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Abstract

We consider the GI/GI/1 queue with regularly varying service requirement distri-
bution of index −α. It is well known that, in the M/G/1 FCFS queue, the sojourn time
distribution is also regularly varying, of index 1 − α, whereas in the case of LCFS or
Processor Sharing, the sojourn time distribution is regularly varying of index −α. That
raises the question whether there exist service disciplines that give rise to a regularly
varying sojourn time distribution with any index −γ ∈ [−α, 1 − α]. In this paper that
question is answered affirmatively.

Keywords: GI/GI/1 queue, regular variation, sojourn time tail.

1 Introduction

Traffic in high-speed communication networks exhibits burstiness on a wide range of time
scales. This manifests itself in phenomena like long-range dependence and self-similarity. An
explanation for these phenomena is found in heavy-tailed characteristics of the underlying
activity patterns, like connection times, scene lengths and file sizes.
Heavy-tailed traffic characteristics have a dramatic effect on flow-level delays experienced by
users. Hence there is much interest in the influence of scheduling and priority mechanisms
on these delays. In [2] a survey is presented concerning the impact of the service discipline in
single-server queues on delay asymptotics, for the case of the M/G/1 queue with regularly
varying service requirement distribution. A distribution F (·) on [0,∞) is called regularly
varying of index −α if

1 − F (x) = x−αL(x), x ≥ 0, (1)

where L(·) is a slowly varying function, i.e., limx→∞L(ηx)/L(x) = 1, η > 1. Let WFCFS,
WLCFS−PR and WPS be the stationary sojourn times for the First-Come-First-Served
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(FCFS), Last-Come-First-Served Preemptive Resume (LCFS-PR) and Processor Sharing
(PS) single server queues. In the sequel, g(x) ∼ h(x) denotes limx→∞g(x)/h(x) = 1. It is
known that, cf. [2], in the M/G/1 case, when B is regularly varying of index −α,

P{WFCFS > x} ∼ CFCFSxP{B > x}, (2)

P{WLCFS−PR > x} ∼ CLCFS−PRP{B > x}, (3)

P{WPS > x} ∼ CPSP{B > x}, (4)

as x → ∞. More precisely, WFCFS is regularly varying of index 1−α, whereas WLCFS−PR

and WPS are regularly varying of index −α. The former also is shown to hold for LCFS
non-preemptive, whereas the latter is shown to hold for Foreground-Background Proces-
sor Sharing (FBPS) and Shortest Remaining Processing Time First (SRPTF). In Section
7 of [2] this raised the question whether (given that the service requirement distribution is
regularly varying of index −α), −α and 1 − α are the only possible indices of the sojourn
time distribution in a work-conserving single server queue. The main goal of the present
paper is to show that any index between −α and 1−α can occur. We do this by devising a
work-conserving service discipline with a particular parameter, and by showing that various
choices of that parameter lead to any index −γ ∈ [−α, 1 − α].
There are various trade-offs involved with the choice of a service discipline. We just mention
a few aspects, referring to the Special issue on new perspectives in scheduling [4] for exten-
sive discussions of concepts like fairness, tails in scheduling and scheduling classifications.
One classical fact is that, in the M/G/1 queue, the waiting time variance is minimal for
FCFS [7] and maximal for LCFS [9], among all service disciplines which do not affect the
distribution of the number of customers in the system at any time. Another good property
of FCFS is that it is logarithmically optimal for light-tailed service times [8].
On the other hand, (2) reveals a bad property of FCFS. While FCFS is good in terms of
mean and variance of the sojourn time, there is an essential drawback: if a customer with
an excessively large service demand arrives to the queue, then many subsequent customers
might suffer significant delays. This is not a very fair system from the point of view of
other customers. In addition this system encourages big customers to ask for an even bigger
amount of service.
Several types of service disciplines can be designed to avoid such a situation. In some re-
spects the fairest one is the Round Robin service discipline (and Processor Sharing as the
limit). In this service discipline every customer receives a quantum of service and then
returns to the end of the queue and waits for its turn again until eventually it gets served
completely. In this service discipline a customer with big service demand will not affect
other customers as strongly as in the FCFS queue. However, a possible drawback is that
the system wastes its resources switching from one customer to another.
LCFS-PR also has this drawback of (possibly often) interrupting the service of a customer,
which might lead to a waste of resources. The class of service disciplines that we shall in-
troduce, parameterized by a parameter β ∈ [0, 1], ranges from FCFS to LCFS-PR. Different
choices of β make the system behave more like FCFS or more like LCFS-PR. One might
thus try to have the best of both worlds:

• Infrequent service interrupts,

• Customers do not suffer significant delays because of one big customer.
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A global description of the discipline is as follows (see Section 2 for a detailed specification).
Every customer in the system is either green or red. Initially, all customers are green. All
green customers have the highest priority and are served in FCFS manner. Now assume that
a customer that is currently served has been served for a very long time, to be specified later.
Then this customer is declared red. All red customers have the lowest priority. If there are
only red customers in the system they are served as FCFS. If a green customer arrives to
the system then the service of the red customer in service is interrupted and service of the
green customer starts.
A similar system is implemented by many Internet Service Providers. Some of them specify
a maximum amount of data which can be downloaded during the peak hours. After this
amount is exceeded, the rate of downloading is halved for several hours. If a user still
continues active downloading then its rate is halved again.
Actually, we initially had another service discipline in mind, that would give rise to a
regularly varying sojourn time distribution with any index γ ∈ [−α, 1 − α]: a job of size
x > 1 is split into x1−β0 pieces of size xβ0, 0 < β0 < 1, and when one piece of a job is served,
the remainder of the job moves back to the end of the queue. Any value −γ of the index
of the sojourn time between −α and 1 − α may be obtained by choosing β0 = α/(1 − γ).
The intuition behind this is the following: the most likely way to experience a long delay is
to arrive during a long service piece. Each piece follows a power law with exponent −α/β0,
and the residual of a piece follows a power law with exponent γ = 1−α/β0. That proposed
service discipline is actually close to a service discipline that was introduced by Kherani
and Kumar [5, 6] in studying TCP, the Transmission Control Protocol for the Internet.
Kherani and Kumar consider an Internet link carrying http-like traffic. The file transfers
are controlled by an AWP (Adaptive Window Protocol); an example of such a protocol is
TCP. They study the AWP-controlled traffic feeding into the link buffer. The contents of
the link buffer comprise the windows of each of the active flows. The windows are served
in a round-robin manner. The service process resembles serving a job in pieces, instead
of serving the full job in one piece. Kherani and Kumar are, a.o., interested in the tail
behaviour of the link buffer content, for heavy-tailed file size distributions.

One may give a similar asymptotic analysis of the above-mentioned (‘pieces’) discipline as
the analysis we give for the red-green discipline in the next few sections. However, the
analysis for the above-described discipline would be somewhat more technical, and that has
determined our choice for the red-green discipline.

The paper is organized as follows. In Section 2 the service policy of this paper is described
in detail, and subsequently the main result is formulated (Theorem 2.1): the sojourn time
asymptotics for the GI/GI/1 queue with that particular service policy. Section 3 provides
a lower bound for this sojourn time tail, and Section 4 an upper bound – which coincides
with the lower bound, thus proving the theorem. Section 5 contains asymptotics for the
length of the busy period in the GI/GI/1 queue and for the maximum workload in a busy
period. These results are used in the proof of the theorem.

2 Service policy and main results

We consider a GI/GI/1 single server queue. The interarrival times {Ai}
+∞
−∞ are i.i.d. random

variables. Let {Bi}
∞
i=−∞ be the i.i.d. service demands of the customers. We assume that
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the tail
P{B > t} ∼ t−αL(t), t → ∞,

is regularly varying with parameter α > 1. Throughout A and B are random variables with
the same distribution as Ai and Bi respectively. We assume that a := E(A−B) > 0, which
ensures the stability of the system.
Let β ∈ (0, 1) be a fixed constant. Let Bi be the service demand of customer i. Also, let
Mi be the maximum service demand of the customers who arrived earlier than customer
i and belong to the same busy period. We compare Bi with M1−β

i . If Bi ≤ M1−β
i , then

customer i will always be green. Otherwise, if Bi > M1−β
i the following happens: customer

i waits for its service, then it is served for B1−β
i amount of time. After that this customer

is declared red and its service may be interrupted by a green customer.
All the red customers are served as in the LCFS-PR queue with respect to each other. If
there is a green customer in the system then the service of the red customer is interrupted
and the service of the green customer starts. Green customers are served as in the FCFS
service discipline with respect to each other.
Let Wk be the sojourn time of the kth customer and let W denote a stationary sojourn
time. The following theorem is the main result of the paper.

Theorem 2.1. Consider a GI/GI/1 queue with the above-defined service discipline. Assume
that α > 1 and β ∈ (0, 1/(α + 1)). Then the following asymptotics hold

P{W > x} ∼
1

a

∫ ∞

x
P{B > y1/(1−β)}dy, x → ∞.

In particular, W is regularly varying with parameter γ := α
1−β − 1.

