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The development of job intermediation and the increasing use of the Internet allow companies to carry

out ever quicker capacity changes. In many cases, capacity can be adapted rapidly to the actual workload,

which is especially important in production-to-order systems, where inventory cannot be used as a buffer

for demand variation. We introduce a set of Markov chain models to represent workload-dependent capacity

control policies. We present two analytical approaches to evaluate the policies’ due-date performance based

on stationary analysis. One provides an explicit expression of throughput time distribution, the other is a

fixed-point iteration method that calculates the moments of the throughput time. We compare due-date

performance, capacity, capacity switching, and lost sales costs to select optimal policies. We also give insight

into which situations a workload-dependent policy is beneficial to introduce. Our results can be used by

manufacturing and service industries when establishing a static policy for dynamic capacity planning.
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1. Introduction

Most production-to-order companies do not have a constant flow of orders. This often leads to

a varying queue of customers. Despite the uncertainty in both arrival and service of orders, cus-

tomers request tight due dates, and they are also resentful of late deliveries. To compensate for the

variations in the orders’ frequency, they cannot use inventory buffer, but a good practical solution

is to try to match the production rate to the actual workload or, when orders are statistically

identical, to the length of the queue. Such a policy may bring benefits in labor cost reduction or in

due-date performance. This paper investigates the value of using an optimal workload-dependent

policy, where “workload” means the number of orders in the system.

Our motivation for studying workload-dependent capacity planning originates from the area

of engineer-to-order (ETO). As a definition for ETO, we quote that of Gelders (1991): “In an
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engineer-to-order environment a company designs and produces products to customer order.” In

the same paper, Gelders concludes that ETO companies need “fast-response capacity,” which is to

be considered as a general characteristic of competitive ETO production.

Similarly to ETO companies, make-to-order (MTO) companies also need to adjust their capacity

to meet customer demand (see e.g. Vollmann et al. (2005)). Apart from the motivating example

for ETO in the paper of Gelders, we give three examples of MTO companies, where workload-

dependent capacity management is applicable. In our first example, we describe a general manu-

facturing situation with an expensive bottleneck machine. In this case, the number of shifts the

bottleneck machine works determines the production capacity. The capacity can be set between

zero to three shifts, depending on the workload. Our second and third examples are companies

in the service industry, which can often face unforeseen variations in the number of orders. The

second is a special translator service, where topic leaders share translation tasks and assign them

to specialized free-lance translators. The third example is a data recording company, where audio

tapes are transcribed to digital text format in order to make later searches possible. While workers

listen to the tapes, they type the text into a computer.

In all examples, “fast-response capacity” is not just desirable, but also affordable. Production

capacity in manufacturing does not usually require high educational labor; labor acquisition lead

times are often very short. Although, in most service industry situations labor has specific knowl-

edge, acquisition lead time substantially decreased in the last decade due to the increasing use of

the Internet. In the case of the translator company, contact information of free-lance translators is

carefully maintained, so distributing new tasks takes just hours. In the case of workers with high

education, capacity flexibility can be gained from using overtime or from workers contracted for

changing working time (see e.g. Filho & Marçola (2001)).

In our paper, we assume that we can afford instantaneous capacity changes as an abstraction

of opportunity for “fast-response capacity”. For our analysis, we consider stationary, homogeneous

Poisson arrival process of orders, exponentially distributed service time, and FCFS-type service.

The number of employees (servers) is assumed to be a decision variable that depends on the number

of jobs in the system. Our objective is to minimize the total average cost per time unit, where

the costs consist of labor costs per employee, hiring and firing employees, costs related to order

acceptance and early or tardy order completion.

For this problem, we present our model applying two evaluation approaches. One approach aims

at exact calculation of the distribution of the throughput time (time spent in the system). Another
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approach, which can be used to deal with problems of a larger scale, is based on a moment-

approximation of the throughput time. With respect to the effectiveness of the flexible capacity

it is essential to increase and decrease capacity at the right moment. We determine the proper

switching states for small scale problem instances by searching exhaustively. The optimal strategy

is compared in terms of performance with the fixed capacity rules.

Previously, a number of researchers pointed out relations among service rate, work-in-process

and due-date performance. One application of due-date performance measures is the evaluation

of batch scheduling rules. In the scheduling rules, capacity level and work-in-process are both

consistently present as parameters showing the strong relation to the due-date performance (see

e.g. Philipoom et al. (1993)). Lead time setting is a topic where work-in-process is also recognized

as an adequate parameter, which improves the performance of the rules (see e.g. Bertrand (1983)).

These two examples reveal the connection between capacity level, work-in-process and due-date

performance. However, there is no model in the literature that incorporates all these three closely

related notions.

We think that our paper makes a valuable contribution by being the first to study a queuing

system with adaptive capacity to satisfy the objective of having tight and accurate due-dates.

Moreover, our examples and their analysis provide insight into when a workload-dependent strategy

is effective, and also what characteristics this strategy has.

The paper is organized as follows. In the next section, we describe the related literature. Then,

in section 3, we give a mathematical formulation of our problem. Results on the effectiveness and

characteristics of the strategy are shown in section 4. Finally, conclusions and plans for future

extensions are presented.

2. Related literature

Decisions on capacity changes were studied first in capacity expansion problems. In the case of

deterministic demand with positive trend, Chenery (1952) found that gas pipelines permanently

have extra capacity. This was the basis of his “excess capacity hypothesis” that says capacity is

always larger than demand; optimal overcapacity is to be investigated by looking at economies of

scale. Manne (1961) revised Chenery’s hypothesis when extending his model. The extension of the

model with a backlog option created an environment in which the “excess capacity hypothesis” no

longer held. Manne also studied stochastic, stationary demand without the backlog option. This

model resulted in a smaller deviation from what Chenery’s model suggested. Luss (1982) gave a

comprehensive review of the literature on capacity expansion.



