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Abstract

We consider a tree network of polling stations operating in discrete-time. Packets arrive

from external sources to the network according to batch Bernoulli arrival processes. We

assume that all nodes have a service discipline that is HoL-based. The class of HoL-based

service disciplines contains for instance the Bernoulli and limited service disciplines, and hence

also the classical exhaustive and 1-limited. We obtain an exact expression for the overall

mean end-to-end delay, and an approximation for the mean end-to-end delay of packets per

source. The study is motivated by Networks on Chips where multiple processors share a single

memory.

1 Introduction

In polling systems multiple queues share a single server, which leads to all kinds of research topics
in performance analysis, optimisation, etc. Polling models have many applications, for example
in telecommunications, transportation, healthcare, etc., and have been the subject of numerous
studies (for surveys, see [19, 20, 22]).

The main application that motivates this study is a Network on Chip (NoC). Networks on Chips
are an emerging paradigm for the connection of on-chip modules like processors and memories.
Such modules are traditionally connected via single buses, but because these buses cannot be used
by multiple modules simultaneously, communication difficulties arise as the number of modules
increases. Networks on Chips have been proposed as a solution (see [9]). In NoCs, routers are
used to transmit packets to their destination, so that multiple links can be used at the same time
and communication becomes more efficient.

In particular, we are motivated by a NoC where multiple masters (e.g., processors) share a
single slave (e.g., memory). Packets travel from the processors to the memory over a number of
routers. Each router has several queues sharing a single link connecting that router to the next.
Because the link can be seen as a server attending multiple queues, the router can be seen as a
polling station, and the network of routers thus as a network of polling stations.

Although polling systems have been studied extensively, few attempts have been made to
analyse networks of polling servers; one of the rare examples is a heavy-traffic study [13]. Recently,
the authors showed in [1] that a tree network of polling systems can be reduced to a single node,
while preserving some information on the mean end-to-end delay. This reduction will be discussed
in more detail in Section 2.1.

The mean end-to-end delay per source is an important measure for the performance of Networks
on Chips. For instance, if this delay is large, it means that processors have to wait a long time
before data can be written to or read from the memory, which in turn degrades the performance
of the processors.

In this paper, we obtain an exact expression for the mean end-to-end delay averaged over all
sources and an approximation of the mean end-to-end delay per source. The essential steps in
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this approximation are on the one hand the assumption that all streams passing through a certain
queue at a node have the same mean waiting time in that node, and on the other hand application
of the reduction result of [1].

In the approximation, we express the mean end-to-end delay per source in terms of the mean
waiting time (per queue) in single-station polling systems. Depending on the service disciplines
used, the mean waiting time in these single-station polling systems can either be determined
exactly or has to be approximated.

The reduction result is valid for the class of HoL-based service disciplines. This class contains
for instance the Bernoulli scheduling and mi-limited service disciplines. In this paper, we are
especially interested in polling stations with the 1-limited service discipline, because that discipline
will prove valuable for Networks on Chips.

This paper is organised as follows: The model is introduced in Section 2. In Section 3, we
derive an exact expression for the mean end-to-end delay averaged over all sources, and obtain the
approximation of the mean end-to-end delay per source. We perform a detailed simulation study
on the accuracy of the assumption that all streams passing through a certain queue at a node have
the same mean waiting time in that node in Section 4. The availability of single-station results
is discussed in more detail in Section 5. For trees with a symmetry property, our approximation
assumption becomes exact, as is discussed in Section 6. In Section 7 we combine the mean end-to-
end delay approximation of Section 3 with a single-station approximation of Section 5 and apply
these to a tree network model of Networks on Chips. We present our conclusions in Section 8.

2 Model

We consider a concentrating tree network operating in discrete time. An example is displayed in
Figure 1. All packets and time slots have fixed size 1. Packets arrive from external sources at
the end of time slots in batches according to batch Bernoulli arrival processes. By this we mean
that the number of packets arriving is stochastically identical in each time slot, and independent
of what happened in previous time slots. Furthermore, we assume that all arrival processes from
the external sources are mutually independent.

Node 0

i 1 i 2

i 3 i 4

type i

Figure 1: A polling tree network.

A packet arriving at a node at the end of time slot [t − 1, t), i.e., at time t, may be served in
time slot [t, t + 1). In this case it reaches the next node at time t + 1 where it may be served in
time slot [t + 1, t + 2), and so on.

All nodes in the network are polling nodes without switch-over times. Node 0 is a node with N
queues and is the last node of the network (the sink). All packets in the network must eventually
pass through it and leave the network after that.

