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Abstract

We find scaling limits for the sizes of the largest components at criticality for the rank-1 inho-
mogeneous random graphs with power-law degrees with exponent τ . We investigate the case where
τ ∈ (3, 4), so that the degrees have finite variance but infinite third moment. The sizes of the largest
clusters, rescaled by n−(τ−2)/(τ−1), converge to hitting times of a ‘thinned’ Lévy process. This process
is intimately connected to the general multiplicative coalescents studied in [1] and [3]. In particular, we
use the results in [3] to show that, when interpreting the location λ inside the critical window as time,
the limiting process is a multiplicative process with diffusion constant 0 and the entrance boundary
describing the size of relative components in the λ → −∞ regime proportional to

(

i−1/(τ−1)
)

i≥1
. A

crucial ingredient is the identification of the scaling of the largest connected components in the barely
subcritical regime.

Our results should be contrasted to the case where the degree exponent τ satisfies τ > 4, so that
the third moment is finite. There, instead, we see that the sizes of the components rescaled by n−2/3

converge to the excursion lengths of an inhomogeneous Brownian motion, as proved in [1] for the Erdős-
Rényi random graph and extended to the present setting in [6, 26]. The limit again is a multiplicative
coalescent, the only difference with the limit for τ ∈ (3, 4) being the initial state, corresponding to the
barely subcritical regime.

Key words: critical random graphs, phase transitions, inhomogeneous networks, thinned Lévy processes,
multiplicative coalescent.
MSC2000 subject classification. 60C05, 05C80, 90B15.

1 Introduction

1.1 Model

We start by describing the model considered in this paper. In our random graph model, vertices have
weights, and the edges are independent with the edge probability being approximately equal to the rescaled
product of the weights of the two end vertices of the edge. While there are many different versions of
such random graphs (see Section 1.5 for a discussion of these), it will be convenient for us to work with
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the so-called Poissonian random graph or Norros-Reittu model [23]. To define the model, we consider the
vertex set [n] := {1, 2, . . . , n}, and attach an edge with probability pij between vertices i and j, where

pij = 1 − exp

(

−wiwj
ln

)

, (1.1)

with

ln =
n

∑

i=1

wi. (1.2)

Different edges are independent. In this model, the average degree of vertex i is close to wi, thus incor-
porating inhomogeneity in the model. There are many adaptations of this model, for which equivalent
results hold. We defer the discussion of these models to Section 1.5.

We let the weight sequence w = (wi)i∈[n] be defined by

wi = [1 − F ]−1(i/n), (1.3)

where F (x) is a distribution function for which we assume that there exists a τ ∈ (3, 4) and 0 < cF <∞
such that, as x→ ∞,

1 − F (x) = cFx
−(τ−1)(1 + o(1)), (1.4)

and where [1 − F ]−1 is the generalized inverse function of 1 − F defined, for u ∈ (0, 1), by

[1 − F ]−1(u) = inf{s : [1 − F ](s) ≤ u}. (1.5)

By convention, we set [1 − F ]−1(1) = 0. A simple example arises when we take

F (x) =

{

0 for x < a,

1 − (a/x)τ−1 for x ≥ a,
(1.6)

in which case [1 − F ]−1(u) = a(1/u)−1/(τ−1) , so that wj = a(n/j)1/(τ−1) .
We shall frequently make use of the fact that (1.4) implies that, as u ↓ 0, (see e.g., [14, (B.9)])

[1 − F ]−1(u) =
(

cF/u
)1/(τ−1)

(1 + o(1)). (1.7)

Under the key assumption in (1.4), we have that the third moment of the degrees tends to infinity, i.e.,
with W ∼ F , we have E[W 3] = ∞. We write

ν =
E[W 2]

E[W ]
. (1.8)

Then, by [7], when ν > 1 there is one giant component of size proportional to n, while all other components
are of smaller size o(n), and when ν ≤ 1, the largest connected component contains a proportion of vertices
that converges to zero in probability. Thus, the critical value of the model is ν = 1. In the example in
(1.6), we have that

E[W ] =
a(τ − 1)

τ − 2
, E[W 2] =

a2(τ − 1)

τ − 3
, (1.9)

so that the critical case arises when

ν =
E[W 2]

E[W ]
=
a(τ − 2)

τ − 3
= 1, (1.10)

i.e., when a = (τ − 3)/(τ − 2).
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With the above definition of the weights, we shall write G0
n(w) to be the graph constructed with

the probabilities in (1.1), while, for any fixed λ ∈ R, we shall write Gλn(w) when we use the weight
sequence (1 + λn−(τ−3)/(τ−1))w. This setting has been studied in some detail in [17], where, for the
largest connected component Cmax and each λ ∈ R, it is proved that |Cmax|n−(τ−2)/(τ−1) is a tight random
variable, and also that n(τ−2)/(τ−1)/|Cmax| is tight. In this paper, we bring the discussion of the critical
behavior of such inhomogeneous random graphs substantially further, by identifying the scaling limit of
(|C(i)|n−(τ−2)/(τ−1))i≥1, where (C(i))i≥1 denote the connected components ordered in size, i.e., |Cmax| =
|C(1)| ≥ |C(2)| ≥ . . .. We now state our main results.

1.2 The scaling limit for τ ∈ (3, 4)

In this section, we investigate the scaling limit of the largest connected components ordered in size. Our
first main result is as follows:

Theorem 1.1 (Weak convergence of the ordered critical clusters for τ ∈ (3, 4)). Fix the Norros-Reittu
random graph with weights w(λ) = {(1 + λn−(τ−3)/(τ−1))wi}ni=1, where (wi)i∈[n] are as in (1.3). Assume
that ν = 1 and that (1.4) holds. Then, for all λ ∈ R,

(

|C(i)|n−(τ−2)/(τ−1)
)

i≥1

d−→ (γi(λ))i≥1, (1.11)

in the product topology, for some non-degenerate limit (γi(λ))i≥1.

Theorem 1.1 proves [17, Conjecture 1.7]. In the course of the proof, we shall identify the limiting
random variables explicitly in terms of certain hitting times of zero of the scaling limit of the exploration
process. We next investigate some interesting properties of the limiting largest clusters:

Theorem 1.2 (High-weight vertices are part of Cmax with positive probability). Under the assumptions
in Theorem 1.1, for every i, j ≥ 1 fixed,

lim
n→∞

P(j ∈ C(i)) = qij(λ) ∈ (0, 1), (1.12)

and
lim
n→∞

P(i ∈ Cmax) = qi(λ) ∈ (0, 1). (1.13)

The following theorem, which comes out of the construction used in the proof, essentially says that,
for each fixed λ, the maximal size components are those attached to the largest weight vertices. We
shall also crucially need this theorem in the proof of Theorem 1.1. In order to state the result, we first
introduce some notation. Let

C≤(i) =

{

C(i) if i < j ∀j ∈ C(i),

∅ otherwise.
(1.14)

Then, clearly, |Cmax| = maxi∈[n] |C(i)| = maxi∈[n] |C≤(i)|, and (|C(i)|)i≥1 is equal to the sequence (|C≤(i)|)i≥1

ordered in size. Then, we have the following result on the cluster sizes (|C≤(i)|)i∈[n]:

Theorem 1.3 (Maximal cluster contains a high-weight vertex). Assume that the conditions in Theorem
1.1 hold. Then:
(a) for any ε ∈ (0, 1), there exists a K ≥ 1, such that, for all n,

P
(

max
i≥K

|C≤(i)| ≥ εn(τ−2)/(τ−1)
)

≤ ε; (1.15)

(b) for any m ≥ 1, for ε > 0 small, the probability that the vector (|C≤(i)|)i∈[n] contains at least m

components of size at least εn(τ−2)/(τ−1) converges to 1 uniformly in n as ε ↓ 0.
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1.3 Relation to the standard multiplicative coalescent

In this section we shall give a quick overview of Aldous’s standard multiplicative coalescent and how it
relates to the limiting random variables in Theorem 1.1, seen as functions of the parameter λ. It shall
not be possible to give a full description of the process and its many fascinating properties here and we
refer the interested reader to the paper [3], the survey paper [2] and the book [5].

Write l2↓ to be the metric space of infinite real-valued sequences x = (x1, x2 . . .) with x1 ≥ x2 ≥ · · · ≥ 0.

The standard multiplicative coalescent is described as the Markov process with states in l2↓ whose dynamics
is described as follows: for each pair of clusters (x, y), the pair merges at rate xy.

First in [1], Aldous showed that there is a Feller process on the space l2 defined for all times −∞ <
t <∞ starting from infinitesimally small masses at time −∞ following the above merging dynamics, and
further the distribution of the coalescent process at any time t is the same as the limiting cluster sizes of
an Erdős-Rényi random graph with edge probabilities pn = (1 + tn−1/3)/n.

In [3], the entrance boundary at −∞ of the above Markov process was explicitly characterized, in
the sense that it is proved that every extreme version of the above Markov proces is characterized by a
diffusion parameter κ, a translation parameter β, and a vector c = (c1, c2, . . .) which describes the relative
sizes of the large clusters at time −∞. We refer the interested reader to [3] for the full description of
the process. In this terminology, the multiplicative coalescent can be described as the ordered excursions
beyond past minima of the process

W κ,β,c(s) = κ1/2W (s) + βs− 1

2
κs2 + V c(s), (1.16)

where (W (s))s≥0 is a standard Brownian motion, while

V c(s) =

∞
∑

j=1

cj(1{Tj≤s} − cjs), (1.17)

with (Tj)j≥1 independent exponential random variables with mean 1/cj . Then, the (κ, β, c)-multiplicative
coalescent is the set of ordered excursions from zero of the reflected process

Bκ,β,c(s) = W κ,β,c(s) − min
0≤s′≤s

W κ,βc(s′). (1.18)

Part of the proof of [3] is that these ordered excursions can be defined properly.
The following theorem draws a connection between the components of the graph for a fixed λ and

the sizes of clusters at the same value of time in a multiplicative coalescent with a particular entrance
boundary and scale and translation parameters. For this, define the sequence c = cw∗ where

w
∗ = (i−1/(τ−1))i≥1 (1.19)

and c = c
1/(τ−1)
F . Then, we have the following theorem, where we write

P−→ to denote convergence in
probability:

Theorem 1.4 (Relation to multiplicative coalescents). Assume that the conditions in Theorem 1.1 hold.
Consider the sequence valued random variables X∗(λ) = (γ1(E[W ]λ), γ2(E[W ]λ), . . .) obtained in Theorem
1.1. Then X∗(λ) has the same distribution as a multiplicative coalescent at time λ with entrance boundary
c, diffusion constant κ = 0 and centering constant β = −ζ/E[W ], where ζ is identified explicitly in (A.2).
In particular,

|λ|γj(λ)
P−→ cj/E[W ] as λ→ −∞ for each j ≥ 1. (1.20)

See Section 7 for a full proof of this result. The setting in this paper is the first example where the
multiplicative coalescent with κ = 0 arises in random graph theory. Indeed, all random graph examples
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in [3] have largest component sizes of the order n2/3, like for the Erdős-Rényi random graph studied in
[1]. Our example links the multiplicative coalescent also to random graphs with largest critical connected
components of the order n(τ−2)/(τ−1).

A crucial part of the proof is the analysis of the subcritical phase of our model. The asymptotics in
the subcritical case acts as the entrance boundary of the multiplicative coalescent, as explained in more
detail in [3, Proposition 7]. This entrance boundary is identified in the following theorem, which is of
independent interest:

Theorem 1.5 (Subcritical phase). Assume that the conditions in Theorem 1.1 hold, but now take λ =
λn → −∞ as n→ ∞ such that λn ≥ −n−(τ−3)/(τ−1). Then, for each j ∈ N,

|λn|n−(τ−2)/(τ−1)|C(j)| P−→ cj . (1.21)

Theorem 1.5 is proved in Section 6. The lower bound on λn is only there to ensure that w̃i =
(1+λn−(τ−3)/(τ−1))wi ≥ 0 for every i ∈ [n]. A result similar to Theorem 1.5 is proved for the near-critical
phase of the configuration model in [18], but the proof we give here is entirely different.

1.4 Overview of the proof

We first give an overview of the proof. We note that w is ordered in size, i.e., w1 ≥ w2 ≥ w3 ≥ . . . . Let
C(i) denote the cluster found by starting the exploration from vertex i. We start by exploring the clusters
from the largest weight vertices onwards. The reason for exploring the clusters from the high-weight
vertices onwards is that vertex 1 is part of Cmax with positive probability, which is strictly smaller than
1. This is rather different in the setting where τ > 4, which we shall discuss in more detail in Section 1.5.

In Theorem 1.3 we have seen that for any m ≥ 1 and for K sufficiently large, the vector
(

|C(i)|n−(τ−2)/(τ−1)
)

i∈[m]

is equal to the first m elements of (|C≤(i)|)i∈[K] ordered in size. This leads us to study the scaling limit
of the connected components of the first K vertices. For this, in turn, it suffices to compute the scaling
limit of (|C≤(i)|)i∈[K], which is our next aim.

In Section 2, we shall start by identifying the scaling limit of |C≤(1)|n−(τ−2)/(τ−1) = |C(1)|n−(τ−2)/(τ−1) .
The weak limit of |C(1)|n−(τ−2)/(τ−1) is given in terms of the hitting time of 0 of an exploration process
exploring the cluster of vertex 1. See Theorems 2.1 and 2.2. The scaling limit of the exploration process
of a cluster exists (see Theorem 2.2), and is a novel kind of stochastic process, which we can think of as
a ‘thinned’ Lévy process. Therefore, the convergence in distribution of |C(1)|n−(τ−2)/(τ−1) as in Theorem
2.1 is equivalent to the convergence of the first hitting time of zero of the exploration process to the one
of this thinned Lévy process. In proving this, we shall employ a careful analysis of hitting times of a
spectrally positive Lévy process that stochastically dominates the thinned Lévy process.

Following the proof of convergence of |C(1)|n−(τ−2)/(τ−1) in Theorem 2.1, we shall prove the conver-
gence in distribution of (|C≤(i)|n−(τ−2)/(τ−1))i∈[K] in Theorem 4.1. This proof makes crucial use of the
estimates in the proof of Theorem 2.1, and allows to extend the result in Theorem 2.1 to the (joint) con-
vergence of several rescaled clusters by an inductive argument. By Proposition 1.3, with high probability,
the largest m clusters are given by the largest m of the vector (|C≤(i)|n−(τ−2)/(τ−1))i∈[K], so that this
completes the proof of Theorem 1.1. This conclusion shall be carried out in Section 5 below.

In Section 6, we prove Theorem 1.5 by a second moment argument. In Section 7, we use the results
proved in Section 6, jointly with the results in [3], to prove Theorem 1.4.

Throughout this paper, we shall make use of the following standard notation. We write f(n) = O(g(n))
for functions f, g ≥ 0 and n → ∞ if there exists a constant C > 0 such that f(n) ≤ Cg(n) in the limit,
and f(n) = o(g(n)) if g(n) 6= O(f(n)). Furthermore, we write f = Θ(g) if f = O(g) and g = O(f). We
write OP(bn) for a sequence of random variables Xn for which |Xn|/bn is tight as n → ∞, oP(bn) for a

sequence of random variables Xn for which |Xn|/bn P−→ 0 as n → ∞. Finally, we write that a sequence
of events (En)n≥1 occurs with high probability (whp) when P(En) → 1.
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1.5 Discussion

In this section, we discuss our results in relation to several other results in the literature.