4

Models with capacity expansion/reduction decisions and hiring/firing costs are usually studied

by means of dynamic programming. One example is the continuous time DP model of Bentolila

& Bertola (1990), where sensitivity analysis on firing costs was presented. Rocklin et al. (1984)

studied a production-to-order environment with non-stationary demand, including both capacity

expansion/reduction decisions and hiring/firing costs. Rocklin et al. showed the optimality of the

(S′, S′′)-policy known from inventory theory by the means of discrete time DP. In their model,

demand must always be met; if demand exceeds available capacity, the capacity must be increased

to overcome the deficit.

Pinder (1995) deduced an approximation of optimal workload-dependent capacity control policy

for stationary demand. In the model of Pinder, capacity (resources) is treated as discrete; capacity

adjustments are dependent on the actual number of jobs (work), which are particular points in

common with our paper. However, the workload-dependent policy class defined by Pinder seemed

too broad to give an explicit formula of policy evaluation or to find an optimal solution. In addition,

Pinder did not consider due-date performance in any form, which is an essential part of our model.

Besides, we define a less broad policy class that entails less limitations in the analysis so that we

can provide additional insights.

Queuing models have made use of servers with load-dependent service times for approximate

performance analysis since the fundamental work of Avi-Itzhak & Heyman (1973). These servers

are apt to represent a sub-network as they can be set to provide nearly the same characteristics.

Marie (1979) introduced a similar approximation technique. A comparison of the two techniques

is given in Baynat & Dallery (1993).

In some simple workload-dependent policy classes, the optimal (capacity) control policy can be

analytically determined. Faddy (1974) introduced the class of P M
λ policies for the control of water

reservoirs. Namely, the policy P M
λ sets the output rate to M if the water level in the reservoir

reaches (or exceeds) λ, and the output rate is set to zero if the reservoir is empty. This policy is still

a subject of research (see Kim et al. (2006)). Another simple policy class, the two-step service rule,

was defined in Bekker & Boxma (2005). A policy of this class has a lower service rate, r1, when the

workload is not more than K, and a higher service rate, r2, if the limit K is exceeded. This policy

class has the drawback that the undesired frequent service rate changes are not excluded. Tijms

& van der Duyn Schouten (1978) proposed a different class of policies for inventory control, called

two switch-over level rule. A rule is characterized by two inventory levels, y2 ≤ y1. An inventory

decrease to y2/increase to y1 triggers compensating raise/reduction. This design restrains frequent

service rate changes. In our paper, we specify a class of control policies for managing capacity with
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a higher degree of freedom than the three simple classes discussed. As a result, finding the optimal

solution in our policy class allows a better characterization of how to control capacity optimally.

3. Model formulation

In the context of this paper, a workload-dependent capacity planning policy is defined by two

“switching points”, one down and one up switching point, for each pair of neighboring capacity

levels. Switching points are specific workload values, for which a job arrival or departure can trigger

a switch in capacity. If the system is at an up switching point, and a job arrives, we switch from

the lower capacity level to the upper. If the system is at a down switching point, and a job departs,

we switch from the upper capacity level to the lower. Each up-switch incurs a hiring cost (chiring),

and each down-switch incurs a firing cost (cfiring). The firm has an admissible domain of capacity

levels; that is the set of integer values between Cmin and Cmax. Naturally, the firm also needs to

pay for the used capacity. The cost of having capacity level c is given by c · ccapacity per time unit.

Although this paper does not investigate the impact of efficiency aspects, one may also take into

account the psychological effect of lower or higher workload Bertrand & van Ooijen (2002), and

the efficiency of using different levels of capacity Schlichter (2005). Practically, the service rate can

be measured for each workload and capacity level (µw,c) and used in our model.

The firm works with a fixed lead time (L). It has to pay charges for each time unit when a job

is late (ctardiness). A smaller cost is due for holding if a job is ready before the due date (cearliness).

The number of jobs with which the firm can deal is constrained from above by a constant integer,

Wmax. New jobs are refused if the firm already has Wmax number of jobs. Consequently, lost sales

can occur that incurs a virtual expense of clostsales for each occasion. To sum up, we have a six

element vector of cost coefficients (ccapacity, chiring, cfiring, clostsales, cearliness, ctardiness). Although we

use linear cost components for the ease of presentation, employing general cost functions would

not change our analysis.

In this section, we define a workload-dependent capacity planning policy class, and formalize the

firm’s capacity control problem.

3.1. Definitions, assumptions and problem formulation

We assume a stationary environment in which both arrival and service processes are homogeneous

Poisson processes. Arrivals have a constant rate of λ; departures have, in general, capacity level and

workload-dependent rates. We denote by µw,c the service rates for workload w and capacity level

c. For the sake of better comprehension, we assume µw,c = cµ for all w and c, which correspond
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to assuming identical servers (machines, workers or shifts). Jobs are served according to FCFS

discipline.

