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Abstract. This paper presents a novel technique to derive asymptotic ex-
pressions for rare event probabilities for random walks in the quarter plane.
For concreteness, we study a tandem queue with Poisson arrivals, exponen-
tial service times and coupled processors. The service rate for one queue is
only a fraction of the global service rate when the other queue is non empty;
when one queue is empty, the other queue has full service rate. The bivariate
generating function of the queue lengths gives rise to a functional equation.
In order to derive asymptotic expressions for large queue lengths, we combine
the kernel method for functional equations with boundary value problems and
singularity analysis.

1. Introduction

Stationary distributions of two-dimensional one-step random walks in the quar-
ter plane can be obtained by solving functional equations. Malyshev pioneered this
general problem in the 1970’s, and the theory has advanced since via its use in ap-
plications like lattice path counting and two-server queueing models. The idea to
reduce the functional equation for the generating function to a standard Riemann-
Hilbert boundary value problem stems from the work of Fayolle and Iasnogorodski
[10] on two parallel M/M/1 queues with coupled processors (the service speed of a
server depends on whether or not the other server is busy). Extensive treatments
of the boundary value technique for functional equations can be found in Cohen
and Boxma [6] and Fayolle, Iasnogorodski and Malyshev [11]. This technique con-
cerns sophisticated complex analysis, Riemann surfaces and various boundary value
problems.

This paper presents a novel technique to derive asymptotic estimates for the
occurrence of rare events in random walks in the quarter plane. For concreteness,
we shall do so by studying a tandem queue with Poisson arrivals, exponential service
times and coupled processors. The presented technique can be applied to the general
class of random walks covered in [11]. Denote by N1 and N2 the stationary number
of customers in the first and second queue. The generating function P (x, y) =
E(xN1yN2) then satisfies the functional equation

h1(x, y)P (x, y) = h2(x, y)P (x, 0) + h3(x, y)P (0, y) + h4(x, y)P (0, 0), (1)

where the functions hj are quadratic polynomials in x and y. Equation (1) cannot
be solved directly for P (x, y), because it contains other unknown functions P (x, 0)
and P (0, y). This is the universal problem for random walks in the quarter plane.

The general approach is to consider the roots of the kernel h1(x, y) w.r.t. one
of the variables x, y. Substituting such roots into (1) yields additional equations
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between the unknown functions P (x, 0) and P (0, y) that are free of the term con-
taining the full generating function P (x, y). These additional equations in fact give
rise to boundary value problems whose solutions lead to a specification of P (x, 0)
and P (0, y) and hence P (x, y). For the tandem queue with coupled processors this
was done in [21, 24]. The obtained formal solution, however, is too complicated to
invert for the stationary distribution. We are particularly interested in the proba-
bilities of large queue lengths (rare events), for which we develop a new asymptotic
technique.

In order to find information on P(N1 = n), for large n, we need to extract
information from the generating function P (x, 1) =

∑∞
n=0 P(N1 = n)xn. We shall

employ the functional equation to determine the dominant (closest to the origin)
singularities of the functions P (x, 0) and P (x, 1). Subsequently, by investigating
P (x, 1) in the neighborhood of its dominant singularity, ξ say, we obtain exact
asymptotic expressions for the tail of the probability distribution of N1. While
large deviations estimates yield results of the form

lim
n→∞

1

n
log P(N1 = n) = ξ−n,

we are also able to obtain the function f(n) such that

lim
n→∞

P(N1 = n)

f(n)
= 1. (2)

The determination of f requires a full solution to P (x, 0). In [21, 24] solutions for
P (x, 0) and P (0, y) were derived that are valid only in specific parts of the complex
planes. In this paper we provide complete solutions to P (x, 0) and P (0, y), that
are in fact the analytic continuations to the entire complex planes of the solutions
in [21, 24].

The technique of investigating a function near its dominant singularity to obtain
asymptotic expressions for its coefficients is known as singularity analysis and has
a long history in areas of mathematics like analysis, combinatorics and number
theory; for an elaborate exposition see Flajolet and Sedgewick [13]. In most cases
the generating function is univariate and explicit, and extracting information on
the coefficients boils down to the (asymptotic) evaluation of univariate contour
integrals.