Proof of Theorem 2.1 The first statement of the theorem follows from the lower bound
given in Lemma 3.1 in Section 3 and the upper bounds given by Lemma 4.2 and Lemma 4.3
in Section 4. Furthermore, it follows from the properties of regularly varying functions that

1

a

∫ ∞

x
P{B > y1/(1−β)}dy

is regularly varying with parameter γ = α/(1 − β) − 1. Clearly, when β varies from 0 to
1/(α + 1) the index γ varies continuously from α − 1 to α.

3 Lower bound

In this section we are going to obtain a lower bound. Let customer 0 arrive at time epoch
0 with service demand B0. Customer 1 arrives at the time instant A1 with the service
demand B1. In general, customer l arrives at A1 + · · ·+Al with the service demand Bl. Let
ξi = Bi−1 − Ai and Sn =

∑n
i=1 ξi. Then,

ν := min{n ≥ 1 : Sn ≤ 0}

is the number of customers served during the first busy period.
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Let Wk be the sojourn time of the kth customer. Then we have the following representation,
see e.g. [1, Corollary 1.4, page 171]:

P{W > x} =
E#{0 ≤ k < ν : Wk > x}

Eν

=
1

Eν

∞∑

k=0

P{ν > k,Wk > x}. (5)

Using representation (5) it is not difficult to give an accurate lower bound.

Lemma 3.1. (Lower bound ) Consider a GI/GI/1 queue with the service discipline defined
above. Assume that α > 1 and β ∈ (0, 1/(α + 1)). Then the following asymptotic lower
bound holds:

P{W > x} ≥
1 + o(1)

a

∫ ∞

x
P{B > y1/(1−β)}dy, x → ∞.

Proof of Lemma 3.1. Fix ε > 0, R > 0 and N ≥ 1. Let M[i,j] = maxi≤l≤j Bl for i < j.
Further, define the event

G[i,j](k, x) = {M[i,j] ≤ R + x + k(a + ε)}.

Then

P{ν > k,Wk > x} ≥

N∑

i=0

P{ν > k;G[0,i−1](k, x), G[i+1,k](k, x), B1−β
i > R+x+k(a+ε);Wk > x}.

First note that in the event G[0,i−1](k, x) customer i becomes red since

B1−β
i > R + x + k(a + ε) ≥ max(B0, . . . , Bi−1) (6)

and, consequently (since 0 < β < 1) we also have Bi > max(B0, . . . , Bi−1)
1−β. Second note

that in the event G[i+1,k](k, x),

B1−β
i > R + x + k(a + ε) ≥ max(Bi+1, . . . , Bk).

Equivalently, for j : i + 1 ≤ j ≤ k,
Bj < B1−β

i .

Now one should note that due to (6), we have B1−β
i = max(B0, . . . , Bi)

1−β and, thus,

Bj < max(B0, . . . , Bi)
1−β.

By the definition of the service discipline the latter inequality implies that customer j :
i + 1 ≤ j ≤ k stays green.
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Summing up we can see that in the event G[0,i−1](k, x) ∩ G[i+1,k](k, x) customer i becomes
red and there is no red customer in the interval [i + 1, k]. Therefore, the waiting time Wk

of customer k in this event satisfies

Wk > B1−β
i + Ŝ[i+1,k−1],

where Ŝ[i+1,k−1] =
∑k−1

l=i+1(Bl − Al).

Next note that the event

{ν > i,B1−β
i > R + x + k(a + ε), min

j=i+1,...,k−1
Ŝ[i+1,j] > −R − k(a + ε)}

⊂ {ν > k,B1−β
i > R + x + k(a + ε)}.

Therefore,

P{ν > k,Wk > x}

≥
N∑

i=0

P{ν > k;G[0,i−1](k, x), G[i+1,k](k, x), B1−β
i > R + x + k(a + ε);Wk > x}

≥

N∑

i=0

P{ν > i,G[0,i−1](k, x)}P

{
B1−β

i > R + x + k(a + ε),

G[i+1,k](k, x), min
j=i+1,...,k−1

Ŝ[i+1,j] > −R − k(a + ε), B1−β
i + Ŝ[i+1,k−1] > x

}

= P{B1−β > R + x + k(a + ε)}

N∑

i=0

P{ν > i,G[0,i−1](k, x)}P

{
G[i+1,k](k, x),

min
j=i+1,...,k−1

Ŝ[i+1,j] > −R − k(a + ε)

}
.

Next by the Law of Large Numbers for the partial maxima, for k → ∞,

minj=i+1,...,k−1

∑j
l=i+1(Bl − Al)

k
→ −a, a.s.

