cooper decomposition does not hold for a polling model with
reneging in general.

Substitution of (4.2), (4.3), and (4.5) in (4.1) gives the desired expression for the PGF of the marginal
queue length in Qi .
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Additional remarks

The marginal queue length distribution at an arbitrary epoch is given by (4.1). It is noteworthy that,
unlike in Section 3, we can use PASTA now because we focus on all customers - including the im-
patient ones. This implies that the marginal queue length distribution at arrival and departure epochs
of type i customers is also given by (4.1). It should be noted that, when studying the queue length
at departure epochs, we assume that reneging customers leave the system in order of arrival, even
though several of them might leave at the same reneging epoch. When looking at it this way, we do
not really have group departures, but consecutive departures that might take place during an interval
of zero length. Determining the LST of the sojourn time distribution of type i customers, including
those that abandon the system before being served, remains difficult. One cannot use the distribu-
tional form of Little’s law, because there are multiple occasions within a cycle during which a type i
customer might leave the system. In the present paper we do not show exactly how to compute the
sojourn time distribution of an arbitrary customer, because it requires a lot of bookkeeping. For each
customer type, one needs to keep track of when a customer entered the system, and at which point he
is going to leave the system. There are N customer types, entering the system during 2N subperiods,
and leaving the system at 2N + 1 occasions (2N reneging moments plus one visit period). This gives
a maximum of 2(2N + 1)N 2 customer subtypes, although it is determined by the service disciplines
in the different queues, which of these subtypes are actually needed. For all customer subtypes, the
joint queue lengths at departure moments have to be determined in order to find the sojourn time dis-
tributions. We only show how this is done for a vacation model, in Section 5. Although not applicable
in its distributional form, Little’s law can still be used to determine the mean sojourn time of a type i
customer, Ti , for i = 1, . . . , N :

E[Ti ] = E[L i ]/λi .

5 Vacation system with exhaustive service

This section discusses the special case N = 1 and exhaustive service in more detail. The results
obtained in the previous sections reduce to nice, compact expressions. When N = 1, there is only one
queue being served, and the switch-over time between successive visits is called a server vacation.
This model is studied in Adan et al. [1], where it is referred to as the Unique Abandonment Epoch
(UAE) model. In [1] only the queue length PGF is determined. The methods used in the present paper
also make it possible to find the LSTs of the cycle time and the waiting time distribution. Although it
is not discussed explicitly in this section, of course it is also possible to analyse the vacation system
with gated service.

We use the same notation as in the rest of the paper, which is slightly different from common notation
in vacation models. Since there is only one queue, the indices i = 1, . . . , N , are dropped. A vacation
is the switch-over period S with LST σ(·), whereas V denotes the visit period. The analysis in the
present section is a slightly more extended version of the one in the previous sections, because we aim
at finding the sojourn time of an arbitrary customer, including those that renege, as well. This requires
distinguishing not only between moments at which customers abandon the system, but also between
their arrival (sub)periods. Therefore, the cycle is divided into four subperiods: Va, V (S)

b , V (V )
b and S.

During Va the impatient customers abandon the system. All of these customers have arrived during S.
The remaining customers, that have also arrived during S, are served during V (S)

b . During V (V )
b , all

customers that have entered the system during V (S)
b , and newly arriving customers, are served until the

10



system is empty. Since the system is empty at the beginning of S, we do not split S into subperiods,
and we use the notation p for the probability that a customer abandons the system before being served,
and q = 1− p. The astute reader has noticed that we distinguish between three customer types. Type a
customers are those that abandon the system during Va , type b(S) customers are those that enter during
the vacation S without abandoning the system, type b(V ) customers enter during the visit period and
are always served. The advantage of considering both the arrival epoch and the departure epoch of
each customer type, is that it enables us to combine the techniques from Sections 3 and 4. The PGFs
of the joint queue length distributions, at the start of the four subperiods, are:

L̃B(S)(za, z(S)b , z(V )B ) = 1,

L̃B(Va)
(za, z(S)b , z(V )B ) = σ

(
pλ(1− za)+ qλ(1− z(S)b )

)
,

L̃B(V
(S)
b )
(za, z(S)b , z(V )B ) = σ

(
qλ(1− z(S)b )

)
,

L̃B(V
(V )
b )
(za, z(S)b , z(V )B ) = σ

(
qλ(1− β(λ(1− z(V )b )))

)
.