The extraction of asymptotics from multivariate generating functions has been
strongly motivated by recursively defined combinatorial structures like trees, see
e.g. [9, 12, 13], and specific random walks or queueing models [3, 14, 15, 18]. One
of the central ideas in multivariate asymptotics is to exploit a functional equa-
tion to reduce multivariate problems to univariate contour integrals. In contrast
to most functional equations that are subject to multivariate asymptotics (see [26]
for an overview), our functional equation (1) does not allow for a closed form so-
lution, which complicates considerably the application of singularity analysis. Our
method can be considered as an extension of the technique of singularity analysis
for bivariate generating functions.

There are two alternative methods: a method based on large deviations devel-
oped by Foley and McDonald [17], and the matrix-geometric method [23, 19, 28].
The further development of both techniques is a an active area of research. The
matrix-geometric method aims at deriving the so-called boundary condition, under
which the asymptotics show geometric behavior, which is to say that the function
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f in (2) does not depend on n. This boundary condition plays a crucial role in the
large deviations approach too, and is naturally the subject of much recent work
[19, 20, 22, 23, 27]. Geometric decay requires the dominant singularity to be a pole,
whereas it could be a singularity of a different nature like a branch point. Indeed,
this is also the case for the tandem queue at hand. Foley and McDonald are able to
obtain results for the non-geometric regimes, although for these regimes they need
a highly involved case specific approach. For a modified Jackson network this is
demonstrated in [16].

In the present paper, we make the following contributions:

- We provide in Propositions 3 and 4 exact solutions to P (x, 0) and P (0, y),
in terms of meromorphic functions, that are valid in the entire complex x
and y planes cut along some segments. The solutions follow from analytic
continuations through the functional equation (1) and are generalizations
of the partial solutions (valid in parts of the complex planes) obtained in
[21, 24].

- We determine the domain of analyticity of the functions P (x, 1) and P (1, y).
A crucial role is fulfilled by the resultant of the functions h1 and h2. The
domains of analyticity lead to exact asymptotic expressions for P(N1 = n)
and P(N2 = n).

- The parameter values determine the nature of the dominant singularities
of P (x, 1) and P (1, y) that give rise to several different asymptotic regimes.
Asymptotic estimates for the probabilities of large queue lengths are ob-
tained using Laplace’s method and Darboux’s method. In Proposition 5
we identify four different regimes for queue 1, and Proposition 6 shows that
there are three different regimes for queue 2.

Related work was done in [18] for two parallel M/M/1 queues with coupled pro-
cessors, also leading to rare event probabilities. However, this latter model can be
reduced to a Dirichlet problem (the boundary value problem has a boundary which
is a circle, and the problem is solved by using the Poisson kernel; see [10, 18]). In
the present paper, the boundary is a general smooth closed contour and we use
a Riemann-Hilbert formulation, which allows us to directly extend the function
outside the domain delineated by the boundary. In this respect, the problem con-
sidered in the present paper is much more general than the one considered in [18],
and the same approach can be used for many models that fall into the class of
random walks in the quarter plane.

The tandem queue with coupled servers, which we chose as our vehicle to present
the asymptotic technique, is of independent interest. It arises as a natural model
for bandwidth sharing of Internet capacity that is based on reservation procedures
(see [7, 21, 24]). The two servers are coupled such that the server speed of server i is
µi when the other server is busy, and µ∗

i when the other server is idle. This coupling
became extremely popular in the last decade due to its relation to the Generalized
Processor Sharing (GPS) discipline (µ∗

1 = µ∗
2 = µ1 + µ2), the prevalent discipline

for bandwidth sharing in packet networks. See [1] for an overview on GPS. The
different asymptotic regimes identified in this paper yield structural insights on the
impact of GPS on rare events in a tandem queue.

We proceed as follows: Section 2 contains the model description and an extensive
analysis of the zero-pairs of the kernel h1 in Equation (1). In particular, various an-
alytic continuations of these zero-pairs are constructed, which identify some of the
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singularities of the function P (x, 0) and P (0, y). Further singularities are identified
in Section 3 by considering the resultant of h1 and h2. In Section 4 we formulate
P (x, 0) and P (0, y) in terms of boundary value problems. The solutions to these
boundary value problem yield solutions to P (x, 0) and P (0, y) in terms of mero-
morphic functions, with a clear description of their singularities. In Section 5 this
knowledge is used to obtain a complete characterization of the exact asymptotics
for the stationary distributions of both queues.

