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Abstract

We consider the variability of queueing departure processes. Previous results have shown the so-
called BRAVO effect occurring in M/M/1/K and GI/G/1 queues: Balancing Reduces Asymptotic
Variance of Outputs. A factor of (1 — 2/7) appears in GI/G/1 and a factor of 1/3 appears in
M/M/1/K, for large K. A missing piece in the puzzle is the GI/G/1/K queue: is there a BRAVO
effect? If so, what is the variability? Does 1/3 play a role?

This open problem paper addresses these questions by means of numeric and simulation results.
We conjecture that at least for the case of light tailed distributions, the variability parameter is 1/3
multiplied by the sum of the squared coefficients of variations of the inter-arrival and service times.

1 Introduction

Departure processes of queues have received considerable attention in the literature. A classic result is
Burke’s theorem from the 50’s, stating that departures of the stationary M/M/1 follow a Poisson process
[6]. Following this result, the 60’s and 70’s have witnessed dozens of studies, analyzing various attributes
of the departure stream. Quite comprehensive surveys are in [8] and [13]. During the 80’s and 90’s,
more research has focused on departure processes, mostly due to the emergence of queueing network
decomposition schemes [15]. In addition, a variety of studies taking the viewpoint of manufacturing,
have analyzed the output variance of stochastic production lines, cf. [14] and references therein.

Some more recent studies ([2], [10] and [11]) have brought back attention to elementary models. In
this respect, the asymptotics of the variance curve have been analyzed. Rather surprising results, have
shown that when the service capacity is set to match the arrival rate, there is a significant decrease in the
departure variance. This type of phenomena has been termed BRAVO (Balancing Reduces Asymptotic
Variance of Outputs). It was first observed for M/M/1/K in [11], and has recently been established for
GI/G/1 queues under quite general conditions [2].

The purpose of this note is to augment the known BRAVO results by presenting numerical and
simulation results for the GI/G/1/K queue (with K finite). In this respect, we formulate a conjecture
and highlight some of the puzzling behavior and open problems.

The GI/G/1/K queue is a single server queue operating under a work conserving service discipline,
having a renewal arrival stream and i.i.d. service times. There are K — 1 waiting positions, customers
who arrive to a full system do not enter and leave for ever. We assume finite second moments of the
inter-arrival and service times with means and squared coefficient of variations (the variance divided by
the mean squared), A™1, u=1, ¢2 and ¢2 respectively. In the cases where a stationary distribution exists,



we may assume the system is stationary, otherwise, begin with an empty system. In the discussion below
we will also treat cases where K = oo (no buffer limit) and in these cases denote the corresponding
systems using the usual notation (i.e. M/M/1, GI/G/1, etc...).
Denote the departure process by D(t). This is a count of the number of completed services during
[0,t]. The following basic quantities are typically of interest:
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We shall assume throughout that these limits exist and are finite (see [9] for an example of some
GI/G/1 queues where v* is not finite). We refer to v* as the asymptotic variance. The ratio v* is
sometimes referred to as the index of dispersion of counts (cf. [7]), in this paper we simplify refer to it
as the variability parameter'. It is a rough measure of the long term variability of the point process.
The variability parameter of a Poisson process is 1 and sometimes serves as a reference point. More
generally, the variability parameter of a renewal process equals the squared coefficient of variation of
the inter-renewal times.
It is quite straightforward to establish that,

A" = min{A, 1} + o (1),
where o (1) vanishes as K — oo. It is further quite evident that,
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To argue the above heuristically, consider first the case where K = oo. If A < u, the queue is stable
and thus the departure process is a random translation of the renewal arrival process. It is thus easy to
show that the departure process possesses many of the asymptotic characteristics of the arrival process
(cf. [16], Theorem 1.1) In the A > p case, the argument is different: after a finite time, the system
remains non-empty for ever and from this time on, the departures are a renewal process of the services.
For finite K, the same approximately holds for A < g or A > p and holds asymptotically as K — oo,
when \ # .2

Summarizing the above, we see that for A\ # u, the variability parameter is either determined by
the arrival or by the service process, but not both (when K < oo, this is approximately true, i.e. up to
the ok (1) term). For the critically loaded case, one may expect both the arrival and service processes
to play a role. Perhaps the most straightforward guess is:

*

(Wrong guess) ~* = =(c2 +¢2) + ox(1). (1)
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This is especially sensible in the M/M/1 or M/M/1/K queues, as it would imply that v* = 1 everywhere.
Quite surprisingly (1) is not the correct guess. The following has been shown in [11] for M/M/1/K and
related birth death queues and later in [2] for the M/M/1:

> (2)

. { 2(1-2), for M/M/1 with X\ = p

3~ 5k + srgerny for M/M/1/K with A= p

n our simulation results we shall also plot the transient v*(t) = Var(D(t))/E [D(t)].