Related rank-1 inhomogeneous random graphs. The model considered here is a special case of
the so-called rank-1 inhomogeneous random graph defined in [7]. It is asymptotically equivalent with
many related models, such as the random graph with given prescribed degrees or Chung-Lu model, where
instead

pij = max{wiwj/ln, 1}, (1.22)

and which has been studied intensively by Chung and Lu (see [9, 10, 11, 12, 13]). A further adaptation
is the generalized random graph [8], for which

pij =
wiwj

ln + wiwj
, (1.23)

See [17, Section 2], which in turn is based on [20], for more details on the asymptotic equivalence of such
inhomogeneous random graphs. Since these models are asymptotically equivalent, all results proved here
also hold for these related rank-1 models.

Comparison to the case where τ > 4. In [1, 6, 26], the scaling limit was considered in the case where
τ > 4 and thus E[W 3] < ∞. In this case, the scaling limit turns out to be a constant multiple times
the scaling limit for the Erdős-Rényi random graph as identified in [1]. Thus, the setting when τ ∈ (3, 4)
is fundamentally different. When E[W 3] < ∞, the probability that 1 ∈ Cmax is negligible, while in our
setting this is not true, as shown in Theorem 1.2.

Other weights. Our proof reveals that the precise limit of win
−1/(τ−1), for fixed i ≥ 1, arises in

the scaling limit. We make crucial use of the fact that, in our setting, by (1.7) limn→∞win
−1/(τ−1) =

(cF/i)
1/(τ−1). However, we believe that also when limn→∞win

−1/(τ−1) exists for every i ≥ 1 and is
asymptotically equal to ai−1/(τ−1), our results remain valid. This suggests that, by varying the precise
values of high weights, there are many possibly scaling limits to be found. It would be of interest to
investigate this further. Also, we restrict to 1 − F (x) that are, for large x ≥ 0, asymptotic to an inverse
power of x (see (1.4)). It would be of interest to investigate the scaling behavior when (1.4) is replaced
with the assumption that 1 − F (x) is regularly varying with exponent τ − 1. In this case, we believe
that the scaling of the largest critical clusters depend on the slowly varying function, and are given by
ℓ(n)n(τ−2)/(τ−1) for some suitable slowly varying function n 7→ ℓ(n), instead.

I.i.d. weights. In our analysis, we make crucial use of the choice for wi in (1.3). In the literature, also
the setting where (Wi)i∈[n] are i.i.d. random variables with distribution function F , has been considered.
We expect the behavior in this model to be quite different. Indeed, then take wi = W(i), where W(i) are
the order statistics of the i.i.d. sequence (Wi)i∈[n]. It is well known that

n−1/(τ−1)W(i)

d−→ ξi ≡ (E1 + · · · + Ei)
−1/(τ−1), (1.24)

where {Ei}∞i=1 are i.i.d. exponential random variables with mean 1. In particular, when τ ∈ (3, 4),
E[ξa1 ] <∞ whenever a < τ − 1. The extra randomness of the order statistics has an effect on the scaling
limit, which is different. In most cases, the two settings have the same behavior (see, for example, [6],
where this is shown to hold for weights for which E[W 3] <∞, where W has distribution function F ).
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High-weight vertices. The fact that the vertex i is in the largest connected component with non-
vanishing probability as n → ∞ (see Theorem 1.2) is remarkable and invites some further discussion. In
our setting, a uniform vertex is an element of Cmax with negligible probability. The point is that vertex i

has weight wi, which, for i fixed, is close to
(

cF/i
)1/(τ−1)

n1/(τ−1), while a uniform vertex has a bounded
weight. Thus, Theorem 1.2 can be interpreted by saying that the highest weight vertices characterize the
largest components. In the subcritical case (see e.g., [19]) the largest connected component is the one of
the vertex with the highest weight, and the critical situation arises when the highest weight vertices start
connecting to each other. Proving that this picture is correct all the way to the critical window is part of
the aim of [18].

Connection to the multiplicative coalescent. In this paper we give two completely separate proofs
of the convergence of the maximal components as n → ∞. The first proof, comprising Sections 2 to 5,
gives an inductive proof of the convergence of the maximal components, while Section 7 gives a second
proof via modifications of the results in [3]. The advantage of the first proof is that the ideas developed in
this are crucial for showing Theorems 1.2 and 1.3 that in this regime, unlike the regime when τ > 4, there
is a non-trivial asymptotic probability for the high end vertices to be in the maximal components, as well
as being in the same component (in the τ > 4 regime both these probabilities are asymptotically zero).
The mental picture associated with the entrance boundary of the coalescent here seems to be different
from [3], where in spirit many of the component sizes are of order n2/3. Here they describe the sizes of
the maximal components rescaled by n−(τ−2)/(τ−1) in the λ → −∞ regime, whilst in [3] they arise as
limits of random graphs similar to critical Erdős-Rényi random graphs where in addition to the random
edges, there are initially a number of large “planted” components of sizes ⌊cin2/3⌋, see [3, Section 1.3].
However, the results of [3] are crucial in identifying the distribution of the limiting component sizes for
fixed λ. It would be interesting to see if the stochastic calculus techniques developed in [3] can be further
modified to give useful information about the surplus of edges in the maximal components (the surplus of
a component C with E(C) edges and V (C) vertices is equal to E(C)− (V (C)− 1) and denotes the number
of edges that must be removed from the component to make it a tree).

2 The scaling limit of the cluster of vertex 1

In this section, we identify the scaling limit of |C(1)|. We note from (1.3) that the weight of vertex 1
is maximal, i.e., w1 ≥ w2 ≥ . . . ≥ wn. When τ > 4, the probability that vertex 1 belongs to Cmax is
negligible. When τ ∈ (3, 4), vertex 1 is in Cmax with positive probability, so that it is quite reasonable to
start exploring the cluster of vertex 1 first. Theorem 2.1 below states that |C(1)| is of order n(τ−2)/(τ−1).
By [17, Theorems 1.2 and 1.4], the same is valid for |Cmax|.

Theorem 2.1 (Weak convergence of the cluster of vertex 1 for τ ∈ (3, 4)). Fix the Norros-Reittu random
graph with weights w(λ) = {(1+λn−(τ−3)/(τ−1))wi}ni=1, where (wi)i∈[n] are as in (1.3). Assume that ν = 1
and that (1.4) holds. Then, for all λ ∈ R,

|C(1)|n−(τ−2)/(τ−1) d−→ H1(0), (2.1)

for some non-degenerate limit H1(0).

Throughout the proof, we shall write w̃i = (1 + λn−(τ−3)/(τ−1))wi, and we denote

νn =
1

ln

∑

j∈[n]

w2
j . (2.2)

We also write ν̃n = (1 + λn−(τ−3)/(τ−1))νn, and note that this is νn computed for the weights w(λ) =
(w̃i)i∈[n].

7



We shall frequently make use of the asymptotics

νn = ν + ζn−(τ−3)/(τ−1) + o(n−(τ−3)/(τ−1)), ln =

n
∑

i=1

wi = nµ+O(n1/(τ−1)), (2.3)

where µ is the mean of the distribution F and ζ ≤ 0. The asymptotics for ln and the fact that νn − ν =
O(n−(τ−3)/(τ−1)) follow from [17, Cor. 4.2]. The sharper asymptotics for νn in (2.3) is obtained by a more
careful analysis of the arising sum, which is deferred to Lemma A.1 in the appendix. Thus, we shall use
that in the critical regime where ν = 1,

ν̃n = 1 + θn−(τ−3)/(τ−1) + o(n−(τ−3)/(τ−1)), (2.4)

where θ = λ + ζ. The parameter θ ∈ R indicates the location inside the critical window formed by
the weights w(λ). Indeed, in the asymptotics for ν̃n in (2.4), the fact that θ = ζ + λ arises from
ν̃n = (1 + λn−(τ−3)/(τ−1))νn, together with the sharp asymptotics of νn in (2.3). The value of ζ is
constant and does not depend λ, while the value of λ indicates the location inside the scaling window, so
we can, alternatively, measure the location inside the scaling window by θ ∈ R.

In order to prove Theorem 2.1, we make heavy use of the cluster exploration, which is described in
detail in [23] and [17]. The model in [23] is a random multigraph, i.e., a random graph potentially having
self-loops and multiple edges. Indeed, for each i, j ∈ [n], we let the number of edges between vertex i
and j be Poi(wiwj/ln), where, for λ ≥ 0, we let Poi(λ) denote a Poisson random variable with mean λ.
The number of edges between different pairs of vertices are independent. To retrieve our random graph
model, we merge multiple edges and erase self-loops. Then, the probability that an edge exists between
two vertices i, j ∈ [n] is equal to

pij = P
(

Poi(wiwj/ln) ≥ 1
)

= 1 − e−wiwj/ln , (2.5)

as required. Further, the number of edges from a vertex i has a Poisson distribution with mean wi.
We shall work with the above Poisson random graph instead, and we shall refer to the Poisson random
variable Poi(wi) as the number of potential neighbors. When we find what the vertices are that correspond
to these Poi(wi) potential neighbors, i.e., when we determine their marks, then we can see how many real
neighbors there are.

We denote by (Zl)l≥0 the exploration process in the breadth-first search, where Z0 = 1 and Zl denotes
the number of potential elements in the cluster of the initial vertex, which is in the case of Theorem 2.1
equal to vertex 1, of which we have not yet explored their neighbors. Thus, we set Z0 = 1, Z1 = Poi(w̃1),
and note that, for l ≥ 2, Zl satisfies the recursion relation

Zl = Zl−1 +Xl − 1, (2.6)

where Xl denotes the number of potential neighbors of the lth vertex which is explored. In [23, Proposition
3.1] (see also [17, Section 4.2]), the cluster exploration was described in terms of a thinned marked mixed
Poisson branching process. This implies that the distribution of Xl (for 2 ≤ l ≤ n) is equal to Poi(w̃Ml

)Jl,
where the marks {Ml}∞l=1 are i.i.d. random variables with distribution

P(M = m) =
wm
ln
, 1 ≤ m ≤ n, (2.7)

and Jl = 1{Ml 6∈{1}∪{M1,...,Ml−1}} is the indicator that the mark Ml has not been found before and is not
equal to 1. Here, the mark Ml is the label of the potential element of the cluster that we are exploring,
and, clearly, if a vertex has already been observed to be part of C(1) and its neighbors have been explored,
then we should not do so again. We call the drawing of the random mark a vertex check. We conclude
that we arrive at, for l ≥ 2,

Zl = Zl−1 + Poi(w̃Ml
)Jl − 1. (2.8)
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Then, the number of vertex checks that have been performed when exploring the cluster of vertex 1 equals
V (1), which is given by

V (1) = min{l : Zl = 0}, (2.9)

since the first time at which there are no more vertices to be checked, all vertices in the cluster have been
checked.

Further, the number of real vertices found to be part of C(1) after l vertex checks equals

|C(1; l)| = 1 +
l

∑

j=2

Jj . (2.10)

Therefore, we conclude that

|C(1)| = |C≤(1)| = 1 +

V (1)
∑

j=2

Jj = V (1) −
V (1)
∑

j=2

(1 − Jj). (2.11)

It turns out that the second contribution is an error term (see Lemma 3.8 below), so that the cluster size
of 1 asymptotically corresponds to the first hitting time of 0 of l 7→ Zl. Theorem 2.1 shall follow from the
fact that we can identify the scaling limit of the process (Zl)l≥0. To identify this scaling limit, we let

Z(n)

t = n−1/(τ−1)Ztn(τ−2)/(τ−1) . (2.12)

The intuition behind (2.12) is as follows. First, since the largest connected components are of order
n(τ−2)/(τ−1) as proved in [17, Theorems 1.2 and 1.4], and the successive elapsed time between hits of zero
of the process (Zl)l≥0 correspond to the cluster sizes, the relevant time scale is tn(τ−2)/(τ−1). Further, by
Proposition 1.3, we see that the large clusters correspond to the clusters of the high-weight vertices. The
maximal weight is of the order n1/(τ−1), so that this needs to be the relevant scale on which the process
Zl runs. The proof below shall make this intuition precise.

In order to define the scaling limit, we define the non-negative continuous-time process (St)t≥0. For
some a > 0, we let {Ii(t)}∞i=1 denote an independent increasing indicator processes with

P(Ii(s) = 0 ∀s ∈ [0, t]) = e−ati
−1/(τ−1)

. (2.13)

We further let, for some b > 0 and c ∈ R, and a as in (2.13),

St = b− abt+ ct+

∞
∑

i=2

b

i1/(τ−1)
[Ii(t) −

at

i1/(τ−1)
], (2.14)

for all t ≥ 0. We call (St)t≥0 a thinned Lévy process, a name we shall explain in more detail after the
theorem. The main result is the following theorem:

Theorem 2.2 (The scaling limit of Zl). As n→ ∞, under the conditions of Theorem 1.1,

(Z(n)

t )t≥0
d−→ (St)t≥0, (2.15)

where a = c
1/(τ−1)
F /µ, b = c

1/(τ−1)
F , c = θ, in the sense of convergence in the J1 Skorokhod topology on

the space of right-continuous left-limited functions on R
+. Consequently, H1(0) is the hitting time of 0 of

(St)t≥0.

It is worthwhile to note that while the convergence in Theorem 2.2 only has implications for our
random graph for t ≤ H1(0), which is the hitting time of zero of the process (St)t≥0, the processes
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(S(n)

t )t≥0 and (St)t≥0 are well defined also for larger t, and convergence holds for all t. This shall, in fact,
be useful in the proof.

The proof of Theorem 2.2 shall be given in Section 3 below. We now first discuss the limiting process
(St)t≥0 and its connection to Lévy processes. To do this, we denote by (Rt)t≥0 the process given by

Rt = b− abt+ ct+

∞
∑

i=2

b

i1/(τ−1)
[Ni(t) −

at

i1/(τ−1)
], (2.16)

where Ni are independent Poisson processes with rates at
i1/(τ−1) . Clearly, the process (Rt)t≥0 is a spectrally

positive Lévy process (see e.g., [4, 22] for more information on Lévy processes), with exponent ψ(θ) (for
which E(e−θ(Rt−R0)) = e−tψ(θ)) given by

ψ(θ) = (c− ab)θ +

∞
∑

i=2

a

i1/(τ−1)

[

1 − e
−θ b

i1/(τ−1) − btθ

i1/(τ−1)

]

. (2.17)

Alternatively, the exponent ψ(θ) can be expressed in terms of the integral

ψ(θ) = (c− ab)θ − θ

∫ ∞

1
Π(dx) +

∫ ∞

0
(eθx − 1 − θ1{x<1})Π(dx), (2.18)

where the Lévy measure Π is defined as

Π(dx) =
a

b

∞
∑

i=2

xδx, b

i1/(τ−1)
. (2.19)

Thus, since Π(−∞, 0) = 0, the Lévy process is spectrally positive, so that the process (Rt)t≥0 has only
positive jumps. Also, Π(b,∞) = 0, so that the jumps of (Rt)t≥0 are bounded by b. Finally,

∫ ∞

0
(1 ∧ x2)Π(dx) ≤

∫ ∞

0
x2Π(dx) =

a

b

∞
∑

i=2

( b

i1/(τ−1)

)3
= ab2

∞
∑

i=2

i−3/(τ−1) <∞, (2.20)

since τ ∈ (3, 4) so that 3/(τ − 1) > 1. Therefore, the process (Rt)t≥0 is a well-defined Lévy process.
We may reformulate (2.14) as

St = b− abt+ ct+
∞
∑

i=2

b

i1/(τ−1)
[1{Ni(t)≥1} −

at

i1/(τ−1)
], (2.21)

so that the process (St)t≥0 does not include multiple counts of the independent processes (Ni(t))t≥0. This
is the reason that we call the process (St)t≥0 a thinned Lévy process. In [3], this process is called a Lévy
process without repetitions. Naturally, we have that the descriptions in (2.16) and (2.21) satisfy that,
a.s., for all t ≥ 0,

St ≤ Rt. (2.22)

This allows us to make use of Lévy process methodology at various places in our proofs. We do note that
Rt is a rather poor approximation for St, particularly on large time scales, because the thinning becomes
more important as time progresses.