2. Model description and preliminary properties

Consider a two-stage tandem queue, where jobs arrive at queue 1 according to a
Poisson process with rate λ, demanding service at both queues before leaving the
system. Each job requires an exponential amount of work with parameter νj at
station j, j = 1, 2. The global service rate is set to one. The service rate for one
queue is only a fraction (p for queue 1 and 1 − p for queue 2) of the global service
rate when the other queue is non empty; when one queue is empty, the other queue
has full service rate. Therefore, when both queues are nonempty, the departure
rates at queue 1 and 2 are ν1p and ν2(1 − p), respectively.

When one of the queues in empty, the departure rate of the nonempty queue j is
temporarily increased to νj . With Nj(t) the number of jobs at station j at time t,
the two-dimensional process {(N1(t), N2(t)), t ≥ 0} is a Markov process, and upon
uniformization, a random walk in the quarter plane.

The stability condition under which this Markov process has a unique stationary
distribution is given by

ρ = λ/ν1 + λ/ν2 < 1. (3)

This can be explained by the fact that, independent of p, the two stations together
always work at capacity 1 (if there is work in the system), and that λ/ν1 + λ/ν2

equals the amount of work brought into the system per time unit. We henceforth
assume that the ergodicity condition is satisfied.

Denote the joint stationary probabilities by

P(N1 = n, N2 = k) = lim
t→∞

P(N1(t) = n, N2(t) = k),

and let P (x, y) represent the bivariate generating function

P (x, y) =

∞
∑

n=0

∞
∑

k=0

P(N1 = n, N2 = k)xnyk.

From the balance equations it follows (see [24]) that P (x, y) satisfies the functional
equation (1) with

h1(x, y) = (λ + pν1 + (1 − p)ν2)xy − λx2y − pν1y
2 − (1 − p)ν2x,

h2(x, y) = (1 − p) (ν1y(y − x) + ν2x(y − 1)) ,

h3(x, y) = − p

1 − p
h2(x, y),

h4(x, y) = ν2x(y − 1) − h2(x, y).

We have P (0, 0) = 1 − ρ.
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2.1. Zero-pairs of the kernel. Set r̂ = 1 + 1/r1 + 1/r2 with r1 = λ/(pν1) and
r2 = λ/((1 − p)ν2). With this notation, equation h1(x, y) = 0 in y has two roots:

X±(y) =
1

2y

(

(r̂y − 1/r2) ±
√

D2(y)
)

where

D2(y) = (r̂y − 1/r2)
2 − 4y3/r1.

The functions X±(y) are well defined for y ∈ R \ {0} as long as D2(y) ≥ 0. It is
easily checked that limy→0 X+(y) = 0 (the point 0 is a removable singularity for
the function X+(y)) and limy→0+ X−(y) = −∞ (the point 0 is a singularity for
the function X−(y)). In addition, as shown in [21], the discriminant D2(y) has
three roots in R. These three roots are denoted by y1, y2 and y3 and are such
that 0 < y1 < y2 ≤ 1 < y3. We have D2(y) > 0 for y ∈ (−∞, y1) ∪ (y2, y3) and
D2(y) < 0 for y ∈ (y1, y2) ∪ (y3,∞).

Similarly, the equation h1(x, y) = 0 in x has two roots:

Y±(x) =
r1

2

(

(r̂ − x)x ±
√

D1(x)
)

,

where

D1(x) = ((r̂ − x)x)2 − 4x/(r1r2).

The functions Y±(x) are well defined for x ∈ R as long as the discriminant D1(x) ≥
0. As shown in [21], the discriminant D1(x) has four real roots x1 = 0 < x2 ≤ 1 <
x3 < x4. We have D1(x) > 0 for x ∈ (−∞, x1) ∪ (x2, x3) ∪ (x4,∞) and D1(x) < 0
for x ∈ (x1, x2) ∪ (x3, x4).