2Making the arguments of this paragraph precise is quite simple for the A < p case, yet it is not clear what are the
minimal assumptions that are required of the initial distribution and inter-arrival time and service moments. For the
A > u case, it is less trivial, since the variance of the number of departures up to the final finite busy period may be
infinite in certain cases. We are not aware of a proof.



Thus in the critical M/M/1, the variability parameter is approximately 0.72 and in the M/M/1/K it
is approximately 2/3 for large K. Put differently, the naive guess (1) should be reduced by a factor of
either 0.72 or 2/3 depending on the model, infinite buffer or finite buffer. It has been further established
in [2], that for a wide class of GI/G/1 systems, with A = p:

@G/ A=+ 2). (3)

The case that is still an open problem is GI/G/1/K. Combining the known results (2) and (3), a sensible
guess is:
1
(Conjecture for GI/G/1/K) v = (2 + ci)g + ok(1). (4)
Our main contribution is to supply supporting numerical evidence which indicates that (4) is indeed
correct, at least for light tailed inter-arrival and service distributions®. We are not sure about heavy
tailed distributions or about systems that incorporate both light and heavy tails.
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Figure 1: Simulation estimates of v*(¢) for GI/G/1/200 queues with A = y = 1 and 2 = ¢ =
2. The top curves are of systems driven by either Pareto (solid curve) or lognormal (dashed curve)
distributions. These do not appear to converge to 4/3. The bottom curves are of systems driven by
either Bimodal distributions (dashed curve), phase-type distributions (dotted curve) or heavy tailed
Weibull distributions (solid curve). These appear to converge to the conjectured value.

The remainder of the paper is organized as follows: Section 2 states our conjecture and highlights
some puzzling subtleties. Section 3 outlines the supporting numerical computations that we have done

3We refer to a distribution of a random variable X as light tailed if E [eX?] < co for some 6 > 0, otherwise we denote
it as heavy tailed.



for PH/PH/1/K example cases. Section 4 outlines details regarding simulation runs that we have
performed. We conclude in Section 5.

2 A Conjecture

The following conjecture constitutes the main open problem of this paper:

Conjecture 1 For the GI/G/1/K queue with A = p and light tailed inter-arrival and service times,

2 1
v =3+ ci) + O(3)-
Note that while the above conjecture is formulated for light tailed service times, our simulations indicate
that this is not a necessary condition. Figure 1, presents estimates of v*(¢) for some GI/G/1/200 systems
with ¢2 = ¢2 = 2. The figure indicates that Lognormal and Pareto distributions exhibit one type of
behavior (having a BRAVO effect but possibly not with a factor of 1/3) and in contrast the heavy tailed
Weibull exhibits behaviors similar to light tailed distributions as in Conjecture 1. We are thus quite
confident that the exponential moments condition of our conjecture is too strong, yet we are not sure
what the minimal condition is.

A first guess (paralleling the GI/G/1 analysis of [2]) is the existence of 2 + ¢ moments, for € > 0,
but the simulation results indicate differently since this condition is met by all the distributions which
we chose. Note also that it is possible that for the Lognormal and the Pareto distributions which we
simulate, either the convergence of v*(t) to v* is very slow as t — oo, or perhaps the ok (1) term which
we conjecture to be O(1/K) for light tailed distributions, vanishes at a much slower rate as K — oo,
with these distributions.

Further details of the simulation are presented in Section 4.

3 Numerical Computations for PH/PH/1/K Examples

PH/PH/1/K queues are GI/G/1/K queues with phase-type distributions (cf. [5]). The variability
parameter of some special cases with ¢2 = ¢? has already been considered in [11] and presented in
Figure 9 of that paper. Those results already hint that Conjecture 1 holds when ¢ = c2. We now
extend the computations to cases where 2 # ¢2 using a similar framework. The analysis uses a matrix
analytic framework to represent the departure process of PH/PH/1/K queues as a MAP (Markov
Arrival Process). We do not repeat the technicalities of MAPs, but rather point the reader to Section 2
of [11] and more generally to Chapter XI, Section la of [3].

Our computations are for PH/PH/1/K queues with the inter-arrival and service time distributions
having mean 1 and parameterized by their squared coefficient of variation, which we denote by ¢2. In
the case of 0 < ¢? < 1, we use a distribution that is a sum of n = [%] independent exponential random
variables. The first random variable has mean ul_l, the remaining n — 1 random variables have mean
iy ! with,

n—1

n
1= 2 = 11— -
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In the case of ¢ > 1 we use a hyper-exponential distribution (a mixture of two exponential random
variables): With probability p = (¢ — 1)/(c+ 1), it is an exponential random variable having mean 2.
With probability 1 — p it is exponential having mean (1 — 2p)/(1 — p).

