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Abstract. We consider piecewise deterministic Markov processes that occur as scaling
limits of discrete-time Markov chains that describe the Transmission Control Protocol
(TCP). The class of processes allows for general increase and decrease profiles. Our
key observation is that stationary results for the general class follow directly from
the stationary results for the idealized TCP process in [22]. The latter is a Markov
process that increases linearly and experiences downward jumps at times governed by
a Poisson process. To establish this connection, we apply space-time transformations
that preserve the properties of the class of Markov processes.

1. Introduction

This paper deals with a class M(r, α;λ, β;FQ) of piecewise deterministic Markov pro-
cesses (PDMPs) related to the Transmission Control Protocol (TCP) for data transmis-
sion over the internet. The process X(t) ∈ M has the following behavior. Between
random collapse times (τk)k∈N the evolution is deterministic according to

d

dt
X(t) = rX(t)α, r > 0.

The random times τk are governed by a state-dependent Poisson process with rate
λX(t)β and β > α − 1, and at τk the process is multiplied by a random variable Qk

in [0, 1) with distribution FQ(x), i.e., X(τk) = QkX(τk−), where the random variables
(Qk)k∈N are independent of {X(t) : t ≤ τk}. If α = 0 and β = 0 the PDMP X(t) has
a linear increase profile and independent losses and is known as the additive-increase
multiplicative-decrease (AIMD) algorithm, also referred to as idealized TCP [22]. In
general, if X(0) = x, the process X(t) increases deterministically as

φ(x, t) =

{

(

x1−α + (1 − α)rt
)

1

1−α , α 6= 1,

xert, α = 1.
(1)

until the time τ1 of the first jump. It is clear that a larger α leads to a more aggressive
increase profile. Also, a larger β will lead to a more aggressive decrease profile, because
jumps will occur more frequently. All possible combinations of α and β together present
a diverse palet of increase-decrease profiles for the dynamics of TCP.

The dynamical behavior of TCP was originally modeled as a discrete-time Markov
chain [22]. Several research papers deal with establishing scaling limits for such Markov
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chains [22, 12, 20, 21, 24, 18]. A key challenge in this area was to prove that the invariant
distributions of the scaled Markov chains converge to the invariant distributions of the
limiting PDMPs. This issue was first settled in [24], and later extended to a larger class
of models in [18]. The class M at hand is the class of scaling limits that occurs in [18].

In this paper we deal solely with the stationary behavior for processes in M. Recent
time-dependent results can be found in [17, 23]. The key parameters in the description of
M are α and β for which we assume that β > α−1. This is necessary to guarantee that the
process is stable and admits a stationary distribution, cf. Theorem 1. Our contribution
lies in the application of space-time transformations. We show that by a state-space
transformation of the type Y (t) = γX(t)δ and a time transformation Z(u) = X(t(u)) with
t(u) =

∫ u
0 X(t(s))−ν ds, stationary results for the process X(t) ∈ M(r, α;λ, β;FQ) follow

directly from the stationary results for the idealized TCP process Y (t) ∈ M(1, 0;λ, 0;FQ).
In this way, all known stationary results for idealized TCP can be transferred directly to
results for any process in M.

For a discussion of general PDMPs we refer to [8]. The processes in this paper belong
to the special class of growth-collapse processes for which we refer to [7]. Growth-collapse
processes are also referred to as stress release models [25, 19, 26]. There is also a close
relationship to so-called repairable systems (see [15] and [14]). In [5] and [6] a different
class of stress release models with additive jumps is discussed. The papers [27] and [14]
give conditions for ergodicity of a very general class of growth collapse models, including
our setting (model 4 in [27] and model 1 in [14]); the latter paper also gives conditions
for non-explosiveness.

Space-time changes for general Markov processes can be found in the classical literature
[10, 11]. For the special class of PDMPs in this paper, such space-time changes allow us
to unify several earlier results. Ott et al. [22] solve the idealized TCP case and derive
solutions for α < 1, β = 0 using a state-space transformation. Dumas et al. [9] consider
the case α = 0, β > −1, and present the stationary distribution for β = 1. Altman et
al. [2] consider the case α < 1 and give an explicit analysis of β = 0, 1 using rather general
mappings that involve both space and time transformations. Baccelli et al. [3] consider
a more general class of models for non-persistent flows, that includes our model for the
case α = 0, β ≤ 0. They show that results for the throughput for β > 0 follow from
the case β = 0 by applying appropriate substitutions to a differential equation. Maulik
and Zwart [18] treat the case α ∈ [0, 1] and β > 0 and obtain explicit expressions for the
stationary moments (cf. Section 3).