We define the set of workload-dependent capacity control policies for given values of Cmin,

Cmax, and Wmax as Ω(Cmin ,Cmax ,Wmax). A feasible policy can be characterized by a triple

π = (Γmin,Γmax,Θ). The terms Γmin, and Γmax stand for the minimum, and maximum capac-

ity levels which are used by the policy. Necessarily, these terms have to satisfy the inequalities,

Cmin ≤ Γmin ≤ Γmax ≤ Cmax. The term Θ denotes a (Γmax − Γmin)-by-2 matrix, which describes

all the switching points. For the cases when Γmin = Γmax, we have an empty matrix. We use indices

c → c + 1 or c + 1 → c with c ∈ {Γmin, . . . ,Γmax − 1} to show that the switch occurs between the

capacity levels c and c + 1 either up or down. Particularly, Θc→c+1, and Θc+1→c are workloads,

where the capacity is changed from c to c + 1, upwards, or from c + 1 to c, downwards, if a job

arrival or departure occurs, respectively. The elements of Θ are constrained by Wmax, and by each

other as follows,

• 1≤ΘΓmin+1→Γmin
and ΘΓmax−1→Γmax

≤Wmax − 1

• Θc+1→c ≤Θc→c+1 +1 for all c ∈ {Γmin, . . . , (Γmax − 1)}

• Θc+1→c ≤Θc+2→c+1 and Θc→c+1 ≤Θc+1→c+2 for all c∈ {Γmin, . . . , (Γmax − 2)}

In Figure 1, we show two workload-dependent capacity control policies, π = (1,3,
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We assume that capacity adjustments can be done instantaneously, in parallel with the change

in workload.

Within the defined set of workload-dependent capacity control policies, we define the subset of

fixed policies, as having the switching point matrix, Θ, empty. Next, we define the set of continuous

fixed policies as policies using a fixed capacity, which can be set to any real values between Cmin

and Cmax. The set of fixed policies is the intersection of the set of continuous fixed policies and the

set of workload-dependent policies.

In order to simplify the exposition, we do not separate costs of hiring to firing, but use a single
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cost coefficient, cswitching that penalizes capacity changes in general. Note that as stationarity

implies balance of hiring and firing, we can aggregate the cost coefficients chiring and cfiring by

taking cswitching = (chiring + cfiring)/2. Based on this formula, cost counting with cswitching provides

the same result as cost counting with chiring and cfiring.

For the cost coefficients mentioned in the model description, we have the related costs. These

costs can be separated into two groups. The costs of capacity, switching, and the lost sales penalty

are functions of the policy only. The costs of earliness and tardiness are functions of the lead time,

additionally.

Now, we are able to formulate the capacity control problem as

min
π∈Ω(Cmin,Cmax,Wmax)

costgroup1 (π) + costgroup2 (π,L) (1)

where L is the fixed lead time, costgroup1 (π) is the sum of costcapacity (π), costswitching (π),

costlostsales (π), and costgroup2 (π,L) is the sum of costearliness (π,L), and costtardiness (π,L). E.g. the

first policy (left) in Figure 1, we can expect to outperform the second policy (right) in all the costs

but costcapacity.

3.2. Evaluation of cost functions

In this section, we aim to express the costs one by one. First, we derive the costs that are indepen-

dent of the quoted lead time (costgroup1). After that, we show two approaches to evaluate the lead

time dependent costs (costgroup2). We note that in real-life situations, where the cost functions need

to be evaluated for general arrival and service processes, our Poisson process based approaches

can help finding the optimal policy by giving a starting guess, however simulation is necessary for

tuning the policy parameters afterwards.

We create a Markov chain, MCπ,λ,µ, according to the policy, the given arrival rate, and the given

service rate unit. In this Markov chain, we have the states labeled by (w,c), the workload (number

of jobs in the system), and the capacity usage. A policy π can be given by the arrival matrix (Aπ),

and the departure matrix (Dπ). These matrices are square; rows and columns are indexed by the

states of the Markov chain. Elements are ones at the related arrival or departure arcs of the Markov

chain and zeros elsewhere. The state space of MCπ,λ,µ depends on the policy. As an example, we

show the transition rate diagram of MCπ,λ,µ in Figure 1 for the policies π = (1,3,
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Figure 1 MCπ,λ,µ for π = (1,3, [3,1; 4,2]) and π = (1,3, [3,3; 4,5])

Via steady state analysis, the first cost group can be easily evaluated. If we add λAπ to µDπ

weighted in rows (w,c) by capacity c, we can obtain Qπ, the transition rate matrix of the Markov

chain.

Qπ
(w1,c1),(w2,c2) = λAπ

(w1,c1),(w2,c2) + c1µDπ
(w1,c1),(w2,c2) (2)

We define the diagonal elements of Qπ as the negative state leaving rates: vπ
i := diag (Qπ)

i
=

−
∑

j 6=i

Qπ
i,j. Solving the linear equation system















QπT π = 0

eT π = 1

, where e is the all one vector, we have

T π
w,c, the distribution of time being in a state (w,c). Eventually, we can specify all the costs of the

first group.

costcapacity (π) = ccapacity

∑

c

c
∑

w

T π
w,c

costswitching (π) = 2cswitchingλ
∑

(w,c)∈U

T π
w,c

costlostsales (π) = clostsalesλP (lost sale) = clostsalesλT π
Wmax ,Γmax

(3)

where P (lost sale) is the probability that a job is rejected, and U is the set of states from which

the up-switches in capacity are made. Note that it is enough to count costs for the up-switches

twice because of the stationarity assumption.
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In what follows, we deduce the earliness and tardiness costs in two different ways. Both

approaches aim at identifying the throughput time (or sojourn time) as a random variable so that

the due-date performance of the policies can be determined.