Therefore, for fixed N , taking R sufficiently large we have the following bound

P

{
min

j=i+1,...,k−1
Ŝ[i+1,j] > −R − k(a + ε)

}
≥ 1 − ε,

uniformly in k > i and i ≤ N . Also, for sufficiently large R,

P(G[i+1,k](k, x)) ≤

k∑

l=i+1

P{Bl > R+x+k(a+ε)} ≤ kP{B > R+x+k(a+ε)} ≤ ε,

where we use the fact that EB < ∞. Thus taking R sufficiently large we can guarantee that

P

{
G[i+1,k](k, x), min

j=i+1,...,k−1
Ŝ[i+1,j] > −R − k(a + ε)

}

≥ P

{
min

j=i+1,...,k−1
Ŝ[i+1,j] > −R − k(a + ε)

}
− P(G[i+1,k](k, x)) ≥ 1 − 2ε.
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Now for sufficiently large N and x,

N∑

i=0

P{ν > i,Mi−1 ≤ x + k(a − ε)} ≥ (1 − ε)

N∑

i=0

P{ν > i} ≥ (1 − 2ε)Eν.

This gives,

P{ν > k,Wk > x} ≥ P{B1−β > R + x + k(a + ε)}(1 − ε)Eν(1 − 2ε)

≥ (1 − 3ε)EνP{B1−β > R + x + k(a + ε)} ≥ (1 − 4ε)EνP{B1−β > x + k(a + ε)},

for sufficiently large R and x.

Summing everything up and using (5) we obtain for sufficiently large x,

P{W > x} ≥
1

Eν

∞∑

k=0

(1 − 4ε)EνP{B1−β > x + ka} ∼
1 − 4ε

a

∫ ∞

x
P{B > y1/(1−β)}dy,

as x → ∞. Since ε > 0 is arbitrary the latter implies the required lower bound. The proof
of Lemma 3.1 is complete.

4 Upper bound

In this section we are going to provide an upper bound. For that we are going to use again
the representation (5). Let Gk = {customer k is always green}. Split the sum in (5) in two
parts:

∞∑

k=0

P{ν > k,Wk > x} =

∞∑

k=0

P{ν > k,Wk > x,Gk}

+

∞∑

k=0

P{ν > k,Wk > x,Gk} = P green(x) + P red(x).

In the event Gk the waiting time of customer k depends only on his service demand and
the demands of the preceding customers. In the event Gk the waiting time of the kth
customer may depend on the subsequent customers. This is the reason why we consider
these situations separately.

4.1 Upper bound for P
green(x)

In this subsection we give an upper bound for P green(x).

Lemma 4.1. Let δ > 0 be a constant and let

µ = min{i ≥ 0 : B1−β
i > δ(x + ak)}.

Then, for any ε0 > 0 there exists x0 > 0 such that for x > x0,

P{ν > k, µ ≤ k,Wk > x,Gk} ≤ (Eν + ε0)P{B1−β > x + ak}. (7)

7



Proof of Lemma 4.1. Pick ε > 0 such that

EνP{B1−β > (1 − ε)(x + ak)} ≤ (Eν + ε0/4)P{B1−β > x + ak}, (8)

for sufficiently large x. This is possible since P(B > x) is a regularly varying function.

Then,

P{ν > k, µ ≤ k,Wk > x,Gk} ≤ P{ν > k, µ ≤ k,B1−β
µ > (1 − ε)(x + ak)}

+ P{ν > k, µ ≤ k,B1−β
µ ≤ (1 − ε)(x + ak),Wk > x,Gk}. (9)

Clearly, the first term in the RHS of (9) is majorized as follows:

P{ν > k, µ ≤ k,B1−β
µ > (1 − ε)(x + ak)} ≤

k∑

i=0

P{ν > i,B1−β
i > (1 − ε)(x + ak)}

=

k∑

i=0

P{ν > i}P{B1−β
i > (1 − ε)(x + ak)}

≤ EνP{B1−β > (1 − ε)(x + ak)}

≤ (Eν + ε0/4)P{B1−β > x + ak}, (10)

where the latter inequality holds for sufficiently large x due to (8). Let ε̂ > 0 be a constant
which we define later. Split the second term in the RHS of (9):

P{ν > k, µ ≤ k,B1−β
µ ≤ (1 − ε)(x + ak),Wk > x,Gk}

≤ P{ν > k, µ ≤ k,max(M[0,µ−1],M[µ+1,k]) > ε̂(x + ak)}

+P{ν > k, µ ≤ k,B1−β
µ ≤ (1−ε)(x+ak),max(M[0,µ−1],M[µ+1,k]) ≤ ε̂(x+ak),Wk > x,Gk}.