The remainder of this paper is structured as follows. In Section 2 we present our main
results concerning the transformations that can be used to relate any two processes in
M. In Section 3 we combine a state-space transformation with a time transformation to
express the stationary moments of X(t) in terms of the stationary moments of idealized
TCP. We also discuss the special cases of deterministic Q and (generalized) uniformQ. As
for the moments, the stationary distribution for idealized TCP then yields immediately
the stationary distribution for any process X(t) ∈ M. Some of the more formal proofs
in this paper are provided in Appendix B and C, following a short introduction to the
generator of the Markov process in Appendix A.
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2. Main results

We denote by qQ(s) = EQs = Ee−s log(1/Q) the Laplace-Stieltjes transform of the non-
negative random variable log(1/Q). Hence, there exists an s0 ≤ 0 such that qQ(s) is
infinite for s < s0 and finite for s > s0. We also define the auxiliary function

ψQ(s) =
1 − qQ(s)

s
, s > 0,

and let ψQ(0) = lims→0 ψQ(s) = E(log(1/Q)).

Next we properly define the class M of PDMPs.

Definition 1. Let M(r, α;λ, β;FQ) denote the class of PDMPs described in Section 1.

Here r, λ > 0 are real constants, FQ is a distribution function on [0, 1], and α and β are

real constants with

β > α− 1. (2)

Moreover, FQ and α are chosen in a way such that s0 < 0 and

s0 < 1 − α. (3)

The condition s0 < 0 ensures that the distribution of Q is reasonably well behaved in
the sense that all moments E(log(1/Q)n) are finite. Condition (3), which is redundant if
α ≤ 1, is required to have a stable process.

We now first present some results for the stationary distribution that follow from the
general theories of PDMPs and regenerative processes. Let ⇒ denote convergence in
distribution. For a random variable A we denote throughout the paper by ΠA(u) its
distribution function, and by πA(u) its density.

Theorem 1. Let X(t) ∈ M(r, α;λ, β;FQ). Then X(t) stays finite for finite t and X(t) ⇒
X as t → ∞, where X is a random variable with X > 0 a.s. The distribution function

ΠX(u) of X admits a density πX(u) satisfying

πX(u) =
λ

r
u−α

∫ ∞

u
yβFQ(u/y)πX(y)dy. (4)

We give a proof of this Theorem in Appendix B (see also [18]). The idea of the proof
is to show that under Conditions (2) and (3), the process has negative drift outside [0, y]
for some y and positive drift inside [0, w] for some w ≤ y. It then follows that the
regenerative process X(t) has a finite cycle mean, which in turn proves the convergence
result.

We next present a recursion relation for the moments of the random variable X that
follows the stationary distribution of X(t).

Theorem 2. Let X(t) ∈ M(r, α;λ, β;FQ). If qQ(s − α + 1) < ∞ for some s ∈ R, then

E(Xs) <∞ and

E(Xs) =
λ

r
ψQ(s− α+ 1)E(Xs+β−α+1). (5)
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Theorem 2 is proved in Appendix C. Replacing the variable s in (5) by s+(k−1)(β−
α+ 1), with k ≥ 1 an integer, gives upon iteration

E(Xs+n(β−α+1)) = E(Xs)
rn

λn

n
∏

k=1

1

ψQ(s+ (k − 1)β − k(α− 1))
, (6)

which is particularly helpful for s = 0.

We now introduce a state-space transformation M → M that preserves stationarity.

Proposition 1. (state-space transformation) Let X(t) ∈ M(r, α;λ, β;FQ) and define a

new process Y (t) = γX(t)δ with δ > 0. Then

Y (t) ∈ M
(

rδγ
1−α

δ , 1 + α−1
δ ;λγ−β/δ, β

δ ;FQδ

)

.

Proof. We have on the deterministic part of the trajectory

d

dt
Y (t) = rγδX(t)α+δ−1 = rδγ

1−α
δ Y (t)1+

α−1

δ .

