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Abstract. We study the first passage process of a spectrally-negative Markov additive process
(MAP). The focus is on the background Markov chain at the times of the first passage. This
process is a Markov chain itself with a transition rate matrix Λ. Assuming time-reversibility we
show that all the eigenvalues of Λ are real with algebraic and geometric multiplicities being the
same, which allows us to identify the Jordan normal form of Λ. Furthermore, this fact simplifies
the analysis of fluctuations of a MAP. We provide an illustrative example and show that our
findings greatly reduce the computational efforts required to obtain Λ in the time-reversible
case.
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1. Introduction

Continuous-time Markov additive processes (MAPs) have proven an important modelling tool
in communications networking [19, Ch. 6-7] as well as finance [3, 13]. This has led to a vast
body of literature; for an overview see for instance [2, Ch. XI]. A MAP is essentially a Lévy
process whose Laplace exponent depends on the state of a (finite-state) Markovian background
process. It is a non-trivial generalization of the standard Lévy process, with many analogous
properties and characteristics, as well as new mathematical objects associated to it, posing new
challenges. It should be remarked that the original definition of MAP [6] does not require the
background process to live on a finite (or even countable) state space. In the case of infinite
state space the structure of MAP can be very complicated, see [2, Ch. XI]. It is hence usual to
assume that the state space of the background process is finite [2, Ch. XI], in which case the
MAP is sometimes called a Markov-modulated Lévy process.

Just as for standard Lévy processes, the class of MAPs with one-sided jumps is of high
importance. On the one hand this class is rich, as it covers for instance Markov-modulated one-
sided compound Poisson processes with drift, Markov-modulated Brownian motions, as well as
‘Markov fluids’ [2, Section XI.1b], but on the other hand it allows for fairly explicit results. In
this paper we consider spectrally-negative MAPs, that is, processes which are only allowed to
have negative jumps. We denote the MAP by (X(·), J(·)), with X(·) being the value of the
MAP and J(·) the state of the Markovian background process. The focus of the present paper is
on the Markov chain J(τx) associated with the first passage process τx := inf{t ≥ 0 : X(t) > x}.
Here it is noted that the (possibly defective) transition rate matrix Λ of the Markov chain J(τx)
plays a crucial role in the fluctuation theory for one-sided MAPs, see e.g. [8, 18].

The problem of identifying Λ received a lot of attention, see [20, 21, 1, 8] for modulated com-
pound Poisson, linear drift, Brownian motion and a general spectrally one-sided Lévy process
respectively. There are two (related) approaches to characterize Λ available in the literature.
Firstly, it is known that Λ solves a specific matrix integral equation, see [8]. Secondly, a spec-
tral method can be used to identify Λ. The advantage of the second approach is that one gets
an explicit expression. This approach, however, requires to assume that the eigenvalues of Λ
are distinct, unless one considers a Markov-modulated linear drift model in which case both
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approaches result in the same identity. Recently, it was shown in [7] how to circumvent the
assumption of distinct eigenvalues, but then one has to resort to considerably heavier mathe-
matical machinery, such as analytic matrix function theory.

In this paper we show that if a MAP is time-reversible, then the eigenvalues of Λ are real
with algebraic and geometric multiplicities being the same. In other words, Λ is similar to a
real diagonal matrix D, that is, Λ = PDP−1 where P is an invertible matrix. We provide a
short and simple proof of this result, and construct the matrices D and P under no additional
assumptions, see Section 2. It should be noted that this property greatly simplifies the analysis of
Markov-modulated storage systems: there is no need to assume that the eigenvalues are distinct
or to resort to analytic matrix theory. We will demonstrate this point in Section 3, where we
consider a simple example of a queue fed by a spectrally-negative MAP. Moreover, our findings
considerably reduce, in this time-reversible case, the computational efforts required to obtain
numerical output, one of the reasons being that computations involve only real numbers. Further
computational aspects, particularly for systems in which the driving MAP is a superposition of
multiple time-reversible MAPs, are discussed in Section 4.

The rest of this introduction is devoted to developing a set of prerequisites.

