Improving the Delta-hedging risk-adjusted performance: the standard VG volatility space model

Florence Guillaume∗
Wim Schoutens†

December 14, 2009

Abstract

This paper provides a comparison of the Delta-hedging strategy under the Black-Scholes model and under a particular VG space volatility model, the so-called standard VG space model. This model is obtained by replacing the standard Normal distribution by the symmetric VG distribution with a parameter ν equal to 1. In particular, this paper focuses on the performance of the P&L of liquid vanilla options written on two major indices quoted on the US market: the Dow Jones and the S&P500. In a first time we look at the optimal historical VG space model by considering one of the most straightforward simple risk measure: the P&L variance. We then compare the P&L variance evolution through time under the Black-Scholes model and the standard VG space model for options traded on a monthly basis from the 4th of January 1999 on. Finally, we compare different performance measures and acceptability indices for the P&L of liquid in-the-money vanilla options, i.e. for writing the option, hedging the position on a daily basis and paying out the option payoff at maturity, focusing therefore on the typical hedging strategy adopted by financial institutions.

∗T.U.Eindhoven, Department of Mathematics, Eurandom, P.O.Box 513 5600 MB Eindhoven, the Netherlands. E-mail: guillaume@eurandom.tue.nl
†K.U.Leuven, Department of Mathematics, Celestijnenlaan 200 B, B-3001 Leuven, Belgium. E-mail: Wim@Schoutens.be