In the next section, we investigate how to analytically continue the functions
Y±(x) in C \ ([x1, x2] ∪ [x3, x4]) and X±(y) in C \ ([y1, y2] ∪ [y3,∞)).

2.2. Analytic continuation. In the following, we assume that for z ∈ C, arg(z) ∈
(−π, π], and we take the determination of the square such that

√
x2 = x if x ≥ 0

and
√
−1 = i. The couple (X+(y), (−∞, y1)) defines a germ of analytic function.

We first investigate how this germ can be analytically continued in the complex
plane deprived of the segments [y1, y2] and [y3,∞).

Lemma 1. The function X∗(y) defined in C \ ([y1, y2] ∪ [y3,∞)) by

X∗(y) =

{

X+(y) when y ∈ {z : ℜ(z) ≤ y2,ℑ(D2(z
+)) < 0} ∪ (−∞, y1),

X−(y) otherwise,
(4)

where z+ = ℜ(z) + i|ℑ(z)|, is analytic.

Proof. Let y = u + iv with u, v ∈ R. We have D2(y) = ℜ(D2(y)) + iℑ(D2(y)) with

ℜ(D2(y)) =

(

r̂u − 1

r2

)2

− r̂2v2 − 4

r1
(u3 − 3uv2),

ℑ(D2(y)) = v

(

4

r1
v2 −

(

12

r1
u2 − 2r̂2u +

2

r2

))

.

The imaginary part vanishes for u and v satisfying the equation

4

r1
v2 =

12

r1
u2 − 2r̂2u +

2

r2
. (5)

For sufficiently large u the term in the right hand side of the above equation is
positive. If we assume that this terms does not cancel for u describing the whole
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of R, then we can define two curves in C along which the imaginary part of D2(y)
vanishes, one curve entirely lies in the positive half-plane {y : ℑ(y) > 0} and the
other one in the negative half-plane {y : ℑ(y) < 0}.

Along one of these curves, the sign of the real part ℜ(D2(y)) is constant since
the imaginary and the real parts cancel only for y ∈ R (namely for y equal to one of
the roots y1, y2 and y3). For the curve in the upper half-plane we have v2 ∼ 3u2 for
|u| → +∞. But in this case, we would have ℜ(D2(y)) ∼ 32u3/r1, which contradicts
the fact that ℜ(D2(y)) should keep the same sign as u describes the whole of R.
Hence, the polynomial in the right hand side of Equation (5) has roots in R, which
are positive since the value of this polynomial at point 0 is 2/r2 > 0. Let y∗

1 and
y∗
2 denote these roots with 0 < y∗

1 ≤ y∗
2 .

Equation (5) defines two hyperbolic branches as depicted in Figure 1. The left
branch intersects the real axis at point y∗

1 and for y on this branch such that
ℑ(y) 6= 0, ℜ(D2(y)) < 0. By continuity of the real part, which is a polynomial in u
and v, we have ℜ(D2(y

∗
1)) ≤ 0 and hence y1 ≤ y∗

1 ≤ y2. The right branch intersects
the real axis at point y∗

2 . For y on this branch such that ℑ(y) 6= 0, ℜ(D2(y)) > 0
and by continuity of the real part, we have ℜ(D2(y

∗
2)) ≥ 0, which implies that

y2 ≤ y∗
2 ≤ y3.

0 1y1 y2 y3

y∗
1 y∗

2

X∗(y) = X−(y) X∗(y) = X−(y)X∗(y) = X+(y)

ℜ(D2(y)) < 0 ℜ(D2(y)) > 0

Figure 1. Branches on which ℑ(D2(y)) = 0.

The function X+(y) is analytic in the domain {y : ℜ(y) ≤ y∗
1 ,ℑ(D2(y

+)) <
0} ∪ (−∞, y1). The function X−(y) is analytic in the complementary domain of
the closure of this set in C \ ([y1, y2] ∪ [y3,∞)). To show that the function X∗(y)
is analytic in the whole of C deprived of the segments [y1, y2] and [y3,∞), from
Moreira’s theorem, it is sufficient to show that this function is continuous on the
branch {y : ℑ(D2(y)) = 0, ℜ(D2(y) ≤ 0} separating the two above domains. But
this is straightforwardly checked from the choice of the determination of the square
root. �

By using exactly the same arguments as in the proof of Lemma 1, we can prove
the following result.