1.1. Spectrally-negative MAP. Before formally defining the class of MAPs, we first intro-
duce some notation. Throughout this paper we use bold symbols to denote (column) vectors.
For example, 1 and 0 denote vectors of 1-s and 0-s respectively, whereas ei stands for a vector
of 0-s but with the i-th element being 1. Moreover, a < b means that ai < bi for all indices i.

A MAP is a bivariate Markov process (X(·), J(·)) ≡ (X(t), J(t))t defined as follows. Let J(·)
be an irreducible continuous-time Markov chain with finite state space E := {1, . . . , N} and
N × N transition rate matrix Q = (qij). For each state i of J(·) let Xi(·) be a Lévy process
with Laplace exponent φi(α) := log(EeαXi(1)). Letting Tn and Tn+1 be two successive transition
epochs of J(·), and given that J(·) jumps from state i to state j at Tn, we define the additive
process X(·) in the time interval [Tn, Tn+1) through

X(t) := X(Tn−) + Un
ij + [Xj(t)−Xj(Tn)],

where (Un
ij) is a sequence of independent and identically distributed random variables with

Laplace-Stieltjes transform

G̃ij(α) := EeαU1
ij , where U1

ii ≡ 0,

describing the jumps at transition epochs. To make the MAP spectrally-negative, it is required
that U1

ij ≤ 0 (for all i, j ∈ {1, . . . , N}) and that Xi(·) is allowed to have only negative jumps
(for all i ∈ {1, . . . , N}).

We partition the index set E into two disjoint sets E+ and E↓ letting N+ = |E+| and
N↓ = |E↓|. It is assumed that the processes Xi(·) with index in E↓ are those and only those
Lévy processes which are downward subordinators, i.e., stochastic processes with non-increasing
paths a.s. As will turn out, these downward subordinators play a special role in our analysis.
We use v+ and v↓ to denote the restrictions of a vector v to the indices from E+ and E↓

respectively. Finally, in order to exclude trivialities it is assumed that E+ is non-empty.
A central object, which can be considered as the multi-dimensional analog of a Laplace

exponent, defining the law of a MAP, is the associated matrix exponent F (α), given by

F (α) := Q ◦ G̃(α) + diag(φ1(α), . . . , φN(α)),

where G̃(α) := (G̃ij(α)) and for matrices A and B of the same dimensions A ◦ B := (aijbij).
The matrix exponent is finite for all α ≥ 0, and in addition

Ei[e
αX(t)1{J(t)=j}] = (eF (α)t)ij,
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cf. [2, Prop. XI.2.2], where Ei[·] denotes expectation given that J(0) = i. Let k(α) be the
eigenvalue of F (α) with maximal real part, which is, by Perron-Frobenius theory [2, Thm.
I.6.5], well-defined, simple and real.

An important quantity associated to a MAP is the asymptotic drift limt→∞X(t)/t, which
does not depend on the initial state i of J(t) and is given by

lim
t→∞

X(t)

t
= k′(0) =

∑
i

πi

(
φ′i(0) +

∑
j 6=i

qijG̃
′
ij(0)

)
,

where π is a unique stationary distribution of J(·) [2, Cor. XI.2.7].
In this paper we assume that the MAP (X(·), J(·)) under consideration is time-reversible,

which is equivalent to saying that the Markov chain J(·) is time-reversible (that is, πiqij = πjqji)
and U1

ij has the same law as U1
ji for all i, j ∈ {1, . . . , N}, see [2, Section XI.2e]. Yet another

equivalent definition of time-reversibility, which we will use in the present paper, is, with ∆x

being a diagonal matrix with the vector x on its diagonal,

(1) ∆πF (α) = (∆πF (α))T.

1.2. First Passage Process. Define the first passage time over level x > 0 for the process
X(·) as

τx := inf{t ≥ 0 : X(t) > x}.
Note that due to the absence of positive jumps the time-changed process J(τx) is again a Markov
chain but taking values in the set E+ only (see also [18]). Denote the corresponding N+ ×N+

dimensional transition rate matrix by Λ, so that

(2) P(J(τx) = j, τx <∞|J(τ0) = i) = (eΛx)ij, where i, j ∈ E+.