3 Proof of Theorems 2.1 and 2.2

In this section, we prove Theorems 2.1 and 2.2. We start by proving Theorem 2.2 in Section 3.1, and
make use of Theorem 2.2 to prove Theorem 2.1 in Section 3.2.
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3.1 Proof of Theorem 2.2

Instead of (Zl)l≥0, it shall be convenient to work with a related process (Sl)l≥0, which is defined as
S0 = 1, S1 = w̃1 and satisfies the recursion relation, for l ≥ 2,

Sl = Sl−1 + w̃Ml
Jl − 1, (3.1)

i.e., the Poisson random variables Poi(w̃Ml
) appearing in the recursion for Zl in (2.8) are replaced with

their (random) weights w̃Ml
. We shall first show that Sl and Zl are quite close:

Lemma 3.1 (The difference between Sl and Zl is small). For any m ≥ 0,

sup
l≤m

|Zl − Sl| = OP(m
1/2). (3.2)

Proof. We have that {Zl−Sl}l≥0 is a martingale w.r.t. the filtration Fl = σ({Mi}li=1). Therefore, by the
Doob-Kolmogorov inequality [16, Theorem (7.8.2), p. 338],

P
(

sup
l≤m

|Zl − Sl| > ε
√
m

)

≤ 1

mε2
E

[

|Zm − Sm|2
]

. (3.3)

Now,

E

[

|Zm − Sm|2
]

= E

[

E
[

|Zm − Sm|2 | {Mi}mi=1

]

]

= E
[

m
∑

l=1

w̃Ml
Jl

]

≤ E
[

m
∑

l=1

w̃Ml

]

= mν̃n = m(1 + o(1)),

(3.4)
by (2.4). This proves the claim.

We proceed by investigating the scaling limit of (Sl)l≥1. For this, we define

S(n)

t = n−1/(τ−1)Stn(τ−2)/(τ−1) . (3.5)

We shall prove that

(S(n)

t )t≥0
d−→ (St)t≥0, (3.6)

which shall be enough to prove Theorem 2.2. Indeed, to see that (3.6) proves Theorem 2.2, we note that
by Lemma 3.1, for every t = o(n(4−τ)/(τ−1)),

sup
s≤t

|Z(n)

t − S(n)

t | = OP

(
√
tn

4−τ
2(τ−1)

)

= oP(1). (3.7)

We continue with the proof of (3.6). We investigate the process S(n)

t up to the first time it hits 0. We
shall prove that, due to (2.11) and Lemma 3.1, this hitting time is close to n−(τ−2)/(τ−1)|C≤(1)|. We note
that, by (3.1),

Sl = w̃1 +
∑

i∈V
(n)
l

w̃i − l = w̃1 +

n
∑

i=2

w̃iI (n)

i (l) − l, (3.8)

where
I (n)

i (l) = 1
{i∈V

(n)
l }

, (3.9)

and

V (n)

l =
l

⋃

j=2

{Mj}. (3.10)
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Using that

ν̃n =

n
∑

i=1

w̃iwi
ln

, (3.11)

we can rewrite this as

Sl = w̃1 −
w̃1w1l

ln
+

n
∑

i=2

w̃i
[

I (n)

i (l) − wil

ln

]

+ (ν̃n − 1)l. (3.12)

Now we recall (see (2.4))

l = tn(τ−2)/(τ−1), ν̃n − 1 = θn−(τ−3)/(τ−1)νn, (3.13)

and we recall from (1.4) that, for i such that i/n → ∞,

wi = [1 − F ]−1(i/n) = b(n/i)1/(τ−1)(1 + o(1)), (3.14)

where b = c
1/(τ−1)
F and cF is defined in (1.4). As a result,

S(n)

t = n−1/(τ−1)Stn(τ−2)/(τ−1)

= b− b2

µ
t+

n
∑

i=2

n−1/(τ−1)w̃i
[

I (n)

i (tn(τ−2)/(τ−1)) − n−1/(τ−1)wit

µn

]

+ θt+ o(1), (3.15)

where we write µn = ln/n = µ+ o(1).
We proceed by showing that the sum in (3.15) is predominantly carried by the first few terms. For

this, we compute the variance of the sum over i ≥ K for K large. We start by noting that I (n)

i (l) is the
indicator that i ∈ V (n)

l , and V (n)

l contains the first l marks drawn, where the marks {Mi}li=1 are i.i.d. with
distribution given by (2.7). Therefore, I (n)

i (l) and I (n)

j (l) are, for different i, j, negatively correlated, so
that

Var
(

n
∑

i=K

n−1/(τ−1)w̃i
[

I (n)

i (l) − wil

ln

]

)

= Var
(

n
∑

i=K

n−1/(τ−1)w̃iI (n)

i (l)
)

≤
n

∑

i=K

(

n−1/(τ−1)w̃i
)2

Var
(

I (n)

i (l)
)

. (3.16)

Now,
Var

(

I (n)

i (l)
)

= P
(

I (n)

i (l) = 0
)(

1 − P
(

I (n)

i (l) = 0
))

, (3.17)

and

1 − P
(

I (n)

i (l) = 0
)

= 1 − (1 − wi
ln

)l−1 ≤ wil

ln
, (3.18)

so that

Var
(

I (n)

i (l)
)

≤ wil

ln
. (3.19)

Therefore, when l = tn(τ−2)/(τ−1),

Var
(

n
∑

i=K

n−1/(τ−1)w̃i
[

I (n)

i (l) − wil

ln

]

)

≤
n

∑

i=K

(

n−1/(τ−1)w̃i
)2witn

(τ−2)/(τ−1)

ln

≤ Ct

n
∑

i=K

i−3/(τ−1) ≤ CtK1−3/(τ−1) = o(1), (3.20)
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when K → ∞, since τ ∈ (3, 4). Moreover,

M (n,K)

l =

n
∑

i=K

n−1/(τ−1)w̃i
[

I (n)

i (l) − n−1/(τ−1)wil

ln

]

(3.21)

is a supermartingale since

E[M (n,K)

l+1 −M (n,K)

l | {I (n)

i (l)}ni=1]

= E

[

n
∑

i=K

n−1/(τ−1)w̃i
[

I (n)

i (l + 1) − I (n)

i (l) − n−1/(τ−1)wi
ln

]

| {I (n)

i (l)}ni=1

]

≤
n

∑

i=K

n−1/(τ−1)w̃i(1 − I (n)

i (l))
(

E
[

I (n)

i (l + 1) | {I (n)

i (l)}ni=1

]

− n−1/(τ−1)wi
ln

)

= 0. (3.22)

Therefore, by the maximal inequality [16, Theorem (12.6.1), p. 496] and the Cauchy-Schwarz inequality,
and writing m = tn(τ−2)/(τ−1),

P
(

max
l≤m

M (n,K)

l ≥ x
)

≤ E[M (n,K)

0 ] + E[|M (n,K)
m |]

x
≤ c

√
tK(τ−4)/2(τ−1). (3.23)

Since τ < 4, we obtain that, for K ≥ 1 large and uniformly in n, P(maxl≤mM
(n,K)

l ≥ ε) ≤ ε.
We now summarize the statements in Lemma 3.1 and (3.23). For this, we denote

S(n,K)

t = b− b2

µ
t+

K
∑

i=2

n−1/(τ−1)w̃i
[

I (n)

i (tn(τ−2)/(τ−1)) − n−1/(τ−1)wit

µn

]

+ θt, (3.24)

S(∞,K)

t = b− b2

µ
t+

K
∑

i=2

bi−1/(τ−1)
[

Ii(t) − ai−1/(τ−1)
]

+ θt. (3.25)

Then we obtain the following corollary:

Corollary 3.2 (Finite sum approximation of Z). For every ε, δ > 0, there exists K > 0 and N ≥ 1 such
that for all n ≥ N , for all u ≤ ∞,

P(sup
t≤u

∣

∣Z(n)

t − S(n,K)

t | ≥ δ) ≤ ε. (3.26)

Consequently, with

H (n)(x) = inf{t : Z(n)

t = x}, H (n,K)(x) = inf{t : S(n,K)

t = x}, (3.27)

it follows that, for every ε, δ > 0, there exists K > 0 and N ≥ 1 such that, for all n ≥ N ,

P
(

H (n,K)(x+ δ) ≤ H (n)(x) ≤ H (n,K)(x− δ)
)

≥ 1 − ε. (3.28)

The above suggests that it suffices to investigate (I (n)

i (tn(τ−2)/(τ−1)))i∈[K]. That is the content of the
following lemma:

Lemma 3.3 (Convergence of indicators). As n→ ∞, for all K ≥ 1 and T > 0,

(I (n)

i (tn(τ−2)/(τ−1)))i∈[K],t∈[0,T ]
d−→ (Ii(t))i∈[K],t∈[0,T ]. (3.29)

As a consequence, for all K ≥ 1 and T > 0,

(S(n,K)

t )t∈[0,T ]
d−→ (S(∞,K)

t )t∈[0,T ]. (3.30)

In both statements,
d−→ denotes convergence in the J1 Skorokhod topology on the space of right-continuous

left-limited functions on R
+.
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Proof. Since I (n)

i (tn(τ−2)/(τ−1)) are all indicator processes of the form

I (n)

i (tn(τ−2)/(τ−1)) = 1{Ti≤tn(τ−2)/(τ−1)}, (3.31)

where Ti is the first time that mark i is chosen, it suffices to prove that

(n(τ−2)/(τ−1)Ti)i∈[K]
d−→ (Ei)i∈[K], (3.32)

where Ei are independent exponentials with mean ai−1/(τ−1). For this, in turn, it suffices to prove that,
for every sequence t1, . . . , tK ,

P(n(τ−2)/(τ−1)Ti > ti ∀i ∈ [K]) → e−a
PK

i=1 i
−1/(τ−1)ti . (3.33)

The latter is equivalent to

P
(

I (n)

i (tin
(τ−2)/(τ−1)) = 0 ∀i ∈ [K]

)

→ P(Ii(ti) = 0 ∀i ∈ [K]) = e−a
PK

i=1 i
−1/(τ−1)ti . (3.34)

Now, since the marks are i.i.d., we obtain that

P
(

I (n)

i (mi) = 0 ∀i ∈ [K]
)

=
∞
∏

l=1

P(Ml 6∈ {i ∈ [K] : l ≤ mi}) =
∞
∏

l=1

(

1 −
∑

i:l≤mi

wi
ln

)

. (3.35)

A Taylor expansion gives that

P
(

I (n)

i (mi) = 0 ∀i ∈ [K]
)

= e
−

Pn
l=1

P

i:mi≤l
wi
ln

+o(1)
= e−

P

i∈[K]
wimi

ln
+o(1). (3.36)

Applying this to mi = tin
(τ−2)/(τ−1), and noting that for this choice

miwi
ln

=
bi−1/(τ−1)ti

µ
, (3.37)

we arrive at the claim in (3.29) with a = b/µ. The claim in (3.30) follows from the fact that, by (3.24),
S(n,K)

t is a weighted sum of the (I (n)

i (tn(τ−2)/(τ−1)))i∈[K], and the (deterministic) weights converge. Thus,
the continuous mapping theorem gives the claim.

Proof of Theorem 2.2. By (3.23), whp we can restrict the sum in the definition of Sl in (3.8) to the
first [K] terms. Then, we have a sum of stochastic processes that by Lemma 3.3 converge weakly to the
independent indicator processes in (2.21). This proves the claim.

3.2 Proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1. We start by looking at the first hitting time of zero of the
process l 7→ Zl, and use the fact that by (2.11), V (1) = min{l : Zl = 0}, where V (1) denotes the number
of vertex checks performed in exploring the cluster of vertex 1. The proof shall proceed as follows. We
shall first use Theorem 2.2 and Lemma 3.1 to prove that V (1)n−(τ−2)/(τ−1) converges in distribution to
HS(0), where HS(0) denotes the first hitting time of 0 of the process (St)t≥0 (see Proposition 3.4 below).
We then prove that V (1)n−(τ−2)/(τ−1) and C(1)n−(τ−2)/(τ−1) have identical scaling limits, by looking at
the second term in (2.11) (see Lemma 3.8 below). We then complete the proof of Theorem 2.1. Finally,
we state and prove an auxiliary result useful in the proof of Theorems 1.1, 1.2 and 4.1, and which will play
a crucial role in the next section, where we investigate the scaling limit of several clusters simultaneously.

By Theorem 2.2 and Lemma 3.1, the process (Z(n)

t )t≥0, where Z(n)

t = n−1/(τ−1)Ztn(τ−2)/(τ−1) converges
in distribution to the process (St)t≥0. Note that

n−(τ−2)/(τ−1)V (1) = min{t : Z(n)

t = 0} = H (n)(0). (3.38)

14



By Corollary 3.2, we have that

P(H (n,K)(δ) > u) − ε ≤ P(H (n)(0) > u) ≤ P(H (n,K)(−δ) > u) + ε. (3.39)

Therefore, to prove convergence in distribution of n−(τ−2)/(τ−1)V (1), it suffices to prove the following
proposition:

Proposition 3.4 (Convergence of hitting times). For every u ∈ [0,∞),

lim
δ→0

lim
K→∞

lim
n→∞

P(H (n,K)(δ) > u) = P(HS(0) > u), (3.40)

where
HS(x) = inf{t : St ≤ x} (3.41)

is the first hitting time of level x of (St)t≥0.