(11)

Bound for the first term in the RHS of (11):

P{ν > k, µ ≤ k,max(M[0,µ−1],M[µ+1,k]) > ε̂(x + ak)}

≤

k∑

i=0

P{ν > i,B1−β
i > δ(x + ak)}P{M[i+1,k] > ε̂(x + ak)}

+

k∑

i=0

P{ν > i,M[0,i−1] > ε̂(x + ak)}P{B1−β
i > δ(x + ak)}

≤ 2EνP{B1−β > δ(x + ak)}kP{B > ε̂(x + ak)} ≤ ε0/4P{B1−β > x + ak}, (12)

where the latter inequality holds for large x since P{B1−β > x} is a regularly varying
function.
Bound for the second term in the RHS of (11):
Note that in the event {µ ≤ k,M[µ+1,k] ≤ ε̂(x + ak)} customer µ is declared red and all the
customers in the set {µ + 1, . . . , k} stay green. Indeed for j : µ + 1 ≤ j ≤ k,

Bj ≤ ε̂(x + ak) < δ(x + ak) < B1−β
µ .
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Clearly, in the event {µ ≤ k,M[µ+1,k] ≤ ε̂(x + ak)}, by the definition of µ,

max(B0, . . . , Bj−1) = Bµ.

Thus,
Bj < B1−β

µ = max(B0, . . . , Bj−1)
1−β

implies that customer j : µ + 1 ≤ j ≤ k is declared green.

That implies that in this event the sojourn time Wk of customer k satisfies

Wk ≤ Sµ−1 + B1−β
µ + S[µ+1,k] + Bk,

where S[µ+1,k] =
∑k

l=µ+1(Bl−1 − Al). Therefore, the second term in the RHS of (11) is
bounded from above by

P{ν > k, µ ≤ k,B1−β
µ ≤ (1−ε)(x+ak),max(M[0,µ−1]M[µ+1,k]) ≤ ε̂(x+ak),Wk > x,Gk}

≤

k∑

i=0

P

{
ν > i, µ = i, B1−β

i ≤ (1 − ε)(x + ak),

max(M[0,i−1],M[i+1,k]) ≤ ε̂(x + ak), Si−1 + B1−β
i + S[i+1,k] + Bk > x

}

≤
k∑

i=0

P

{
ν > i, µ = i,max(M[0,i−1],M[i+1,k]) ≤ ε̂(x + ak),

Si−1 + (1 − ε)(x + ak) + S[i+1,k] + Bk > x

}

≤

k∑

i=0

P{max(M[0,i−1],M[i+1,k]) ≤ ε̂(x+ak), Si−1+S[i+1,k]+(1−ε)(x+ak) > x−εx/2}

+

k∑

i=0

P

{
ν > i, µ = i, Si−1 + S[i+1,k] + (1 − ε)(x + ak) ≤ x − εx/2,

Si−1 + S[i+1,k] + (1 − ε)(x + ak) + Bk > x

}
≡ P1 + P2. (13)

First,
P1 ≤ kP{Sk−1 + (1 − ε)ak > εx/2,M[0,k−2) ≤ ε̂(x + ak)}.

Let ξ̂i = ξi + a and Ŝk = Sk + ak. We can now apply the Fuk-Nagaev inequality (see
Lemma 5.1 below) to obtain

P{Sk−1 + (1 − ε)ak > εx/2,Mk−2 ≤ ε̂(x + ak)}

≤ P{Ŝk−1 > ε(x/2 + ak),max(ξ̂1, . . . , ξ̂k−1) ≤ ε̂(x + ak)} ≤
C

(x + ak)α+2
,

when ε̂ > 0 is taken sufficiently small. Therefore,

P1 ≤
Ck

(x + ak)α+2
≤

C/a

(x + ak)α+1
≤ ε0/4P{B1−β > x + ak}, (14)
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for sufficiently large x since P{B1−β > x} is regularly varying with the parameter −(γ+1) >
−(α + 1).

Second,

P2 ≤

k∑

i=0

P{ν > i, µ = i, Bk > εx/2}

≤ EνP{B1−β > δ(x + ak)}P{B > εx/2} ≤ ε0/4P{B1−β > x + ak}, (15)

where the latter inequality holds for large x since P{B1−β > x} is a regularly varying
function.

Summing the Equations (10), (12) (14) and (15) we arrive at the conclusion. The proof of
Lemma 4.1 is complete.

Lemma 4.2. Consider a GI/GI/1 queue with the service discipline defined above. Assume
that α > 1 and β ∈ (0, 1/(α + 1)). Then the following asymptotic upper bound holds

Pgreen(x) ≤
1 + o(1)

a

∫ ∞

x
P{B > y1/(1−β)}dy, x → ∞.

Proof of Lemma 4.2. Let ε > 0 be a constant which we define later. Let K be an integer
such that K(α − 1) > (α + 1). Let δ = min(1/(2K), ε) and let

µ = min{i ≥ 0 : B1−β
i > δ(x + ak)}.

