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Abstract

We develop a model of budget allocation for permanent and contingent workforce under stochastic demand. The
level of permanent capacity is determined at the beginning of the horizon and is kept constant throughout
whereas the number of temporary workers to be hired must be decided in each period. Compared to existing
budgeting models, this paper explicitly considers a budget constraint. Under the assumption of a restricted
budget, the objective is to minimize capacity shortages. When over-expenditures are allowed, both budget
deviations and shortage costs are to be minimized. The capacity shortage cost function is assumed to be either
linear or quadratic with the amount of shortage, which corresponds to different market structures or different
types of services. We thus examine four variants of the problem that we model and solve either approximately or
to optimality when possible. A comprehensive simulation study is designed to analyze the behavior of our
models when several levels of demand variability and parameter values are considered. The parameters consist
of the initial budget level, the unit cost of temporary workers and the budget deviation penalty/reward rates.
Varying these parameters produce several trade-off between permanent and temporary workforce levels, and
between capacity shortages and budget deviations. Simulation results also show that the quadratic cost function
leads to smooth and moderate capacity shortages over the time periods, whereas all shortages are either avoided
or accepted when the cost function is linear.

Keywords: capacity planning, contingent workers, budget allocation, non-linear stochastic dynamic
programming, optimization, stochastic processes.

1. Introduction

Intensifying demand for better education and skills leads organizations to increasingly rely on
contingent workers' knowledge, with the side benefit of avoiding long-term hiring costs such
as retirement costs. Besides, globalization implies a need for flexibility and agility to remain
competitive. In this respect, the recourse to contingent workers is cost-effective and allows for
adjustments in employment levels to quickly respond to demand changes.

Recent research tackles the problem of hiring and firing permanent and contingent workers
so as to face unexpected spikes in demand. Techawiboonwong et al. (2006) consider the
problem of assigning temporary workers to skilled and unskilled workstations so as to
minimize the wage costs, the hiring/firing costs and the permanent overtime costs as well as
the inventory holding costs and the backorder costs. The demand here is highly uncertain but
treated as deterministic. In Bhatnagar et al. (2007), the objective is to minimize the cost of
permanent workers, overtime and contingent workers (wage and induction costs), and the idle
time cost for unutilized permanent workers; each worker being dedicated to a certain stage,
line, shift and day. Permanent workers are endowed with several skill levels and contingent
workers are used at the bottom of the skills. These multi-skilled models address the issue of
selecting an appropriate contingent workforce and consider the demand as deterministic.

Apart from heterogeneous workforce management models, existing research has shown that
staffing methods that account for the stochastic nature of demand (and supply) of labor can
lead to significant reductions in labor costs. Wild and Schneeweiss (1993) develop a



hierarchical decision model to optimize the use of temporary workers, overtime and floaters
(workers able to work in different departments) under uncertain demand for labor and
absenteeism. In the same vein, Bard et al. (2007) design a 2-stage stochastic program for staff
planning and scheduling decisions. In the first stage, the size of the permanent workforce is
determined before demand is known. In a second stage, demand is revealed so overtime and
casual workers can be used to satisfy the demand.

Uncertainty in labor supply is also included in the following references. Berman and Larson
(1993) simultaneously determine the number of full time, part time and temporary employees
to respond to day-to-day fluctuations in workload, while accounting for random absenteeism.
Later on, Berman and Larson (1994) considered a similar problem derived from the postal
sector, with a workload varying on a day-to-day basis and the restriction that all work
received during a day must be processed on that day. Availability of both full time employees
and temporary workers is uncertain so unmet work requirements for the day are provided by
overtime shifts. In the last four references above cited, backlogs are not allowed. In Pinker
and Larson (2003), the objective is to determine the number of regular and contingent workers
over the whole planning horizon so as to minimize the expected labor and backlog costs. The
model allows for backlogging or unfinished work, uncertainty in demand for labor,
absenteeism and heterogeneous productivity amongst workers.

In this paper, we develop a model for contingent and permanent workforce management that
allows for stochastic demand while considering a budget constraint. Budgeting models related
to human resources planning can be found in the more specific OR-literature on health care.
For instance, Trivedi (1981) develops a model for nursing service budgeting that ensures a
balanced staff to meet a deterministic demand while satisfying cost control and regulation
constraints. Kao and Queyranne (1985) design a stochastic model to provide the weekly
pattern of permanent nurses and emphasize the detrimental impact of demand uncertainty on
budget estimates. By considering the usage of temporary workers, our model provides a better
dynamic usage of capacities under stochastic demand conditions. Furthermore, this paper is
one of the first that explicitly takes into account a budget constraint. The budget allocation
problem we consider consists in determining (7) a suitable permanent workforce level that will
be available throughout the horizon and (ii) the number of temporary workers to be hired in
each period. Several variants of the problem are examined, depending on the shape of the
shortage cost function (linear or quadratic) and on the assumptions related to budget deficits
as they can either be allowed or forbidden.