Table 1 contains results evaluated for 16 systems with various ¢2 and ¢?. Observe that as K grows
the results converge to %(ci + c%) which is presented in the right most column. To understand the



(2, ¢%) K=10 K=20 K=30 K=40 K=50 K=75 K=100 (c2+¢?)
(0.15,0.15) | 0.100  0.100  0.100  0.100  0.100  0.100  0.100 1/10
(0.15,1.00) | 0.379  0.381  0.382 0382  0.382  0.383  0.383 23/60
(0.15,1.50) | 0.576  0.564  0.559  0.557  0.556  0.554  0.553 11/20
(0.25,0.80) | 0.348  0.349  0.349  0.349 0349  0.350  0.350 7/20
(0.40,0.20) | 0.199  0.200  0.200  0.200  0.200  0.200  0.200 1/5
(0.50,0.50) | 0.325  0.329  0.331 0331  0.332 0332  0.333 1/3
(0.60,1.00) | 0.519 0526  0.528  0.530  0.530  0.531 0.532 8/15
(0.75,0.75) | 0.493  0.497  0.498  0.498  0.499 0499  0.499 1/2
(0.75,1.50) | 0.770  0.763  0.759  0.757  0.756  0.754  0.753 3/4
(1.00,0.15) | 0.378  0.381  0.382  0.382  0.382  0.383  0.383 23/60
(1.00,1.00) | 0.636  0.651  0.656  0.659  0.660  0.662  0.663 2/3
(1.20,0.60) | 0.608  0.606  0.604  0.603  0.603  0.602  0.601 3/5
(1.25,1.25) | 0.857  0.852  0.847  0.844  0.842  0.840  0.838 5/6
(1.50,0.15) | 0.577  0.564  0.560  0.557  0.556  0.554  0.553 11/20
(1.50,0.75) | 0.772  0.764  0.760  0.758  0.756  0.754  0.753 3/4
(1.50,1.50) | 1.045  1.032  1.024  1.019  1.015  1.011 1.008 1

Table 1: Values of v*, of some PH/PH/1/K queues for increasing K. The right most column is for
limg o 7" as in Conjecture 1, observe that it matches the column of K = 100 quite well.

computation involved in generating this table, consider for example the third row, (0.15,1.5). In this
case the inter-arrival distribution is a sum of 7 phases and the service distribution is hyper-exponential
with 2 phases. Thus the state space of the PH/PH/1/K queue involves 7 4 (7 + 2) K states (over 900
states for K=100). The MAP specification labels certain transitions (service completions) and allows to
evaluate v* and A* for the corresponding point process. The major part of the computation is inversion
of a matrix of a dimension equaling the number of states. Examples with K = 300 can still be solved

in fair time, but as K grows or c? approaches 0, the computation time grows cubically with K or ¢=2.

(2, | K=50 K = 100 K = 150 K = 200 K = 250 K = 300
(04,0.7) | —0.015098  —0.0150129  —0.0149844  —0.0149702  —0.0149616  —0.0149559
(04,1.5) | 0.315844 0.324518 0.32743 0.32889 0.329767 0.330352
(1.0,1.0) | —0.326797  —0.330033  —0.331126  —0.331675  —0.332005  —0.332226
(1.3,1.5) | 0.658669 0.700843 0.715234 0.722493 0.726868 0.729794

Table 2: Evaluation of the sequence (5). Since the values appear to converge as K grows, we conjecture
that the ox (1) error term is O(1/K).

Conjecture 1 also states that the ox (1) error term for finite K is O(1/K). Note that this is in
agreement with the explicit M/M/1/K result (2). We can further verify this for PH/PH/1/K queues
by observing that the sequence,

K(y*—%(cz—kci)), K=1,2..., (5)



converges to a constant. We do so for a few examples. The results are displayed in Table 2. We believe
that the values in the right most column estimate B, where,

1

.1 B
v =gl +e) + 3 +olg)

Indeed, for the M/M/1/K case, the B that appears from the matrix analytic computation agrees with
B = —1/3 which appears in (2).
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Figure 2: Simulation estimates of v*(t) for PH/PH/1/K queues with ¢2 = 0.6 and ¢2 = 1.2 for
K = 25,50,100, p = A = 1.

4 Simulation Runs

In addition to the PH/PH/1/K numerics, we also performed simulations. For this we used a simple
discrete event simulation of the queue, generating many independent realizations of D(t). We use
A = p =1 in all simulations and run each realization for a long time horizon: T" = 0.5 x 10®, sampling
the mean and the variance every 10% time units*. Observe first Figure 2 where we plot estimates of v*(t)
for PH/PH/1/K queues with ¢2 = 0.6 and ¢2 = 1.2 for K = 25,50,100. These curves were obtained
using approximately 0.4 x 10% runs for each K. It should be noted that we can essentially compute
~v*(t) for PH/PH/1/K numerically (for every t). This involves matrix exponential computations (cf.
formula (10) of [11]).