The LST of the cycle time C∗ follows from (3.6):

γ ∗(ω) = L̃B(V
(S)
b )
(1, π(ω)−

ω

qλ
, 1) = σ

(
ω + qλ(1− π(ω))

)
,

where, in (3.6), we use that L̃B(Vi )
(z) = L̃B(V

(S)
b )
(1, z(S)b , z(V )b ) is the joint queue length PGF at the visit

beginning of customers that did not renege. The mean cycle time and the mean visit time are:

E[C] =
1− pρ
1− ρ

E[S],

E[V ] =
qρ

1− ρ
E[S],

where ρ = λE[B]. In [1], the PGF of the marginal queue length distribution is obtained using similar
techniques as in Section 4. In this section we use a different approach, based on the joint queue
length distribution at departure epochs. This approach is similar to the one used in Section 3, but now
including the customers that renege from the system. We follow the steps taken by Borst [4], who
extends an idea of Eisenberg [8], to find the PGF of the joint distribution of the queue lengths and
state of the server at departure epochs, M (P)(za, z(S)b , z(V )B ). The state of the server is identified by the
subperiod P , which can be any of the three periods during which customers depart from the system,
Va, V (S)

b and V (V )
b .

M (Va)(za, z(S)b , z(V )B ) =
1

λE[C]
1

za − 1

(
L̃B(Va)

(za, z(S)b , z(V )B )− L̃B(V
(S)
b )
(za, z(S)b , z(V )B )

)
,

M (V (S)
b )(za, z(S)b , z(V )B ) =

1
λE[C]

β
(
λ(1− z(V )b )

)
z(S)b − β

(
λ(1− z(V )b )

) (L̃B(V
(S)
b )
(za, z(S)b , z(V )B )− L̃B(V

(V )
b )
(za, z(S)b , z(V )B )

)
,

M (V (V )
b )(za, z(S)b , z(V )B ) =

1
λE[C]

β
(
λ(1− z(V )b )

)
z(V )b − β

(
λ(1− z(V )b )

) (L̃B(V
(V )
b )
(za, z(S)b , z(V )B )− 1

)
.

The PGF of the joint queue length distribution at an arbitrary departure epoch is simply the sum of
these three PGFs. The PGF of the marginal queue length distribution at departure epochs, E[zLdeparture],
is obtained by substituting za = z(S)b = z(V )B = z:

E[zLdeparture] = M (Va)(z, z, z)+ M (V (S)
b )(z, z, z)+ M (V (V )

b )(z, z, z). (5.1)
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As noted before, we consider the departures during Va one by one, in order of arrival, although they
take place in a period of zero length. Because of this, we can use a simple up-and-down crossing
argument to argue that the marginal queue length distribution at departure epochs is the same as at
arrival epochs. Since we have Poisson arrivals with a constant rate, we learn from PASTA that it is
also the same as the marginal queue length distribution at an arbitrary moment.

The sojourn time of an arbitrary customer in a polling model with synchronised reneging has not
been discussed in the present paper because of the effort it takes to keep track of all customers and
their arrival and departure moments. For this vacation model, it is not too complicated though. It
requires applying the generalised distributional form of Little’s law, as discussed in [3], to the joint
queue length distribution at departure epochs. In this model it is slightly more complicated than in [3],
because we also have to distinguish between multiple epochs at which customers abandon the system.
The sojourn time of type a customers can be obtained by looking at the number of type a customers
that are left behind by a departing type a customer. The sojourn time of a type b customer (i.e., a
customer of type b(S) or b(V )) is determined by looking at the type b(S) and b(V ) customers that are left
behind. Each of these customer types has its own arrival rate, which is used in the substitution of the
distributional form of Little’s law. This leads to the following LST of the distribution of the sojourn
time T of an arbitrary customer:

E[e−ωT
] =M (Va)

(
1−

ω

pλ
, 1, 1

)
+ M (V (S)

b )
(
1, 1−

ω

qλ
, 1−

ω

λ

)
+ M (V (V )

b )
(
1, 1−

ω

qλ
, 1−

ω

λ

)
=

p(1− ρ)
1− pρ

1− σ(ω)
ωE[S]

+
q(1− ρ)
1− pρ

σ
(
ω
)
− σ

(
qλ(1− β(ω))

)(
qλ(1− β(ω))− ω

)
E[S]

β(ω)

+
1− ρ

1− pρ
σ
(
qλ(1− β(ω))

)
− 1(

λ(1− β(ω))− ω
)
E[S]

β(ω). (5.2)