The next section provides a general description of the problem and introduces the
assumptions and notations. In Section 3, we derive the budget allocation model when the
capacity shortage cost function is assumed to be linear with the amount of shortages. Section
4 extends the analysis to the case of quadratic shortage costs to account for higher loss when
shortages affect important clients. For each type of cost function, we distinguish the case of a
fixed budget from the situation in which budget deficits are allowed. In Section 5, we design a
comprehensive simulation study to assess the behavior of our models when several levels of
demand variability and cost parameter values are considered. Section 6 draws the main
conclusions of this paper.

2. Model framework

We start with a general description of the problem under examination and we discuss the
underlying assumptions. We then describe the variants of the problem we have developed to
reflect practical aspects of budget allocation.



The objective of our models is to allocate a given budget to both a permanent and a
contingent capacity under stochastic demands so as to minimize the capacity shortage cost
over a fixed horizon, usually a year. We assume the demands in each period to be independent
of each other and to be identically distributed with some known distribution. This standard
assumption covers a wide range of situations; for instance, it may be appropriate to model the
demand for raw materials emanating from several customers to a supplier or to model the
demand for healthcare. Our generic capacity planning model consists of permanent and
contingent capacity decisions. At the tactical level, we decide on the permanent capacity level
P, which will be held fixed and valid throughout the whole year. At the operational level,
resorting to momentary capacity ( M,) may take place in each period ¢ =1,...,T of the year. In
every period we assume the following order of events:

- Demand of the coming period, d,, is revealed and represents a realization of D, which
designates the demand as a random variable. The remaining budget b, is observed;

- Contingent capacity may be called, which amounts to determine M, ;

- The capacity shortage cost is recorded.

Thus, demand of the current period is known before the contingent capacity decision is taken,

whereas only the distribution of demand is known for later periods. In line with the capacity

shortage penalty cost concept in Warner and Prawda (1972), surplus capacities in any periods

are assumed to be lost.

We consider two assumptions regarding the budget use. First, we assume the budget can not
be overspent, thus the objective is to minimize capacity shortages under a fixed, given budget.
Second, budget deviations are allowed for over-expenditure so the objective consists in a joint
minimization of capacity shortages and budget deviations. We borrow the budget deviation
penalty assumption from Trivedi (1981): the end-of-year budget surplus is rewarded linearly
with rate ¢, whereas the budget deficit is penalized linearly with a penalty cost ¢ such that

- +
Cp=Cp.

We examine two types of capacity shortage cost functions: linear and quadratic, with the
restriction that these functions return a value of zero when the capacity exceeds the demand,
since surplus capacities are assumed to be lost. In competitive markets where a lot of
producers offer the same product at same price, it is reasonable to assume linear shortage
costs. In more oligopolistic market structures, companies have incentives to deal carefully
with their most important and loyal customers. Thus, in case of shortages these customers will
be served first. As shortages become higher, orders of such customers may be not honored
with a risk that these customers go to competitors. Thus, the shortage cost should not only
involve the cost of lost sales but also the cost of loosing the biggest clients. This is properly
reflected by an increasing convex cost function of shortages, where marginal costs are
increasing: as shortages increase, the cost of loosing an additional unit of demand increases.
Combining the two types of cost function for capacity shortages and the two assumptions for
the budget leads to the four models developed and analyzed in the next sections of this paper.
Table 1 summarizes the notations that will be used throughout the paper.

3. Linear cost for capacity shortages

This section is devoted to the analytical results we derive under the assumption that the
capacity shortage cost function is linear. We first examine the situation in which the budget
may not be overspent and we provide an approximation to the optimal permanent capacity



level that requires only a few computations. We then turn to the development and analysis of
the model when budget deviations are allowed.

Permanent capacity expressed in number of supplied units per period
Contingent capacity expressed in number of supplied units in period ¢
Horizon length, with ¢ =1,...,T

Random variable used to designate the demand in period ¢

A realization of D,

Fixed budget available over the whole horizon (yearly budget)
Remaining budget observed at the beginning of period ¢

¢y Unit cost of shortage (equivalent to the cost of one unit of lost sale)
¢, Unit cost of contingent capacity

¢p  Unit cost of permanent capacity

¢, Penalty rate for one unit of budget deficit (recorded at the end of the year)

<o
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c, Reward rate of one unit of budget excess
Table 1. Notations

3.1 Restricted budget and linear cost for capacity shortages

Let (a)* be defined as (a)” = max(0,a). The total annual cost amounts to the shortage cost,
C,(P), given by

Cy(P)=Ycs(D,-P-M,)", M

t=1

with an expected value E [C S(P)] equal to

E[Cy(P)]= D, }(X—P—MtrdF(x), @

where F(x) denotes the demand probability distribution function per period.