Let ϕ(x) = γxδ, so that Y (t) = ϕ(X(t)). The probability of a jump during [t, t + h] is
given by

λϕ−1(Y (t))βh+ o(h),

where ϕ−1 denotes the inverse function of ϕ, and hence the jump intensity is given by
λγ−β/δY (t)β/δ. Further notice that

Y (τk−)

Y (τk)
=
γX(τk−)δ

γX(τk)δ
= Qδ.

Condition (2) is invariant under the state-space transformation, since β ≥ α − 1 iff
β/δ ≥ (α − 1)/δ. Letting QY := Qδ and qQY

(s) := E(Qs
Y ) = qQ(δs), it is obvious that

Condition (3) is fulfilled for Y (t). �

The following result characterizes the relation between the stationary distributions of
the processes X(t) and Y (t) that are both in M.

Theorem 3. Let X(t) ∈ M(r, α;λ, β;FQ) and let Y (t) = γX(t)δ, δ > 0 as in Proposition

1. Let X be the limit of X(t) as given in Theorem 1. Then Y (t) ⇒ Y
d
= γXδ, where Y

has a distribution with density

πY (x) = πX((x/γ)1/δ) ·
x1/δ−1

δγ1/δ
(7)

and E(Y s) = γs
E(X

sδ
) for all s with qQ(sδ − α+ 1) = qQY

(s− (α−1
δ + 1) + 1) <∞.

Proof. The first part follows from the continuous mapping theorem, and the moment
relation is trivial. �

Next we define the random process

ϑ(t) =

∫ t

0
X(s)ν ds, (8)
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for t ≥ 0, and ν some real constant, and with inverse function

ϑ−1(u) =

∫ u

0

1

X(ϑ−1(s))ν
ds.

Throughout this section we use u = ϑ(t) and t = ϑ−1(u). The time transformation of
X(t) is defined as follows.

Proposition 2. (time transformation) Let ν be a real number, such that

qQ(ν − α+ 1) <∞. (9)

Suppose that X(t) ∈ M(r, α;λ, β;FQ). Define the time-changed process by Z(u) =
X(ϑ−1(u)). Then

Z(u) ∈ M(r, α − ν;λ, β − ν;FQ) . (10)

Proof. We have, in between two jumps,

d

du
Z(u) =

d

du
X(ϑ−1(u)) = rZ(u)α−ν .

Then

P(Z(u) jumps during [u, u+ h]) = P(X(ϑ−1(u)) jumps during [u, u+ h]).

Since ϑ−1(u) = t and

ϑ−1(u+ h) = ϑ−1(u) +

∫ u+h

u
X(ϑ−1(s))−ν ds = t+ hZ(t)−ν + o(h),

as h→ 0, it follows that

P(Z(u) jumps during [u, u+ h]) = P(X(t) jumps during [t, ϑ−1(u+ h)])

= λZ(t)β−νh+ o(h).

The intensity of the time-changed process is therefore given by λZ(t)β−ν .

The jump sizes are not affected by a time change, hence leaving the jump distribution
FQ unchanged, so Condition 3 is still fulfilled for the time-changed process. Condition
(2) remains unaltered under the time change, and (10) follows. �

Note that X(t) and Z(t) are both regenerative processes, with cycles CX(y) and CZ(y)
defined by successive visits to some fixed state y. We point out the following interesting
property of the time-changed process, which links the cycle means to the stationary
moments.

Proposition 3. Let X(t) ∈ M(r, α;λ, β;FQ) and let Z(t) be the time-changed process

as in Proposition 2, and assume that (9) holds. Then E(Xν) < ∞, E(CX(y)) < ∞,

E(CZ(y)) <∞ and, for all y > 0,

E(CZ(y)) = E(CX(y))E(Xν).

Proof. It is shown in Appendix B that under Condition (2) the cycle CX(y) has a finite

mean for some y ∈ (0,∞). We have CZ(y) = ϑ(CX(y)) =
∫ CX(y)
0 dϑ(s) and hence

E(CZ(y)) = E(ϑ(CX(y))) = E

(

∫ CX (y)

0
X(s)ν ds

)

= E(CX(y))E(Xν), (11)
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where the last equality follows from regeneration theory. Since E(Xν) <∞ by Theorem
2, we have that E(CZ(y)) <∞. �

Theorem 4. Let X(t) ∈ M(r, α;λ, β;FQ) and let Z(ϑ) = X(t) be the time-changed

process as in Proposition 2. Let X denote the limit of X(t) given in Theorem 1. Then