3.2.1. Derivation of the throughput time distribution

In order to derive an explicit formula for the throughput time distribution, we observe an arbi-

trarily selected job while it is in the system. In addition to the system’s workload and the used

capacity, we observe the queue position of the pointed job. Therefore, we extend our Markov chain

MCπ,λ,µ to an extended Markov chain EMCπ,λ,µ, which has the queue position of the pointed job

(q) as an extra dimension. EMCπ,λ,µ has states labeled by (w,c, q), the workload, capacity, and

queue position of the pointed job, respectively, with Γmin ≤ c≤ Γmax, and 0≤ q ≤w ≤Wmax. When

the pointed job arrives, it is in one of the states, for which 0 < q = w hold; its lifetime ends with

q = 0. Because of the FCFS discipline, during the lifetime of the job, the queue position of the

pointed job, q decreases when a job is ready, whereas it is unaffected by arrivals.

We want to obtain the probability that starting from state r at time 0 we will be in state s at

time t in EMCπ,λ,µ. This probability we denote by P̄ π
r,s (t). In the appendix, we show an example

for EMCπ,λ,µ and derive an explicit expression for P̄ π
r,s (t) by applying uniformization.

Since the states (w,c,0), where the pointed job can exit the system, are absorbing states, we

can express the throughput time CDF as the sum of probabilities of getting to certain exit states

as follows.

F r,π (t) =
∑

s=(w,c,0)

P̄ π
r,s (t) (4)

is the throughput time CDF if the pointed job arrives when the system is in state r = (wr, cr, qr)

with qr = wr.

The stationary distribution (T π for MCπ,λ,µ) is different from the distribution right after the

arrival of the pointed job, which we denote by T π
A . We can use the arrival matrix (Aπ) to determine

the probability distribution of being in a state right after the arrival T π
A = T πAπ. We can express

the after arrival distribution of the extended Markov chain, EMCπ,λ,µ, which we call T̄ π
A , from the

after arrival distribution of MCπ,λ,µ.

T̄ π
A,(w,c,q) =















T π
A,(w,c) , if q = w

0 , if q 6= w

(5)

Once we have the extended starting distribution T̄ π
A , the throughput time CDF (F π) can be

expressed.
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F π (t) =
∑

r=(wr ,cr,qr)

qr=wr

T̄ π
A,rF

r,π (t) (6)

Finally we can give formulas for the lead time dependent cost functions.

costearliness (π,L) = cearlinessλ (1−P (lost sale))
L
∫

0

(L− t) dF π (t)

costtardiness (π,L) = ctardinessλ (1−P (lost sale))
∞
∫

L

(t−L) dF π (t) (7)

3.2.2. Moment approximation of the throughput time

Apart from the distribution function, we also derive a moment approximation for the throughput

time as an alternative for the steps from applying uniformization to the step of expressing F (t) in

(6). This approach allows evaluation of large scale problems, as it both speeds up the calculations

and needs less memory. Besides, throughput time moments can be determined with higher accuracy

than extracting them from the throughput time distribution.

We evaluate the moments based on the equation that describes the relation of the conditional

expected throughput times. We denote the kth moment of the throughput time if starting from

state r by E
[

(Xr)
k
]

and the duration of the visit to state r by Zr. Then we have

E
[

(Xr)
k
]

=
∑

s

P̄ π
r,s E

[

(Zr +Xs)
k
]

(8)

where P̄ π is the extended transition probability matrix, containing the probabilities of going from

state r to some neighboring state s. Similar to the approach in the previous subsection, a state is

described by the components (w,c, q) and therefore the definition of P̄ π in (8) is identical to the

one in the appendix, equation (15).

For small state spaces, we can solve this linear system by matrix inversion, but for larger state

spaces, we need a vector iteration to determine the moments for the relevant states. This vector

iteration can be established by indexing the equation by the iterator n, and declaring the starting

state.














En+1

[

(Xr)
k
]

=
∑

s

P̄ π
r,s En

[

(Zr +Xs)
k
]

E0

[

(Xr)
k
]

= 0

(9)

Using the independence of conditional throughput time and visit duration, we can write

E
[

(Zr +Xs)
k
]

=
k
∑

j=0

(

k

j

)

E
[

(Zr)
k−j

(Xs)
j
]

=
k
∑

j=0

(

k

j

)

E
[

(Zr)
k−j

]

E
[

(Xs)
j
]

(10)

We can notice in expression (10) that for the evaluation of higher moments all the previous ones

are needed in the iteration, (9). In the general form, we evaluate the first K moments.

We can use the following algorithm. We increase the moment iterator k from 1 to K. For each

k we take limit in ∞ for n with the vector iteration to evaluate the moments E
[

(Xr)
k
]

one after
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the other, inductively. Similarly to (6), we weight the conditional moments by the after arrival

distribution of the extended Markov chain, EMCπ,λ,µ (that is T̄ π
A), which gives the kth moment

of the throughput time, E [Xk].

E [Xk] =
∑

r=(wr ,cr,qr)

qr=wr

T̄ π
A,rE

[

(Xr)
k
]

(11)

In practice, we can evaluate the equation for the first two moments, E [X] and E [X2], and fit a

suitable distribution, e.g. in the class of gamma distributions to approximate the throughput time

CDF, F π (t). Eventually, cost of earliness and tardiness can be found using equations labeled by

(7).

4. Results

We try to achieve two goals with our numerical experiments. First, we would like to show in which

situations workload-dependent capacity planning is worth using. We study the effect of setting

high/low switching cost coefficient as well as the different settings of lead time, and arrival rates

for a fixed service rate. Second, we would like to characterize the workload-dependent policies

as compared to the fixed capacity policies, the policies that can use one capacity level only. We

illustrate the practical use of workload-dependent policies in the end of the section.