Since the cost is linear with the amount of shortage, there is no incentive to accept small
shortages in some periods to save budget that could be used to face higher shortages, as the
cost is strictly proportional to the shortage. This feature makes simple the decision about
contingent capacity: as long as the remaining budget is large enough we choose the contingent
capacity to exactly meet the demand, otherwise we spend all remaining budget on contingent
capacity to cover as much demand as possible. Formally, we have

(d-P) ifb =c,(d -P),

M =
=V L ifb <cyd -P) 3)

Cu

This means that the only decision left is the determination of the permanent capacity level P.
When the budget is restricted to B, the total annual contingent capacity is a function of P.
This function M(P) has the form



M(P)=(B-c,TP)/c, = th @

t=1

The annual shortage cost, C,(P), can be expressed as the difference between the total excess
demand that the permanent capacity can not satisfy and the total contingent capacity used.
This difference represents the demand that can not be covered neither by permanent capacity
nor by contingent capacity. Capacity shortages will only occur when the sum of the excess
demand over the periods exceeds the available number of temporary workers M(P). As
demands are random, the annual shortage cost also is random. We have

T

Cy(P) = cS(E(Dt -P) - M(P))

t=1

)

Our objective is to find the optimal permanent capacity level P’ that minimizes the expected
annual shortage cost. Since it is difficult to obtain analytical expression of P* we provide an
approximation to the expected annual shortage cost E [C S(P)]:

E[Cs(P)] ch(T- E[(p, —P)+]—M(P))+, 6)

where D, is the demand in an arbitrary period ¢. Letting R(P) designate E [(Dl —P)+- to

simplify the writing of the next equations, we can express the approximation to the expected
total shortage cost as

E[Cs(P)]=cy(T- R(P)- M(P))' (7)

Minimizing the approximation in the right-hand side of (7) is considerably easier than
minimizing (5). Minimizing (7) is equivalent to the minimization of the term inside the
positive part operator. Replacing M(P) with its expression given in (4), we obtain a
newsvendor problem, having the following straightforward solution for the optimal permanent
capacity level

Cu Cu

: — - 8
P =P, =argrgi(r)1{T-R(P)_M} _ F—I(M). ®)

This permanent capacity level P, is an approximate value to the optimal capacity P~ that
minimizes the exact total shortage cost in (5). Another approximation P, may be obtained

through simulations by performing numerous draws of random demands, and by computing
the observed shortage cost for some P values and then choosing the value of P that
minimizes the shortage cost. The approximation P, is then obtained by averaging, over the

replications of random demand draws, these values of P minimizing the shortage cost. The
higher the number of replications is, the higher the quality of the approximation is.

To illustrate, let us consider a budget B = 3250 available over T =50 periods. The demand
is assumed to follow either a normal distribution or a gamma distribution, both with mean 50
and standard deviation 20 (which amounts to parameters a =6.25 and A =28 for the gamma



distribution). We set the following values for the unit costs: ¢;=c, =1 and ¢,, =2.5. For

each demand distribution, we perform 1000 replications of demand draws {d, }z=1... -, and we

consider values of P in the range {30,...,65}. For each value of P we compute the exact
shortage cost C(P), with C((P) =cs(2f_l(dl -P) -(B —cPTP)/cM) . We then record the

value of P that minimizes the shortage cost within one replication. We get P, by averaging
the 1000 values of P obtained this way. Table 2 summarizes the results we obtain for both
demand distributions.

Parameters Demand Newsboy P, Simulated P,
B=3250; T =50 D, ~ N(50,20) 55.07 55
cs=cp=1;¢,=25 D, ~T(6258) 52.44 53

Table 2. Approximated values to the optimal permanent capacity

With both demand distributions, the approximated value of P" provided by the solution to the
newsvendor problem P, is very close to the value P, . We thus have an approximation of

sum

good quality that requires very few computations compared to P,

sim *

In the next paragraph, we examine the situation in which we include costs for budget
deviations. The objective is to allocate the budget dynamically so as to find a good balance
between capacity shortages and budget deficit for a given annual budget.

3.2 Unrestricted budget and linear cost for capacity shortages

We consider linear penalties for budget deficits, and linear rewards for budget surpluses. The
budget deficit is assumed to be at least as much penalized as the budget surplus is rewarded,
that is ¢ = c,. In this situation, hiring temporary workers is still possible when the budget is
totally spent. We will see that the various cost coefficients will largely influence the use of
temporary workers.

T
The total annual expense equals c¢,TP +c,, EH M, and can either be superior to the budget

B or inferior to it. The budget deficit cost C(P) and the budget surplus reward -Cj(P) may
therefore be expressed as follows

t=1 t=1

+ )
Cy(P)= CB(C’PTP+CMEM BJ —c CM(EM _B-¢,TP cPTP)

5oV B-c,TP <
c;(P)=—c;(B—c,,TP—cMEM,) =—c;cM( P E )
=1

t=1

where {M, }t=

temporary workers to cover demand excess that can not be covered by the permanent
capacity, the cost of a budget deficit not only includes the penalty cost of overspending the
budget but also the cost of hiring temporary workers. Under-expenditure represents a saving
in terms of costs of contingent workers we do not need to hire.

., are the decision variables. As over-expenditure is only dedicated to hiring



The sum C,(P)+ Cz(P) represents the cost of the overall deviation from budget B.

Depending on the unit cost values, it may be advantageous not to exceed the budget even if
lost sales are incurred. Thus, the total cost C(P) to be minimized not only includes

Cy(P)+ C4(P) but also the shortage cost C,(P) as defined by Eq. (1). We minimize the
expected value of the total cost C(P) = C4(P)+ C5(P)+ Cz(P), that is

r£1>i(r)1E[CS(P) +Cy(P)+ Cy(P)]. (10)

Depending on the order of magnitude of the cost parameter values, several cases can be
distinguished that lead to specific uses of temporary workers, and therefore to simplified
expressions of the total cost for which we derive solutions to find the best permanent capacity
level.