Proof. We shall prove the upper bound only, the proof for the lower bound being equivalent. We use that
the process (S(n,K)

t )t∈[0,T ] converges in distribution to (S(∞,K)

t )t∈[0,T ] in the sense of convergence in the
J1 Skorokhod topology on the space of right-continuous left-limited functions on R

+. This implies that,
uniformly in n ≥ 1 sufficiently large, and for any η > 0 sufficiently small,

P(H (n,K)(−δ) > u) ≤ P(H (∞,K)(−δ − η) > u− η). (3.42)

Further, whp, we have that, as K → ∞,

sup
u≤t

|St − S(∞,K)

t | ≤ η. (3.43)

Therefore, for sufficiently large K ≥ 1,

P(H (n,K)(−δ) > u) ≤ P(HS(−δ − 2η) > u− η) ≤ P(HS(−2δ) > u− η), (3.44)

when we take η ≤ δ/2. We conclude that it suffices to show that

lim
δ↓0

lim
η↓0

P(HS(−δ) > u− η) = P(HS(0) > u). (3.45)

This is a kind of joint continuity of the distribution of the hitting time, both in space and time.
We shall continue to explore the proof of (3.45). We let Px denote the distribution of the process

(St)t≥0 when S0 = x. Then,

P(HS(−δ) > u− η) = Pb(HS(−δ) > u− η) = Eb

[1{HS(δ)>u−η}Pb(HS(−δ) > u− η | FHS(δ))
]

. (3.46)

The process (St+HS(δ) − δ)t≥0 is not quite a Markov process, but it is, conditionally on FHS(δ), in law

equal to the process (S(δ)

t )t≥0 given by

S(δ)

t = −abt+ ct− t
∑

i∈VHS(δ)

abi−2/(τ−1) +
∑

i∈Uc
t \VHS(δ)

bi−1/(τ−1)[Ii(t) −
at

i1/(τ−1)
]. (3.47)

In particular, S(δ)

t is stochastically dominated by St. Thus,

Pb(HS(−δ) −HS(δ) > a | FHS(δ)) ≤ Pδ(HS(−δ) > a). (3.48)

Therefore, in order to prove (3.45), we split

P(HS(−δ) > u− η) − P(HS(0) > u) (3.49)

= [P(HS(−δ) > u− η) − P(HS(0) > u− 2η)] + [P(HS(0) > u− 2η) − P(HS(0) > u)],
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and note that the second term converges to zero when η → 0, since we shall show that HS(0) has a
continuous distribution, while the first term is bounded by

P(HS(−δ) > u− η) − P(HS(0) > u− 2η) = Pb(HS(−δ) > u− η,HS(0) ≤ u− 2η)

≤ P(HS(−δ) −HS(0) > η) ≤ Pδ(HS(−δ) > η). (3.50)

Now, we observe that by (2.22), St ≤ Rt a.s. for all t ≥ 0, where (Rt)t≥0 is the Lévy process defined in
(2.16), and hence

Pδ(HS(−δ) > η) ≤ Pδ(HR(−δ) > η), (3.51)

where, for a stochastic process Xt, we let

HX (x) = inf{t : Xt ≤ x} (3.52)

be its first hitting time of x. We conclude that, to prove Proposition 3.4, it suffices to show that

lim
η↓0

lim
δ↓0

Pδ(HR(−δ) > η) = 0. (3.53)

Therefore, we are lead to study the probability that the Lévy process (Rt)t≥0 started from δ > 0, which
is small, has a large hitting time of 0.

Because (Rt)t≥0 has independent increments, and only non-negative jumps, we have the following
result (see e.g. [24, (1.5)]):

Lemma 3.5 (Hitting times for spectrally positive Lévy processes). For ψ(θ) defined in (2.17) we have
that ψ(θ) → −∞ as θ → ∞. Suppose b ≥ 0.
(a) For each s > 0 there is a unique positive solution θ = η(s) of ψ(θ) = −s, and

Eb(e
−sHR(0)) = e−bη(s). (3.54)

(b) Define FHR(0)(t|b) = Pb(HR(0) ≤ t) and FRt(x|b) = Pb(Rt ≤ x), and let fHR(0)(t|b) and fRt(x|b) be
the respective densities (if they exist). Then,

fHR(0)(t|b) =
b

t
fRt(−b|0). (3.55)

We shall show below that indeed Rt has a density for every t > 0, so that we are allowed to use
Lemma 3.5. Lemma 3.5(a) yields

Pδ(HR(−δ) = ∞) = P2δ(HR(0) = ∞) = 1 − e−2δη(0), (3.56)

for which it can be shown that η(0) = 0 if E(R1 −R0) ≤ 0 and η(0) ≥ 0 if E(R1−R0) > 0. From Lemma
3.5(b) we then conclude that

Pδ(HR(−δ) > a) =

∫ ∞

a
fHR(0)(t|2δ)dt + Pδ(HR(−δ) = ∞)

=

∫ ∞

a

2δ

t
fRt(−2δ|0)dt + 1 − e−2δη(0). (3.57)

Lemma 3.6 (Bound on the density of Rt). The density of Rt can be bounded by

sup
x
fRt

(x|b) ≤ a2t
−1/(τ−2). (3.58)
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Proof. In order to bound fRu(x), we use the Fourier inversion theorem to obtain

fRt
(x|b) =

∫ ∞

−∞
eiθxf̂Rt

(θ|b)dθ
2π

(3.59)

with the characteristic function f̂Rt
(θ|b) = E0(e

iθRt) = e−tΨ(θ) and Ψ(θ) = ψ(−iθ). The existence of the

density fRt
(x|b) follows from the fact that |f̂Rt

(θ|b)| is integrable, which we shall prove below. This also
establishes the fact that Rt has a density, as stated below Lemma 3.5.

We obtain that, uniformly in x ∈ R,

fRt
(x|b) ≤

∫ ∞

−∞
|f̂Rt

(θ|b)|dθ
2π

=

∫ ∞

−∞
e−tRe(Ψ(θ)) dθ

2π
, (3.60)

where, for z ∈ C, Re(z) denotes the real part of z.
From (2.17) we see that (with α = 1/(τ − 1))

Re(Ψ(θ)) =

∞
∑

j=2

a

jα
[1 − cos(bθj−α)]. (3.61)

To prove a lower bound on Re(Ψ(θ)), we let

jθ = min{j ≥ 2 : bθj−α ≤ π/2}, (3.62)

so that
jθ = (2bθ/π)1/α ∧ 2 = (2bθ/π)τ−1 ∧ 2. (3.63)

Then we bound

Re(Ψ(θ)) ≥
∞

∑

j=jθ

a

jα
[1 − cos(bθj−α)]. (3.64)

Next, we use that

1 − cos(x) ≥ 2

π
x2, x ∈ [−1

2π,
1
2π], (3.65)

to arrive at

Re(Ψ(θ)) ≥ cθ2
∞

∑

j=jθ

j−3α, (3.66)

where c > 0 denotes a positive constant that possibly changes from line to line. We arrive at the fact that

Re(Ψ(θ)) ≥ cθ2j1−3α
θ ≥ cθ2 ∨ θτ−2. (3.67)

In particular,

fRt
(x|b) ≤

∫ ∞

−∞
e−tRe(Ψ(θ)) dθ

2π
≤

∫ ∞

−∞
e−ctθ

2∨θτ−2 dθ

2π
≤ Ct1/(τ−2), (3.68)

as claimed in (3.58). This completes the proof of Lemma 3.6.

Lemma 3.7 (St has a density). For all t > 0, St has a density. As a result, the distribution of HS(0) is
continuous.

Proof. We use a similar method as in the proof of Lemma 3.6. We note that St has a density if and only
if S ′

t has, where

S ′
t =

∞
∑

j=2

j−1/(τ−1)
[

Ij(t) − j−1/(τ−1)
]

, (3.69)
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and (Ij(t))j≥2 are independent indicator processes with rate j−1/(τ−1). This, in turn, follows when the
characteristic function of S ′

t is integrable. The characteristic function of S ′
t is given by

f̂S′
t
(k) = E[eikS

′
t ] =

∞
∏

j=2

e−j
−2/(τ−1)ik

(

1 + (e−j
−1/(τ−1)ik − 1)e−j

−1/(τ−1)t
)

. (3.70)

Thus, for every jk ≥ 2,

|f̂S′
t
(k)| ≤

∞
∏

j≥jk

∣

∣1 + (e−j
−1/(τ−1)ik − 1)e−j

−1/(τ−1)t
∣

∣. (3.71)

Next, note that

∣

∣1 + (e−j
−1/(τ−1)ik − 1)e−j

−1/(τ−1)t
∣

∣

2
(3.72)

= e−2j−1/(τ−1)t sin(j−1/(τ−1)k)2 +
(

1 − e−j
−1/(τ−1)t + cos(j−1/(τ−1)k)e−j

−1/(τ−1)t
)2

= 1 − 2(1 − e−j
−1/(τ−1)t)e−j

−1/(τ−1)t[1 − cos(j−1/(τ−1)k)]

≤ e−2(1−e−j−1/(τ−1)t)e−j−1/(τ−1)t[1−cos(j−1/(τ−1)k)].

From here on, we can follow the proof of the fact that the characteristic function of Rt is integrable. To
prove that HS(0) has a continuous distribution, note that when P(HS(0) = u) > 0 for some u ≥ 0, then,
in particular, P(Su = 0) > 0, which is in contradiction to the fact that Su has a density.

Now we are ready to complete the proof of Proposition 3.4. By (3.58) and (3.57), we arrive at the
statement that, for all δ > 0 and η > 0,

Pδ(HR(−δ) > a) ≤
∫ ∞

η

2a2δ

u(τ−1)/(τ−2)
du+ Pδ(HR(−δ) = ∞) ≤ cδη−1/(τ−2) + 1 − e−2δη(0). (3.73)

When first δ ↓ 0 followed by η ↓ 0, this converges to 0, and we have proved (3.53). This completes the
proof of Proposition 3.4.

We proceed by showing that the scaling limits of the number of vertex checks of a cluster and the cluster
size are identical. For this, we shall make use of the following lemma:

Lemma 3.8 (Number of multiple hits is small). As n→ ∞, for any m ≥ 1,

E

[

m
∑

j=2

[1 − Jj ]
]

≤ mw1

ln
+
m(m− 1)νn

2ln
. (3.74)

Consequently, there exists Tn → ∞, such that

n−(τ−2)/(τ−1)
Tnn(τ−2)/(τ−1)

∑

j=2

[1 − Jj ]
P−→ 0. (3.75)

Proof. We note that Jj = 0 precisely when Ml = 1 or when there exists an l < j such that Ml = Mj .
Therefore,

E[1 − Jj ] ≤
w1

ln
+

j−1
∑

l=2

n
∑

i=2

w2
i

l2n
≤ w1

ln
+ (j − 1)

νn
ln
. (3.76)
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Summing the above inequality over 2 ≤ j ≤ m proves the claim in (3.74). For (3.75), we use the Markov
inequality to bound

P

(

n−(τ−2)/(τ−1)
Tnn(τ−2)/(τ−1)

∑

j=2

[1 − Jj ] ≥ εn

)

≤ ε−1
n n−(τ−2)/(τ−1)

E

[

Tnn(τ−2)/(τ−1)
∑

j=2

[1 − Jj ]
]

≤ Tnw1

εnln
+
T 2
nn

(τ−2)/(τ−1)νn
2lnεn

= o(1),

whenever T 2
nn

−1/(τ−1)/εn = o(1). Choosing, for example, Tn = log n and εn = 1/ log n does the trick.

Now we are ready to complete the proof of Theorem 2.1:
Proof of Theorem 2.1. By Corollary 3.2 and Proposition 3.4, as well as (2.9), we obtain that

n−(τ−2)/(τ−1)V (1)
d−→ HS(0). (3.77)

In particular, this implies that |C(1)| ≤ n(τ−2)/(τ−1)Tn for any Tn → ∞. Therefore, by (2.11), and whp,

n−(τ−2)/(τ−1)V (1)− n−(τ−2)/(τ−1)
Tnn(τ−2)/(τ−1)

∑

j=2

[1− Jj ] ≤ n−(τ−2)/(τ−1)|C(1)| ≤ n−(τ−2)/(τ−1)V (1). (3.78)

Now, by Lemma 3.8, the difference between the left-hand and right-hand side of (3.78) converges to zero
in probability, so that also

n−(τ−2)/(τ−1)|C(1)| d−→ HS(0). (3.79)

This completes the proof of Theorem 2.1, and identifies H1(0) = HS(0).

In the next section, where we study the joint convergence of various clusters simultaneously, we shall also
need the following joint convergence result:

Proposition 3.9 (Weak convergence of functionals). As n→ ∞,
(

n−(τ−2)/(τ−1)|C(1)|, (1{q∈C(1)})q≥1

)

d−→
(

H1(0), (Iq(H1(0)))q≥1

)

, (3.80)

where Iq(H1(0)) denotes the indicator that Iq(t) = 1 at the hitting time of 0 of (St)t≥0, in the product topol-
ogy. Moreover, (i) the random variable H1(0) is non-degenerate; and (ii) the indicators (Iq(H1(0)))q≥2

are non-trivial in the sense that they take the values 0 and 1 each with positive probability.

We note that, while the indicator processes (Iq(t))t≥0 are independent for different q, the random
variables (1{Iq(H1(0))})q≥1 are not independent as H1(0), the hitting time of 0 of the process (St)t≥0,
depends sensitively on all of the indicator processes.

Proof. We shall use a randomization trick. Indeed, let N (n)

j (t) be a sequence of independent Poisson
processes with rate wj/ln. Let

Tj = min{t : N(t) = j}, where N(t) =

n
∑

j=1

N (n)

j (t). (3.81)

Then, t 7→ N(t) is a rate 1 Poisson process, and we have that

Sl = S′
Tl
, (3.82)

where the continuous-time process (S′
t)t≥0 is defined by

S′
t = w1 −

w2
1N(t)

ln
+

n
∑

i=2

wi
[1

{N
(n)
i (t)≥1}

− wiN(t)

ln

]

+ (νn − 1)N(t). (3.83)
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By construction, the processes (1
{N

(n)
q (n(τ−2)/(τ−1)t)≥1}

)t≥0 are independent, and are characterized by

the birth times
E(n)
q = inf{t : N (n)

q (n(τ−2)/(τ−1)t) ≥ 1}. (3.84)

Again by construction, these birth times are independent for different q ≥ 2, and

E(n)
q = Exp(n(τ−2)/(τ−1)wq/ln). (3.85)

The parameters of these exponential random variables converge to

n(τ−2)/(τ−1)wq/ln → aq−1/(τ−1), (3.86)

which are the parameters of the limiting exponential random variables Iq(t) = 1{Nq(t)≥0} in (2.21). By

the convergence of the parameters, we can couple E(n)
q with Eq = Exp(aq−1/(τ−1)) in such a way that, for

every q ≥ 2 fixed,
P
(

E(n)
q 6= Exp(aq−1/(τ−1))

)

= o(1). (3.87)

Indeed, (3.87) follows by noting that, by (3.86), the density of E(n)
q converges pointwise to the one of Eq,

which, by [25, (7.3)] implies that we can couple (E(n)
q )n≥1 in such a way that (3.87) holds.

Equation (3.87) immediately implies that, for each K ≥ 1,

P(1
{N

(n)
q (n(τ−2)/(τ−1)t)≥1}

= Iq(t) ∀t ≥ 0, q ∈ [K]) = 1 − o(1), (3.88)

so that we have also, whp, perfectly coupled the entire processes (1
{N

(n)
q (n(τ−2)/(τ−1)t)≥1}

)t≥0 and (Iq(t))t≥0.