Our model has its limitations; finding the optimal policy using our exact, throughput time

distribution evaluation approach is not possible in acceptable time for systems that can either use

many capacity levels, or handle high number of orders economically. In these cases the number

of workload-dependent policies and their state space increases to large values, so we need to use

the approximation approach. Table 1, which we calculated via complete enumeration, gives an

indication how fast the number of policies increases. Furthermore, we found that the maximum

number of states in MC for Cmin = 0 is (Wmax −Cmax + 1)(Cmax + 1), and in EMC it is (x(x +

1)/2 − 1)y + x(y(y − 1)/2), where y = Cmax − Cmin + 1 and x = Wmax − (y − 1) + 1. E.g. when

Cmin = 0, Cmax = 6 and Wmax = 10, the number of policies is 16844, the largest state space by the

due-date performance evaluation has 203 states.

As an initial setting, we take Cmin = 0, Cmax = 3 and Wmax = 6 (number of policies is 288,

maximum number of states is 57) for which we use the throughput time distribution evaluation

approach. We study large scale settings in subsection 4.2, and 4.5, where we use the moment

approximation approach.

We assume a service rate of µ = 0.04 everywhere, but vary interarrival rate (λ) taking values

from 0.01 to 0.12 by a step size of 0.01. We study lead time (L) values from the interval 0 to 180
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Cmax \ Wmax 1 2 3 4 5 6 7 8 9 10 11
0 1 1 1 1 1 1 1 1 1 1 1
1 3 5 8 12 17 23 30 38 47 57 68
2 5 10 21 40 69 110 165 236 325 434 565
3 7 15 35 78 157 288 490 785 1198 1757 2493
4 9 20 49 117 260 531 1005 1783 2996 4809 7425
5 11 25 63 156 364 795 1626 3132 5719 9962 16648
6 13 30 77 195 468 1060 2275 4642 9037 16844 30162

Table 1 Number of workload-dependent policies for Cmin = 0

by a step size of 10. In our cost coefficient test-bed the capacity and switching cost coefficients

have a pointed role. First, we fix the capacity cost coefficient to 100, to normalize the test-bed.

We observe the model’s behavior for different switching cost coefficients, interarrival rates, and

lead time settings. For each of the remaining cost parameters we examined three values. To the

coefficient, clostsales 3000, 4000, and 5000 are assigned. For cearliness we take 1, 2, and 5. Finally,

ctardiness has values 10, 25, and 100, respectively.

4.1. Value of workload-dependent capacity control

We investigate the value of workload-dependency in capacity control in different environments. We

compare workload-dependent capacity policies with fixed capacity policies. The value of workload-

dependency is defined as the expected total cost ratio of the optimal fixed capacity and the

optimal workload-dependent policy. As fixed capacity policies form a subset in the set of workload-

dependent capacity policies, this ratio is never less than one. Therefore, we consider only the cost

excess percentage (CE%) due to not using the optimal workload-dependent policy. For example, a

CE% value of 5 means that if a firm uses the optimal fixed policy, it has to pay 105% compared to

our reference point, the optimal workload-dependent policy as being 100%. We conduct numerical

experiments to circumscribe the cases where high CE% values are to be expected.

In Figure 2, we depict contour lines of CE% value functions for cswitching values 1000 and 3000.1

Contour lines are drawn at the CE% values 1, 6, and 20. As an example for interpreting Figure

2, we take the CE% function for cswitching = 3000, which correspond to the solid contour lines.

E.g. we look at the CE% function values above the line L = 20: for λ = 0.08 . . .0.12 the value is

below 1, for λ = 0.04, 0.05 or 0.07 the value is between 1 and 6, for λ = 0.02, 0.03 or 0.06 the value

is between 6 and 20, for λ = 0.01 the value is above 20. The cost coefficients, clostsales, cearliness,

and ctardiness take the values 5000, 1, and 100, respectively. In what follows, we discuss the major

1 This type of figure is called contour map, first used in cartography. It shows level sets of a function, which has
two arguments. Here, we plot two CE% functions for cswitching=1000 and 3000, respectively, with the arguments,
interarrival rate and lead time
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Figure 2 CE% values for Cmin = 0, Cmax = 3, Wmax = 6, and µ = 0.04

properties of the CE% value that can be observed in this figure. The 33 = 27 combinations of

the cost coefficients clostsales, cearliness, and ctardiness that we checked consistently support these

properties and its reasonings, however they do not guarantee the properties to hold for different

cost coefficient settings.

Property 1. When the switching cost coefficient decreases, CE% value increases

Since fixed capacity policies use a constant capacity level, they do not incur switching cost as

the rest of the policies. Therefore, the lower the switching cost coefficient, the higher the CE%

value.

Property 2. When the quoted lead time increases, CE% value decreases

Long quoted lead times, or equivalently, loose due dates penalize less the long waiting times.

Long waiting times have a utilization smoothing effect similar to workload-dependent capacity

flexibility. This means that when lead time (L) values are high enough, CE% values are low.

Property 3. When arrival rate increases, CE% value decreases

As interarrival rate (λ) increases, we use correspondingly more capacity. Γmin also increases for

the optimal policy. This way, there is less and less room for workload-dependent policies to use

different capacity levels. This results in a decreasing trend in the CE% value.