Z(t) ⇒ Z, and the distribution of Z admits a density that satisfies

πZ(x) =
xν

E(Xν)
πX(x). (12)

For all s such that qQ(ν + s− α+ 1) <∞ the s-th moment of Z is given by

E(Zs) =
E(Xs+ν)

E(Xν)
. (13)

Proof. In Appendix B it is shown that E(CX(y)) <∞, so that by Proposition 3 we have
that E(CZ(y)) <∞. It follows that Z(t) has a unique stationary distribution. Moreover,
again by the well known limit theorems for regenerative processes and Proposition 3,

P(Z ≤ y) =
E

( ∫ CZ (y)
0 1{Z(s)≤y} ds

)

E(CZ(y))
=

E
( ∫ ϑ(CX (y))

0 1{Z(s)≤y} ds
)

E(CX(y))E(Xν)

=
E

( ∫ CX(y)
0 1{X(t)≤y}X(t)ν dt

)

E(CX(y))E(Xν)
=

E(1{X≤y}X
ν)

E(Xν)
,

so that (12) follows. If qQ(ν + s − α + 1) < ∞ then E(Xs+ν) < ∞ and formula (13)
follows immediately from (12). �

We conclude this section by a discussion on how to combine the introduced transfor-
mations. Denote by V the admissible region in the (α, β)-plane for which Condition (2)
is fulfilled. The transformations can be represented as mappings from V → V , see Figure
1, where the grey areas represent V . A state-space transformation is represented as a
movement on radial lines, meeting in the point (1, 0), while a time change is represented
as a movement parallel to the β = α− 1 line.

By using the transformations, each point (α, β) in V can be mapped to any other point
(α′, β′) in V by first applying a state-space transformation as in Proposition 1 with

δ =
β − α+ 1

β′ − α′ + 1
(14)

and then the time change in (10) with

ν = β
β′ − α′ + 1

β − α+ 1
− β′. (15)

Note that the order of the two transformations is important here. If first a time change
is performed, the appropriate parameter is

ν = β −
β − α+ 1

β′ − α′ + 1
β′,

followed by the δ from (14) for the subsequent state-space transformation.
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n<0

Figure 1. Iso-stationary transformations: state-space transformation
(left) and time change (right) in the (α, β)-plane.

3. Stationary moments and distribution

With the transformations of Section 2 in our hands, the stationary results for one
process in M(r, α;λ, β;FQ) yield stationary results for all other combinations of α, β in
the admissible region V . In this section we shall use known results for the idealized
TCP class M(1, 0;λ, 0;FQ) to derive expressions for the stationary moments and the
stationary distribution of any process in the class M.

Theorem 5. Let X(t) ∈ M(r, α;λ, β;FQ). Then

E(Xs) =

(

r(1 − α+ β)

λ

)

s
1−α+β Γ( 1−α+s

1−α+β )

Γ( 1−α
1−α+β )

×

∞
∏

k=1

1 − qQ(s− β + k(1 − α+ β))

1 − qQ(−β + k(1 − α+ β))
, (16)

for all s for which qQ(s− α+ 1) <∞.

Proof. Let Z(t) ∈ M(1, 0;λ, 0;FQ∗ ) with Q∗ = Q1−α+β . It is known that

E(Zs) =
Γ(s+ 1)

λs

∞
∏

k=1

1 − qQ∗(s+ k)

1 − qQ∗(k)
, (17)

see [12, 17, 22]. Following Proposition 1 and (14), a state-space transformation with

δ = 1/(1 − α+ β) and γ = (r(1 − α+ β))1/(1−α+β) maps Z(t) to

Y (t) = (r(1 − α+ β)Z(t))1/(1−α+β),
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with Y (t) ∈ M(r, α− β;λ, 0;FQ). Since qQ∗(s) = qQ(s(1 − α+ β)), we obtain

E(Y s) =
(

r(1 − α+ β))s/(1−α+β)
E(Zs/(1−α+β)

)

=
(r(1 − α+ β)

λ

)s/(1−α+β)
Γ
(

s
1−α+β + 1

)

×

∞
∏

k=1

1 − qQ(s+ k(1 − α+ β))

1 − qQ(k(1 − α+ β))
. (18)

Applying a time transformation according to Proposition 2 and (15) with ν = −β then
yields the process X(t). Formula (16) follows immediately from (13). �

Theorem 5 is due to Maulik & Zwart [18], who derive (16) by solving a difference
equation for the Mellin transform. With l = 1 − α + β and γ∗ the Euler constant, they
find that, for s > α− 1, α < 1 and r = λ = 1,

E(Xs) =(le−γ∗)
s
l

1 − α

s+ 1 − α

1 − qQ(s+ 1 − α)

1 − qQ(1 − α)

×
∞
∏

k=1

e
s
kl

1 − qQ(kl + s+ 1 − α)

1 − qQ(kl + 1 − α)

kl + 1 − α

kl + s+ 1 − α
. (19)

It can be easily verified that (16) and (19) correspond.

Let us next turn to the stationary distribution. In [12], Proposition 5, it is shown that
for Z(t) ∈ M(1, 0;λ, 0;FQ) the Laplace-Stieltjes transform of the stationary distribution
is given by

E(e−sZ) = E

(

∞
∏

n=0

1

1 + (s/λ)
∏n

k=1Qk

)

, (20)

and alternatively (see [17])

E(e−sZ) =

∞
∑

n=0

(−s/λ)n
∏n

k=1(1 − qQ(k))
, 0 ≤ s ≤ λ. (21)

However, both expressions do not lead (in general) to tractable explicit representations
for the stationary density. Fortunately, the classical case of deterministic jumps does give
an explicit form for the density.

3.1. Deterministic jumps. In the case where Q is always a constant c, we have that
qQ(u) = cs and hence s0 = −∞. Consequently all moments of X exist, and from (4) we
conclude that the stationary density fulfills

πX(u) =
λ

ruα

∫ u/c

u
yβπX(y)dy.

If Z(t) ∈ M(1, 0;λ, 0;FQ∗ ) then

πZ(u) = λ(ΠZ(u/c) − ΠZ(u)). (22)
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In [22] the solution to (22) was found to be

πZ(u) =
λ

(c; c)∞

∞
∑

k=0

(−1)kc
1

2
k(k−1)

(c; c)k
e−λc−ku, (23)

with (q; q)k =
∏k

j=1(1−q
j) the q-Pochhammer symbol. Alternatively, (23) can be written

as

πZ(u) =
λ

(c; c)∞

∞
∑

k=0

c−k

∏k
j=1(c

−j − 1)
e−λc−ku, (24)

in which form the solution to (22) was derived in [9, 12].

We now employ our transformations to obtain the stationary distribution for the gen-
eral (α, β)-case.

Theorem 6. If Q = c a.s. then

πX(x) =
1

rxα

(r(1 − α+ β)

λ

)
β

1−α+β
πZ

(

x1−α+β

r(1−α+β)

)

Γ
(

1−α
1−α+β

)

∞
∏

k=1

1 − ck(1−α+β)

1 − ck(1−α+β)−β
. (25)

Proof. Let Z(t) ∈ M(1, 0;λ, 0;FQ∗ ) with Q∗ = c1−α+β . As in the proof of Theorem 5 we

apply a state-space transformation with δ = 1/(1−α+β) and γ = (r(1−α+β))1/(1−α+β)

to Z(t), yielding a process Y (t) ∈ M(r, α − β;λ, 0;FQ), where FQ in this case is the
distribution function having mass 1 at c. According to (7)

πY (x) = πZ

( x1−α+β

r(1 − α+ β)

)xβ−α

r
.

Next we perform a time change with ν = −β, yielding a process X(t) in the class
M(r, α;λ, β;FQ). From (12) it follows that

πX(x) =
x−β

E(Y −β)
πY (x).

According to (18) we have

E(Y −β) =
( λ

r(1 − α+ β)

)
β

1−α+β
Γ
(

1−α
1−α+β

)

∞
∏

k=1

1 − ck(1−α+β)−β

1 − ck(1−α+β)
, (26)

and (25) follows. �

3.2. Another special case. If Q = U1/κ, with some κ > 0 and U having a uniform
distribution on [0, 1], then

qQ(s) = E(Qs) =

∫ 1

0
xs/κ dx =

κ

κ+ s
,

so that s0 = −κ and qQ(s0) = ∞. It follows that E(Xs) <∞ if s > α− 1 − κ.