In particular, this implies that, for every q ≥ 2,

P
(1

{N
(n)
q (Tl)≥1}

= Iq(Tl) ∀l ≥ 1, q ∈ [K]
)

= 1 − o(1), (3.89)

and, by construction, 1
{N

(n)
q (Tl)≥1}

= I (n)
q (l). In particular, this applies for l = V (1), for which 1

{N
(n)
q (Tl)≥1}

=1{q∈C(1)}. This provides a perfect coupling between 1{q∈C(1)} and Iq(TV (1)). We then note that

n−(τ−2)/(τ−1)|C(1)| d−→ HS(0), sup
t≤u

|n−(τ−2)/(τ−1)Ttn(τ−2)/(τ−1) − t| P−→ 0. (3.90)

Moreover, we next show that, for all m ≥ 1,

lim
η↓0

P

(

∃q ≤ m : Iq(HS(0) − η) 6= Iq(HS(0) + η)
)

= 0, (3.91)

which completes the proof of convergence, for all m ≥ 1, of

(

n−(τ−2)/(τ−1)|C(1)|, (1{q∈C(1)})q∈[m]

)

d−→
(

H(0), (Iq(H(0)))q∈[m]

)

. (3.92)

To prove (3.91), we make heavy use of the techniques in the proof of Proposition 3.4. Indeed, we shall
prove that

lim
η↓0

P

(

∃q ≤ m : Iq(HS(0) − η) 6= Iq(HS(0))
)

= 0. (3.93)

A similar argument then shows

lim
η↓0

P

(

∃q ≤ m : Iq(HS(0)) 6= Iq(HS(0) + η)
)

= 0, (3.94)

which combines to (3.92). Now, we have that

lim
δ↓0

lim
η↓0

P(HS(0) − η ≤ HS(δ)) = 0, (3.95)
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so that (3.93) follows when

lim
δ↓0

P

(

∃q ≤ m : Iq(HS(δ)) 6= Iq(HS(0))
)

= 0. (3.96)

In a similar spirit,
lim
ε↓0

lim
δ↓0

P(HS(0) ≥ HS(δ) + ε) = 0, (3.97)

so that (3.94) follows when

lim
ε↓0

lim
δ↓0

P

(

∃q ≤ m : Iq(HS(δ)) 6= Iq(HS(δ) + ε)
)

= 0. (3.98)

Now, by the strong Markov property for t 7→ (Iq(t))q≥1 and the fact that HS(δ) is a stopping time w.r.t.
the natural filtration Ft = σ

((

(Iq(t))q≥1)s∈[0,t]

)

, we have

P

(

∃q ≤ m : Iq(HS(δ)) 6= Iq(HS(δ) + ε) | FHS(δ)

)

≤ P

(

∃q ≤ m : Iq(0) 6= Iq(ε)
)

, (3.99)

the inequality arising since, when we condition on FHS(δ), Iq(HS(δ)) = 1 for some q ≤ m, and then,
clearly, Iq(HS(δ) + t) = Iq(HS(δ)) = 1 for all t ≥ 0.

For each m ≥ 1 fixed, the right-hand side of (3.99) converges to 0 when ε ↓ 0. This completes the
proof of (3.93), as required.

Weak convergence of (1{q∈C(1)})q≥1 in the product topology is equivalent to the weak convergence of
(1{q∈C(1)})q∈[m] for any m ≥ 1 (see [21, Theorem 4.29]), which implies the claimed weak convergence.

We continue to show the properties of the limiting variables. The random variable H1(0) is non-
degenerate, since it has a continuous distribution. We shall next show that 1{q∈C(1)} is non-trivial. We
shall show this only for q = 2. For this, we use the fact that P(H1(0) > K) can be made arbitrarily small,
so that

P(2 6∈ C(1)) ≤ P(H1(0) > K) + P(I2(K) = 0) = P(H1(0) > K) + e−a2
−1/(τ−1)K < 1, (3.100)

when K ≥ 1 is large enough. Now, further,

P(2 6∈ C(1)) ≥ P(H1(0) ≥ ε,I2(ε) = 1) = P(I2(ε) = 1) − P(H1(0) < ε,I2(ε) = 1). (3.101)

The first probability is of Θ(ε), whereas

P(H1(0) < ε,I2(ε) = 1) ≤ P(H1(0) < ε)P(I2(ε) = 1), (3.102)

by the Fortuin-Kasteleyn-Ginibre-inequality (see [15, Thm. 2.4]) and the fact that both random variables
are monotone in the independent exponential random variables that describe the first hit of q for all q ≥ 1.
Thus,

P(2 6∈ C(1)) ≥ P(H1(0) ≥ ε)P(I2(ε) = 1) > 0, (3.103)

which proves the claim.

4 Convergence of multiple clusters

In this section, we extend the analysis of one cluster in Section 2 to multiple clusters. The main result is
as follows:

Theorem 4.1 (Weak convergence of the cluster of first vertices for τ ∈ (3, 4)). Fix the Norros-Reittu
random graph with weights w(λ) = {(1 + λn−(τ−3)/(τ−1))wi}ni=1, where (wi)i∈[n] are as in (1.3). Assume
that ν = 1 and that (1.4) holds. Then, for all λ ∈ R,

(

|C≤(i)|n−(τ−2)/(τ−1)
)

i∈[K]

d−→
(

κi(λ)
)

i∈[K]
, (4.1)

for some non-degenerate limit
(

κi(λ)
)

i≥1
.
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We let I(n)

1 = 1, and
I(n)

2 = min[n] \ C(1) (4.2)

be the minimal element that is not part of C(1), where, for a set of indices A, we let minA denote the
minimal element of A. To extend the above definitions further, we define, recursively,

D(n)

i = C≤(I(n)

i ), (4.3)

and we let
D(n)

≤i =
⋃

j≤i

D(n)

j . (4.4)

Then, we let I(n)

i+1 be given by

I(n)

i+1 = min[n] \ D(n)
≤i , (4.5)

which is the smallest index of which we have not yet explored the cluster.
Obviously, |C≤(i)| = 0 unless i = I(n)

j for some j, so we proceed to investigate the weak convergence

of n−(τ−2)/(τ−1)|D(n)

i |. This will be done by induction on i. The induction hypothesis is that

(

n−(τ−2)/(τ−1)|D(n)

j |, (1
{q∈D

(n)
≤j }

)q≥1

)

1≤j≤i

d−→
(

Hj(0), (1{q∈D≤j})q≥1

)

1≤j≤i
, (4.6)

in the product topology, for some limiting random variables. Part of the induction hypothesis is that these
limiting random variables satisfy the following facts: (1) the limiting random variables (Hj(0))j∈[i] are
non-degenerate; and (2) the random indicators (1{q∈D≤j})j∈[i],q>i are all non-trivial, in the sense that they
take the values zero and one, each with positive probability. Note that, by construction, 1{q∈D≤j} = 1 for
j ≤ i, so condition (2) is the most we can hope for.

We shall start by initializing the induction hypothesis for j = 1, which relies on Proposition 3.9.
Indeed, we have that D(n)

1 = D(n)
≤1 = C(1), so that (4.6) is identical to the statement in Proposition 3.9.

We next advance the induction hypothesis by verifying that (4.6) also holds for j = i+ 1. In order to
simplify the notation, we let Hj(0) be the weak limit of n−(τ−2)/(τ−1)|D(n)

j |. We shall show that Hj(0) is
the hitting time of zero of an appropriate process alike (St)t≥0 in Section 2. We let Dj be the (random)
set of indices for which

(1
{q∈D

(n)
≤j }

)q≥1
d−→ (1{q∈D≤j})q≥1. (4.7)

Then, we note that, by (4.6), we have that

I(n)

i+1
d−→ Ii+1 ≡ min{q : 1{q∈D≤i} = 0}, (4.8)

and we see that I(n)

i+1 and Ii+1, respectively, are deterministic functions of the sets D(n)
≤i and D≤i, respec-

tively. The latter random variable is finite, since, for K,Q ≥ 1 large,

P(I(n)

i+1 > K) ≤ P(|D(n)
≤j | ≥ Qn(τ−2)/(τ−1)) + P(I(n)

i+1 ≥ K, |D(n)
≤j | < Qn(τ−2)/(τ−1)). (4.9)

The first probability is small for Q ≥ 1, while for the second and for i ≤ K/2, we can bound

P(I(n)

i+1 > K, |D(n)
≤j | < Qn(τ−2)/(τ−1)) (4.10)

≤ P(vertex K drawn in Qn(τ−2)/(τ−1) vertex checks).

The latter probability is bounded above by

P(∃l ≤ Qn(τ−2)/(τ−1) : Ml = K) ≤
Qn(τ−2)/(τ−1)

∑

l=1

wK
ln

≤ CQK−1/(τ−1), (4.11)
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which converges to zero when Q = Kβ when β < 1/(τ − 1).
We conclude that, from the induction hypothesis, we get the joint convergence

(

n−(τ−2)/(τ−1)|D(n)

j |, I(n)

i+1, (1{q∈D(n)
≤j

}
)q≥1

)

j∈[i]

d−→
(

Hj(0), Ii+1, (1{q∈D≤j})q≥1

)

j∈[i]
. (4.12)

We now start exploring the cluster of I(n)

i+1, and we need to show that this cluster size, as well as the
indices in it, converge in distribution. More precisely, to obtain the joint convergence in (4.6) for i + 1
(and thus advance the induction hypothesis), when we prove that, conditionally on D(n)

≤j ,

(

n−(τ−2)/(τ−1)|D(n)

i+1|, I
(n)

i+1, (1{q∈D(n)
≤i+1}

)q≥1

)

d−→
(

Hi+1(0), Ii+1, (1{q∈D≤i+1})q≥1

)

. (4.13)

An important step in the proof of (4.13) will consist of showing that the limiting distribution above
For this, we follow the approach in Section 2 as closely as possible. We note that after the exploration

of D(n)
≤i and conditionally on it, the remaining graph is again a rank-1 inhomogeneous random graph, with

(a) vertex set [n] \ D(n)
≤i , and (b) edge probabilities, for u, v ∈ [n] \ D(n)

≤i , given by

puv = 1 − e−wuwv/ln . (4.14)

Thus, similarly to the setting in Section 2, we set Z0(i) = 1 and let Z1(i) denote the number of
neighbors of vertex I(n)

i+1, which is equal to

Z1(i) =
∑

j 6∈D
(n)
≤i

Poi(w̃
I
(n)
i+1

wj/ln) = Poi(w̃
I
(n)
i+1

ln(i)/ln), (4.15)

where
ln(i) =

∑

j 6∈D
(n)
≤i

wj. (4.16)

We further note that, for l ≥ 2, Zl(i) satisfies the recursion relation

Zl(i) = Zl−1(i) +Xl(i) − 1, (4.17)

where Xl(i) denotes the number of neighbors outside of D(n)
≤i of the lth vertex which is explored. As ex-

plained in more detail in Section 2, the distribution ofXl(i) (for 2 ≤ l ≤ n) is equal to Poi(wMl(i)ln(i)/ln)Jl(i),
where the marks {Ml(i)}∞l=1 are i.i.d. random variables with distribution M(i) given by

P(M(i) = m) =
wm
ln(i)

, m ∈ [n] \ D(n)
≤i , (4.18)

and
Jl(i) = 1

{Ml(i)6∈{I
(n)
i+1}∪{M1(i),...,Ml−1(i)}}

(4.19)

is the indicator that the mark Ml(i) has not been found up to time l and is not equal to vertex I(n)

i+1.
We conclude that we arrive at, for l ≥ 2,

Zl(i) = Zl−1(i) + Poi(w̃Ml(i))Jl(i). (4.20)

Then, the number of vertex checks V (I(n)

i+1) in the exploration of D(n)

i+1 = C≤(I(n)

i+1) equals

V (I(n)

i+1) = min{l : Zl(i) = 0}, (4.21)

and
(1

{a∈D
(n)
i+1}

)
a6=I

(n)
i+1

= (1
{∃l≤|D

(n)
i+1|:Ml=a}

)
a6=I

(n)
i+1

, (4.22)

23



while 1
{I

(n)
i+1∈D

(n)
i+1}

= 1. We again note that

|D(n)

i+1| = |C≤(I(n)

i+1)| ≤ V (I(n)

i+1), (4.23)

while
n−(τ−2)/(τ−1)

[

V (I(n)

i+1) − |D(n)

i+1|
]

P−→ 0, (4.24)

as in the proof of Lemma 3.8. This gives us a convenient description of the random variables involved.
In order to prove the weak convergence of V (I(n)

i+1), we again investigate the scaling limit of the process
(Zl(i))l≥0. For this, we define S0(i) = 1, S1(i) = w̃

I
(n)
i+1

ln(i)/ln and, for l ≥ 2,

Sl(i) = Sl−1(i) + w̃Ml(i)Jl(i) − 1. (4.25)

Then, as in Lemma 3.1, it is easy to show that, conditionally on D(n)
≤i , the processes (Sl(i))l≥0 and

(Zl(i))l≥0 are uniformly close. Denote by B(n)
i = D(n)

≤i ∪ {I(n)
i+1} the union of all vertices explored in the

first i clusters and the minimal element not in the first i clusters. Now, we rewrite

Sl(i) = w̃
I
(n)
i+1

ln(i)

ln
+

l
∑

j=2

wMj(i)Jj(i) − (l − 1) = w̃
I
(n)
i+1

ln(i)

ln
+

∑

q∈[n]\B
(n)
i

w̃qI (n)
q (l) − (l − 1), (4.26)

where
I (n)
q (l) = 1{∃j≤l:Mj(i)=q}. (4.27)

We further rewrite the above as

Sl(i) = w̃
I
(n)
i+1

ln(i)

ln
+

∑

q∈[n]\B
(n)
i

w̃q
(

I (n)
q (l) − wql

ln

)

+ l
(

∑

q∈[n]\B
(n)
i

w̃qwq
ln

− 1
)

+ 1.

We note that we can rewrite the last sum, using (2.4), as

(1 + λn−(τ−3)/(τ−1))
∑

q∈[n]\B
(n)
i

w2
q

ln
− 1 = (ν̃n − 1) − (1 + λn−(τ−2)/(τ−1))

∑

q∈B
(n)
i

w2
q

ln

= θn−(τ−3)/(τ−1) −
∑

q∈B
(n)
i

w2
q

ln
+ oP(n

−(τ−3)/(τ−1)),

In turn, the sum can be approximated by

∑

q∈B
(n)
i

w2
q

ln
= dn−(τ−3)/(τ−1)

∑

q∈B
(n)
i

q−2/(τ−1)(1 + oP(1)), (4.28)

where d = c
2/(τ−1)
F /µ. Denoting

D(n)

i = d
∑

q∈B
(n)
i

q−2/(τ−1), (4.29)

we therefore have that

Sl(i) = w
I
(n)
i+1

ln(i)

ln
+

∑

q∈[n]\B
(n)
i

wq
(

I (n)
q (l) − wql

ln(i)

)

+ l(θ −D(n)

i )n(τ−3)/(τ−1) + oP(ln
−(τ−3)/(τ−1)). (4.30)

We conclude that we arrive at a similar process as when exploring C(1), apart from the fact that: (i)
fewer vertices are allowed to participate, and (ii) a negative drift −D(n)

i is introduced.
We proceed by investigating the convergence of D(n)

i :
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Lemma 4.2 (Weak convergence of random drift). As n→ ∞, and assuming (4.12),

D(n)

i
d−→ Di ≡

∑

q∈D≤i∪{Ii+1}

q−2/(τ−1), (4.31)

where (D≤i, Ii+1) is the weak limit of (D(n)
≤i , I

(n)

i+1).

Proof. We start by bounding P(q ∈ D(n)
≤i ), for q > 0 large. We shall first prove that the probability that

|D(n)
≤i | ≤ n(τ−2)/(τ−1)K is 1 − o(1) when K > 0 grows large. Indeed, by [17, Theorem 1.4], we have that,

|Cmax| = maxi |C≤i| ≤ ωn(τ−2)/(τ−1) with probability 1−o(1), as ω → ∞. Thus, |D(n)
≤i | ≤ n(τ−2)/(τ−1)(iω) =

n(τ−2)/(τ−1)K, with probability 1 − o(1) as K → ∞, when we take K = ωi. Thus, denoting

B(n)

i,K = {|D(n)
≤i | ≤ n(τ−2)/(τ−1)K}, (4.32)

we have that
P({q ∈ D(n)

≤i \ {I(n)

j }ij=1} ∩ B(n)

i,K) ≤ n(τ−2)/(τ−1)K
wq

∑

j>Kn(τ−2)/(τ−1) wj
, (4.33)

since, independently of the choices before, the probability of drawing q is at most wq/
∑

j>Kn(τ−2)/(τ−1) wj .
Now,

∑

j>Kn(τ−2)/(τ−1)

wj = ln(1 + o(1)) = µn(1 + o(1)). (4.34)

Thus, for some C > 0,
P({q ∈ D(n)

≤i \ {I(n)

j }ij=1} ∩ B(n)

i,K) ≤ CKq−1/(τ−1), (4.35)

so that
E

[

∑

q∈B
(n)
i :q>Q

q−2/(τ−1)1
{B

(n)
i,K}

]

≤ iQ−2/(τ−1) + CKQ(τ−4)/(τ−1), (4.36)

where the first contribution arises from the (at most i) values of j = 1, . . . , i+ 1 for which I(n)

i+1 > Q.