Then,

P{ν > k,Wk > x,Gk} = P{ν > k, µ ≤ k,Wk > x,Gk}

+ P{ν > k, µ > k,Wk > x,Gk} ≡ P3 + P4.

By Lemma 4.1 there exist ε0 > 0 and x0 > 0 such that for x > x0 the following inequality
holds:

P3 ≤ (Eν + ε0)P(B1−β > x + ak). (16)

Further let Nk be the number of big customers

Nk = #{0 ≤ i ≤ k : Bi > ε(x + ak)}.

Then the second probability is bounded as follows:

P4 ≤ P{ν > k, µ > k,Nk ≤ K,Wk > x,Gk} + P{ν > k,Nk > K} ≡ P41 + P42.

To bound P41 consider the event {Nk ≤ K}. In this event there are r ≤ K customers whose
service demand exceeds ε(x + ak). Let their numbers be i1, . . . , ir:

Bi1 > ε(x + ak), . . . , Bir > ε(x + ak).
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In the event {µ > k} all these customers i1, . . . , ir will be declared red, since the maximal
service demand of the first k customers is less than (δ(x+ak))1/(1−β) and δ ≤ ε. Therefore,
customer k will interrupt the service of any of the customers i1, . . . , ir. Thus the total
contribution of the customers i1, . . . , ir to the waiting time of customer k is at most

B1−β
i1

+ · · · + B1−β
ir

.

In the event {µ > k}, the latter contribution is less than

B1−β
i1

+ · · · + B1−β
ir

≤ rδ(x + ak) ≤ Kδ(x + ak) ≤ 0.5(x + ak).

Therefore the waiting time Vk of customer k satisfies

Vk ≤ Sk − (ξi1+1 + ξi2+1 · · · + ξir+1) + B1−β
i1

+ · · · + B1−β
ir

≤ Sk − (ξi1+1 + ξi2+1 · · · + ξir+1) + 0.5(x + ak).

Note that

P{Vk > 0.75x} ≤

K∑

r=0

(
k

r

)
P{Sk−r + 0.5(x + ak) > 0.75x,max(B0, . . . , Bk−r) ≤ ε(x + ak)}

≤ KkK max
0≤r≤K

P{Sk−r + 0.5ak > 0.25x,max(B0, . . . , Bk−r) ≤ ε(x + ak)}

≤
CK

(x + ak)α+2
,

for sufficiently small ε. To pick such ε > 0 we use the Fuk-Nagaev inequality again, see
Lemma 5.1 below. Thus, since in the event Gk, the sojourn time Wk = Vk + Bk, we have,

P41 ≤
CK

(x + ak)α+2
+ P{ν > k, µ > k,Nk ≤ K,Wk > x, Vk ≤ 0.75x,Gk}

≤
CK

(x + ak)α+2
+ P{ν > k,Bk > 0.25x}

≤ ε0P{B1−β > x + ak} + P{ν > k}P{Bk > 0.25x}, (17)

for sufficiently large x. Here, we have used the fact that P(B1−β > x) is regularly varying
with the parameter −(γ + 1) > −α − 1. Also,

P42 ≤ (kP(B > ε(x + ak))K ≤ (x + ak)−α−1 ≤ ε0P(B1−β > x + ak), (18)

for sufficiently large x. Here, we have used the fact that K(α − 1) > α + 1 and that
P(B1−β > x) is regularly varying with the parameter −(γ + 1) > −α − 1.
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We are now in position to estimate P green(x). Using the equations (16), (17) and (18) we
have for sufficiently large x,

P green(x) ≤
∞∑

k=0

(
(Eν + 3ε0)P{B1−β > x + ak} + P{ν > k}P{Bk > 0.25x}

)

≤ (Eν + 3ε0)
∞∑

k=0

P{B1−β > x + ak} + EνP{B > 0.25x}

≤
Eν + 4ε0

a

∫ ∞

x
P{B1−β > z}dz.

Since the constant ε0 > 0 is arbitrary the latter equation implies the statement of the
Lemma.

The proof of Lemma 4.2 is complete.

4.2 Upper bound for P
red(x)

In this subsection we give bounds for P red(x).

Lemma 4.3. Consider a GI/GI/1 queue with the service discipline defined above. Assume
that α > 1 and β ∈ (0, 1/(α + 1)). Then the following asymptotic upper bound holds

Pred(x) = o

(∫ ∞

x
P{B > z1/(1−β)}dz

)
, x → ∞.