The service disciplines of all nodes are work-conserving. Besides that, they remain unspecified
for the moment; we will make an additional assumption on the service disciplines in Section 2.1.
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We call a packet that passes through queue i of node 0 a ‘type i’ packet. There are Ni external
sources from which type i packets arrive. We subdivide type i packets into ’type i j’ packets,
j = 1, . . . , Ni, such that the type denotes the source from which packets arrive (see Fig. 1). The
set of type i packets is thus the union of the sets of type i j packets.

The size of the batches of type i j packets arriving each time slot is given by an arbitrary
discrete non-negative random variable, denoted by Xi j . We further define Xi =

∑Ni

j=1 Xi j , and
X =

∑

i Xi. Because all packets have size 1, we denote the expected batch sizes by ρi j , ρi, and
ρ, respectively. We assume ρ < 1 so all nodes are stable.

Every node n in the tree network is itself the last node (the sink) in a smaller tree network
consisting of all nodes above n and n itself. We call the latter network the node n subtree.

2.1 Reduction to a single node

In [1], it was shown that, under a relatively mild assumption on the service discipline of node 0,
an arbitrary tree network can be reduced to a single-station polling system, called the reduced
system (see Fig. 2). This reduction leaves the mean delay of type i packets invariant; the mean
end-to-end delay of type i packets in the original system is equal to the mean waiting time in
queue i of the reduced system. Here, the end-to-end delay of a packet is defined as the sum of its
waiting times at the individual nodes.

The reduced system is a system with arrival processes that are given by superpositions of the
original arrival processes, i.e., it is a system with arrivals Xi =

∑

j Xi j to queue i, i = 1, . . . , N .
The service discipline of the reduced system is the same as that of node 0 in the original system.

i 1
i 2

i 3
i 4

type i

Figure 2: The reduced system.

If we denote the end-to-end delay of type i packets by Zi, and the waiting time in queue i of
the reduced system by W ′

i , we have:
E[Zi] = E[W ′

i ]. (2.1)

Equation (2.1) is valid if node 0 uses a so-called Head-of-Line based (HoL-based) service discipline.
For the precise definition of HoL-based we refer to [1], but it entails that the server decides which
packet it is going to serve at time t only based on whether queues are empty or non-empty at
times t, t − 1, . . . , t − M for an arbitrary finite M . It may not, for instance, take queue lengths
into account. Service disciplines such as longest/shortest queue first are thus not HoL-based.

For the present paper it suffices to say that the class of HoL-based service disciplines includes
- but is not limited to - the following two classes of service discplines:

• Bernoulli scheduling, i.e., after serving a packet at queue i, the server serves queue i (if it
is non-empty) again with probability pi, and moves to one of the other non-empty queues
with probability 1 − pi;

• mi-limited, i.e., the server serves queue i until it has served mi packets, or the queue becomes
empty, whichever happens first, before moving to one of the other non-empty queues.

If the server decides to select one of the other non-empty queues, it may do so according to some
fixed order (e.g., a cyclic order) or according to Markovian routing. The exhaustive service policy
(i.e., serve queue i until it becomes empty) is a special case of the Bernoulli scheduling, namely
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pi = 1, and a limiting case of mi-limited, namely mi → ∞. The 1-limited service discipline is a
special case of both, namely pi = 0 and mi = 1.

The reduction result described here only yields an expression for the mean end-to-end delay of
type i packets (called the mean type i end-to-end delay), while we are in particular interested in
the mean end-to-end delay of type i j packets (called the mean type i j end-to-end delay). Even
so, the reduction result will prove vital for the analysis of the mean type i j end-to-end delay in
Section 3. In order to apply the reduction to all possible subtrees, we assume that all nodes use
HoL-based service disciplines.

Remark 2.1 The latter assumption can be slightly weakened. We apply the reduction result to
all node n subtrees, except for nodes n where all queues store packets arriving directly from the
exterior. If one or more queues of node n store packets coming from another node, the service
discipline of node n has to be HoL-based. If all queues store packets arriving directly from the
exterior, the service discipline can be an arbitrary work-conserving one.

3 Analysis of the tree

In this section we describe how the reduction result can be applied to obtain expressions for the
mean end-to-end delay. First, we obtain an exact expression for the mean end-to-end delay of
packets of any type, called the mean overall end-to-end delay. Second, we approximate the mean
type i j end-to-end delay using the results for the mean overall end-to-end delay.