Equation (4.36) implies that the weak convergence of D(n)

i follows from the weak convergence of

∑

q∈B
(n)
i :q≤Q

q−2/(τ−1), (4.37)

which, in turn, follows from (4.12) and the continuous mapping theorem.

Define
Z(n)

t (i) = n−1/(τ−1)Ztn(τ−2)/(τ−1)(i), S(n)

t (i) = n−1/(τ−1)Stn(τ−2)/(τ−1)(i), (4.38)

and
St(i) = bI

1/(τ−1)
i+1 +

∑

q∈D≤i∪{Ii+1}

aq−1/(τ−1)
(

Iq(t) − btq−1/(τ−1)
)

+ t(c−Di). (4.39)

Then, using Lemma 4.2, the proof of Theorem 2.1 can easily be adapted to prove that n−(τ−2)/(τ−1)|D(n)

i+1|
d−→

Hi+1(0), where Hi+1(0) is the hitting time of 0 of (St(i))t≥0, and where a, b, c are given by a = c
1/(τ−1)
F /µ,

b = c
1/(τ−1)
F and c = θ.

Indeed, in more detail, we shall work conditionally on (1
{a∈D

(n)
≤i+1}

)a∈[n]. The proof of Theorem 2.1

reveals that the main contribution to (St(i))t≥0 and (S(n)

t (i))t≥0 arises from the vertices q ∈ [K]. Now,
since (1

{a∈D
(n)
≤i+1}

)a∈[K] is a sequence of discrete random variables taking a finite number of outcomes,
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that converge in distribution, we have that its probability mass function converges pointwise. By [25],
this implies that we can couple (1

{a∈D
(n)
≤i+1}

)a∈[K] to (1{a∈D≤i+1})a∈[K] in such a way that

P

(

(1
{a∈D

(n)
≤i+1}

)a∈[K] 6= (1{a∈D≤i+1})a∈[K]

)

= o(1). (4.40)

Therefore, whp, there is a perfect coupling between the elements in [K] of D(n)
≤i+1 and D≤i+1. When this

is the case, we can basically think of the set of summands in (4.28) as being deterministic and follow the
proof of Theorem 2.1 verbatim.

Further, the proof of Proposition 3.9 can be adapted to prove the joint convergence of
(

n−(τ−2)/(τ−1)|D(n)

i+1|, (1{q∈D(n)
i+1}

)q≥1

)

d−→
(

Hi+1(0), (Iq(Hi+1(0)))q≥1

)

. (4.41)

Together with the induction hypothesis, this proves that (4.6) also holds for all j ≤ i + 1, and, thus, we
have advanced the induction hypothesis. This, in particular, proves Theorem 4.1.

5 Proof of Theorems 1.1, 1.2 and 1.3

In this section, we prove Theorems 1.1 and 1.2 and 1.3, using the results in Theorems 2.1 and 4.1, as
well as Proposition 3.9. We shall first start with a proof of Theorem 1.3. Note that, combining parts (a)
and (b) in Theorem 1.3, we obtain that, with high probability as K becomes large, the largest m clusters
are all among the first (|C≤(i)|)i∈[K]. This explains why we start the cluster exploration from the vertices
with the highest weights.

Proof of Theorem 1.3. (a) For maxi≥K |C≤(i)| ≥ εn(τ−2)/(τ−1) to occur, we must have that there
exists a cluster using the vertices in [n] \ [K] such that (1) |C≤(i)| ≥ εn(τ−2)/(τ−1), and (2) the cluster is
not connected to any of the vertices in [K].
Now, by construction, when we restrict ourselves to the vertices in [n]\[K], we again have a Norros-Reittu
model, with edge probabilities pij = 1− e−wiwj/ln , i, j ∈ [n] \ [K]. However, no vertex in [n] \ [K] used in
this cluster is allowed to have an edge to any of the vertices in [K]. Therefore, with

Z [K]
≥k =

n
∑

v=1

1{|C(v)|≥k,C(v)∩[K]=∅}, (5.1)

we obtain that
{max
i≥K

|C≤(i)| ≥ k} = {Z [K]
≥k ≥ k}. (5.2)

Therefore,

P
(

max
i≥K

|C≤(i)| ≥ k
)

= P(Z [K]
≥k ≥ k) ≤ E[Z [K]

≥k ]

k
=

1

k

n
∑

v=K+1

P(|C(v)| ≥ k, C(v) ∩ [K] = ∅). (5.3)

Now, denote by C[K](v) the cluster of v restricted to [n] \ [K]. Then, due to the independence of disjoint
sets of edges, and the fact that C(v) ∩ [K] = ∅ only depends on edges between [K] and [n] \ [K], while
|C[K](v)| ≥ k only on edges between pairs of vertices in [n] \ [K], we obtain

P(|C(v)| ≥ k, C(v) ∩ [K] = ∅) = E[e
−W[K]WC[K](v)

/ln1{|C[K](v)|≥k}], (5.4)

where, for a set of vertices A ⊆ [n], we define

WA =
∑

a∈A

wa. (5.5)
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We split depending on whether WC[K](v) ≥ k/2 or not, to obtain

P
(

max
i≥K

|C≤(i)| ≥ k
)

≤ 1

k

n
∑

v=K+1

e−W[K]k/(2ln)
P(|C[K](v)| ≥ k) (5.6)

+
1

k

n
∑

v=K+1

P(|C[K](v)| ≥ k,WC[K](v) ≤ k/2). (5.7)

For the first term we compute that

W[K] =
K

∑

j=1

wj ≥ c
K

∑

j=1

(n/j)1/(τ−1) ≥ cn1/(τ−1)K(τ−2)/(τ−1). (5.8)

Thus, when k = kn = εn(τ−2)/(τ−1), we obtain, for some a > 0,

e−W[K]kn/(2ln)
∑

v∈[n]

P(|C[K](v)| ≥ kn) ≤ e−aεK
(τ−2)/(τ−1)

P(|C[K](v)| ≥ kn)

≤ e−aεK
(τ−2)/(τ−1)

∑

v∈[n]

P(|C(v)| ≥ kn)

= e−aεK
(τ−2)/(τ−1)

nP(|C(V )| ≥ kn), (5.9)

where V ∈ [n] is a uniform vertex. By [17, Proposition 5.1] and

P(|C(V )| ≥ kn) ≤ a1

(

k−1/(τ−2)
n +

(

εn ∨ n−(τ−3)/(τ−1)
)1/(τ−3)) ≤ a1

(

k−1/(τ−2)
n + n−1/(τ−1)

)

, (5.10)

we get, for kn = εn(τ−2)/(τ−1),

nP(|C(V )| ≥ kn) ≤ a′1ε
−1/(τ−2)n−(τ−2)/(τ−1). (5.11)

Therefore, the term in (5.6) is bounded by

e−aεK
(τ−2)/(τ−1)

a′1ε
−(τ−1)/(τ−2). (5.12)

When we pick K = Kε sufficiently large, we can make this as small as we wish.
We continue with the term in (5.7), for which we use a large deviation argument. We formulate this

result in the following lemma:

Lemma 5.1 (Large deviations for cluster weight of large clusters). For every k = o(n), there exists a
J > 0 such that

P(∃v : |C(v)| ≥ k,wC(j) ≤ k/2) ≤ ne−Jk. (5.13)

Proof. Indeed, when |C(v)| ≥ k, then wC(v) is stochastically bounded from below by the sum
∑k

i=1wv(i),

where {v(i)}ki=1 are the sized-biased ordering of {1, . . . , n}, i.e., for every j 6∈ {v(s)}i−1
s=1,

P(v(i) = j | {v(s)}i−1
s=1) =

wj
∑

l 6∈{v(s)}i−1
s=1

ws
. (5.14)

In particular, for each i and conditionally on {v(j)}i−1
j=1, wv(i) is stochastically bounded from above by

W ′
i , which is equal to wj for j ∈ [n] \ [i− 1] with probability

wj

ln −
∑i−1+K

s=1 ws
, (5.15)
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i.e., we have removed the vertices with the largest i − 1 weights. Now take η > 0 very small, and note
that, whenever k ≤ ηn, in turn, W ′

i is stochastically bounded from above by an i.i.d. sequence of random
variables W (n)

i (η) which equals to wj for j ∈ [n] \ [ηn] with probability

wj
ln −

∑ηn
s=1ws

. (5.16)

Now take η > 0 so small that

E[W (n)(η)] =
n

∑

j=ηn

w2
j

ln −
∑ηn

s=1ws
≥ 3/4. (5.17)

Then, the term in (5.7) is bounded above by

1

k

n
∑

v=K+1

P(|C[K](v)| ≥ k,WC[K](v) ≤ k/2) ≤ n

k
P(

k
∑

i=1

W (n)

i (η) ≤ k/2). (5.18)

The Chernoff bound proves that P(
∑k

i=1W
(n)

i (η) ≤ k/2) is exponentially small in k, so that the term in
(5.7) is exponentially small. We now make this intuition precise. By the Chernoff bound, for each θ ≥ 0,
and by the fact that (W (n)

i (η))i∈[k] are i.i.d. random variables, we have

P(

k
∑

i=1

W (n)

i (η) ≤ k/2) ≤ eθk/2E
[

e−θ
Pk

i=1W
(n)
i (η)

]

=
(

eθ/2φn,η(θ)
)k
, (5.19)

where
φn,η(θ) = E[e−θW

(n)
1 (η)] (5.20)

denotes the moment generating function of W1(η). By (5.19), it suffices to prove that there exists a θ > 0
such that, for n sufficiently large,

θ/2 + log φn,η(θ) < 0.

This is what we shall show now. By dominated convergence, for each fixed θ > 0,

log φn,η(θ) → log φη(θ) = log E[e−θW (η)], (5.21)

where
P(W (η) ≤ x) = E[(1 − F )−1(U) | U ≥ η], (5.22)

and U is a uniform random variable. As a result, the distribution of U conditionally on U ≥ η is uniform

on [η, 1]. Let Uη denote a uniform random variable on [η, 1], so that W (η)
d
= (1−F )−1(Uη). Then, W (η)

has mean E[W (η)] ≥ 3/4 and bounded variance σ2
η (since W (η) ≤ (1 − F )−1(η) < ∞ a.s.). Therefore, a

Taylor expansion yields that, for fixed η > 0,

log φη(θ) ≤ −3θ/4 + σ2
ηθ

2 + o(θ2). (5.23)

Now, fix a θ > 0 so small that
θ/2 − 3θ/4 + σ2

ηθ
2 ≤ −θ/6, (5.24)

and then N so large that, for all n ≥ N ,

log φn,η(θ) ≤ log φη(θ) +
θ

12
. (5.25)

Then, indeed, for n ≥ N , since θ > 0,

θ/2 + log φn,η(θ) ≤ −θ
6

+
θ

12
= − θ

12
< 0, (5.26)
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so that
eθ/2φn,η(θ) ≤ e−

θ
12 , (5.27)

which, in turn, implies that
n

∑

v=1

P(|C(v)| ≥ k,WC(v) ≤ k/2) ≤ ne−
kθ
12 . (5.28)

When n→ ∞, this proves the claim for J = θ/12.

We apply Lemma 5.1 to the term in (5.7), which is then extremely small when we take k = εn(τ−2)/(τ−1).
(b) We denote by

Z≥k =

n
∑

v=1

1{|C(v)|≥k} (5.29)

the number of vertices that are contained in connected components of size at least k. In [17], the random
variable Z≥k has been used in a crucial way to prove the asymptotics of |Cmax|. We now slightly extend
these results.

We shall prove that, for all ε > 0 sufficiently small, there exist constants a2, C such that

P
(

Z
≥εn(τ−2)/(τ−1) ≤ n

a2

ε1/(τ−2)n1/(τ−1)

)

≤ Cε2/(τ−2). (5.30)

We first note that it suffices to prove (5.30) when νn ≤ 1 −Kn(τ−3)/(τ−1). Indeed, the random variable
Z

≥εn(τ−2)/(τ−1) is increasing in the edge occupation statuses, and, therefore, we may take λ < 0 so that
−λ > K to achieve the claim.

We shall use a second moment method. By [17, Proposition 6.1],

E[Z
≥εn(τ−2)/(τ−1) ] ≥ n

a2

ε1/(τ−2)n1/(τ−1)
, (5.31)

so that
P
(

Z
≥εn(τ−2)/(τ−1) ≤ n

a2

ε1/(τ−2)n1/(τ−1)

)

≤ P
(

Z
≥εn(τ−2)/(τ−1) ≤ E[Z

≥εn(τ−2)/(τ−1) ]/2
)

. (5.32)

We take ε > 0 small, and bound, by the Chebychev inequality,

P
(

Z
≥εn(τ−2)/(τ−1) ≤ E[Z

≥εn(τ−2)/(τ−1) ]/2
)

≤
4Var(Z

≥εn(τ−2)/(τ−1))

E[Z
≥εn(τ−2)/(τ−1) ]2

. (5.33)

By [17, Proposition 3.2],
Var(Z≥k) ≤ nE[|C(V )|], (5.34)

where V ∈ [n] is uniform, and C(v) is the cluster of v ∈ [n]. By [17, Proposition 5.2], in turn,

E[|C(V )|] ≤ Kn(τ−3)/(τ−1). (5.35)

As a result, we obtain

P
(

Z
≥εn(τ−2)/(τ−1) ≤ E[Z

≥εn(τ−2)/(τ−1) ]/2
)

≤ 4Kn2(τ−2)/(τ−1)

a2
2ε

−2/(τ−2)n2(τ−2)/(τ−1)
= Cε2/(τ−2), (5.36)

which is small when ε > 0 is small. We conclude that, whp,

Z
≥εn(τ−2)/(τ−1) ≥ E[Z

≥εn(τ−2)/(τ−1) ]/2 ≥ a2

2ε1/(τ−2)
n(τ−2)/(τ−1). (5.37)

Since, by [17, Theorem 1.2], |Cmax| ≤ ε−1/2n(τ−2)/(τ−1) whp, there are, again whp, at least

a2

2ε1/(τ−2)
n(τ−2)/(τ−1)/ε−1/2n(τ−2)/(τ−1) = Cε1/(τ−2)−1/2 (5.38)

clusters of size at least εn(τ−2)/(τ−1). By part (a), with high probability for K ≥ 1 large, these clusters
will be part of (|C≤(i)|)i∈[K] when ε > 0 is small, and K ≥ 1 is large.