Property 4. The effect of capacity discreteness: cuts in the CE% value

Independently of the switching cost coefficient, one can observe some regions, where the CE%

value drops. The reason is the discreteness of the capacity. It would make a difference if we could set
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an optimal fixed capacity level on a continuous basis. We plot the integer contours of the optimal

continuous capacity level in Figure 3 keeping the contour lines of Figure 2. There are regions where

the optimal fixed policies get close to the continuous fixed optimum, and regions where they are

distant. Where the continuous fixed optimum is close to an integer, the (discrete) fixed capacity

policies perform reasonably well, while where the continuous fixed optimum is far from an integer

level, fixed capacity policies perform poor. As the workload-dependent policies are less affected

by the discreteness of the capacity, the CE% value decreases around the integer contours of the

optimal continuous fixed capacity.
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Figure 3 Continuous fixed optimum for Cmin = 0, Cmax = 3, Wmax = 6 , and µ = 0.04

Property 5. Steep increase in CE% value for small interarrival rate for Cmin = 0

To the left from the continuous fixed capacity contour at the value of one in Figure 3, the CE%

value steeply increases when the interarrival rate gets smaller. Fixed policies cannot adapt to low

interarrival rates, as the fixed policy with a fixed zero capacity level is highly uneconomical, whereas

the workload-dependent policy can make use of the zero capacity level for low workload values. As

a result, the CE% value is high for low interarrival rates, when Cmin = 0.

Our further experiments showed that Property 5 does not generally hold. In particular, we need

to differentiate between closable systems, which we define as Cmin = 0, and non-closable systems

having Cmin > 0. We adjust Property 5 for the case of non-closable systems. Figure 4 depicts what

happens if we change Cmin in the parameter setting of Figure 2 from zero to one.

Property 5.* Low CE% value for small interarrival rates and Cmin > 0

If we consider a non-closable system with Cmin = 1, then the constant one fixed capacity is

optimal among both the fixed and the workload-dependent policies as the interarrival rate tend to

zero that results in CE% = 0.
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Figure 4 CE% values for Cmin = 1, Cmax = 3, Wmax = 6 , and µ = 0.04

We also performed sensitivity analysis in Wmax and Cmax. We observed an increase of the CE%

value in both cases. The reason is that if we increase the Wmax or Cmax value by one, the number of

fixed capacity policies remains the same or increases only by one, respectively, whereas the increase

in the number of workload-dependent capacity policies is very large in general. The increase in

Wmax induces an overall increase in CE% values, while the increase of Cmax from Cold
max = 3 to

Cnew
max = 4 affects the graph of CE% values only at λ values above around µCold

max.

4.2. Characterization of workload-dependent policies for uncapacitated, large scale

settings

An uncapacitated situation means that one can always hire the necessary capacity. That

capacity is not limited, can be expressed either by Cmax = Wmax or Cmax = ∞. We study

the uncapacitated setting with Cmin = 0, λ = 0.10, µ = 0.04, L = 30, and cost coefficients,

(ccapacity, cswitching, clostsales, cearliness, ctardiness) = (100,1000,3000,1,10), and observe changes of the

optimal workload-dependent policy for an increasing Wmax value. Our findings hold for all the other

cost coefficient combinations from our test-bed.

We observed that optimal switching points of the first levels tend to change less and less, when

Wmax increases. In Figure 5, the first six pair of switching points can be seen, in which optimal

policies did not differ for large enough Wmax values (14≤Wmax ≤ 40). We can see that up- (to the

right) and down-switching points (to the left) limit the attainable states in a closely linear manner.

We also found that the capacity/lost sales cost component is monotone increasing/decreasing in

Wmax for the optimal policy. Moreover, the simultaneous stagnation of these two costs entails the

stagnation of the total costs. Figure 6 shows that
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Figure 6 Total cost and Γmax of optimal workload-dependent policies for changing Wmax

• the total cost is decreasing in Wmax up to a certain value (about Wmax = 6); thereafter it stag-

nates as the visiting probabilities of the high workload levels become very small, and it converges

in a not necessarily decreasing manner. As a consequence, it is safer to allow high workload values

in the uncapacitated case.

• the number of used capacity levels shows a monotone increasing, concave shape. Γmin is unaf-

fected; here it is always one.

Under the assumption that switching points do not change for increasing Wmax after a point, we

can prove the lost sales being monotone decreasing from that point on for any reasonable arrival

rate. We aggregate the MC into one state, leaving out only the state in the corner, corresponding

to the highest capacity and workload level, which state we denote by s. If we increase Wmax by

one at some higher values of Wmax (so that the switching points do not change any more), we get

one new state, which we call n. We use u := Γmaxµ in order to shorten the formulas. If we compare

the original Markov chain (without n) with the new one (with n), we get that the steady state

probability of s in the original as A := λ
λ+u

, and that of n in the new as B :=
(1−λ

u)(1−λ
u)

2

1−(λ
u)

3 . It comes
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straightforward that A > B if and only if u > λ. We think that with some similar state aggregations

the capacity cost component can be also handled, although it is more complicated.

4.3. Characteristics of workload-dependent policies vs. fixed policies

We try to answer the question of why workload-dependent policies outperform the fixed policies.