3.1 Overall end-to-end delay

Recall from Section 2.1, Eq. (2.1), that

E[Zi] = E[W ′
i ],

where E[Zi] is the mean type i end-to-end delay, and E[W ′
i ] is the mean waiting time in queue i of

the reduced system, which is a polling system with arrivals Xi to queue i, i = 1, . . . , N . Because an
arbitrary packet is of type i with probability ρi/ρ, it follows that E[Z], the mean overall end-to-end
delay, is given by

E[Z] =
N

∑

i=1

ρi

ρ
E[Zi] =

N
∑

i=1

ρi

ρ
E[W ′

i ] (3.1)

The right hand side of (3.1) can be recognised as part of the conservation law for polling
systems [2, 4, 7]. This law states that for any work-conserving service discipline,

N
∑

i=1

ρi

ρ
E[W ′

i ] = C, (3.2)

where C is a constant. For unit packet sizes, C is given by [2, Eq. (14), divided by ρ]:

C =
1

2ρ(1 − ρ)





∑

i

E[Xi(Xi − 1)] +
∑

i

∑

j 6=i

ρiρj





= −
1

2
+

1

2ρ(1 − ρ)

∑

i

Var(Xi). (3.3)

By combining this with (3.1) and (3.2), and applying the definition of Xi, we obtain

E[Z] = −
1

2
+

1

2ρ(1 − ρ)

∑

i

Var(Xi)

= −
1

2
+

1

2ρ(1 − ρ)

∑

i

∑

j

Var(Xi j) (3.4)
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as the mean overall end-to-end delay.

Remark 3.1 Equation (3.4) gives the mean overall end-to-end delay, regardless of the precise
HoL-based service discipline. The work of Morrison [12] and Shalmon [16] entails that Equa-
tion (3.4) holds without the assumption of HoL-based service disciplines; any work-conserving
service discipline suffices. The assumption of HoL-based service disciplines will, however, become
crucial in the next subsection. Shalmon [16] also gives an expression for the mean overall end-to-
end delay in a concentrating tree network with Poisson arrivals, which is valid in discrete as well
as continuous time (Eq. (3.4) with Var(Xi j) = ρi j).

3.2 End-to-end delay per type

In this subsection, we derive an approximation of the mean type i j end-to-end delay. Our main
result is that we express the type i j end-to-end delay in the network in the mean waiting time
per queue of single-station polling systems. Although the latter is not always known exactly, we
assume that it can somehow be determined, either through exact analysis or approximation. We
will come back to this issue in Section 5.

The first observation is that the type i j end-to-end delay consists of the sum of the waiting
times of type i j packets at all nodes along their path from the source to node 0. In other words, if
we approximate the mean waiting time of type i j packets at an arbitrary node, an approximation
of the mean type i j end-to-end delay automatically follows by summing the mean waiting time
approximations at the individual nodes.

A second observation is the following: Consider Figure 3 and suppose for a moment that we
want to determine the mean waiting time of type i j packets in node i. Everything that happens
outside the node i subtree (marked by the dashes) has no influence on the mean waiting time in
node i, so it suffices to consider only the node i subtree. Node i, however, is itself the sink of the
node i subtree. In order to approximate the mean waiting time of type i j packets in an arbitrary
node, it hence suffices to determine the mean waiting time in the last node of an arbitrary network.

In the sequel, we approximate the mean waiting time of type i j packets in node 0, which leads
to an approximation of the mean type i j end-to-end delay as described by the two observations

above. We denote the mean waiting time of type i j packets in node 0 by E[W
(0)
i j ].

It is not immediately clear, however, how E[W
(0)
i j ] can be determined: First, it is unclear which

of the type i packets in node 0 are actually type i j packets. The type i j packets are intermingled
with packets of type i j1, i j2, etc. Packets are stored in node 0 in an intricate unknown order

that is determined by the service disciplines of the nodes upstream. Second, E[W
(0)
i j ] represents

the mean waiting time in a polling model where the arrivals are given by the output of the node
upstream.

Node 0

i 1 i 2

i 3 i 4

type i

Node i
Yi

Figure 3: The example network.
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The first difficulty is circumvented by the following approximation:

Approximation 3.2 At every node, the mean waiting time of type i j packets in that node is
equated to the mean waiting of all packets passing through the same queue in that node.

The accuracy of this approximation will be studied numerically in Section 4.
Applying Approximation 3.2 to node 0 entails that we approximate the mean waiting time at

node 0 of type i j packets by the mean waiting time of type i packets, i.e.,

E[W
(0)
i j ] ≈ E[W

(0)
i ]. (3.5)

The quantity E[W
(0)
i ], however, still represents the mean waiting time in a polling model where

arrivals are given by the output of the node upstream.
We can now circumvent the second difficulty with the reduction result of Section 2.1: The

mean waiting time of type i packets at node 0, E[W
(0)
i ], is equal to the mean type i end-to-end

delay in the entire tree, E[Zi], minus the mean type i end-to-end delay in the node i subtree,
denoted by E[Yi]. Using the reduction result (Equation (2.1)) we thus obtain

E[W
(0)
i ] = E[W ′

i ] − E[Yi].