Theorem 7. If Q = U1/κ with κ > 0 then

πX(x) =
Γ
(

κ−α+1
β−α+1

)

β − α+ 1

( λ

r(β − α+ 1)

)− κ−α+1

β−α+1

xκ−αe
−

λ
r(β−α+1)xβ−α+1

. (27)
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Proof. We derive the proposition directly for all admissible α and β, without using the
transformations. From (4) we obtain

πX(u) =
λuκ−α

r

∫ ∞

u
yβ−κπX(y)dy (28)

and hence

π′X(u) =
(κ− α

u
−
λuβ−α

r

)

πX(u). (29)

For y < x,

πX(x) =
πX(y)

yκ−α
xκ−α exp

(

−
λ

r(β − α+ 1)

(

xβ−α+1 − yβ−α+1
)

)

.

Letting y → 0, and assuming that the limit C = limy→0 πX(y)yα−κ exists, we obtain

πX(x) = Cxκ−α exp
(

−
λ

r(β − α+ 1)
xβ−α+1

)

.

The constant follows upon normalization. �

We note that (27) was derived for the case κ = α = β = 0 in [12], p. 99.

Appendix A. PDMPs, generator, domain

Let Ex(·) = E(·|X(0) = x). For bounded measurable functions f the infinitesimal
generator refers to the linear operator defined by the limit

A∗f(x) = lim
t→0

(Exf(X(t)) − f(x)) /t,

in the strong sense, that is with respect to the sup norm. It is well known that for
functions for which this limit exists, the process

f(X(t)) −

∫ t

0
A∗f(X(s)) ds

is a martingale. The extended generator Af is a generalization of this operator and
is defined as any measurable function g, for which f(X(t)) −

∫ t
0 g(X(s)) ds becomes a

martingale. Following the exposition in [8] we see that our Markov process X(t) is a
PDMP and has the extended generator

Af(x) = rxαf ′(x) + λxβ

∫ 1

0
(f(xy) − f(x)) dFQ(y). (30)

For PDMPs Davis [8] has given criteria for a measurable function f to belong to the
domain D(A) of the extended generator. The domain D(A) contains all measurable
functions f : E → R for which f is absolutely continuous and

Ex

Nt
∑

i=1

|f(X(τi−)) − f(X(τi))| <∞, ∀x ∈ [0,∞), t ≥ 0.

If f is absolutely continuous and locally bounded on [0,∞) then f ∈ D(A) follows
immediately from the fact that according to (1) X(t) has a deterministic upper bound.
Since the domain of A is probably much larger, it is desirable to know whether D(A)
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comprises function that are not locally bounded. From Lemma 1 in [17] we obtain the
following result:

Lemma 1 (domain). The function fs(x) = xs is in the domain D(A) if qQ(s) <∞.

We define the counting process Nt = inf{n ∈ N : τn ≥ t}. In order to use the
methodology of PDMPs we have to assure that E(Nt) <∞.

Lemma 2. ExNt <∞ for all t > 0, x ≥ 0.

Proof. If β = 0 then the jump intensity is just λ and clearly ENt = λt is finite for all
t > 0. The general case with β > 0 can be transformed via a time change as described
in Proposition 2 and and 3 to the β = 0 case (see Figure 1). �

Next we show that the process will not escape to infinity in finite time.

Lemma 3. T∞ := sup{t > 0 : X(t) <∞} = ∞ a.s.

Proof. If α < 1 then this follows from the fact that φ(x, t) is finite for all t > 0 and
X(t) ≤ φ(x, t). If α ≥ 1 a time change with ν = β transforms the process into a process
Z(t) with increase rate parameter α−β < 1 and constant jump intensity (see Proposition
2). T∞ = ∞ iff

ϑ−1(u) =

∫ u

0

1

Z(s)β
ds <∞

for all u > 0. Since Nt <∞ for all t (see Lemma (2)) we have min{Z(s) : 0 ≤ s ≤ t} > 0
and hence ϑ−1(u) ≤ u(min{Z(s) : 0 ≤ s ≤ t})−β <∞. �

Appendix B. Proof of Theorem 1

Lemma 3 proves that X(t) stays finite for finite t. We now prove Theorem 1 for the
case β = 0. The general form of Theorem 1 then follows by applying a time change as
described in Proposition 2 and 3.