Case 1. If the unit shortage cost exceeds the cost of overspending the budget to hire temporary
workers: c¢g >cyc,,, then it is more advantageous to avoid capacity shortages. All demands
will be satisfied by using permanent capacity and by hiring temporary workers when
necessary. We thus have C (P)=0. Consequently the total cost only have two components

and is expressed as
C(P)=Cy(P)+Cy(P) (11)

Since M, = (D, —P)+, we can use the same recipe as the one we developed to derive the
approximation of the expected shortage cost under restricted budget (Eq. (7)): using

R(P) = E[(D, - P)+: and replacing E;E[(D, - P)+] with T-R(P), we get the following

approximation

(12)
CxC

Cu Cu

E[C(P)]zc,;cM(T.R(P)_M) s M(M

—T-R(P)) :

The approximation suggests that the optimal capacity level, P, is close to the maximizer of
the approximated budget excess: (B-c,TP)/c,, —T-R(P), and this maximizer also is a
minimizer of the approximated budget deficit 7-R(P)-(B-c,TP)/c,,. Thus, the
maximization reduces to the same newsvendor problem as in (8) and we have exactly the
same expression for P,

P =P, = argmin{T- R(P) - w} = F'I(M). (13)
P=0 CM CM

Case 2. If, contrary to case 1, the unit shortage cost is inferior to the cost of overspending the
budget to hire temporary workers: ¢y <c,c,, then it is less costly to have capacity shortages
than having a budget deficit. To avoid budget deficits, demand is satisfied only if there is
budget left. We thus have C,(P)=0. If, furthermore, we have c; > cyc,, then saving money
by not hiring temporary workers is less rewarded than a shortage is penalized. Thus, it is still
advantageous to hire temporary workers. Minimizing the total cost results in finding a good
balance between the shortage cost and the budget excess reward, as saving budget on



temporary workforce can lead to higher shortages. Thus if cc,, <cg <cjc,,, the total cost is
written as

C(P)=Cs(P)+Cy(P) (14)
We can proceed similarly to Case 1 to obtain the approximation

(15)

CHC

E[C(P)]ch(T-R(p)_M) e M(M

—T'R(P)) ;

M M

which leads to the same observation and approximation as in Case 1, equation (13).

Case 3. We still consider the no budget deficit situation implied by ¢, <cjc,, but we now
examine the case where c¢g <cjc,,. Saving budget on temporary workers is more rewarded
than a lost sale is penalized. Compared to Case 2, now there is no longer incentive to spend
budget on temporary capacity to diminish lost sales. As the expense on temporary workers is
zero, to get the total cost we take the expression of the shortage cost in Eq. (1) and the
expression of the budget excess cost in Eq. (9) in which we replace M, with zero for all

t=1,..,T. From Eq. (1), we obtain Cs(P)=CsEtT_1(D;—P)+ and from Eq. (9) we get

C,(P)=~c;(B~-c,TP)". The total cost is the sum of these two costs

C(P)=C4(P)+Cy(P) (16)

=cs > (D,-P) =c;(B-c,TP)".

t=1

From Eq. (16), let us notice that one unit of permanent capacity that is saved is rewarded
czcp. Thus we still invest in permanent capacity as long as the unit shortage cost exceeds

czcp. Consequently, the expression of the total cost in (16) is valid if the three above
mentioned conditions on the unit shortage cost hold, that is ¢, <cjc,, and ¢, <cyc,, and
cg>cpcp. As we assumed cj =cj, this finally amounts to have cyc, <cg <cgzc,,. Using
again R(P), we derive the following approximation to the total cost given in Eq. (16)

E[C(P)]=c,T-R(P)-c}(B-c,TP), (17)

which is another newsvendor equation, yielding
P p _F_l(cs—c;cp) (13)

Cs

As it is more advantageous to avoid capacity shortages than saving budget on permanent
capacity (cg > cycp), if the budget B is not too large there is a big chance it is totally spent,
meaning that P* = B/Tc ,. It should be noted that if ¢, <cjc, there is no longer incentive to

avoid shortages by investing in permanent capacity, as capacity shortages are less penalized
than the savings on permanent capacity are rewarded. In such a situation, no budget is spent at
all and condition ¢, <c,c, is actually a necessary and sufficient condition, since we assumed

8



¢, <c,, (so it is needless to combine ¢, <czc, and cg < cgc,,). This extreme situation where
no budget is spent constitutes Case 4 that is fully characterized by ¢, <cgzc,.
It should be noted that the situation where ¢ = ¢ is compatible with all cases except case 2.

To illustrate the three cases, let us consider a gamma-distributed demand with mean 50 and
standard deviation of 20. We set ¢, =c, =1, c; =0.3 (that is 30%) and ¢, =0.6, with a
budget level B =3250. Figure 1 displays the remaining budget in each period over 50 periods
in each case.

Case 1. With a unit cost of temporary work c,, =1.1, we have cg>cyc,,. The optimal
permanent capacity available per period equals 53. The budget use exceeds the budget level,
as it is more advantageous to avoid capacity shortages by accepting budget deficits. Thus, the
expected remaining budget becomes negative from period 37.