Because all packets in the node i subtree are type i packets, E[Yi] is the mean overall end-to-
end delay in the node i subtree. It follows from the analysis of Section 3.1 (i.e., Equation (3.4)
applied to the node i subtree) that

E[Yi] = −
1

2
+

1

2ρi(1 − ρi)

∑

j

Var(Xi j). (3.6)

In summary,

E[W
(0)
i j ] ≈ E[W

(0)
i ] = E[W ′

i ] − E[Yi] (3.7)

where E[Yi] is given by (3.6), and E[W ′
i ] is the mean waiting time in queue i of the reduced system.

The two key steps in the derivation of (3.7) are Approximation 3.2 and application of the reduction
result.

Remark 3.3 If type i j packets arrive to node 0 directly, there is of course no suitable subtree.

In this case, we can replace E[Yi] by 0, so that E[W
(0)
i j ] ≈ E[W

(0)
i ] = E[W ′

i ].

4 Accuracy of Approximation 3.2

In this section, we analyse the accuracy of Approximation 3.2 by means of a simulation study over
a large parameter space.

Type 1 Type 2

Node 1

Node 0

1 1 1 2

2 1

Figure 4: The network of Section 4.
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We consider the smallest non-trivial polling tree network, which consists of two nodes, node 0
and 1, both with two queues (see Fig. 4). Queue 1 of node 0 stores packets arriving from node 1
while queue 2 of node 0 stores packets arriving from the exterior directly. There are three different
types of packets, namely type 1 1, type 1 2, and type 2 1. All arrivals occur according to ordinary
(non-batch) Bernoulli arrival processes, i.e., each time slot an arrival of type i j takes place with
probability ρi j . We introduce a unit sum weight vector ν = (ν1 1, ν1 2, ν2 1) such that ρi j = νi jρ
for a single load parameter ρ. We assume each node uses the 1-limited service discipline.

Without loss of generality, we assume ν1 1 ≤ ν1 2. We cover all possible cases of νi j with a
stepsize of 0.05 between consecutive values of νi j . This leads to a total of 90 possible cases (see
Table 1). For each case, we run simulations for ρ from 0.01 to 0.99.

Table 1: The 90 cases considered.

Case ν1 1 ν1 2 ν2 1 Case ν1 1 ν1 2 ν2 1

1 0.05 0.05 0.90 35 0.15 0.15 0.70

2 0.05 0.10 0.85 36 0.15 0.20 0.65
...

...
...

...
...

...
...

...

18 0.05 0.90 0.05 48 0.15 0.80 0.05

19 0.10 0.10 0.80 49 0.20 0.20 0.60
...

...
...

...
...

...
...

...

34 0.10 0.85 0.05 89 0.45 0.45 0.10

90 0.45 0.50 0.05

We analyse the error made in the approximation of the mean waiting time at node 0 (Eq. (3.5)),
i.e., we analyse the value of

εj =
E[W

(0)
1 ]

E[W
(0)
1 j ]

− 1, j = 1, 2,

where both E[W
(0)
1 ] and E[W

(0)
1 j ] are determined by simulation.

Figure 5 displays the average and extreme values of εj over all cases. It clearly shows that the
average error is within a few percent for all loads above 0.1. For loads close to 0, εj is the ratio
of two numbers close to zero, which leads to some irrelevant variability in the graph. The results
for ρ < 0.1 have therefore been omitted from the graph.

0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ρ

maximum
average
minimum

j = 1

0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ρ

maximum
average
minimum

j = 2

Figure 5: Average and extreme values of εj over all cases.

Apart from average and extreme values of εj , it is interesting to see which cases typically
induce large errors. Table 2 shows the five cases that most frequently have large errors; clearly,
cases with large errors are typically quite asymmetric. Additional simulations have furthermore
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.02

−0.01

0

0.01

0.02

0.03

0.04

ν1 2 − ν1 1

ε1

ε2

Figure 6: The influence of asymmetry.

shown that the error is typically largest if such an asymmetric case is combined with a load of
around 0.7, 0.8.

There are, however, even more asymmetric cases, which are not in Table 2. Apparently, the
error is again smaller for very asymmetric cases. To study this effect in more detail, we perform
the following experiment: We fix ρ = 0.8 and ν2 1 = 0.1 (these settings generally lead to larger
errors, so that the effect of asymmetry is clearly visible). We vary ν1 1 and ν1 2 subject to the
constraints that ν1 1 + ν1 2 = 0.9 and ν1 1 ≤ ν1 2.

Figure 6 shows the values of εj , j = 1, 2, in this experiment. On the horizontal axis we
have ν1 2 − ν1 1, which is a measure for how asymmetric node 1 is: The left side corresponds
to a symmetric system (ν1 1 = ν1 2), and the right side corresponds to a completely asymmetric
system (ν1 2 − ν1 1 = 0.9, i.e., ν1 1 = 0 and ν1 2 = 0.9).

Clearly, the absolute values of the errors increase if node 1 becomes more asymmetric, but only
up to a certain point. After this point, the absolute values of the errors decrease again.