Another matrix of interest is the N ×N+ matrix Π defined as follows

(3) Πij := P(J(τ0) = j, τ0 <∞|J(0) = i), where i ∈ E, j ∈ E+.

In the following we have to distinguish between two cases:

- if k′(0) ≥ 0, then Λ is a non-defective transition rate matrix: Λ1+ = 0+;
- if k′(0) < 0, then Λ is a defective transition rate matrix: Λ1+ ≤ 0+, with at least one

strict inequality.

This follows from [2, Prop. XI.2.10], which states that in the case of a non-negative asymptotic
drift lim supt→∞X(t) = +∞ Pi-a.s. for all i, and thus Pi(τx <∞) = 1. In the case of a negative
asymptotic drift limt→∞X(t) = −∞ Pi-a.s. for all i, and thus Pi(τx <∞) < 1. This also means
that Π1+ = 1 if k′(0) ≥ 0, and Π1+ < 1 if k′(0) < 0.

2. Main Result

In this section we prove that under the time-reversibility assumption the transition rate matrix
Λ is similar to some real diagonal matrix D, in the sense that Λ = PDP−1 for some invertible
matrix P . Moreover, we provide a procedure to construct the matrices D and P .

Let α1, . . . , αk and m1, . . . ,mk be the zeros of det(F (α)) in (0,∞) and their multiplicities.
For all i = 1, . . . , k let pi denote the dimension of the null space of F (αi) (geometric multiplicity
of the null-eigenvalue) and v1

i , . . . ,v
pi

i be some basis of this null space. It is well known, see
e.g. [11, Lemma 2.4], that mi ≥ pi. In the special case when mi = pi the zero αi is called
semi-simple.

Let Υi be a pi × pi diagonal matrix with αi on the diagonal and Vi := [v1
i , . . . ,v

pi

i ]. Define

Υ := diag(Υ1, . . . ,Υk) and V := [V1, . . . , Vk], if k′(0) < 0

Υ := diag(0,Υ1, . . . ,Υk) and V := [1, V1, . . . , Vk], if k′(0) ≥ 0(4)
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and let V + denote the matrix V restricted to the rows corresponding to E+. It is the difficult
part of the proof of our main result, Thm. 1, to show that V is composed of N+ columns, which
implies that Υ and V + are square N+ ×N+-dimensional matrices.

Theorem 1. Let (X(·), J(·)) be a time-reversible spectrally-negative MAP. Then Υ and V + are
N+ ×N+-dimensional matrices, V + is invertible, and

Λ = −V +Υ(V +)−1 and Π = V (V +)−1.

We start the proof of Thm. 1 by establishing a lemma, which can be considered as a weak
analog of this theorem.

Lemma 2. If α > 0 and v are such that F (α)v = 0 then

(5) Λv+ = −αv+ and v = Πv+.

Proof. By choosing λ(α) = 0 and h(α) = v in [4, Lemma 2.1], we obtain that for any distribution
of J(0)

M(t) := eαX(t)vJ(t)

is a martingale. Apply the optional sampling theorem to see that, for any t > 0 and any x ≥ 0,

vi = Ei[e
αX(τx∧t)vJ(τx∧t)].

Note that M(t) is bounded in absolute value on [0, τx], due to the facts that α > 0 and X(t) ≤ x
on [0, τx]. It moreover always holds that either Pi(τx = ∞) = 0 or limt→∞X(t) = −∞ a.s.
(where the former case corresponds to k′(0) ≥ 0, and the latter case to k′(0) < 0), so by
applying ‘dominated convergence’ we have

vi = Ei[1{τx<∞}e
αxvJ(τx)] = eαx

∑
j∈E+

Pi(J(τx) = j, τx <∞)vj.

Choosing x = 0 we obtain

v = Πv+,

see also (3). On the other hand, considering i ∈ E+ we get

v+ = eαxeΛxv+,

see also (2). The first equality appearing in (5) is obtained by differentiating the above equality
with respect to x and setting x = 0. �

Recall that if k′(0) ≥ 0 then Pi(τx < ∞) = 1, so Λ1+ = 0+ and Π1+ = 1. Using Lemma 2
one can see now that ΛV + = −V +Υ and V = ΠV +. Note that the columns of the matrix V +

are vectors from the bases of the eigenspaces of the matrix Λ, so they are linearly independent.
But then the matrix V + (and so also V ) cannot have more than N+ columns. Thus, in order
to prove Thm. 1, it remains to show that

(6) V is composed of at least N+ column vectors.