The waiting time of customers that did not renege the system, is obtained in the same way, but without
taking into account the type a customers. We now take the sum of M (V (S)

b )(·) and M (V (V )
b )(·), and

divide by qλE[S]+λE[V ]
λE[C] , which is the probability that an arbitrary departure is of a type b customer, and

by β(·), to obtain the waiting time instead of the sojourn time. This leads to the following LST of the
waiting time of a type b customer:

E[e−ωWb ] =
λE[C]

qλE[S] + λE[V ]

(
M (V (S)

b )
(
1, 1−

ω

qλ
, 1−

ω

λ

)
+ M (V (V )

b )
(
1, 1−

ω

qλ
, 1−

ω

λ

)) 1
β(ω)

=
1

qE[S] + E[V ]

(
q
σ
(
ω
)
− σ

(
qλ(1− β(ω))

)
qλ(1− β(ω))− ω

+
σ
(
qλ(1− β(ω))

)
− 1

λ(1− β(ω))− ω

)
. (5.3)

6 Numerical examples

6.1 Example 1: a vacation model with gated service

In [1], a vacation model with exhaustive service and reneging at the visit beginning is studied. An
interesting aspect, depicted in a numerical example, is that the mean queue length, E[L], is not neces-
sarily only decreasing when the probability of reneging, p(V ), increases. When the vacation (or in the
terminology of the present paper, the switch-over time) is sufficiently large, there is a value of p(V )

for which E[L] has a minimum, and starts increasing again for higher reneging probabilities. The
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interpretation is that for high values of p(V ), the length of the visit period becomes relatively small
compared to the vacation length, and the overall mean queue length is primarily determined by the
customers accumulating during the vacation. An interesting question is whether this effect can be
influenced by the service discipline. In the present example, we study a vacation model with gated
service. We only regard exponentially distributed vacations. Although the coefficient of variation of
the vacation length influences the mean queue length (the higher the variation, the higher the mean
queue length), the effect of the reneging probability on the mean queue length is hardly influenced.
We compare a system having E[S] = 1 with a system where E[S] = 10. In both systems we take
λ = 1

2 and B is exponentially distributed with mean 1. In a vacation model with gated service, we have
two moments of abandonment: at the beginning of a visit period, and at the beginning of a vacation
period. Let p(V ) and p(S) be the probabilities that an arbitrary customer abandons the system at these
two moments of abandonment. In Figure 1 we show how the mean queue length depends on p(V )

and p(S). The first thing that we conclude from these pictures, is that in the system with E[S] = 1,
the mean queue length always decreases as p(V ) is increased, whereas the behaviour for E[S] = 10
may be non-monotonic, depending on the value of p(S). After studying this effect in more detail for
the more general model, with arbitrarily distributed service and switch-over times, we found that the
non-monotonic behaviour appears only for

p(S) >
1

E[S]

(
1
λ
+ E[Bres

]

)
+

1
2
(1− c2

S),

where Bres is a residual service time, with E[Bres
] = E[B2

]/2E[B], and c2
S is the squared coefficient

of variation of S. Since p(S) ≤ 1, the effect can only appear in our example, with exponentially
distributed service and switch-over times, when E[S] > 3. This effect also takes place if the system
has exhaustive service, as was noted in one of the examples studied in [1]. If we have exhaustive
instead of gated service in our numerical example, the threshold would be E[S] > 4.

0.0 0.2 0.4 0.6 0.8 1.0
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(a) E[S] = 1
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(a) E[S] = 10

Figure 1: Contours of the mean queue length in the vacation system, discussed in Subsection 6.1,
versus p(V ) and p(S). In (a) the mean switch-over time is 1, in (b) it is 10.
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The second observation, is that the influence of p(S) on E[L] becomes less and less as p(V ) is increas-
ing. In particular, when p(V ) = 1, all customers abandon the system at the beginning of the visit
period, which implies that the length of this visit period becomes 0 and a vacation is started immedi-
ately. Hence, the mean queue length E[L] is simply the mean queue length at an arbitrary time point
during the vacation.

6.2 Example 2: a polling model

In this example we study the impact of the reneging probabilities on the mean queue lengths in a two-
queue polling system. The service times of all customers, in both queues, are exponentially distributed
with mean 1. The arrival processes are Poisson with rates 1

10 for Q1 and 7
10 for Q2. We deliberately

choose an imbalanced system to study differences between a heavily and a lightly loaded queue. The
switch-over times are also exponentially distributed. We compare a system with small switch-over
times, E[Si ] = 1, with a system having larger switch-over times, E[Si ] = 10. Finally, two different
combinations of reneging probabilities are taken:

Case 1: p(V j )

i = p(S j )

i = pi , (6.1)