Proof of Lemma 4.3. Fix a constant ε < α − γ. Let bp be the length of the first
busy period and, by Theorem 5.1 from the appendix, P(bp > x) ≤ C∗P{B > x} for some
constant C∗. Since α − ε > γ we have,

xε∑

k=0

P{ν > k,Wk > x} ≤ xεP{bp > x} = o

(∫ ∞

x
P{B1−β > z}dz

)
.

Thus we need to give bounds for

∞∑

k=xε

P{ν > k,Wk > x,Gk}.

Note also that

∞∑

k=xε

P{ν > k,Wk > x,Bk > x
γ+ε

α , Gk} ≤

∞∑

k=xε

P{ν > k,Bk > x
γ+ε

α }

=

∞∑

k=xε

P{ν > k}P{Bk > x
γ+ε

α } ≤ EνP{B > x
γ+ε

α } = o

(∫ ∞

x
P{B1−β > y}dy

)
,

12



since P{B > x
γ+ε

α } is regularly varying with the parameter −(γ+ε) and
∫ ∞

x P{B1−β > y}dy
is regularly varying with the parameter −γ. Thus, we have just shown that

P red(x) =

∞∑

k=xε

P{ν > k,Wk > x,Bk ≤ x
γ+ε

α , Gk} + o

(∫ ∞

x
P{B1−β > y}dy

)
. (19)

Now the kth customer, with {Bk ∈ dy}, is red if and only if all preceding customers in
the same busy period satisfy the inequality Mk−1 = max(B0, . . . , Bk−1) ≤ y1/(1−β). Conse-
quently,

P{ν > k,Wk > x,Bk ≤ x
γ+ε

α , Gk} =

∫ x
γ+ε

α

0
P{ν > k,Wk(y) > x,Mk−1 ≤ y1/(1−β), Bk ∈ dy},

where Wk(y) is the sojourn time of customer k in the event {Bk ∈ dy}. Fix a constant
C > 0 which we define later. Let Nk(y) = #{0 ≤ i < k : Bk > y + ka/C} and let K be an

integer such that K > γ/ε+1
α−1 . Uniformly in y we have,

P{Nk(y) > K} ≤

(
k

K

)
P{B > y + ka/C}K ≤ (kP{B > ka/C})K = k(1−α)KL(k),

for some regularly varying function L(k). Then,

∞∑

k=xε

∫ x
γ+ε

α

0
P{ν > k,Wk(y) > x,Mk−1 ≤ y1/(1−β), Nk(y) > K,Bk ∈ dy}

≤
∞∑

k=xε

∫ x
γ+ε

α

0
P{Nk(y) > K}P{Bk ∈ dy}

≤
∞∑

k=xε

k(1−α)KL(k) ∼ x(1+(1−α)K)εL(xε) = o

(∫ ∞

x
P{B1−β > z}dz

)
,

since (1 + (1 − α)K)ε < −γ due to our choice of K. Therefore, we can continue (19) and
obtain

P red(x) =
∞∑

k=xε

∫ x
γ+ε

α

0
P{ν > k,Wk > x,Mk−1 ≤ y1/(1−β), Nk(y) ≤ K,Bk ∈ dy}

+ o

(∫ ∞

x
P{B1−β > z}dz

)
. (20)

To proceed further, we need to consider the situation when the service demands of at most K
customers in the set {0, 1, 2, . . . , k−1} can exceed y +ka/C on the event {Bk ∈ dy,Mk−1 ≤
y1/(1−β)}. Let the service demands of customer i1, . . . , ir for r ≤ K be greater than y+ka/C.
Then, since Mk−1 ≤ y1/(1−β) and by the definition of the service discipline, all of them will
be declared red after receiving some initial amount of service. Thus the total contribution
of the customers i1, . . . , ir to the waiting time of customer k is at most

B1−β
i1

+ · · · + B1−β
ir

≤ Ky.
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Therefore the waiting time of customer k is at most

Vk(y) ≡ Sk − (ξi1+1 + ξi2+1 · · · + ξir+1) + B1−β
i1

+ · · · + B1−β
ir

≤ Sk − (ξi1+1 + ξi2+1 · · · + ξir+1) + Ky.

Note that

P{Vk(y) > (K + C)y} ≤
K∑

r=0

(
k

r

)
P{Sk−r + Ky > (K + C)y,Mk−r ≤ y + ka/C}

≤ KkK max
0≤r≤K

P{Sk−r > Cy,Mk−r ≤ y + ka/C}.