Theorem 8. Let X(t) ∈ M(r, α;λ, 0;FQ). Then X(t) ⇒ X as t → ∞, where X is a

random variable with X > 0 a.s. The distribution function ΠX(u) of X admits a density

πX(u) satisfying

πX(u) =
λ

r
u−α

∫ ∞

u
FQ(u/y)πX(y)dy. (31)

We need two lemmas and the following definitions for the proof of Theorem 8. Let
T ∗

y = inf{t > 0 : X(t) ≤ y} and Ty = inf{t > 0 : X(t) = y} denote the first time
the process jumps below y and the first hitting time of y. Note that we have α < 1
throughout the proof.

Lemma 4. There is a y ∈ (0,∞) such that ExT
∗
y <∞ for all x ≥ y.

Proof. Recall that fs(x) = xs and that fs ∈ D(A) if qQ(s) <∞. We first show that there
is a s > 0, such that lim supx→∞Afs(x) < 0 as x→ ∞. We have

Afs(x) = srxα+s−1 − λxs(1 − qQ(s)) = xs
(

srxα−1 − λ(1 − qQ(s))
)

.
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Let s > 0, then xs → ∞ and xα−1 → 0 as x → ∞, hence Afs(x) → −∞ and thus
lim supx→∞Afs(x) < 0 (note that (1 − qQ(s)) > 0 since s > 0).

We have shown that there is a y ∈ (0,∞), such that Afs(x) < −ε for all x ≥ y and
some s > 0. Pick one such x and recall from the definition of the extended generator
that the process Mt = fs(X(t)) − fs(x) −

∫ t
0 Afs(X(s)) ds is a zero-mean martingale.

Optional sampling yields ExMt∧T ∗

y
= 0, and hence

0 = Ex

(

fs(X(t ∧ T ∗
y )) − fs(x) −

∫ t∧T ∗

y

0
Afs(X(s)) ds

)

(32)

It follows that Ex

(

fs(X(t ∧ T ∗
y )) − fs(x) + (t ∧ T ∗

y )ε
)

≤ 0. Consequently

Ex(t ∧ T
∗
y ) ≤

1

ε

(

fs(x) − Exfs(X(t ∧ T ∗
y ))

)

≤
fs(x)

ε
.

Letting t→ ∞ it follows that ExT
∗
y <∞. �

Next we show that the mean of the hitting time ExTw is also finite for some w.

Lemma 5. There is a w ∈ (0,∞) such that ExTw <∞ for all x ≤ y.

Proof. It is enough to show that Lemma 4 holds for the reciprocal process R(t) = X−1(t),
which is the case if we can show that lim supx→∞ARfs(x) < 0, where

ARf(x) = −rx2−αf ′(x) + λ

∫ 1

0
(f(x/y) − f(x)) dFQ(y).

is the generator of the Markov process R(t). By following the proof of Lemma 1 it is
clear that fs is in the domain of AR if qQ(−s) <∞. We have

ARfs(x) = −srx1−α+s + λxs(qQ(−s) − 1) = x1−α+s
(

− sr + λxα−1(qQ(−s) − 1)
)

.

Let 0 < s < −s0. Then fs is in the domain of AR. Since x1−α+s → ∞ and xα−1 → 0 as
x→ ∞, it follows that lim supx→∞ARfs(x) < 0. The result then follows along the lines
of the second part of the proof of Lemma 4. �

Proof of Theorem 8. The process X(t) is a regenerative process with regeneration cycles
CX(y) starting at upcrossings of y.

Under the stated conditions the assertions of Lemma 4 and 5 are both fulfilled, i.e
there are y,w ∈ (0,∞) such that ExT

∗
y < ∞ for all x ≥ y and ExTw < ∞ for all x ≤ y.

Without loss of generality we can assume that w < y.

We will show that EwTy < ∞. Then ExTy for all x ≤ y and we have already shown
that under the given conditions EyT

∗
y < ∞. It follows then that for the regenerative

process X(t), with regeneration cycles starting at upcrossings of y, the cycle length has
a finite mean and the assertion of the lemma follows.

To prove EwTy <∞ consider a process W (t) which behaves similar to X(t) if X(t) ∈
[0,∞) \ [w, y], but has the following behavior if W (t) ∈ [w, y]: it jumps with intensity λ
and if there is a jump at time t then W (t) = w∧(W (t−) ·Q). We can construct X(t) and
W (t) on a common probability space, such that X(t) ≥ W (t) w.p. one. Consequently,
W (t) will reach y later than X(t), so it remains to show that, starting in W (0) = w, the
expected time to reach y is finite.
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Starting in w the process W (t) will reach y without any jump with some positive
probability, or it jumps down into the set [0, w]. We proved in Lemma 4 that the time
until the process returns to w has finite mean. It follows that the time until W (t) reaches
y is a geometric sum of random variables with finite mean, and hence has finite mean.