Case 2. Inequalities cyc,, <cg <cyc,, are satisfied with a unit cost of temporary work
¢, =2.5. The optimal permanent capacity equals 53. Capacity shortages are borne to avoid
budget deficits, thus the expected remaining budget curve always stays above the x-axis.

Case 3. We have cyc, <cg <cgye,, for ¢,, =6. Temporary workers are so expensive that they
are not hired at all. The optimal permanent capacity equals 43, thus the remaining budget is
constant throughout and equal to B —c,TP =1100.

1200

1000

Case 1
—Case 2
Case 3

800

600

200

Remaining budget
400

29 33

-200

Period

-400

Fig. 1. Remaining budget per period for each case - unrestricted budget and linear cost

4. The quadratic shortage cost situation

Next to studying the linear capacity shortage cost function, we introduce the quadratic cost
function, which we consider as being more realistic in less competitive market structures. As
already mentioned in Section 2, an increasing convex cost function of capacity shortages is
appropriate to reflect the fact that higher shortages imply a higher cost as the cost not only
involves the cost of lost sales but also the cost of loosing the biggest customers. We choose
the following shortage cost



. _p_m VT (19)
CS(P)=CSE[(Dt PD M) ] |

t=1 t

The shortage cost function in (19) is increasing and convex with the amount of shortage.
Such a function is also appropriate to model the cost of nursing care shortages in hospitals. If
the demand for care slightly exceeds the supply, this means that nurses can not socialize with
patients and this has little consequence so the associated shortage cost should be low.
Conversely, if the demand largely exceeds the supply, nurses can no longer be able to provide
all essential cares with possible serious consequences that should be reflected by a high
shortage cost. With a quadratic cost function, there is a strong incentive to accept small
capacity shortages in some periods in order to save some budget which will be used to avoid
large capacity shortages that would be more likely to happen in later periods if we had
fulfilled all demands in the first periods. Consequently, contrary to the linear shortage cost
situation, here it is no longer optimal to avoid any amount of shortage. A better strategy to
impede large shortages (at any time) would consist in accepting small shortages in some
periods (when the excess demand over the permanent capacity is not very high) so as to save
money that can be used later when there are demand spikes and/or less budget.

We model this situation as a dynamic program solved via backward induction. A limited
state space is necessary to compute the decisions. Hence we assume that we always use an
integer amount of contingent capacity per period and that the demand per period has some
discrete distribution. In the linear case, we considered a continuous demand as we wanted to
use well-known distributions like the normal distribution and the gamma distribution. When
we use dynamic programming however, it becomes practically impossible to solve the model
with continuous demand, so we discretize the demand. With a high number of possible
demand values, the discretization will hardly influence the results. In the next paragraphs, we
develop the dynamic programming models for the restricted and the unrestricted budget
situations.

4.1 Restricted budget and quadratic cost for capacity shortages

In each period we minimize the sum of the current capacity shortage costs and the expected
future costs in later periods, so f,(b,) denotes the expected costs from period ¢ to the last
period 7" when the remaining budget at the beginning of period ¢ equals b,. The remaining
budget is the state variable. We have

2
. [(Dt_P_Mt)+] (20)
ft(b[)=$121(1)cs D, + E[f,,,(b,—c,,M))] forallt=12,...,T.
Before the start of the year, in period 0 we pay in advance for our permanent capacity:
fo(B)= f,(B=c,TP). @1

The budget expense for permanent workers being reserved at the beginning of the year, we
have b, =B-c,TP and for later periods, we have b,,, =b, —c,,M,. For the restricted budget

case, the closing cost-to-go is defined as

10



Jra(br,,)=0. (22)

Since the demand of the last period, d,, is known before the last decision is taken, all
remaining budget will be spent, as far as this demand makes it necessary.

Obviously, when D, < P, the optimal contingent capacity decision is M, =0. Consequently,
we can write f,(b,) as

S 23
f.b) = B Pe{D, =i} f,.,(5) (23)

< Ao (i-P-M)
+ EPI‘{DI =l} guznocsu"'fml(bt_cMMz) >

i=zP+l1

forallr=12,....,T.

In order to find the optimal solution, we calculate the expected costs over the whole horizon
for a set of relevant P-values. For every P-value the model is solved recursively as follows.
Starting with period 7 +1, we use Eq. (22) that provides the values of f,,,(b,,,). We then
turn to period 7" and we use Eq. (23) to calculate f,.(b,) for all possible values for b, and
continue this way until we calculate the expected costs for this P-choice using formula (21).

4.2 Budget deviations and quadratic cost for capacity shortages

Compared to the model given in the previous paragraph, only the final stage is changed. To
account for budget deviations that are rewarded or penalized, we rewrite equation (22) as

Jra(br ) =cp(=bp))" —cy(by,)" (24)

The implementation of the model solution remains the same as in the restricted budget
situation.

5. Simulation experiment

We first describe our experimental framework as well as the indicators we chose to analyze
the simulation results. We then present the results of the restricted budget case and that of the
unrestricted case.