Workload-dependent policies often compensate for switching costs by using less capacity, avoiding

lost sales, and providing a throughput that gives less earliness-tardiness costs. The primary cost

savings these policies achieve are normally in tardiness and lost sales cost. In an example shown in

Table 2, the optimal workload-dependent policy beats the fixed optimum in all the cost components

except costswitching.

parameter λ µ L ccapacity cswitching clostsales cearliness ctardiness

value 0.07 0.04 30 100 1000 4000 2 25

policy class optimal π CE% costcapacity costswitching costlostsales costearliness costtardiness

workload-dep. (1,3,[3,1;4,2]) 0 182.0 18.7 12.6 0.7 18.1
fixed (2,2,[ ]) 8.9 200 0 25.9 0.9 25.9

cont. fixed 1.88 8.5 187.9 0 32.0 0.8 31.2
Table 2 An example, where all cost components are decreased by workload-dependency, except for the switching

cost.

We emphasize that costearliness and costtardiness both decreased. Thus, the throughput time dis-

tribution adapts better to the lead time (L), which in turn results in a better due date performance.

The reason for the better adaption is twofold. With workload-dependency the expected value of the

throughput time gets closer to the actual lead time. In addition, the variance of throughput time

decreases. Table 3 shows the expected value and standard deviation of throughput times (E [X] and

Std [X]) for the previous example, for which the corresponding Markov-chain, MC(1,3,[3,1;4,2]),λ,µ

was illustrated in Figure 1.

Policy E [X] Std [X]
π = (1,3, [3,1; 4,2]) 35.5 20.4
π = (2,2, [ ]) 39.0 30.3
continuous fixed 1.88 43.8 32.9

Table 3 Expected value and standard deviation of throughput time in the same setting.
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4.4. Sensitivity analysis on the assumption of exponential service times

Although our calculation method presented in section 3 gives the optimal policy under a homoge-

nous Poisson order arrival process and exponential service times, it is not obvious how it performs

in more realistic settings. In the literature, the single item, single machine with fixed capacity

to-order settings are often modeled as an M |G|1 queue (see Wein (1991),Baker & Bertrand (1981)

and Tijms & van der Duyn Schouten (1978)) instead of an M |M |1 queue. While to assume Poisson

order arrival process is considered reasonable, the assumption of exponential service times is found

to be restrictive. This observation entails that some sensitivity analysis on the service times is

necessary to ensure that the policy which is optimal under the exponential service time assumption

performs well even when the assumption does not hold.

We present a simulation study to allow deterministic service times and compare our proposed

policy calculation with a given plausible managerial approach. We consider a case, where the

number of shifts can vary from one to three, and the maximum workload is six jobs (Cmin = 1,

Cmax = 3, Wmax = 6). The approach of the manager is to switch between one shift of capacity and

two shifts at halfway to the maximum workload; the third shift is only utilized when the maximum

workload is reached.

We define a new term, MCE%, to measure the value of our proposed policy calculation as

compared to the manager’s policy, primarily under deterministic service times. Let MCE% be

the ratio of expected total costs of the manager’s policy and the policy, which our calculation

provide and is optimal under exponential service times, minus one. In our numerical experiments,

we use 35 = 243 parameter settings with λ = 0.04, 0.06, and 0.08; L = 30, 45, and 60; ccapacity = 100;

clostsales = 3000, 4000, and 5000; (cearliness, ctardiness) = (1,10), (2,25), and (5,100); cswitching = 0,

1000, and 2000.

We investigate the MCE% values under deterministic service times, but also indicate the out-

comes under exponential service times in Table 4 so that we have a reference point. This table

shows that the policy we propose take more advantage of the change from exponential to deter-

ministic service times, than the manager’s policy. That MCE% values in the deterministic setting

can exceed 50% shows that the manager’s policy can perform particularly poor in some situations.

service time distribution minimum maximum mean median negative
exponential +1.04% 31.01% 6.28% 4.25% 0%
deterministic −4.41% 52.45% 7.34% 5.04% 16%

Table 4 Statistics of the MCE% values for the 243 parameter settings tested
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The highest MCE% values occur by the combination of high (cearliness, ctardiness), high λ

and short quoted lead-times. In these cases the due date performance of the manager’s policy

falls far behind our proposed one. The highest 9 MCE% values correspond to the 9 possible

(clostsales, cswitching) settings for (cearliness, ctardiness) = (5,100), λ = 0.08, and L = 30 (the average

MCE% of these 9 cases is 46%).

The smallest MCE% values occur typically for low cswitching. The lowest 40 MCE% values are

negative, among which the lowest 22 MCE% values have cswitching = 0 level. Our explanation is

that, because of the exponential service assumption, our policy calculation presumes higher variance

in queue length than it is by deterministic service times. Therefore our approach proposes a policy

that uses the extreme capacity levels too often. However, when switching costs are incurred, the

extreme capacity levels become less attractive, which makes our policy calculation more robust

against low service time and queue length variance.

4.5. An illustration to the use of workload-dependent policies in real-life

A firm produces colored neon light figures using a quoted production lead time of 2 weeks (L).

On average, the firm receives 3.8 orders weekly (λ). One worker can manufacture one neon light

figure in a week (µ). In the present situation, all the 4 regular workers work 8 hours each day. The

manager would like to introduce a fast-response flexible labor arrangement in order to cope better

with the varying workload. He compares two alternatives, well-known in practice: the overtime and

the on-call temporary labor arrangements.

Including the present situation, we define three workload-dependent policy classes corresponding

to the alternatives: the fixed, the overtime, and the temporary labor policy classes. The classes,

we parameterize with the number of regular workers, an integer, which we denote by x, and the

switching points, θ. The capacity levels of the classes are x,
(

x, 9x
8

)

,(x,x+1, . . . , x+5), respectively.