We have seen that the regeneration cycles CX(y) of X(t) have finite mean, hence
X(t) ⇒ X as t→ ∞ follows from regeneration theory (see e.g. [1]). But we have actually
shown more. Under the given conditions, Lemma 5 shows that also the reciprocal process
R(t) = X−1(t) tends to a finite limit, hence X is not zero.

To prove (4) we use the fact that
∫ ∞
0 Af(x)πX(x) dx = 0 for bounded functions

f ∈ D(A). Let gn(x) = n
∫ x
0 1{w∈[u−1/n,u+1/n]} dw, then gn is bounded and absolutely

continuous. We have
∫ ∞

0
rxαg′n(x)πX(x) dx = n

∫ u+1/n

u−1/n
rxαπX(x) dx

which tends to ruαπX(u) as n→ ∞. Since gn(x) → 1{x≥z}, we obtain

∫ ∞

0

(

λ

∫ 1

0
(gn(xy) − gn(x)) dFQ(y)

)

πX(x) dx

→

∫ ∞

0
λ
(

∫ 1

0
1{xy≥u} dFQ(y) − 1{x≥u}

)

πX(x) dx

=

∫ ∞

u
λ
(

∫ 1

u/x
dFQ(y) − 1

)

πX(x) dx = −

∫ ∞

u
λFQ(u/x)πX(x) dx.

Hence (31) follows. �

Having proved Theorem 8 the final step to establish Theorem 1 is a application of the
time change, which transforms the β = 0 case to the β 6= 0 case (Proposition 2 with
ν = β). Note that according to Proposition 3, we have to fulfill (9), which yields the
extra condition (3) in in Definition 1.

Appendix C. Proof of Theorem 2

We shall now prove that Ex(X
s) < ∞ if qQ(s − α + 1) < ∞ and that (5) holds.

Let fs,w(x) = 1{x≤w}x
s−α+1. Since qQ(s − α + 1) < ∞ it follows from Lemma 1 that

fs,w ∈ D(A). Then

Afs,w(x) =
(

r(s− α+ 1)xs + λ(qQ(s− α+ 1) − 1)xs+β−(α−1)
)1{x≤w}

+
(

λxs+β−(α−1)

∫ w/x

0
ys−α+1 dFQ(y)

)1{x>w}.

Since fs,w is bounded it follows from
∫ ∞
0 Af(x)πX(x) dx = 0 that

∫ w

0
xsπX(x) dx =

λ

r
ψQ(s − α+ 1)

∫ w

0
xs+β−(α−1)πX(x) dx− C(w), (33)
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where C(w) = λ
r(s−α+1)

∫ ∞
w xs+β−(α−1)

∫ w/x
0 ys−α+1dFQ(y) πX(x) dx. We have

∫ w/x

0
ys−α+1dFQ(y) ≤

∫ 1

0
ys−α+1dFQ(y) = qQ(s− α+ 1),

and hence

0 ≤ C(w) ≤
λqQ(s− α+ 1)

r(s− α+ 1)

∫ ∞

w
xs+β−(α−1)πX(x) dx.

We see that C(w) → 0 when w → ∞. Consequently, relation (5) follows from (33) by
dominated convergence.

To prove that Ex(X
s) < ∞ we first assume that s = 0. Then qQ(s − α + 1) =

qQ(1 − α) < ∞ and since Ex(Xs) = 1 < ∞ it follows that Ex(Xβ−(α−1)) < ∞. We thus
have Ex(Xt) <∞ for all t ∈ [0, β − (α− 1)] and by induction Ex(X

t) <∞ for all t > 0.

On the other hand, if s < 0 and qQ(s − α + 1) < ∞, then there is a k ∈ N, such that
sk = s+ k(β − (α− 1)) ≥ 0 and hence Ex(X

sk) <∞. Moreover sk − β ≥ s− α+ 1 and
also qQ(sk − β) < ∞. It follows then from Ex(X

sk) < ∞ that Ex(X
sk−1) < ∞ and by

induction Ex(X
s) <∞.
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