We now complete the proof of Theorems 1.1 and 1.2:
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Proof of Theorems 1.1 and 1.2. Weak convergence of (|C(i)|n−(τ−2)/(τ−1))i≥1 in the product topology
is equivalent to the weak convergence of (|C(i)|n−(τ−2)/(τ−1))i∈[m] for anym ≥ 1 (see [21, Theorem 4.29]). In

turn, by Proposition 1.3, this follows from the convergence in distribution of (|C≤(i)|n−(τ−2)/(τ−1))i∈[m] for

allm. The latter follows from Theorem 4.1. Since, whp, again by Proposition 1.3, (|C(i)|n−(τ−2)/(τ−1))i∈[m]

is equal to the largest m components of (|C(i)|n−(τ−2)/(τ−1))i∈[m], we have identified

(γi(λ))i≥1
d
= (H(i)(0))i≥1, (5.39)

where (H(i)(0))i≥1 is (Hi(0))i≥1 ordered in size. This completes the proof of Theorem 1.1, and identifies
the limiting random variables. To prove Theorem 1.2, we use Proposition 3.9, and note that the limiting
variables are all non-trivial (i.e., they are equal to 0 or 1 each with positive probability). This proves
(1.12). The proof of (1.13) is similar, noting that the limit of n−(τ−2)/(τ−1)|C≤(i)| is maximal with strictly
positive probability.

6 Proof of Theorem 1.5

In this section, we shall prove Theorem 1.5 on the largest subcritical clusters. We shall extend the result
also to the ordered weights of subcritical clusters, which shall be a crucial ingredient in the proof of
Theorem 1.4. For this, we let W(j) denote the jth element of the ordered version of the vector

wC≤(j) =
∑

i∈C≤(j)

wi. (6.1)

Then, we shall prove that Theorem 1.5 holds both for W(j) as well as for |C(j)|. Indeed, it shall also follow
from the result that whp, W(j) = wC(j)

, i.e., the jth largest cluster weight is the weight of the jth largest
cluster.

To prove this scaling, we shall prove that

|λn|n−(τ−2)/(τ−1)|C(j)| P−→ cj , |λn|n−(τ−2)/(τ−1)W(j)

P−→ cj , (6.2)

where we recall that cj = c
1/(τ−1)
F j−1/(τ−1). Since j 7→ cj is strictly decreasing, this means that, whp,

C(j) = C≤(j). Thus, this also implies that whp, for all j ≤ m, C(j) = C(j). Then (6.2) proves the result
for the ordered cluster weights.

Before starting with the proofs of (6.2), we introduce some branching process notation. We write T
for the total progeny of a branching process with mixed Poisson offspring distribution Poi(M), where the
distribution of M is given in (2.7). Below, we shall often let (Tj)j≥1 be an i.i.d. sequence of such total
progenies. Further, we let T (j) be the total progeny of a two-stage branching process, given by

T (j) = 1 +

Poi(wj)
∑

l=1

Tl, (6.3)

i.e., the first generation has distribution Poi(wj) and later generations have offspring distribution Poi(M).
Then, by the results in [23, Proposition 3.1] (see also [17, Section 4.2]), we have that we can couple |C(j)|
and T (j) such that |C(j)| ≤ T (j) a.s. We also define

wT =

T
∑

l=1

wMl
, (6.4)

be the total weight of the branching process total progeny, where (Mj)j≥1 are the i.i.d. marks used in the
mixed-Poisson branching process. Similarly, we let

wT (j) =

T (j)
∑

l=1

wMl
(6.5)

30



be the total weight of the total progeny T (i). Moments of T,wT , T (j) and wT (j) are proved in Lemma
A.2 in the appendix. We shall frequently make use of these computations. The proof of Theorem 1.5 now
consists of three key steps, which we shall prove one by one.

Asymptotics of mean cluster size and weight of high-weight vertices. In the following lemma
we investigate the means of |C(j)| and wC(j):

Lemma 6.1 (Mean cluster size and weights). As n→ ∞, for every j ∈ N fixed, and when λn → −∞,

E[|C(j)|] =
wj

1 − νn
(1 + o(1)), E[wC(j)] =

wjνn
1 − νn

(1 + o(1)). (6.6)

Proof. By the fact that |C(j)| and T (j) can be coupled so that |C(j)| ≤ T (j) a.s., we obtain that

E[|C(j)|] ≤ E[T (j)] =
wj

1 − νn
, (6.7)

the latter equality following from Lemma A.2(a). A similar upper bound follows for E[wC(j)] again using
Lemma A.2(a).

For the lower bound, we note that

E[|C(j)|] = E[T (j)] − E[T (j) − |C(j)|]. (6.8)

Now, for an = n(τ−2)/(τ−1) ≫ E[T (j)], we bound

E[T (j) − |C(j)|] ≤ E[T (j)1{T (j)>an}] + E[[T (j) − |C(j)|]1{T (j)≤an}]. (6.9)

The first term in (6.9) is bounded by

E[T (j)1{T (j)>an}] ≤
1

an
E[T (j)2] =

1

an

(

(1 +
wj

1 − νn
)2 +

wj
(1 − νn)3

)

= o(
wj

1 − νn
), (6.10)

since an ≫ E[T (j)] = wj/(1 − νn). Since an = n(τ−1)/(τ−1), we have (and have used) that

(1 − νn)
2an = λ2

nn
−2(τ−3)/(τ−1)+(τ−2)/(τ−1) = λ2

nn
−(4−τ)/(τ−1) = o(1). (6.11)

For the second term in (6.9), we note that differences between T (j) and |C(j)| arise due to vertices
which have been used at least twice in T (j). In fact, the law of |C(j)| can be obtained from the branching
process by removing vertices (and their complete offspring) of which the mark has already been used.
Thus,

E[[T (j) − |C(j)|]1{T (j)≤an}] ≤
∑

i∈[n]

E

[

[T (j) − |C(j)|]1{T (j)≤an}1{i used twice}

]

(6.12)

≤
∑

i∈[n]

E[T (i)]

an
∑

s1,s2=1

P
(

i chosen at times s1, s2
)

,

where E[T (i)] arises from removing the tree rooted at the vertex at time s2 of which the root has mark
i. Now, i can only be chosen at time s1 when T (j) ≥ s1 − 1, which, as an event, is independent from the
event that the mark i is chosen at times s1, s2. Therefore,

E[[T (j) − |C(j)|]1{T (j)≤an}] ≤
∑

i∈[n]

E[T (i)]
an
∑

s1,s2=1

P(T (j) ≥ s1 − 1)
w2
i

l2n
(6.13)

≤ an

an
∑

s1=1

P(T (j) ≥ s1 − 1)
∑

i∈[n]

E[T (i)]
w2
i

l2n

≤ anE[T (j)]
∑

i∈[n]

E[T (i)]
w2
i

l2n
.
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This is o(E[T (j)]) when λn → −∞ since

an
∑

i∈[n]

E[T (i)]
w2
i

l2n
= an

∑

i∈[n]

w3
i

l2n(1 − νn)
≤ C

|λn|
n(τ−2)/(τ−1)−2n3/(τ−1)n(τ−3)/(τ−1) =

C

|λn|
= o(1). (6.14)

This completes the proof for E[|C(j)|]. The proof for wT (j) is similar. Indeed, we split

E[wT (j) − wC(j)] ≤ E[wT (j)1{T (j)>an}] + E[[wT (j) − wC(j)]1{T (j)≤an}]. (6.15)

The first term is now bounded by

E[wT (j)1{T (j)>an}] ≤
1

an
E[wT (j)T (j)], (6.16)

which we can again bound using Lemma A.2(f). Further, in (6.13)–(6.14), E[T (i)] needs to be replaced
with E[wT (i)].

Cluster size and weight of high weight vertices are concentrated. We note that, by the stochas-
tic domination and the fact that E[|C(j)|] =

wj

1−νn
(1 + o(1)), we have

Var(|C(j)|) ≤ Var(T (j)) + o(E[T (j)]2). (6.17)

Now, by Lemma A.2(b),

Var(T (j)) = 1 +
2wj

1 − νn
+

wj
(1 − νn)3

= o(
w2
j

(1 − νn)2
) (6.18)

precisely when 1/(νn − 1) = o(wj), which is the case since

1

νn − 1
=

1

|λn|
n(τ−3)/(τ−1) = o(n1/(τ−1)), (6.19)

since |λn| → ∞ and τ < 4. For wT (j) the argument is similar, apart from the fact that

Var(T (j)) =
wj

(1 − νn)3

( 1

ln

n
∑

i=1

w3
i

)

= o(
w2
j

(1 − νn)2
), (6.20)

since, for j fixed,

1

1 − νn

( 1

ln

n
∑

i=1

w3
i

)

≤ C

|λn|
n(τ−3)/(τ−1)+3/(τ−1)−1 =

C

|λn|
n1/(τ−1) = o(wj). (6.21)

We conclude that, for j fixed, Var(|C(j)|) = o(E[|C(j)|]2), so that

|C(j)|
E[|C(j)|]

P−→ 1,
wC(j)

E[wC(j)]

P−→ 1 (6.22)

and then Lemma 6.1 completes the proof of (6.2).
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Only high-weight vertices matter. We start by proving that the probability that, for K ≥ 1, there
exists a j > K such that wC≤(j) ≥ εn(τ−2)/(τ−1)/|λn| is small. Since, for all j ≤ K, we have that

|λn|n−(τ−2)/(τ−1)wC(j)
P−→ cj, we have that, for all i ≤ m and m such that cm > ε, wC(j) = W(j). Note

that, if there exists a j > K such that wC≤(j) ≥ εn(τ−2)/(τ−1)/|λn|, then

∑

j>K

wjw
2
C[K](j)

≥ ε3

|λn|3
n3(τ−2)/(τ−1), (6.23)

where we recall that C[K](j) is the cluster of j in the random graph only making use of the vertices in
[n] \ [K]. Since

ln ≥
∑

j>K

wj , (6.24)

we see that this random graph is stochastically bounded by the random graph having weights w
[K], where

w[K]

j = 0 when j ≤ K and w[K]

j = wj otherwise. By the Markov inequality, the probability that (6.23)
happens is bounded above by

|λn|3
ε3

n−3(τ−2)/(τ−1)
∑

j>K

wjE[w2
C[K](j)

]. (6.25)

By Lemma A.2(f), we obtain that

E[w2
C[K](j)

] =
( w[K]

j

1 − ν [K]
n

)2
+

w[K]

j

(1 − ν [K]
n )3

( 1

l[K]
n

n
∑

i=1

(w[K]

i )3
)

, (6.26)

where all the superscripts [K] refer to the fact that we should compute quantities for the weights w
[K].

It is not hard to see that the r.h.s. of (6.26) is equal to

( wj
1 − νn

)2
+ (1 + o(1))

wj
(1 − νn)3

( 1

ln

n
∑

i>K

w3
i

)

, (6.27)

which gives that

∑

j>K

wjE[w2
C[K](j)

] ≤ 1

(1 − νn)2

(

1 +
1

1 − νn

)

∑

j>K

w3
j ≤ CK−(τ−4)/(τ−1)

(

n1/(τ−1)/|λn|
)3
, (6.28)

which can be made arbitrarily small by taking K large.
We complete this section by proving that the probability that there exists a j > K such that |C≤(j)| ≥

εn(τ−2)/(τ−1)/|λn| is small. For this, we use Lemma 5.1, which proves that, with very high probability,
if |C≤(j)| ≥ εn(τ−2)/(τ−1)/|λn|, then also wC≤(j) ≥ εn(τ−2)/(τ−1)/(2|λn|). Thus, the result for cluster sizes
follows from the proof for cluster weights. This completes the proof of Theorem 1.5.

7 Proof of Theorem 1.4

We break up the proof into three parts. In the first part, we identify the ordered sets of weights of clusters
to be a multiplicative coalescent as we vary the parameter λ indicating the location inside the critical
window. In the second part, we prove the convergence of this multiplicative coalescent, for which we
identify the parameters of the limiting coalescent. Finally, we show that the cluster sizes are close to the
cluster weights, which completes the proof of Theorem 1.4.
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The random graph multiplicative coalescent. We make crucial use of [3, Proposition 7], whose
application we now explain. Fix a sequence λn → −∞. For each fixed t, consider the construction of the
inhomogeneous random graph as in (1.1) but with the weight sequence w(t) = (w̄j(t))1≤j≤n given by

w̄j(t) = wj(1 + (t+ λn)lnn
−2(τ−2)/(τ−1)). (7.1)

Let X(n)(t) denote the ordered version of weighted component sizes, i.e., the ordered version of the vector

n−(τ−2)/(τ−1)wC≤(j)(t), (7.2)

where wC =
∑

v∈C wv is the weight of a cluster C.
Note that the above process, when taking t = −λn + λ/µ, is closely related to the ordered clusters

of our random graph with weights w̃j = wj(1 + λn−(τ−3)/(τ−1)), since ln = µn(1 + o(1)). We start by
proving that X(n) can be constructed so that viewed as a function in t it is a multiplicative coalescent:

Lemma 7.1 (Discrete multiplicative coalescent). We can construct the process X(n) = (X(n)(t))t≥0 such
that for each fixed t, X(n)(t) has the distribution of the ordered rescaled weighted component sizes of the
random graph with weight sequence given by (7.1) defined above and such that, for each fixed n, the process
viewed as a process in t is a multiplicative coalescent. The initial state denoted by x(n)(0) has the same
distribution as the ordered weighted component sizes of a random graph with edge probabilities as in (1.1)
and weight sequence

w̄j(0) = wj(1 + λnlnn
−2(τ−2)/(τ−1)). (7.3)

Proof. This is quite easy. For each unordered pair (i, j), let ξij be exponential random variables with rate
wiwj/ln. For fixed t define the graph Gtn to consist of all those edges (i, j) for which

ξij ≤
(

1 +
(λn + t)ln

n2(τ−2)/(τ−1)

)

Then by construction, for all t ≥ 0, the rescaled weighted component sizes of Gtn have the same distribution
as X(n)(t). Further for any time t we note that two distinct clusters C≤(i)(t) and C≤(j)(t) coalesce at rate

lnn
−2(τ−2)/(τ−1)

∑

s1∈C≤(i)(t),s2∈C≤(j)(t)

ws1ws2
ln

=
(

n−(τ−2)/(τ−1)wC≤(i)
(t)

)(

n−(τ−2)/(τ−1)wC≤(j)(t)
)

, (7.4)

as required.

Convergence of the random graph multiplicative coalescent. We now apply [3, Proposition 7],
which shows that

(

X(n)(λn + λ)
)

λ
converges to a (0, τ, c)-multiplicative coalescent when three conditions

are satisfied about the initial state x(n)(0). To state these conditions, we define, for r = 2, 3,

σr(x
(n)) =

∑

j

(x(n)

j )r. (7.5)

Then, the conditions in [3, Proposition 7] are that:
(a)

|λn|(|λn|σ2(x
(n)) − 1)

P−→ − ζ
µ

; (7.6)

(b)
x(n)

j

σ2(x(n))

P−→ cj ; (7.7)
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(c)

|λn|3σ3(x
(n))

P−→
∞
∑

j=1

c3j . (7.8)

The conditions (a)-(c) above are not precisely what is in [3, Proposition 7], and we start by explaining
how (a)-(c) imply our result. Indeed, in [3, Proposition 7], the condition in (a) is replaced by σ2(x

(n)) → 0,
and the process

(

X(n)
( 1

σ2(x(n))
+ λ

)

)

λ
(7.9)

is proved to converge to the multiplicative coalescent. Under condition (a) (and the fact that λn → −∞),
(a) implies that 1/σ2(x

(n)) = |λn| − ζ/µ+ o(1). Also, condition (c) is replaced by the condition that

σ3(x
(n))

σ2(x(n))3
P−→

∞
∑

j=1

c3j , (7.10)

which, combining (a) and (c), is equivalent. Further, in (a)-(c), we work with convergence in probability
(as the initial state is a random variable), while in [3, Proposition 7], the initial state is considered to be
deterministic. This is a minor change. We finally explain how the above conditions complete the proof
of Theorem 1.4.