Overtime costs 1.5 times the regular capacity cost, but it does not incur switching cost, whereas

temporary labor costs 1.25 times the regular capacity and it does incur switching cost. The service

rate at workload w, and capacity level c is µw,c = cµ, as before. New orders are rejected if the firm

already has 50 jobs (Wmax).

We summarize the results for the cost coefficients (ccapacity, cswitching, clostsales, cearliness, ctardiness) =

(100,100,100,2.5,50) in Table 5. We conclude that the temporary labor arrangement is the man-

ager’s best alternative in this particular case.
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fast-response flexible
labor arrangement

optimal number of
regular workers (x)

optimal switching
points (θ)

total
costs

fixed 4 ( ) 483.3

overtime 4 (12 20) 449.8

temporary labor 3

(

32 38 43 47 50
20 26 28 30 31

)T

441.0

Table 5 Expected costs of the different labor arrangements.

5. Conclusions and future research

Under the assumption that instantaneous capacity changes are possible, we defined a set of

workload-dependent capacity planning policies. These policies have the ability to react to dynamic

workload changes. We introduced a model that gives insight into the value of workload-dependent

capacity control, via stationary analysis.

We measured the cost savings by using the workload-dependent policies as compared to the

fixed policies, which can use only one capacity level. Large switching cost coefficients, high demand

rates, and long quoted lead times are detrimental, while high workload limits (Wmax) are beneficial

for the savings. Capacity discreteness can strongly affect the cost savings, as workload-dependent

policies can counteract non-integer capacity needs, while fixed policies cannot. We showed that

when the necessary capacity is between 0 and 1, we need to differentiate two cases: if the zero

capacity level is feasible (closeable system) then the savings are particularly high, whereas if the

zero capacity level is infeasible the savings are low.

In the uncapacitated case, we observed that using a sufficiently high order-acceptance rate, or

equivalently a high workload limit (Wmax), is a safe choice when selecting the workload-dependent

strategy. We found that for high workload limits, the optimal capacity up- and down-switching

points tend to change less and less, and appear to form two lines. This observation may facilitate

future research on the policy class comprising this linear type of policies.

Finally, we revealed that compared to the optimal fixed capacity policies, the optimal workload-

dependent capacity planning policies can achieve a better due-date performance. In particular cases

they can also spare capacity, and decrease lost sales probability at the same time (as shown in Table

2). We tested our proposed policy’s sensitivity on our most restrictive assumption (exponential

service times). The results show robustness of our policy, especially for high switching costs.

Extensions to our model are numerous. We summarize the most relevant ones only. First, more

general interarrival and service time distributions can be handled by using phase-type distributions

instead of exponential. Second, service time parameters (µw,c) can be set so that they correspond
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to situations where only one server can be assigned to a job or represent other dependencies on

actual workload or capacity level. Third, switching costs for starting or suspending production are

usually higher than increasing or decreasing production rate when production is already running.

A simple extension can assign different costs for the different types of switchings.

A generalization of our model to positive capacity alteration lead times could reveal to what

extent the assumption of instantaneous capacity changes is restrictive in workload-dependent capac-

ity planning. However, this extension seems to be more complicated.

Appendix

In this appendix, we apply uniformization for EMCπ,λ,µ in order to obtain the probability that

starting from state r at time 0 we will be state s in t time.

We can define both Āπ extended arrival matrix, and D̄π extended departure matrix for EMCπ,λ,µ

based on Aπ, and Dπ, as follows.

Āπ
(w1,c1,q1),(w2,c2,q2) =















1 , if Aπ
(w1,c1),(w2,c2) = 1, and q1 = q2

0 , otherwise

D̄π
(w1,c1,q1),(w2,c2,q2) =















1 , if Dπ
(w1,c1),(w2,c2) = 1, and q1 − 1 = q2

0 , otherwise

(12)

for all (w1, c1, q1), and (w2, c2, q2). The transition rate diagram of EMCπ,λ,µ for the policy π =

(1,3, [3,1; 4,2]) can be seen in Figure 7.

Figure 7 EMCπ,λ,µ, for π = (1,3, [3,1; 4,2])
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The extended transition rate matrix, Q̄π, can be given in two steps like before.

Q̄π
(w1,c1,q1),(w2,c2,q2) = λĀπ

(w1,c1,q1),(w2,c2,q2) +µc1
D̄π

(w1,c1,q1),(w2,c2,q2) (13)

if (w1, c1, q1) 6= (w2, c2, q2).

Next, we define the vector of state leaving rates, v̄π.

v̄π
s =

∑

s6=r

Q̄π
s,r (14)

Now, the remaining diagonal elements of Q̄π can be defined as Q̄π
s,s =−v̄π

s .

From Q̄π we can derive the extended transition probability matrix, P̄ π.

P̄ π
r,s =















Q̄π
r,s

v̄π
r

, if r 6= s

0 , if r = s

(15)

We use uniformization; we add loop arcs to most of the states in the extended Markov chain

(EMCπ,λ,µ) so that the distribution of the time between two subsequent events (arrival or departure

or loop) becomes identical. The uniformized event occurrence rate is v̄Uπ = max
s

v̄π
s . The uniformized

extended transition probability matrix, elementwise, is

P̄ Uπ
r,s =















v̄π
r

v̄Uπ P̄ π
r,s , if r 6= s

1− v̄π
r

v̄Uπ , if r = s

(16)

Using the matrix, P̄ Uπ, we can determine the probability of getting from state r to s in time t.

P̄ π
r,s (t) =

∞
∑

n=0

((

P̄ Uπ
)n)

r,s
e−v̄Uπt (v̄Uπt)

n

n!
(17)
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