Case 2: p(Si )
i =

8
10

pi , p(Vi+1)
i =

6
10

pi , p(Si+1)
i =

4
10

pi , p(Vi )
i =

2
10

pi , (6.2)

for i, j = 1, 2. In Case 1, the reneging probabilities per customer type are the same for all reneging
moments. In Case 2, which might be considered as more realistic, the probabilities of reneging de-
crease as the moment of being served comes nearer. The parameters pi are varied, independently for
i = 1, 2, between 0 and 1. Furthermore, we study all possible combinations of gated and exhaustive
service for each queue. The results are depicted in Figures 2 – 5, where the mean queue lengths E[L1]

and E[L2] are plotted against p1 and p2. As expected, Q2 dominates the behaviour of the system,
because of its heavy load compared to Q1. For this reason, results are omitted for Q1 receiving ex-
haustive service, because they hardly deviate from the results where Q1 receives gated service. A
conclusion that can be drawn from a comparison between Figures 3 and 5, is that the lengths of the
switch-over times hardly influence the impact of p1 and p2 on the mean queue lengths if the reneg-
ing probabilities are decreasing as in Case 2. For constant reneging probabilities, as in Case 1, the
behaviour of the mean queue lengths changes when the mean switch-over times become larger. The
non-monotonic behaviour that is described in Example 1, is also visible in Figure 4. Higher values of
p2 may result in an increase in the mean number of customers in Q2, but also in Q1 if Q2 receives
gated service. Furthermore, it is interesting to observe in Figures 3 and 5 that in Case 2, both p1 and
p2 have a high impact on E[L1] and E[L2]. In contrast, for Case 1, the influence of p1 and p2 varies
per queue. E.g., Figures 2 and 4 illustrate that E[L2] is mainly influenced by p2, whereas E[L1] is
influenced by both parameters.
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Case 1: constant reneging probabilities, E[Si ] = 1
Q1 gated Q2 exhaustive
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Figure 2: Mean queue lengths in the polling system in Case 1 of Example 2, versus p1 and p2. The
reneging probabilities are constant, E[Si ] = 1.

Case 2: decreasing reneging probabilities, E[Si ] = 1
Q1 gated Q2 exhaustive
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Figure 3: Mean queue lengths in the polling system in Case 2 of Example 2, versus p1 and p2. The
reneging probabilities are decreasing, E[Si ] = 1.
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Case 1: constant reneging probabilities, E[Si ] = 10
Q1 gated Q2 exhaustive
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Figure 4: Mean queue lengths in the polling system in Case 1 of Example 2, versus p1 and p2. The
reneging probabilities are constant, E[Si ] = 10.

Case 2: decreasing reneging probabilities, E[Si ] = 10
Q1 gated Q2 exhaustive
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Figure 5: Mean queue lengths in the polling system in Case 2 of Example 2, versus p1 and p2. The
reneging probabilities are decreasing, E[Si ] = 10.
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7 Conclusions and topics for future research

In the present section we summarise our findings and conclusions, and discuss possible future exten-
sions of the model under consideration. We have extended some results on a vacation model with
synchronised reneging, as presented in [1], to a polling system consisting of multiple queues. Using
techniques from a polling model with varying arrival rates, depending on the server location (cf. [3])
we have been able to find the LST of the cycle time distribution, visit and intervisit time distributions,
and of the waiting time distribution of customers that get served eventually. An adaptation of these
techniques leads to the PGF of the marginal queue length distribution of all customers in each queue.
It also leads to the sojourn time distribution, but this requires lengthy, cumbersome computations that
have only been discussed for a system consisting of one queue.

Several research topics, beyond the scope of the present paper, are worth studying. An interesting
extension is to allow (synchronised) reneging at various epochs during switch-over and visit peri-
ods. Possibly, the analysis of the Multiple Abandonment Epochs (MAE) model in [1] (synchronised
reneging), and the analysis of Altman and Yechiali [2] (customers growing impatient during vaca-
tions) might be extended to polling models. Another extension, relevant from a practical point of
view, is to develop numerically more efficient algorithms to compute performance measures of in-
terest. In the present paper, we use the buffer occupancy method, but it would be more efficient to
extend the Mean Value Analysis (MVA) framework for polling systems (cf. [18]) to a polling model
with reneging at polling instants. In [1], as well as in [3], MVA has been used to find the mean queue
lengths. These two implementations should give a good indication of how to implement MVA for the
model discussed in the present paper. Note that difficulties in finding the sojourn time distribution do
not occur when studying the mean sojourn time, which can simply be found using Little’s law.
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