Lemma 2. The function X∗(y) defined in C \ ([y1, y2] ∪ [y3,∞)) by

X∗(y) =

{

X−(y) when y ∈ {z : ℜ(z) ≤ y2,ℑ(D2(z
+)) < 0} ∪ (−∞, y1),

X+(y) otherwise,
(6)
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where z+ = ℜ(z) + i|ℑ(z)|, is analytic.

We now turn to the functions Y±(x). First note that Y±(0) = 0. As shown in
[21], when x is close to the segment [x1, x2], Y±(x) is close to a contour ∂Dy in the
y-plane included in the half-plane {y : ℜ(y) ≥ 0}; in particular the point 0 lies in
∂Dy. In addition, when y is close to the segment [y1, y2], X(y) is in the x-plane close
to a contour ∂Dx surrounding the point 0. The contours ∂Dx and ∂Dy delineate
bounded open domains in the x-plane deprived of the segment [x1, x2] and the y-
plane deprived of the segment [y1, y2] denoted by Dx and Dy, respectively. Since
our ultimate goal is to exhibit a conformal mapping between these two domains
and since Y±(−iε) ∼ ±(cos(π/4)+ i sin(π/4))

√

ε/(r1r2) for small ε > 0, we are led
to pick up the function Y+(x) as a candidate for the desired conformal mapping
because Y+(−iε) ∈ Dy while Y−(−iε) /∈ Dy for sufficiently small ε > 0.

Lemma 3. The function Y ∗(x) defined in C \ ([x1, x2] ∪ [x3, x4]) by

Y ∗(x) =







Y+(x) when x ∈ {z : ℜ(z) ≤ x2,ℑ(D1(z
+)) < 0} ∪ (−∞, x1),

Y+(x) when x ∈ {z : ℜ(z) ≥ x3,ℑ(D2(z
+)) > 0} ∪ (x4,∞),

Y−(x) otherwise,
(7)

where z+ = ℜ(z) + i|ℑ(z)|, is analytic.

Proof. Let x = u + iv with u, v ∈ R. We have D1(x) = ℜ(D1(x)) + iℑ(D1(x)) with

ℜ(D1(x)) =
(

(r̂ − u)u + v2
)2 − v2(r̂ − 2u)2 − 4u

r1r2
,

ℑ(D1(x)) = 2v

(

(r̂ − 2u)v2 + u(r̂ − u)(r̂ − 2u) − 2

r1r2

)

.

The imaginary part ℑ(D1(x)) = 0 if (u, v) satisfies

(2u − r̂)v2 = u(2u − r̂)(u − r̂) − 2

r1r2
. (8)

Let d1(u) be the polynomial in the right hand side of the above equation. This poly-
nomial is of degree 3 and has at least one real root (say, u1). Since limu→+∞ d1(u) =
+∞ and d1(r̂) = −2/(r1r2) < 0, u1 > r̂. The polynomial d1(u) can then be de-
composed as d1(u) = (u − u1)d11(u). If the polynomial d11(u) had no real roots,
then this polynomial would be positive in the whole of R since d1(u) is positive for
large u. When u < r̂/2, Equation (8) would have two roots, namely

v = ±
√

(u − u1)d11(u)

2u − r̂
.

We would then obtain two curves, one entirely included in the half-plane {x :
ℑ(x) > 0} and the other in the half-plane {x : ℑ(x) < 0}. Along each of these
curves, the sign of ℜ(D1(x)) should be constant (see the arguments in the proof of
Lemma 1). But when u → −∞, v2 ∼ u2 and then ℜ(D1(x)) < 0, and when u →
r̂/2, v2 ∼ −2/(r1r2(2u − r̂)) and ℜ(D1(x)) > 0, which is in contradiction with the
fact that the sign of ℜ(D1(x)) should be constant along the curves ℑ(D1(x)) = 0.
As a consequence, the polynomial d1(u) has three real roots. Let us denote these
roots by x∗