5.1 Parameter setting and indicators

Demand distribution. In the linear case with restricted budget (Section 3.1), we considered
both a normal and a gamma distribution as they are very popular. In our experiment, we
decided to keep only the gamma distribution for several reasons. The gamma distribution has
the advantage of not producing any negative demand value. Contrary to the normal
distribution which is not suitable to model fast moving items, the gamma distribution is ideal
for modeling slow moving items and can easily be adapted for fast moving items as well. In
our dynamic programming approach, we have to discretize the distribution, which is not a
problem as the mean and variability are high enough. We thus consider a discretized gamma
distribution with mean u=50 and three levels of demand variability o = {10,20,30} that

11



represent respectively 20%, 40% and 60% of the mean. The mean of the distribution was kept
constant throughout as other parameters were varied to cover all types of relevant situations.

Unit cost of temporary workforce c,, and permanent workforce c,. As setting the ratio
¢, /cp 1s more relevant than setting each unit cost value separately, it is reasonable to
normalize c, =1. We chose c,, ={1.1,1.5,1.9,2.5,6}. A value of ¢, =1.1 allows for an
analysis of the situation when the unit cost of temporary capacity is very close to the cost of
permanent workers. A value of c¢,, =1.9 represents the French case for unqualified work. The
highest value of ¢,, was chosen to account for high productivity workers.

Unit shortage cost cg and budget deviation rates (c; <Cp ) As budget deviation rates may be

chosen freely, it would make no sense to also vary the unit shortage cost. Both types of unit
cost are indeed involved in the trade-off which consists in possibly accepting budget deficits
to avoid shortages. Consequently, we set ¢, =1 throughout. To represent properly all
situations of the linear case, we chose the following rates expressed in percent:

(c;9 ,c;)= {(30,30),(60,30),(60,60),(120,60)}. In the quadratic case, we set the following rates
in percent: (c;9 ,c;)= {(1,1),(4,2),(8,4),(16,8),(16,16)}. In both linear and quadratic cases, the
restricted budget situation was modeled by setting (c;9 <Cp )= (100000,0).

Budget level. Setting artificially P =50 to cover the demand mean per period implies a yearly
budget expense of ¢, PT =1x50x50=2500. We thus start with a budget level of 2500 which
was incremented by 250 until the highest budget level of 3500 was reached. This maximum
budget level of 3500 corresponds to a number of periodic permanent workers equal to 70.

Indicators. For each level of demand variability o, each value of the unit costs ¢,, and
(c; ,c;) and for each budget level B, we computed several indicators over the 7 =50 periods:
the optimal permanent workforce level P (per period); the number of hired temporary
workers M = E,S: M, ; the budget use which is equal to ¢,TP + c,, M ; the capacity shortage
in each period which is the expected value of (D, — P - M,)"; the related expected capacity

shortage cost (per year) in the linear case equals E:l E [(D, -P- Mt)‘“] (recall that ¢ =1)
I 2
and in the quadratic case, it equals E(l/ D, )[(D, -P- Mt)+] .
t=1
Under the assumption of an unrestricted budget, we also consider the budget deviation cost
equal to cj (Budget Use - B)+ - ¢;(B -Budget Use)+ and the expected budget deficit where

the budget deficit is defined as (c »IP+c,, E;T_l M, - B)

5.2 Result analysis for restricted budget cases

Table 3 displays the mean of indicators for each level of demand variability and over all
parameter values, for both types of shortage cost function, when the budget is restricted. As
demand variability increases, permanent capacity decreases in favor of additional temporary
workers more capable to respond to demand spikes. In the quadratic case, more temporary
workers are hired than in the linear case for there is a bigger incentive to avoid capacity
shortages. The budget use slightly increases because temporary workers are increasingly hired
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and cost more than permanent ones. Shortages per period also increase with demand
variability and this entails an increasing shortage cost.

Shortage cost  Demand Shortage Shortage
function Variability Opt. Perm. Temps Budget Use per period Cost (=Total)
Linear Low 50.88 167.92 2791.68 0.98 48.99
Average 46.20 395.41 2873.78 2.97 148.34
High 41.56 585.03 2903.03 545 272.56
Quadratic Low 50.20 177.29 2782.63 1.07 7.28
Average 45.12 403.82 2854.18 3.24 36.92
High 39.88 599.34 2870.84 5.92 89.57

Table 3. Overall average of indicators under restricted budget

For each level of demand variability, and for each parameter value (factor), Table Al in the
Appendix provides the average of the indicators for both shortage cost functions under the
assumption of a restricted budget. As the budget level ( B) increases, the permanent capacity
also increases but remains lower for higher demand variability so as to favor the employment
of temporary workers. For low and intermediate levels of demand variability, and over a
budget threshold of approximately 3000, the number of hired temporary workers start to
decrease with the budget level: permanent workers are cheaper than temporary workers and
are increasingly hired because they also are able to respond to reasonable demand fluctuations
but at a lower cost. As the budget level is augmented, we can afford more capacity so the
shortages per period decrease. However, capacity shortages remain higher for higher demand
variability. The budget level clearly impacts the total cost (equal to the shortage cost) as more
budget implies less shortages by allowing the employment of more workers, both temporary
and permanent.