We can now apply the Fuk-Nagaev inequality, see Lemma 5.1 below. For that let ξ̃ = ξ + a
and S̃n =

∑n
i=1 ξ̃i. Let t > 1 be such that E|ξ̃|t < ∞. Then, for any δ > 0 there exists k0

such that for k > k0 and y ≥ 0,

|µ(y + ka)| ≤ δ, A(t, y + ka)/yt−1 ≤ δ,

where µ(y) = E{ξ̃, |ξ̃| ≤ y} and A(y) = E{|ξ̃|t, |ξ̃| ≤ y}. Then,

max
0≤r≤K

P{Sk−r > Cy,Mk−r ≤ y+ka/C} = max
0≤r≤K

P{S̃k−r > Cy+(k−r)a,Mk−r ≤ y+ka/C}

≤ exp

{
Cy + ka

y + ka/C
−

(
Cy + ka

y + ka/C

)
ln(1 +

Cy + ka

δ
)

}
=

eC

(1 + Cy+ka
δ )C

.

Therefore,

P{Vk(y) > (K + C)y} ≤ eC KkK

(1 + Cy+ka
δ )C

.

This implies that we can choose C sufficiently large to ensure that

∞∑

k=xε

∫ x
γ+ε

α

0
P{NK(y) ≤ K,Vk(y) > (K + C)y,Bk ∈ dy} = o

(∫ ∞

x
P{B1−β > z}dz

)
.

Therefore, we can rewrite (20) to obtain

P red(x) =

∞∑

k=xε

∫ x
γ+ε

α

0
P

{
ν > k,Wk(y) > x,Mk−1 ≤ y1/(1−β),

Nk(y) ≤ K,Vk(y) ≤ (K + C)y,Bk ∈ dy

}
+ o

(∫ ∞

x
P{B1−β > z}dz

)
. (21)

We are now in position to analyze Wk(y). Clearly, Wk(y) is bounded from above by the
sum

Wk(y) ≤ Vk(y) + bp(y + Vk(y)),

14



where bp(y + Vk(y)) is the length of the busy period of the system with initial workload
y + Vk(y). Thus,

∞∑

k=xε

∫ x
γ+ε

α

0
P{ν > k,Wk > x,Mk−1 ≤ y1/(1−β), Nk(y) ≤ K,Vk(y) ≤ (K+C)y,Bk ∈ dy}

≤
∞∑

k=xε

∫ x
γ+ε

α

0
P{ν > k}P(Bk ∈ dy)P(bp(y + (K + C)y) > x). (22)

Now, for C1 = 1 + K + C, using integration by parts twice, we obtain:

∫ x
γ+ε

α

0
P(B ∈ dy)P(bp(y + (K + C)y) > x) ≤

∫ ∞

0
P(C1B ∈ dy)P(bp(y) > x)

=

∫ ∞

0
dy(P(bp(y) > x))P{C1B > y} ≤ C2

∫ ∞

0
dy(P(bp(y) > x))P{B > y}

= C2

∫ ∞

0
P(B ∈ dy)P(bp(y) > x) = C2P{bp > x},

for some constant C2 > 0. Using the latter inequality implies that we can continue (21) and
(22) to obtain that

Pred(x) ≤ C2

∞∑

k=xε

P{ν > k}P{bp > x} + o

(∫ ∞

x
P{B1−β > z}dz

)

≤ C2EνP{bp > x} + o

(∫ ∞

x
P{B1−β > z}dz

)
.

It is sufficient now to apply Theorem 5.1 and use the fact that P{B > x} = o
(∫ ∞

x P{B1−β > z}dz
)

to obtain the statement of the Lemma. The proof of Lemma 4.3 is complete.

5 Appendix: Asymptotics for the maximum workload and

the length of the busy period

5.1 Estimates for the busy period of the single-server queue

Let ξ = Bi−1 − Ai and Sn =
∑n

i=1 ξi. Let ν = min{n ≥ 1 : Sn ≤ 0} and bp = B1 + · · · + Bν

be the length of the busy period. Then the following theorem holds, see [10].

Theorem 5.1. Assume that Eξ < 0 and that P{B > x} is regularly varying with the
parameter α. Then,

P{bp > x} ∼ EνP{B > (1 − ρ)x}, (23)

where ρ = EB/EA < 1. In particular, P{bp > x} ≤ C∗P{B > x} for some constant C∗.
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5.2 Fuk-Nagaev inequality

The following lemma is the Fuk-Nagaev inequality, see [3, Theorem 2, eq. (7)].

Lemma 5.1. Let 1 ≤ t ≤ 2. Let µ(y) = E{ξ, |ξ| ≤ y} and A(t, y) = E{|ξ|t, |ξ| ≤ y}. Then,

P{Sn > x,Mn ≤ y} ≤ exp

{
x

y
−

(
x − nµ(y)

y
+

A(t, y)

yt

)
ln

(
xyt−1

A(t, y)
+ 1

)}
, (24)

where Mn = max(ξ1, . . . , ξn).
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