1, x
∗
2 and x∗

3 with x∗
1 ≤ x∗

2 ≤ x∗
3. Their product is equal to 1/(r1r2) and

since one of them is positive, the two others have the same sign.
We already know that x∗

3 > r̂. If x∗
1 ≥ r̂/2, then Equation (8) defines two curves

for u ≤ r̂/2, one is included in the upper half plane and the other in the lower half
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plane, which is not possible for the same reasons as above. Hence, x∗
1 ≤ r̂/2. This

also implies that x∗
2 < r̂/2 since d1(r̂/2) = −2/(r1r2) < 0. Hence, we have

0 ≤ x∗
1 ≤ x∗

2 < r̂/2 < r̂ < x∗
3.

Let us consider the three curves defined by

v = ±
√

(u − x∗
1)(u − x∗

2)(u − x∗
3)

2u − r̂
when u ≤ x∗

1 or x∗
2 ≤ u < r̂/2 or u ≥ x∗

3.

See Figure 2.

0 1x2 x3 x4

x∗
1 x∗

3x∗
2

Y ∗(x) = Y−(x) Y ∗(x) = Y−(x)

Y ∗(x) = Y+(x)Y ∗(x) = Y+(x)

ℜ(D1(x)) < 0 ℜ(D1(x)) < 0ℜ(D1(x)) > 0

Figure 2. Branches on which ℑ(D1(x)) = 0.

For the curve defined for u ≤ x∗
1 it is easily checked that ℜ(D1(x)) < 0 when

v 6= 0 and by continuity we deduce that ℜ(D1(x)) ≤ 0. This implies that x1 ≤
x∗

1 ≤ x2. Similar arguments show that x3 ≤ x∗
3 ≤ x4. For the curve defined for

x2 ≤ u < r̂/2, we have ℜ(D1(x)) > 0 when v 6= 0 and hence ℜ(D1(x)) ≥ 0 all along
the curve. This implies that x2 ≤ x∗

2 ≤ x3. We finally have the ordering

x1 ≤ x∗
2 ≤ x2 ≤ x∗

2 < r̂/2 < x3 ≤ x∗
3 ≤ x4.

Note that it is easily checked that x3 > r̂/2. Indeed, if we assume that x3 ≤ r̂/2 ≤
x∗

3 ≤ x4, we would have D1(r̂/2) ≤ 0 and then D1(x) would be non positive for
all x ≥ r̂/2 since the term (r̂ − x)x is maximum at point r̂/2; this is clearly not
possible.

By invoking the same arguments as in the proof of Lemma 1, it is easily checked
that the function Y ∗(x) defined by Equation (7) is analytic in the complex plane
deprived of the segments [x1, x2] and [x3, x4]. �

With similar arguments, we can prove the following result.

Lemma 4. The function Y ∗(x) defined in C \ ([x1, x2] ∪ [x3, x4]) by

Y∗(x) =







Y−(x) when x ∈ {z : ℜ(z) ≤ x2,ℑ(D1(z
+)) < 0} ∪ (−∞, x1),

Y−(x) when x ∈ {z : ℜ(z) ≥ x3,ℑ(D2(z
+)) > 0} ∪ (x4,∞),

Y+(x) otherwise,
(9)

where z+ = ℜ(z) + i|ℑ(z)|, is analytic.
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To conclude this section, let us examine the images of the contours ∂Dx and
∂Dy by the analytic functions Y ∗ and X∗, respectively. First note that for x ∈ C \
([x1, x2]∩ [x3, x4]), X∗(Y ∗(x)) = x and for y ∈ C\ ([y1, y2]∩ [y3,∞)), Y ∗(X∗(y)) =
y. To prove the first equality, consider x ∈ (−∞, 0) sufficiently close to 0, then

Y ∗(x) = Y+(x) ∼
√

−r1x/r2 and X∗(Y ∗(x)) = X+(Y ∗(x)) ∼ x. It follows that
the equality X∗(Y ∗(x)) = x holds for a neighborhood of 0 and since the function
X∗(Y ∗(x)) is analytic in C \ ([x1, x2] ∩ [x3, x4]) this equality holds for the whole
of C \ ([x1, x2] ∩ [x3, x4]). Similar arguments can be invoked to prove the second
equality.