The unit cost of temporary workforce (c,,) has a strong influence on the hiring of temporary
workers. There is a trade-off between permanent work and temporary work as c¢,, increases.
When demand fluctuates a lot and when temporary workers are very expensive, the number of
hired temporary workers in the linear case is even zero, leading to large shortages.

5.3 Result analysis for unrestricted budget situations

We shall now examine the simulation results when the budget is unrestricted. Table 4 displays
the average of each indicator over all parameter values and for each level of demand
variability, for both types of shortage cost function.

Shortage Demand Budget Shortage Budget  Shortage

cost function  Variability Opt. Perm. Temps Budget Use Dev. Cost per Period Deficit Cost Total Cost

Linear Low 46.08 229.19 2616.42 -193.21 2.07 27.04 103.72 -89.51
Average 41.63 433.34 2671.18 -185.90 4.57 73.10 228.44 42.54
High 36.32 627.90 2683.65 -201.35 7.29 139.00 364.39 163.04

Quadratic Low 46.42 236.77 2679.17 -27.60 1.92 42.65 10.91 -16.69
Average 43.94 496.08 2978.22 -9.14 2.46 191.43 18.09 8.95
High 41.30 743.01 3275.76 12.10 2.97 423.23 25.04 37.13

Table 4. Overall average of indicators under unrestricted budget
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When demand variability increases, the permanent workforce level decreases and the
number of temporary workers increase as they are more capable to respond to demand
changes. More temporary workers also imply a higher budget use as they are more costly than
permanent workers. This tendency is stronger in the quadratic case for the incentive to avoid
capacity shortages is bigger. Still, shortages per period increase but this increase is definitely
flatter in the quadratic case than in the linear case. Compared to the restricted budget situation,
here, even more temporary workers can be afforded in the detriment of permanent workforce.

A high demand variability implies more periodic shortages as budget deficits are limited by
a natural trade-off between the capacity shortage cost and the budget deficit cost. This is
particularly true in the linear case as budget deficits are lower than those observed in the
quadratic case. All demands are not covered to avoid too much budget deficits, even if these
budget deficits increase with the demand variability. In the linear case, the most advantageous
situation is the lowest demand variability one, as budget can be saved while limiting periodic
shortages. The resultant total cost is indeed negative, whereas it becomes increasingly positive
with demand variability. In the quadratic case, budget deviation costs are increasingly positive
and larger than they are in the linear case, because higher budget deficits are necessary to
avoid capacity shortages so far as we can.

For each level of demand variability, and for each parameter value (factor), Table A2 in the
Appendix displays the average of the indicators for both shortage cost functions when budget
deviations are allowed. We shall now analyze the impact of the three factors (budget level,
budget deviation rates and unit cost of temporary workforce) on the indicators.

Budget level. The budget level has hardly any influence on the permanent capacity, as
witnessed by the steady averages in Table A2. As already revealed by the global averages in
Table 4, the permanent capacity decreases with the demand variability, in favor of temporary
capacity. For a budget of 3000 and above, the number of hired temporary workers remains
pretty stable, as well as the periodic shortages together with the shortage costs. Since the
budget use exhibits only a slight increase, the gap with the budget level increases which
entails increasingly negative budget deviation costs (budget deficits experience a strong
decrease). This is the result of a trade-off between capacity shortage costs and budget excess
rewards.

Budget deviation rates. Permanent capacity decreases as budget deviation rates (cj,c) are
increased. Temporary capacity follows the same decreasing path. We have less budget deficits
and increased capacity shortages per period entailing increased shortage costs, meaning that it
is more advantageous to accept capacity shortages so as to limit budget deficits that become
increasingly expensive and more detrimental to the total cost than capacity shortages.
Capacity shortages are also borne in favor of higher budget excesses that are more rewarded
than shortages are penalized. Thus, with higher budget deviation rates, there is a tendency to
spend less, both on permanent and temporary workers. The trade-off between capacity
shortages and budget deviations is clearly in favor of a strong limitation of budget deficits that
even reach a zero value for the highest budget deviation rates in the linear case, whatever the
level of demand variability.

Unit cost of temporary capacity. This factor is obviously the most influent on the workforce
capacity: as temporary workers become increasingly expensive, more permanent workers and
less temporary workers are hired. It should be noted that when permanent workers are almost
equally expensive as temporary workers, a few permanents are hired when the demand
variability is strong, as more flexibility is achieved at low cost with temporary workers. On
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the contrary, when temporary workers are extremely expensive they are no longer hired in the
linear case but a few are still utilized in the quadratic case for the incentive to avoid capacity
shortages is stronger. Capacity shortages increase since less and less temporary workers are
employed.

The total cost is the sum of the budget deviation cost and the shortage cost. With more
budget, we have decreasing costs. This is less true for high demand variability. For a low
demand variability and as the budget deviation rates increase, we have more budget excesses
as they are increasingly rewarded. For higher demand variability however, budget deficits are
larger and even more penalized. The total cost clearly degrades with high values of the unit
cost of temporary capacity, especially when demand variability is high. Shortage costs are
minimum when it is possible to hire temporary workers at the lowest cost, when a high budget
level is available and when budget deviations are the least penalized. Finally, for all levels of
demand variability and whatever the shape of the shortage cost function, the total cost is
minimum for the lowest unit cost of temporary capacity, the highest budget level and the
highest budget deviation rates: a high budget deficit rate tends to limit costly budget deficits,
whereas budget excesses are rewarded at most.