5 Single station results

In Section 3, we expressed the mean type i j end-to-end delay in terms of the mean waiting time
per queue in the reduced system. In this section, we discuss the availability of single-station results
for the reduced system. Recall that the reduced system has N queues where each time slot a batch
of size Xi arrives to queue i. The service discipline of the reduced system is the same as that of
node 0.

There is a remarkable distinction between service disciplines that so far have defied exact
analysis of the mean waiting time in queue i, E[W ′

i ] (except for special cases like symmetric and
2-queue stations), such as 1-limited, and service disciplines for which various methods exist to
obtain E[W ′

i ] exactly, such as exhaustive and gated service. With gated service, each time the
server visits a queue an imaginary gate is placed behind the last packet in the queue. When all
packets in front of that gate have been served, the server starts serving the next queue, again with

Table 2: Cases that frequently have larger errors.

ν1 1 ν1 2 ν2 1

0.15 0.80 0.05
0.15 0.75 0.10
0.20 0.70 0.10
0.20 0.75 0.05
0.25 0.70 0.05

Type 1 1

ν1 1 ν1 2 ν2 1

0.25 0.65 0.10
0.25 0.70 0.05
0.30 0.60 0.10
0.30 0.65 0.05
0.35 0.60 0.05

Type 1 2
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an imaginary gate behind the last packet, and so on.
In [14], it is shown that service disciplines satisfying a well-known ‘branching property’ can be

exactly analysed. This branching property states the following:

Property 5.1 If the server arrives to queue i and finds ki packets there, then during the course
of the server’s visit, all of these ki packets are effectively replaced in an i.i.d. manner by an
N -dimensional random population.

For instance, with exhaustive service, all type i packets will have been removed (i.e., replaced by
0 packets) once the server moves to the next queue, whereas for j 6= i, as many type j packets will
be added to queue j as there are arriving during one type i busy period (i.e., every type i packet
is replaced by the packets arriving to the other queues during a type i busy period). Likewise,
with gated service, for all j, including j = i, every type i packet will be replaced by the packets
arriving during a type i service. In contrast, with the 1-limited service discipline one type i packet
is replaced by packets arriving during the type i service, but all other type i packets are left
unchanged (i.e., replaced by one type i packet). Hence, the 1-limited service discipline does not
satisfy the branching property.

For service disciplines satisfying the branching property, it is shown in [14] that the number of
packets in different queues, embedded at time points where the server visits queue 1, constitutes
a multi-type branching process (MTBP) with immigration. Furthermore, it is mentioned that the
class of MTBPs is one of the exceptional classes of multi-dimensional Markov chains for which the
equilibrium distribution can be determined.

This at least partially explains why methods exist to obtain mean queue lengths (and thus mean
waiting times) for exhaustive and gated service disciplines. Nevertheless, even for these service
disciplines, E[W ′

i ] is, apart from special cases such as symmetric systems, not given explicitly but
in terms of a matrix inverse, infinite product, or a solution to a set of equations.

We are in particular interested in HoL-based service disciplines for which E[W ′
i ] can be obtained

exactly. Gated service, however, is not HoL-based. With the gated service discipline an imaginary
gate is placed behind packets in the queue, so the decision to serve a particular queue at time t
may depend on the queue lengths before t, which is not allowed for HoL-based service disciplines.

Exhaustive service, on the other hand, is HoL-based. The mean queue lengths in a polling
station with exhaustive service can be found in [15] and [18], where it is given in terms of a solution
to a system of equations. Although the expressions given there are still implicit, E[W ′

i ] can be
determined numerically from them.

In the remainder of this section, we give explicit results for symmetric stations, and we give an
approximate result for the 1-limited service discipline. The latter will be particularly important
in Section 7.

5.1 Symmetric stations

In this subsection, we obtain exact results for symmetric stations. Throughout this subsection,

we assume all arrival processes are stochastically identical: Xj
d
= X1 for all j.

We first introduce the concept of symmetric service disciplines: We define a service discipline
to be symmetric if it satisfies the following three properties: First, if the server is at a queue
it serves a number of packets there according to a fixed rule such as 1-limited, exhaustive, or
Bernoulli service. This rule is the same for all queues. Second, Markovian routing is used, which
means that after service of queue j, the server moves to queue k 6= j with probability pjk. Third,
the routing matrix P = (pjk) is circulant, i.e.,

P =















0 p2 p3 . . . pN

pN 0 p2 . . . pN−1

pN−1 pN 0 . . . pN−2

...
...

. . .
...

p2 p3 p4 . . . 0















, (5.1)
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or can be written in circulant form after a permutation of the queues. Note that cyclic routing
has a circulant P -matrix with p2 = 1.