We devote the rest of this section to proving this claim.

Lemma 3. The eigenvalues of F (α), α ≥ 0 are real with algebraic and geometric multiplicities
being the same.

Proof. Recall that time-reversibility of (X(·), J(·)) implies that the matrix ∆πF (α), α ≥ 0 is

real symmetric, see (1), and hence the same applies to ∆
1/2
π F (α)∆

−1/2
π , α ≥ 0. It is well known

that a real symmetric matrix has real eigenvalues with algebraic and geometric multiplicities
coinciding, see [10, Thms. 2.5.4 and 4.1.3]. The claim is now immediate in view of [10, Thm.
1.4.8]. �
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Remark 2.1. There are three types of multiplicities mentioned in this section: the algebraic and
geometric multiplicities of eigenvalues of F (α) for some fixed α, and the multiplicities of zeros
of det(F (α)). Hence to every zero αi > 0 of det(F (α)), having a multiplicity that we denoted
by mi, we can associate a null-eigenvalue of the matrix F (αi), which has the same algebraic and
geometric multiplicities according to Lemma 3; we recall that this multiplicity is denoted by pi.

Let gi(α) be the i-th largest eigenvalue of F (α), α ≥ 0 (so that g1(α) = k(α), the Perron-
Frobenius eigenvalue defined earlier). Then gi : [0,∞) 7→ R is a continuous function. The next
lemma presents some properties of the functions gi(·).

Lemma 4. It holds that

• g1(0) = 0 and gi(0) < 0 for i = 2, . . . , N ,
• gi(α)→∞ as α→∞ for i = 1, . . . , N+.

Proof. The first statement follows immediately by noting that F (0) = Q is an irreducible
transition rate matrix; see also [2, Cor. I.4.9]. Consider the second statement. It is well known
that limα→∞ φi(α) = ∞ if Xi(·) is not a downward subordinator. Let f(α) be the N+-th
largest number out of φi(α) for i ∈ {1, . . . , N}, so limα→∞ f(α) = ∞ and F (α)/f(α) goes
to a diagonal matrix with at least N+ positive (possibly infinite) elements. Take an arbitrary
sequence αn →∞ and apply Lemma 7 of the Appendix to F (αn)/f(αn) to obtain the result. �

Proof of Theorem 1. Recall that we are left to prove that the matrix V is composed of at least
N+ columns, see (6). Lemma 4 shows that the functions g2(α), . . . , gN+(α), and in addition g1(α)
provided that k′(0) < 0, hit 0 in the interval (0,∞) at least once (recall that k(α) = g1(α)). If
these functions hit 0 for distinct α, then the claim is immediate, see the definition of matrix V
given by (4). Suppose now that n of these functions hit 0 for some α = α∗. Then the algebraic
multiplicity of the null-eigenvector of F (α∗) is n. But the algebraic and geometric multiplicities
of all the eigenvalues of F (α), α > 0 are the same according to Lemma 3, so the null space of
F (α∗) is of dimension n, and the claim follows. �

We conclude with the following immediate corollary.

Corollary 5. det(F (α)) has N+ − 1{k′(0)≥0} zeros in {α ∈ C : Re(α) > 0} (counting multiplic-
ities), all of which are real and semi-simple.

Proof. It is only required to show that det(F (α)) has no zeros in {α ∈ C : Re(α) > 0}, which
are not real. Suppose there is such a zero, and denote it by α0. It is easy to check that the
arguments in the proof of Lemma 2 still hold for α0. Hence −α0 is another eigenvalue of Λ,
which is impossible. �

The above result partly holds without the assumption of time-reversibility. It has been shown
in [12] (for the case when k′(0) is non-zero and finite) that the total number of zeros (taken
according to their multiplicities) of det(F (α)) in {α ∈ C : Re(α) > 0} is N+ − 1{k′(0)≥0}. It is,
however, not true in general that the zeros are real or semi-simple.