4In an attempt to obtain the curves relating to a steady-state system, we 'warm up’ the queue, for a duration of
0.2 x 10% before beginning the run of duration T, our warm up begins with | K/2| customers in the queue.



Our conjecture for K — oo states that 4* = v*(00) = 0.6, we indeed see that the curves approach
this for increasing K. Further note that it appears that for larger K the convergence of v*(t) to v* is
slower. This was also observed for the M/M/1/K queue in [11] (see Figure 6 of that paper).

Our real interest in performing the simulations, is to analyze distributions that can not be represented
as phase-type (with a finite number of phases). For this we tested a limited number of cases with
A=p=1land 2 =c2 =2

e Bimodal distribution, having a mass at 1/2 w.p. 8/9 and a mass at 5 w.p. 1/9.

o Heavy-tailed Weibull distribution. P(X > x) = e_(%> with 8 = (1 + é)_l and « being the

positive solution of F(l + %) = 3F(1 + é)2 where I'(+) is the gamma function. This implies that
a =~ 0.7209 and § ~ 0.81179.

e Lognormal distribution with paraments m = log(37/2) and o2 = log(3). I.e X = ¢, where Y is

normally distributed with mean m and variance 2.

e Pareto 3 distribution with support [0,00). P(X > x) = (1 +z/3)~%.

The results are presented in Figure 1. Each curve was obtained by running 0.5 x 10° realizations. The
main point of this figure was already discussed in the beginning of Section 2: Heavy tailed Weibull and
light-tailed distributions exhibit one type of behavior, in agreement with Conjecture 1. Lognormal and
Pareto exhibit a different behavior.

To be sure that the difference between the two groups of curves is not a matter of statistical error,
we also plot the distributions of the estimators of v*(¢). For this, we ran 50 repetitions of 20,000 runs,
each for a duration of 0.2 x 10% time units. Each repetition resulted in a sample variance and a sample
mean of the random variable D(0.2 x 10%). The resulting estimators of v*(¢) are plotted in Figure 3.
As is implied by the figure, there is indeed a clear difference between the Weibull and the other two
heavy tailed cases, similarly to Figure 1°.
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Figure 3: The distribution of the estimators of 4*(0.2 x 10°). 50 estimators, each using 20, 000 realiza-
tions were obtained for each of the 3 service time distributions. The vertical lines signify the location
of the means.

5Note that Figure 1 used 25 times more samples. Had we used this amount of samples for the runs of Figure 3, the
distributions of the estimators would have been even tighter.



5 Conclusion

We have presented a conjecture regarding GI/G/1/K queues along with some numerical evidence.
Proving our conjecture will complete the picture of the variability parameter and the BRAVO effect
for the basic single server queues. Proper (minimal) conditions on the inter-arrival and service time
distributions are yet to be determined.

In general, the BRAVO phenomena is quite puzzling and somewhat counter intuitive. A complete
intuitive explanation is still lacking and we pose this as a general open question. We point out that the
factor 2/3 arises in the asymptotic variance parameter of the local time at a barrier of driftless reflected
Brownian motion with two barriers (see [4] and [18]). With the proper scaling, this should constitute
the asymptotic variance of the idle time process which also equals the asymptotic variance of the busy
time process. Further, we may possibly be able to make use of the following equality (cf. the proof of
Theorem 3 in [12]):

D(t) = (T (1)) + pd™ (1), (6)

Here S(t) is the renewal service process, T'(t) is the busy time, and the bar (fluid scaling) and hat
(diffusion scaling) notation has the following meaning for a process Z(t):

Z(nt) — Z(nt)

It is possible that equation (6) along with the results of [4], [18] (see also [17]) will yield the proper
insight and possibly lead the way to a proof of our conjecture.

Following the diffusion approximation framework of above, perhaps a more general formulation
of Conjecture 1 can be formulated in terms of assumptions on the existence functional central limit
theorems for the arrival and service processes. In fact, we believe that the BRAVO phenomena does
not heavily depend on the i.i.d. assumptions of the inter-arrival and service sequences. In the other
direction, an alternative more analytic approach, may be to use regenerative arguments to evaluate the
asymptotic variance rate of say M/PH/1/K, M/G/1/K, PH/M/1/K or GI/M/1/K queues. Such an
analysis can perhaps follow the renewal reward approach used in [12], Section 6.5 along with explicit
results for joint distribution of the busy period and number of customers served in such queues (cf. [1]
and references therein).
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