Corollary 1. We have X∗(∂Dy) ⊂ [x1, x2] and Y ∗(∂Dx) ⊂ [y1, y2].

Proof. Consider ∂Dy; the case of ∂Dx is completely symmetrical. Let us consider
y ∈ ∂Dy. By construction, there exists x ∈ [x1, x2], such that

y = Y+(x + 0i), ȳ = Y+(x − 0i), y = Y−(x − 0i), ȳ = Y−(x + 0i).

Note that we use the notation x+0i (resp. x−0i) to designate the limit of a sequence
in the upper (resp. lower) half plane converging to x ∈ R. From the definition of
Y ∗(x), the determination of this function at point x ± 0i is either Y+(x ± 0i) or
Y−(x ± 0i). It follows that y = Y ∗(x + ε0i) where ε = ±1 depending on the
determination of Y ∗(x). It follows that X∗(y) = X∗(Y ∗(x + ε0i)) = x ∈ [x1, x2].
Hence, X∗(∂Dy) ⊂ [x1, x2]. �

2.3. Conformal mappings. We are now able to exhibit the conformal mappings
which will play a crucial role in the derivation of the boundary functions P (0, y)
and P (x, 0).

Proposition 1. The function X∗(y) is a conformal mapping from Dy onto Dx.
The reciprocal function is Y ∗(x).

Proof. As noted before, when y is in Dy and sufficiently close to 0, X+(y) ≡ X∗(y) ∈
Dx. Since the set Dy is an open and simply connected domain and since X∗(y) is
an analytic function, X∗(Dy)∩Dx is a non null, open and simply connected domain
included in Dx.

If Dx is not a subset of X∗(Dy), let us consider the complementary set X∗(Dy)c∩
Dx 6= ∅ in Dx. Let x be a point on the boundary between this set and X∗(Dy) ∩
Dx. There exist a sequence (xn) in X∗(Dy) ∩ Dx and a sequence (x′

n) in the
interior of X∗(Dy)c ∩ Dx both converging to x. Since (xn) is in X∗(Dy) ∩ Dx,
there exists a sequence (yn) in Dy such that X∗(yn) = xn. Moreover, as we have
X∗(Y ∗(x)) = x for all x in the x-plane deprived of the segments [x1, x2] and
[x3, x4], and Y ∗(X∗(y)) = y for all y in the y-plane deprived of the segments
[y1, y2] and [y3,∞), the sequence (yn) and (Y ∗(xn)) converge to the same point.
But by definition the points Y ∗(xn) lie outside of the domain Dy. It follows that
these two sequences converge to a point on ∂Dy. By Corollary 1, this implies that
x ∈ [x1, x2], which is not possible. It follows that Dx ⊂ X∗(Dy).

If the above inclusion is strict, we consider a point x on the boundary ∂Dx.
There should exist a point y in Dy such that X∗(y) = x but this is not possible
since y should be in [y1, y2] since Y ∗(∂Dx) ⊂ [y1, y2]. It follows that X∗(Dy) = Dx.
In addition, the function X∗(y) is one to one since Y ∗(X∗(y)) = y. It follows that
this function is a conformal mapping from Dy onto Dx and the reciprocal function
is Y ∗. �
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The conformal mappings X∗ and Y ∗ between the domains Dx \ [x1, x2] and
Dy\[y1, y2] are illustrated in Figure 3. While X∗ maps Dy\[y1, y2] onto Dx\[x1, x2],
the set X∗(Dy\[y1, y2]) is an open domain surrounding Dx in the x-plane. Similarly,
Y∗(Dx \ [x1, x2]) is an open set surrounding Dy in the y-plane.

y-plane

0 1y1 y2 y3

1

0 x2 x3 x4

1

Dx ∂Dx

x-plane

X∗(y)

Y ∗(x)

∂Dy

Dy

Figure 3. Fundamental domains Dy and Dx.

It is worth noting that X∗(ξ) → x ∈ ∂Dx from inside Dx when ξ → y ∈ [y1, y2].
Similarly, Y ∗(ξ) → y ∈ ∂Dy from inside Dy when ξ → x ∈ [x1, x2]. We also have
X∗(ξ) → x ∈ ∂Dx from outside Dx when ξ → y ∈ [y1, y2] and Y∗(ξ) → y ∈ ∂Dy

from outside Dy when ξ → x ∈ [x1, x2].