3. A Simple Example of a Markov-modulated Queue

In this section we consider a queue fed by a spectrally-negative MAP. Our goal is to illustrate
on a simple example that the time-reversibility assumption can considerably simplify the analysis
of fluctuations of a MAP.

We recall that for a given MAP (X(·), J(·)) the workload process (W (·), J(·)) is defined
through

W (t) := X(t) + max

{
− inf

s∈[0,t]
X(s), 0

}
.
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It is well known that this process has a unique stationary distribution if the asymptotic drift
of (X(·), J(·)) is negative (i.e., the stability condition k′(0) < 0 holds), which we assume in the
sequel. Let a pair of random variables (W,J) have the stationary distribution of (W (·), J(·)), and
denote the all-time maximum attained by X(·) through X := supt≥0X(t). It is an immediate
consequence of [2, Prop. XI.2.11] and time-reversibility that

(W |J = i) and
(
X|J(0) = i

)
have the same distribution.

But X is the life-time of J(τx), thus it is of phase type [2, Section III.4], where Λ is the phase
generator, the ith row of Π is the initial distribution, and −Λ1+ is the exit vector. Hence

(7) p(x) = −ΠeΛxΛ1+,

where pi(x) is a density of (W |J = i) at x > 0. In addition, (W |J = i) can have mass at 0. It
is easy to see from normalization that the vector of masses is given by 1− Π1+, so that there
is no mass if i ∈ E+.

It should be noted that a similar result holds true for a general (not time-reversible MAP).
The advantage of time-reversibility is that we can compute the matrices Λ and Π without any
additional assumptions regarding simplicity of eigenvalues as in [20, 1, 14], neither we use objects
from analytic matrix theory as was done in [7]. Moreover, we can simplify (7) and show that
the density p(x) is of a particularly simple form. Using Theorem 1 we write

p(x) = V e−ΥxΥ(V +)−11+ =
N+∑
i=1

e−αixaivi,

where αi = Υii > 0 and vi is the ith column of V , hence F (αi)vi = 0. The elements ai are
given by a = Υ(V +)−11+.

We now compare our findings with those in [14], where the stationary distribution of Markov-
modulated Brownian motion (MMBM) is given. Our result is in line with the expressions in [14];
one can use identity (1) to see this. It was shown in [14] that ai-s satisfy a system of N+ linear
equations, but it was not shown that these equations are linearly independent, and hence it was
not clear whether they uniquely determine the unknowns ai. Note that our result provides an
explicit expression for these unknowns. It is valid for any time-reversible spectrally-negative
MAP. In fact, the result in [14] is valid for any MMBM which has the property that all αi-s are
distinct.

We finally note that a time-reversible MMBM also appears in [15], where authors succeed in
identifying the stationary distribution of this process reflected at two barriers. This is however
done under a rather restrictive assumption, namely all the pairs (µi, σ

2
i ) are assumed to be

proportional to (µ, σ2), which e.g. implies that all drifts µi have the same sign.

4. Computational Aspects

In this final section we consider the problem of finding the zeros of det(F (α)), which are
then used to construct matrices Υ and V and hence the transition rate matrix Λ of J(τx). The
assumption of time-reversibility greatly reduces the computational efforts required to find the
zeros. Firstly, we can restrict ourselves to the domain of reals, whereas in general the right half of
the complex plane is to be considered. Secondly, it turns out (as proved in Section 4.1) that the
functions gi(α)/α, α > 0 are strictly increasing. Hence a simple root finding procedure can be
employed to find the zeros of functions gi(α), which are exactly the zeros of det(F (α)). Finally,
this idea can be extended further for systems in which the driving MAP is a superposition of
multiple time-reversible MAPs. It is shown in Section 4.2 that one can reduce the computational
burden for such systems by several orders of magnitude.

It is important to note that the zeros of det(F (α)), α > 0 are bounded by maxi{ψi(2qi) : i ∈
E+}, where qi := −Qii and ψi(·) is the right-inverse of φi(·), see [17] for a definition. The above



FIRST PASSAGE OF TIME-REVERSIBLE MAPS 7

claim is true, because for larger α the matrix F (α) is diagonally dominant and thus non-singular
(use basic properties of the functions φi(·), or see [12]).