Cluster weights versus cluster size. We note that X(n)
(

1
σ2(x(n))

+λ
)

are the ordered cluster weights

n−(τ−2)/(τ−1)wC≤(j), (7.11)

where the weights are

w̄j(|λn| − ζ + λ+ o(1)) = wj(1 + λlnn
−2(τ−2)/(τ−1)) = wj(1 + λE[W ]n−(τ−3)/(τ−1)(1 + o(1))). (7.12)

Thus, apart from a multiplication of λ by E[W ], and the fact that we deal with cluster weights rather
than with cluster sizes, this proves the claim. Now, we claim that wC≤(j) = |C≤(j)|(1 + oP(1)). Indeed,
note that, by the analysis in Section 3 (see in particular (3.1)), we have that

SV (1) = wC(1) − V (1), (7.13)

where we recall that V (1) is the number of vertex checks of the cluster of vertex 1. Further, by the analysis
performed there, the random variable n−(τ−2)/(τ−1)V (1) = H1(0) has the same limit in distribution as
the first hitting time of (−∞, 0] of (Sl)l≥0. Thus,

n−1/(τ−1)SV (1)
P−→ 0. (7.14)

Since (τ − 2)/(τ − 1) > 1/(τ − 1), this immediately implies that n−(τ−2)/(τ−1)wC(1)

d−→ H1(0). The same

applies to all other rescaled clusters n−(τ−2)/(τ−1)wC≤(j), so that the limit of
(

X(n)
(

1
σ2(x(n))

+ λ
)

)

λ
equals

(

(γj(E[W ]λ− ζ))j≥1

)

λ
, as required.

Check of convergence conditions. We conclude that we are left to prove that conditions (a), (b)
and (c) hold. We shall prove these conditions in the order (b), (c) and (a), condition (a) being the most
difficult one.

Condition (b) follows immediately from (6.2). For condition (c), we apply similar ideas, and note that

|λn|3σ3(x
(n)) =

n
∑

j=1

(

|λn|n−(τ−2)/(τ−1)wC≤(j)

)3
=

(

|λn|n−(τ−2)/(τ−1)
)3

n
∑

j=1

wjwC(j)

)3
. (7.15)
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The latter equality follows, since

n
∑

j=1

w3
C≤(j) =

n
∑

j=1

∑

i1,i2,i3

wi1wi2wi31{i1−→i2,i3,minC(i1)=j} =
∑

i1,i2

wi1wi2wi31{i1−→i2,i3} =
∑

i1

wi1w
2
C(i1).

Now, the summands for j ≥ K are small in probability by (6.28), while the summand for j ≤ K converge
in probability by (6.2). Thus, also condition (c) follows from (6.2)-(6.28).

We continue with condition (a), which is equivalent to the statement that

σ2(x
(n)) =

1

|λn|
− ζ

µλ2
n

+ oP(λ
−2
n ). (7.16)

We shall prove (7.16) by a second moment method. We first identify

σ2(x
(n)) = n−2(τ−2)/(τ−1)

n
∑

j=1

w2
C≤(j) = n−2(τ−2)/(τ−1)

n
∑

i=1

wiwC(i). (7.17)

The latter equality follows, since

n
∑

j=1

w2
C≤(j) =

n
∑

j=1

∑

i1,i2

wi1wi21{i1−→i2,minC(i1)=j} =
∑

i1,i2

wi1wi21{i1−→i2} =
∑

i1

wi1wC(i1). (7.18)

Thus, in order to prove (7.16), it suffices to show that

E[
n

∑

i=1

wiwC(i)] = n2(τ−2)/(τ−1)(|λn|−1 − ζ

µ
λ−2
n + o(λ−2

n )), (7.19)

and

Var(

n
∑

i=1

wiwC(i)) = o(n4(τ−2)/(τ−1)λ−4
n ). (7.20)

Indeed, by (7.19), we have that

P

(

∣

∣σ2(x
(n)) − λ−1

n − ζ

µ
λ−2
n

∣

∣ ≥ ελ−2
n

)

≤ P

(

∣

∣σ2(x
(n)) − E[σ2(x

(n))]
∣

∣ ≥ ελ−2
n /2

)

, (7.21)

which, by the Chebychev inequality is bounded by

P

(

∣

∣σ2(x
(n)) − λ−1

n − ζλ−2
n

∣

∣ ≥ ελ−2
n

)

≤ 4λ4
n

ε2
Var(σ2(x

(n))) = o(1). (7.22)

Thus, (7.16) follows from (7.19) and (7.20). For this, we shall apply Lemma A.3 from the appendix, in the
setting that ν̃n = νn(1+λnlnn

−2(τ−2)/(τ−1)) = 1+λnlnn
−2(τ−2)/(τ−1) + ζn−(τ−3)/(τ−1) + o(n−(τ−3)/(τ−1)),

so that, by Lemma A.3(a),

E[

n
∑

i=1

wiwC(i)] =

∑n
i=1w

2
i

1 − νn
+ o(n2(τ−2)/(τ−1)|λn|−2) (7.23)

= νnln(|λn|lnn−2(τ−2)/(τ−1) + ζn−(τ−3)/(τ−1) + o(n−(τ−3)/(τ−1)))−1

= |λn|−1n2(τ−2)/(τ−1) − ζ

µ
n−(τ−3)/(τ−1)λ−2

n + o(λ−2
n n2(τ−2)/(τ−1)),

which proves (7.19).
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By Lemma A.3(b), we have that

Var(
n

∑

i=1

wiwC(i)) ≤ CE[w3
M ]E[wT ]4 + CE[w2

M ]E[wT ]2E[w2
T ] = o(n4(τ−2)/(τ−1)λ−4

n ), (7.24)

precisely when both terms in the middle inequality satisfy this bound. We complete the proof by checking
these estimates. For the first contribution, we note that

E[w3
M ]E[wT ]4 =

1

ln(1 − νn)4

n
∑

j=1

w4
j ≤

C

λ4
n

n4/(τ−1)+3(τ−3)/(τ−1)−1 =
C

λ4
n

n(3τ−7)/(τ−1) = o(λ−4
n n4(τ−2)/(τ−1)).

(7.25)
For the second contribution, instead,

E[w2
M ]E[wT ]2E[w2

T ] =
1

l2n(1 − νn)5

(

n
∑

j=1

w3
j

)2
≤ C

|λn|5
n6/(τ−1)+5(τ−3)/(τ−1)−2 (7.26)

=
C

|λn|5
n(3τ−7)/(τ−1) = o(λ−4

n n4(τ−2)/(τ−1)).

This proves the required concentration for σ2(x
(n)) and hence completes the proof of Theorem 1.4.

A Appendix: auxiliary results

In this section, we prove an auxiliary result on the asymptotics of νn in (2.3).

Lemma A.1 (Sharp asymptotics of νn). Let the distribution function F satisfy (1.4), and let νn be given
by (2.2) and ν by (1.8). Then,

νn = ν + ζn−(τ−3)/(τ−1) + o(n−(τ−3)/(τ−1)), (A.1)

where

ζ = −c
2/(τ−1)
F

µ

∞
∑

i=1

[

∫ i

i−1
u−2/(τ−1)du− i−2/(τ−1)

]

<∞. (A.2)

Proof. We recall that

νn =

∑n
i=1 w

2
i

∑n
i=1 wi

. (A.3)

By the asymptotics of ln in (2.3), we have that

νn =

∑n
i=1w

2
i

nE[W ]
+ o(n−(τ−3)/(τ−1)). (A.4)

We shall make use of the fact that, when f is non-increasing,

f(i) ≤
∫ i

i−1
f(u)du ≤ f(i− 1). (A.5)

Applying this to f(u) = [1 − F ]−1(u)2, which is non-increasing, we obtain in particular that, for any
K ≥ 1,

∫ 1

K/n
[1 − F ]−1(u)2du− 1

n
w2
K/n ≤ 1

n

n
∑

i=K+1

w2
i ≤

∫ 1

K/n
[1 − F ]−1(u)2du. (A.6)
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Now,
1

n
w2
K/n = Θ(K−2/(τ−1)n−(τ−3)/(τ−1)). (A.7)

Thus, we conclude that

ν−νn =
1

µn

K
∑

i=1

∫ i/n

(i−1)/n
[1−F ]−1(u)2du− 1

µn

K
∑

i=1

w2
i+Θ(K−2/(τ−1)n−(τ−3)/(τ−1))+o(n−(τ−3)/(τ−1)). (A.8)

Next, by (1.4), for every K ≥ 1 fixed,

1

n

K
∑

i=1

w2
i = n−(τ−3)/(τ−1)

K
∑

i=1

(cF

i

)2/(τ−1)
+ o(n−(τ−3)/(τ−1)), (A.9)

1

n

K
∑

i=1

∫ i/n

(i−1)/n
[1 − F ]−1(u)2du = n−(τ−3)/(τ−1)

K
∑

i=1

∫ i

i−1

(cF

u

)2/(τ−1)
du. (A.10)

Combining these two estimates yields that

n(τ−3)/(τ−1)[ν − νn] =
c
2/(τ−1)
F

µ

K
∑

i=1

[

∫ i

i−1
u−2/(τ−1)du− i−2/(τ−1)

]

+ Θ(K−2/(τ−1)) + o(1). (A.11)

Letting first n→ ∞ followed by K → ∞, we conclude that

lim
n→∞

n(τ−3)/(τ−1)[νn − ν] = ζ, (A.12)

where

ζ = −c
2/(τ−1)
F

µ

∞
∑

i=1

[

∫ i

i−1
u−2/(τ−1)du− i−2/(τ−1)

]

, (A.13)

as required. The fact that ζ <∞ follows from the fact that, for i ≥ 2,

0 ≤
∫ i

i−1
u−2/(τ−1)du− i−2/(τ−1) ≤ (i− 1)−2/(τ−1) − i−2/(τ−1), (A.14)

which is a summable sequence.

Lemma A.2 (Branching process computations). The following formulas hold:
(a)

E[T ] =
1

1 − νn
, E[wT ] =

νn
1 − νn

, (A.15)

where

νn = E[Poi(wM )] =
1

ln

n
∑

j=1

w2
j . (A.16)

(b)

E[T r] =
(2r − 1)!!

(1 − νn)2r−1
. (A.17)

(c)

E[w2
T ] =

( 1

ln

n
∑

j=1

w3
j

) 1

(1 − νn)3
. (A.18)
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(d)

E[T (i)] = 1 +
wi

1 − νn
, E[wT (i)] =

wi
1 − νn

. (A.19)

(e)

E[T (i)2] = (1 +
wi

1 − νn
)2 +

wi
(1 − νn)3

, E[w2
T (i)] =

( wi
1 − νn

)2
+

wi
(1 − νn)3

( 1

ln

n
∑

j=1

w3
j

)

. (A.20)

(f)

E[wT (i)T (i)] = wi
(

1 +
1

νn − 1

)

+ w2
i

νn
(1 − νn)2

+wi

( 1

(1 − νn)2
+

1

1 − νn

1

ln

n
∑

j=1

w3
j

)

. (A.21)

Proof. (a) and (b) for T are standard, and their proofs shall be omitted. For wT , we use that

E[wT ] =

n
∑

j=1

E[wT |M1 = j]
wj
ln

=

n
∑

j=1

wj
ln

(wj + wjE[wT ]). (A.22)

Solving for E[wT ] proves the result.
For (c), we work out the square in

E[w2
T ] = E

[(

wM +

Poi(wM )
∑

j=1

wTj

)2]

, (A.23)

are rearrange terms.
For (d), we note that

E[T (i)] = E

[

1 +

Poi(wi)
∑

j=1

Tj

]

= 1 + wiE[T ] = 1 +
wi

1 − νn
, (A.24)

by (a). Similarly,

E[wT (i)] = E

[

wi +

Poi(wi)
∑

j=1

wTj

]

= wi(1 + E[wT ]) = wi(1 +
νn

1 − νn
) =

wi
1 − νn

. (A.25)

All other computations are similar, and we refrain from giving their proofs.

Lemma A.3 (Mean and variance of σ2(x
(n))). When the weights w satisfy that νn < 1−λnn−(τ−3)/(τ−1),

then
(a)

E[

n
∑

i=1

wiwC(i)] =
lnνn

1 − νn
+ o(n2(τ−2)/(τ−1)λ−2

n ); (A.26)

(b)

Var
(

n
∑

i=1

wiwC(i)

)

≤ lnE[w3
T ] ≤ C

(

E[w3
M ]E[wT ]4 + E[w2

M ]E[wT ]2E[w2
T ]

)

. (A.27)

Proof. (a) We make use of the analysis in Section 6. We bound

E[
n

∑

i=1

wiwC(i)] ≤ E[
n

∑

i=1

wiwT (i)] = lnE[wT ] =
lnνn

1 − νn
. (A.28)
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For the lower bound, we make use of the bound, for any an and Kn (see (6.13)),

E[
n

∑

i=1

wiwC(i)] ≥ E[wT ] −
n

∑

i=1

wiE[wT (i)]1{wi>Kn} (A.29)

− 1

an

n
∑

i=1

wiE[wT (i)T (i)]1{wi≤Kn} − an

n
∑

i=1

wiE[T (i)]
∑

j∈[n]

E[wT (j)]
w2
j

l2n
.

Now,
n

∑

i=1

wiE[wT (i)]1{wi>Kn} =

n
∑

i=1

w2
i 1{wi>Kn}

1 − νn
= o(n2(τ−2)/(τ−1)λ−2

n ) (A.30)

whenever Kn ≫ |λn|1/(τ−3), which occurs surely when Kn ≫ n1/(τ−1), since λn ≥ −l−1
n n2(τ−2)/(τ−1) =

Θ(n(τ−3)/(τ−1)), and

1

an

n
∑

i=1

wiE[wT (i)T (i)]1{wi≤Kn} ≤
C

∑n
i=1 w

3
i 1{wi≤Kn}

anln(1 − νn)2
≤ CKn

an(1 − νn)2
= o(n2(τ−2)/(τ−1)|λn|−2) (A.31)

precisely when an ≫ Knn
−2/(τ−1). Further,

an

n
∑

i=1

wiE[T (i)]
∑

j∈[n]

E[wT (j)]
w2
j

l2n
≤ an

C

ln(1 − νn)2

∑

j∈[n]

w3
j = o(n2(τ−2)/(τ−1)λ−2

n ), (A.32)

precisely when an = o(n(τ−2)/(τ−1)). Thus, for every λn ≥ −lnn−2(τ−2)/(τ−1), we can find an appropriate
Kn and an so that both terms are o(n2(τ−2)/(τ−1)λ2

n).
(b) We shall start by bounding the second moment. For this, we rewrite

E

[(

n
∑

i=1

wiwC(i)

)2]

=
∑

i1,i2

wi1wi2E[wC(i1)wC(i2)]. (A.33)

Now we split
E[wC(i1)wC(i2)] = E[wC(i1)wC(i2)1{i1−→i2}] + E[wC(i1)wC(i2)1{i1−→/ i2}]. (A.34)

The second term is bounded from above by

E[wC(i1)]E[wC(i2)], (A.35)

since the clusters have to make use of different sets of vertices. Therefore, summing over i1, i2, we obtain
that

Var
(

n
∑

i=1

wiwC(i)

)

≤
∑

i1,i2

E[wC(i1)wC(i2)1{i1−→i2}] =
∑

i

wiE[w3
C(i)] ≤ ln

∑

i

wi
E

[w3
T (i)] = lnE[w3

T ]. (A.36)

The upper bound on E[w3
T ] follows as in the proof of Lemma A.2.
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