Suppose that the reduced system uses a service discipline with a circulant P -matrix. Then all

rows of P are identical, apart from being shifted. Because, in addition, Xj
d
= X1 for all j, there

is no difference between the various queues, i.e., the mean waiting times per queue are invariant
under permutation of the queues. Similarly, if the P -matrix is not circulant but can be written in
circulant form, it can also be argued that the mean waiting times per queue are invariant under
permutation of the queues.

Because the mean waiting times per queue are invariant under permutation, we have E[W ′
i ] =

E[W ′
1] for all i. It thus follows from the conservation law (3.2) that E[W ′

i ] is exactly given by

E[W ′
i ] = C = −

1

2
+

1

2ρ(1 − ρ)
NVar(X1),

for all i, regardless of the precise service discipline, as long as it is symmetric.

5.2 1-limited

We give the approximation proposed by Boxma and Meister [6] for 1-limited polling systems.
Although their analysis is aimed at continuous-time systems, it can easily be established that the
key steps in their derivation are valid for discrete-time systems as well.

The Boxma-Meister approximation states that

E[W ′
i ] ≈ C

1 − ρ + ρi

1 − ρ + 1
ρ

∑

j ρ2
j

,

where C is again the constant of the conservation law (3.3). The Boxma-Meister approximation
has the two following properties: (i) It is exact for symmetric systems, and (ii) its numerical
accuracy degrades for heavily loaded and very asymmetric systems.

In particular, if the 1-limited service discipline is used, all queues receive a positive fraction
of the capacity of the server, even if the load is larger than 1. As a result, some queues remain
stable even though others become unstable (see e.g., [8, 11]). The Boxma-Meister approximation
does not deal with this well; if ρ tends to 1, C tends to infinity so the approximations of all queues
become unbounded.

As a refinement to their approximation, Boxma and Meister suggest in [5] that for heavily
loaded, very asymmetric systems, a group of heavily loaded queues can be replaced by a suitable
switch-over time. Although this generally increases the accuracy of the approximation for such
cases, we will see in Section 7.2 that the approximation presented here is accurate for loads up to
0.7, even in quite asymmetric systems.

Many other approximations have been suggested (for instance, Blanc [3], Groenendijk and
Levy [10], Srinivasan [17], and Van Vuuren and Winands [21]), that might perform better in
some cases. However, they generally lack an accessible closed-form expression like that of the
Boxma-Meister approximation. Furthermore, transferring their derivations to discrete-time models
often involves subtleties. In this paper, we therefore restrict our attention to the Boxma-Meister
approximation.

6 Symmetric trees

Approximation 3.2 states that all packets passing through the same queue at a node are assumed
to have the same mean waiting time at that node. In this section, we introduce a class of trees
for which Approximation 3.2 is in fact not an approximation but an exact statement.

We say that a polling tree is symmetric if it satisfies all of the following five properties:

1. All external arrival processes are stochastically identical.
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2. All external arrivals occur at the same level. Here, the level of a node is defined as the
distance to the sink.

3. All nodes within a particular level have the same number of queues.

4. All nodes within a particular level use the same service discipline.

5. All nodes use a symmetric service discipline.

Now consider an arbitrary polling tree network, let node i be the node directly above queue i of
node 0, and suppose that the node i subtree is symmetric. An example of such a tree is displayed
in Figure 7.

Given that the entire node i subtree is symmetric, it follows that there is no distinction between
the type i j packets, j = 1, . . . , Ni. In particular, the mean waiting time of type i j packets at
node 0 is invariant under permutation of j:

E[W
(0)
i j ] = E[W

(0)
i ].

Approximation 3.2 is thus an exact statement rather than an approximation for node 0. Because
all subtrees within the node i subtree are again symmetric, Approximation 3.2 is exact for all
nodes in the node i subtree.

Moreover, the mean end-to-end delay of type i j packets is invariant under permutation of j.
We thus obtain:

E[Zi j ] = E[Zi] = E[W ′
i ],

where Zi j is the end-to-end delay of type i j packets, and W ′
i is the waiting time in queue i of the

reduced system. If, furthermore, exact results are available for the reduced system (for instance
if it is a symmetric node or if it uses exhaustive service), the mean type i j end-to-end delay can
be obtained exactly.

. . . type i j . . .

Node 0

Node i

Level 2

Level 1

Queue i

Figure 7: A tree with a symmetric node i subtree

Note that there is no condition on nodes outside the node i subtree; all conditions apply to
the node i subtree, and all other nodes (including node 0) are arbitrary.

7 Networks on Chips

In this section, we study a network model based on a Network on Chip. In Section 7.1, we
describe the network in more detail and combine the approximations of Section 3 and Section 5
to approximate the mean type i j end-to-end delay. In Section 7.2 we analyse the accuracy of the
combination of these approximations numerically.
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7.1 Description

We study a model of a Network on Chip with multiple routers (nodes), as depicted in Figure 8.
All traffic has the same destination, motivated by Networks on Chips with a single memory.