5.4 Further illustrations and comments

To complete the analysis of the quadratic case, we plot in Figure 2 the probability distribution
of the remaining budget expressed in terms of number of temporary workers that can be hired,
for each combination of budget deviation rates (in the legend, (1,1) corresponds to

(c; <Cp )= (1,1)). We selected a "typical" quadratic case with a budget level of 3250, a unit cost

of temporary work equal to 2.5 and an intermediate level of demand variability (o =20). For
the restricted budget case, the probability of a zero remaining budget was 0.31 but was
reduced to a maximum value of 0.02 to get a proper figure. As the budget deviation rates
increase the probability distributions move to the right: it becomes less and less advantageous
to have budget deficits, so the remaining budget takes more and more positive values. For the
restricted budget case, we have of course the highest probability for a zero remaining budget.

0,02
(1,1)
0,015
2 (4.2)
= (8.4)
2 0,01
° —(16,8)
[~ B
PN —(16,16)
0,005 P o ~ —Restric.
> ~
//'/, \\
-
() trrrrrrrcrrrrrrrirereees
© ® O o A O W O o N O N F O 0 O At O
v O O &l 8 < N vV —~ > o0 — vy O o0 o ol o O
< = r? N (\Il — - v—l4 1 1 — = N ] N
Temp units

Fig. 2. Probability distribution of remaining budget expressed in number of temporary
workers - quadratic instance
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Figure 3 illustrates the periodic behavior of capacity shortages and their associated costs
under a restricted budget with both types of cost function. We took a typical instance
characterized by intermediate values for the parameters, as in the previous illustration (same

values for o, B and c,,) and we chose (c; ,c;) = (IOOOO0,0) (restricted budget). In the linear

case, we have P =53 and in the quadratic case, P =52.

Costs and shortages

—shortage linear

—shortage quadratic

costs quadratic

5 T —*—costs linear /

00000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Period

Fig. 3. Costs and shortages as a function of time periods - restricted budget

Compared to the linear case, shortages are pretty steady in the quadratic case since big
shortages are avoided by accepting small shortages throughout. There is a slight shortage
increase in the end accompanied with a faster increase of the cost due to the convex shape of
the cost function. In the linear case, shortages are zero in the first 15 periods and then
continuously increase since there is no incentive to avoid large shortages in any period.

6. Conclusion

In many companies, fixed yearly budgets are allocated to the heads of departments to cover
their fixed and variable expenses during the year. In our paper, we addressed the problem of
periodical budget allocation to fixed and variable expenditures. We developed four different
models to determine the permanent and contingent capacity levels so as to minimize the
capacity shortage, and budget deviation penalty costs when over-expenditures are allowed.

When the capacity shortage cost function is linear, in both the restricted and unrestricted
budget cases we developed analytic formulas and found that near-optimal solutions can be
obtained by using a newsvendor equation. For quadratic cost functions, we proposed a
solution with stochastic dynamic programming.
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Numerical experiments show that the service level over the year is more stable when the cost
function is quadratic since large shortages are avoided by accepting small shortages
throughout. With a linear cost function, there is no incentive to obviate big shortages so we
have extreme behaviors: we either avoid or accept all capacity shortages. Thus, contrary to the
linear cost function, the quadratic shortage cost function leads to smooth and moderate
shortages over the time periods.

We studied the impact of several factors on the behaviour of our models. As demand
variability increases, less permanent workers are hired to favor the employment of temporary
ones as they allow for more flexibility necesary to respond at best to demand spikes.
However, capacity shortages inevitably augment even in the unrestricted budget case as over-
expenditures are limited by a natural trade-off between the budget deficit cost and the capacity
shortage cost. In the restricted budget situation, the initial budget level impacts both types of
workforce: with more budget, more temporary workers and more permanent workers are
hired, which implies less shortages. In the unrestricted buget case however, the budget level
has hardly any influence on the level of permanent capacity, whereas temporary workers are
increasingly hired. In both restricted and unrestricted budget situations, the unit cost of the
temporary capacity is the most influent factor on the temporary workforce level. As the unit
cost of the temporary capacity increases, there is a trade-off between permanent and
temporary workers: more permanent and less temporary workers are hired. In the linear case,
the temporary capacity even reaches a zero value when it becomes extremely expensive; a few
temporary workers are still hired however in the quadratic case due to a stronger incentive to
avoid shortages. With higher budget deviation rates, there is a tendency to spend less on both
permanent and temporary workers to favor higher budget excesses that are more rewarded
than capacity shortages are penalized. It is also more advantageous to accept capacity
shortages so as to limit budget deficits that become increasingly expensive and more
detrimental to the total cost than capacity shortage costs.

In the present paper, no demand backlogs were allowed and the uncertainty only affects the
demand side. A possible extension of this work would then consist in allowing for backlogs
and considering the labour supply as uncertain, due to absenteeism or due to the difficulty to
hire the desired level of temporary workforce. Our models could also be refined by endowing
workers with different skill levels and use demand forecasts with a forecast error distribution.
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