4.1. Monotonicity of Eigenvalue Functions. It is immediate from Lemma 4 and Corollary 5
that the functions g2(α), . . . , gN+(α), and in addition g1(α) provided that k′(0) < 0, hit 0 exactly
once on the interval (0,∞). Moreover, these are the only functions gi(α) hitting 0 for some
α ∈ (0,∞).

Let hi(α) := gi(α)/α for α > 0 and define dj to be the deterministic drift of the Lévy process
Xj(·) if this process has paths of bounded variation, and ∞ otherwise.

Lemma 6. The functions hi(α) are strictly increasing with

(i) limα↓0 h1(α) = k′(0) and limα↓0 hi(α) = −∞ for i > 1,
(ii) limα→∞ hi(α) = ci, where ci is the i-th largest number among the di-s.

Proof. Fix a c ∈ R, and define the time-reversible matrix exponent F̃ (α) := F (α)−cα. Trivially

g̃i(α) = gi(α) − cα and h̃i(α) := hi(α) − c. But functions g̃i(α), and hence also h̃i(α), hit 0
in the interval (0,∞) at most once. This shows that hi(α) are strictly increasing, because c is
arbitrary.

Claim (i) now follows immediately from Lemma 4. Finally, note that Ñ+ (in self-evident
notation) is decreasing in c. More precisely, Ñ+ decreases when c = dj for some j, because
then Xj(t)− ct becomes a downward subordinator. This means that one of the functions hi(α)
approaches dj but does not hit it, which proves the second claim. �

We note that this monotonicity result makes it possible to use a simple root finding procedure
to obtain the zeros of det(F (α)).

4.2. Aggregates of Multiple MAPs. We now consider the situation in which the MAP X(·)
consists of the superposition of multiple independent MAPs X(1)(·), . . . , X(M)(·) [16]. Then
F (α) can be written as F (1)(α) ⊕ . . . ⊕ F (M)(α), with ⊕ denoting the Kronecker sum [5], and
F (1)(α), . . . , F (M)(α) being matrix exponents. If X(1)(·), . . . , X(M)(·) are spectrally-negative and
time-reversible, clearly X(·) inherits these properties. Following the procedure outlined above,
one can identify V by equating the eigenvalue functions hi(·) of F̄ (α) to 0. If Nm is the dimension

of matrix exponent F (m)(α), this would require solving eigensystems of dimension
∏M

m=1Nm (as
this is the dimension of F (α)).

One can, however, find V in a considerably more efficient manner, following the approach
presented in [22, Section 4]. There it is explained how to convert the

∑M
m=1Nm eigenvalue

functions

h
(m)
i (α), i = 1, . . . , Nm, m = 1, . . . ,M

of the (low-dimensional) MAPs X(1)(·), . . . , X(M)(·) into the
∏M

m=1Nm eigenvalue functions of
the (high-dimensional) MAP X(·). It essentially entails that the bulk of the computations can be
performed at the level of individual MAPs X(1)(·), . . . , X(M)(·). The corresponding eigenvector
(solving F̄ (α)v = 0) is then the Kronecker product of the eigenvectors associated to the lower
dimensional MAPs, cf. [22, Eqn. (60)]. This procedure may lead to reducing the computational

burden by several orders of magnitude. The function h
(m)
1 (α) = k(m)(α)/α is often referred to

as the effective bandwidth function [9].
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Appendix A

Lemma 7. If a sequence of N × N matrices An goes to a diagonal matrix A with elements
in [−∞,∞], then the N eigenvalues of An go to the different (with regard to index) diagonal
elements of A.

Proof. It trivially follows from Gershgorin’s theorem [10, Thm. 6.1.1] that for any δ > 0 there
exists n0 such that the eigenvalues of An for n > n0 belong to the discs Di := {z ∈ C :
|z−(An)ii| < δ}. Moreover, if a union of k of these discs is disjoint from all the remaining N−k
discs then there are exactly k eigenvalues of An in this union. Clearly, for sufficiently small δ
and large enough n0 the discs Di and Dj are disjoint if (An)ii and (An)jj do not have the same
limit. This concludes the proof. �
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