The routers in this network are organised in a mesh topology; all routers have four queues and
are placed on a lattice (2 × 2 in this case) with connections in four directions (up, down, right,
left) if possible. The routing mechanism of this network is XY-routing, which means that packets
first traverse the X-direction, as far as they have to go, and then move in the Y -direction to their
destination. This entails there is in fact a link between node 3 and node 1, but it is never used
because all traffic is headed to node 0. It is thus the particular routing strategy that ensures the
mesh topology is a tree network corresponding to the setting of this paper.

ρ2 3 ρ2 2

ρ2 4 ρ2 1

ρ1 1 ρ3 1

ρ1 2

Node 3 Nd. 2

Nd. 1 Nd. 0

Figure 8: A NoC with 4 routers and 7 input streams

Routers in NoCs often employ wormhole routing, which has two implications: First, once the
first packet of a batch starts transmission at a certain node, the entire batch has to complete
transmission before another batch may start transmission. The second implication of wormhole
routing is that if a batch consisting of multiple packets is being transmitted, one packet of the
batch is transmitted to the next router each time slot. These packets might start transmission at
the next router immediately (for instance if that router is empty). Multiple packets of a single
batch might thus be spread out over several nodes. As a result, a batch of size K that never has
to wait completes transmission over L nodes in L + K − 1 time slots, rather than LK in networks
without wormhole routing.

Inside routers batches are served according to round-robin scheduling, which means a batch is
served from queue 1, then queue 2, etc. We assume batches have fixed size K, so that wormhole
routing is mimicked by the cyclic K-limited service discipline.

We furthermore assume a batch of size K arrives each time slot with probability λi j , so

Xi j =

{

0 w.p. 1 − λi j ,
K w.p. λi j ,

and
Var(Xi j) = K2λi j(1 − λi j).

Because ρi j = E[Xi j ], it follows that λi j = ρi j/K.
We define the waiting time (and end-to-end delay) of a batch to be the waiting time (end-to-

end delay) of the first packet in that batch (the header). In the remainder, we use an additional
subscript h to indicate headers.

We now approximate the mean waiting time of a type i j header in node 0, denoted by E[W
(0)
i j,h].

As in Section 3, we do so by reducing the network to a single node, called the reduced system.
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The reduced system, like node 0, uses K-limited service. Because the batch sizes are fixed and
equal to K, the mean waiting time of a header in the reduced system is equal to the mean waiting
time of a packet in a 1-limited system with deterministic service times equal to K and ordinary
(non-batch) Bernoulli arrival processes with parameter λi j .

By applying the Boxma-Meister approximation to the latter system, we obtain

E[W ′
i,h] ≈

1 − ρ + ρi

1 − ρ + 1
ρ

∑

j ρ2
j

CK , (7.1)

as an approximation of the mean waiting time of headers in queue i of the reduced system. Here,
CK is the constant of the conservation law in a system with non-batch Bernoulli arrivals with
parameter λi j and fixed service times equal to K. From [2, Eq. (14), divided by ρ], we get after
some rewriting:

CK =
ρ

2(1 − ρ)



K −
∑

i

∑

j

(

ρi j

ρ

)2


 . (7.2)

Suppose now that i = 3 (the case i = 1, 2 is slightly different and will be dealt with later).
Type 3 1 packets arrive to node 0 directly from the exterior, so the mean waiting time of a header
is equal to that of an arbitrary packet minus (K − 1)/2. The mean waiting time of a header in
node 0 (and hence its mean end-to-end delay) is thus given by

E[W
(0)
3 1,h] = E[W

(0)
3 1] −

K − 1

2
= E[W ′

3] −
K − 1

2
= E[W ′

3,h],

where E[W ′
3,h] is given by (7.1).

Suppose now that i = 1, 2. Due to the wormhole routing, the header always arrives at node 0
one time slot earlier than the second packet, and it always leaves one time slot earlier. The
mean waiting time of a header is thus equal to the mean waiting time of an arbitrary packet,

E[W
(0)
i j,h] = E[W

(0)
i j ]. We obtain (cf. Eq. (3.7))

E[W
(0)
i j,h] = E[W

(0)
i j ] ≈ E[W

(0)
i ] = E[W ′

i ] − E[Yi],

where E[Yi] is given by (3.6). The quantity E[W ′
i ] is the mean waiting time of an arbitrary packet

in the reduced system, which is equal to the mean waiting time of a header plus (K − 1)/2, so

E[W ′
i ] = E[W ′

i,h] +
K − 1

2

with E[W ′
i,h] as in (7.1).

As in Section 3, the mean waiting times in the other nodes can be obtained similarly, resulting
in an approximation of the mean end-to-end delay of type i j batches.

7.2 Numerical results

In this subsection we study the performance of the mean end-to-end delay approximation for the
following two cases: Balanced load division and homogeneous load division. We again assume
there is a unit sum weight vector ν describing the division of the total load ρ over the various
input streams, i.e., ρi j = νi jρ.

Case I: Balanced load division

By balanced load division we mean that the loads are divided in such a way that at each node all
queues receive the same load. That is, we assume ν3 1 = 1/3, ν1 1 = ν1 2 = 1/6, ν2 1 = ν2 2 = 1/9,
and ν2 3 = ν2 4 = 1/18. Because the corresponding arrival rates are equal, the mean type 1 1
end-to-end delay is equal to the mean type 1 2 end-to-end delay. Figure 9 shows mean type 1 i
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end-to-end delay, i = 1, 2, and Figure 10 the mean type 3 1 end-to-end delay. The approximations
of these types are the most and least accurate, respectively, of all approximations.
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Figure 9: The mean type 1 1 and 1 2 end-

to-end delay.
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Figure 10: The mean type 3 1 end-to-end

delay.

It is clear that the approximation of the mean end-to-end delay is very accurate in this case.
This is not very surprising, as all nodes are almost symmetric. For instance, if we apply the
reduction result, we obtain a polling system with three queues, each with load ρ/3. One of
these queues has an arrival process that is the superposition of four arrival processes (namely
∑

j X2 j), one arrival process is a superposition of two (
∑

j X1 j), and one is not a superposition
(or a superposition of one). In other words, the loads to all queues are identical, but the arrival
processes are superpositions of different Bernoulli arrival processes.

Other than this difference, the system is symmetric, in which case the Boxma-Meister ap-
proximation is exact. It is indeed unlikely that such a small asymmetry leads to large errors.
Furthermore, we already saw in Section 4 that Approximation 3.2 is very accurate if the individ-
ual nodes are nearly symmetric.

Case II: Homogeneous load division

With the homogeneous load division, all input streams receive a fraction 1/7 of the total load,
i.e., νi j = 1/7. Again, we show the most accurate approximation (Fig. 11, type 2 1 and 2 2), and
the least accurate approximation (Fig. 12, type 3 1).
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Figure 11: The mean type 2 1 and 2 2

end-to-end delay.
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Figure 12: The mean type 3 1 end-to-end

delay.

We see that up to a load of roughly 0.7, the approximations are very accurate. Beyond this
load, the approximation is only accurate for the input stream with the highest load. This can be
explained by the fact that node 0 is rather asymmetric. After all, one queue receives a fraction of
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4/7 of the total load, while the other queues get fractions 2/7 and 1/7 respectively. In Section 5
we already mentioned that for asymmetric systems, the Boxma-Meister approximation tends to
infinity if ρ tends to 1, even though some queues are still stable. We see this phenomenon too in
Figure 12: The mean end-to-end delay approximation is unbounded, whereas the simulated mean
delay is still bounded if the load is 1. Other single-station approximations than that of Boxma
and Meister might lead to more accurate results here.

8 Conclusion

Under the assumption that all nodes use HoL-based service disciplines, we have derived an exact
expression for the mean overall end-to-end delay and an approximation for the mean type i j
end-to-end delay. The key steps in this approximation were: Equating the mean waiting time of
type i j packets in a node to that of all packets passing through the same queue at that node
(Approx. 3.2), and application of the reduction result of [1]. These two steps combined result in
an expression for the mean type i j end-to-end delay in terms of the mean waiting time per queue
in single-station polling systems.

For the 1-limited service discipline, Approximation 3.2 is very accurate over the entire parame-
ter space of the smallest non-trivial tree. It is especially accurate for nearly symmetric systems and
extremely asymmetric systems, and somewhat less accurate for moderately asymmetric systems.

In the special case that the subtree directly above queue i is symmetric, Approximation 3.2
becomes an exact statement rather than an approximation. If, in addition, exact results are
available for the reduced system, the mean end-to-end delay per source can be determined exactly.

We applied the approximation for the mean end-to-end delay per type to a model based on a
Network on Chip using the Boxma-Meister approximation [6] to obtain the necessary single-station
results. Although the Boxma-Meister approximation is less accurate for asymmetric systems, we
could still accurately approximate the mean type i j end-to-end delay up to moderately high loads
(around 0.7) in an asymmetric case study.

Other single-station approximations than that of Boxma and Meister are known, but they
are often less accessible and transferring such approximations to discrete-time models usually
involves subtleties. Depending on the precise characteristics of the tree (e.g., nearly symmetric,
very asymmetric, etc.) these other approximations may lead to more accurate results. If the mean
end-to-end delay approximation is applied to specific trees, one has to choose which single-station
approximation to use based on the characteristics of the tree in order to obtain the most accurate
results.
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