3. Intersection points of the curves h1(x, y) = 0 and h2(x, y) = 0

When h1(x, y) = 0, we see from Equation (1) that we can express P (x, 0) (resp.
P (0, y)) in function of P (0, y) (resp. P (x, 0)) and h4(x, y) where the function
h2(x, y) appears in the denominator. The common solutions of the equations
h1(x, y) = 0 and h2(x, y) = 0 are then potential singularities for the function
P (x, 0) and P (0, y).

3.1. The common roots in variable y. Let y ∈ C \ ([y1, y2] ∪ [y3,∞)) and
h1(x, y) = 0, x = X±(y). If in addition h2(x, y) = 0, then y is a root of the
resultant in x of the two polynomials h1(x, y) and h2(x, y) (see Appendix A); this
resultant, denoted by Qx(y), is a polynomial of degree 5 in y, which has at most
four distinct zeros in C (the point 0 is a double root).

One trivial root of the resultant is of course 0. Another trivial root is 1 since
h1(1, 1) = 0 and h2(1, 1) = 0. As shown in Appendix A, the resultant Qx(y) can
actually be decomposed as

Qx(y) = cxy2(y − 1)Qx(y),

where Qx(y) is the quadratic polynomial

Qx(y) = λν1y
2 + ν2(ν2 − ν1 + λ)y − ν2

2

and cx is a constant.
When y describes the segment [y2, y3], the curves y → x = X±(y) describe the

contour of a closed domain Ωy in the (y, x)-plane as illustrated in Figure 4; the
contour ∂Ωy of Ωy contains the point (1, 1).
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0 1

1

h2(x, y) = 0

X−(y)

Ωy

X−(y)

y2 y3

X+(y)

Figure 4. Intersection points of the functions X±(y) and the
curve h2(x, y) = 0 when r1 ≤ 1.

When h2(x, y) = 0,

x =
ν1y

2

(ν1 − ν2)y + ν2
. (10)

As illustrated in Figure 4, when r1 < 1, the hyperbolic branch defined by Equa-
tion (10) intersects the branch x = X−(y) at some point with a negative abscissa.
The same observation is true when r1 ≥ 1. It follows that the resultant Qy(x)
has four real roots and the quadratic polynomial Qx(y) has two real roots, one is
negative and the other is in [y2, y3]. The positive root is

y∗ =
ν2

2λν1

(

−(ν2 − ν1 + λ) +
√

(ν2 − ν1 + λ)2 + 4λν1

)

and the negative root is

y∗ =
ν2

2λν1

(

−(ν2 − ν1 + λ) −
√

(ν2 − ν1 + λ)2 + 4λν1

)

.

Note that the root y∗ can be rewritten as

y∗ =
ρ1

2ρ2





1

ρ1
− 1

ρ2
− 1 +

√

(

1

ρ1
− 1

ρ2
− 1

)2

+
4

ρ1



 .

It is worth noting that y∗ does not depend on the probability p. From Appendix A,
we know that y∗ ∈ (1, y3].

3.2. The common roots in variable x. The resultant in x of the polynomials
h1(x, y) and h2(x, y) is a polynomial of degree 5 with trivial roots 0 and 1 (0 is a
double root). If x 6= 0 and (x, y) is an intersection point of the curves h1(x, y) = 0
and h2(x, y) = 0, then

y =
ν2

λ + ν2 − λx
. (11)

For x ∈ [x2, x3], the curves y = Y±(x) delineate a closed domain Ωx such that its
contour ∂Ωx contains the point (1, 1). Note that if r1 < r2, then Y+(1) = 1 and if
r1 > r2, then Y−(1) = 1.

The hyperbolic branch defined by Equation (11) intersects the branch y = Y−(x)
or y = Y+(x) at a point with abscissa x > x4. It follows that the resultant in y of
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the polynomials h1(x, y) and h2(x, y), denoted by Qy(x), can be decomposed as

Qy(x) = cyx2(x − 1)Qy(x),

where cy is a constant and

Qy(x) = λ2x2 − (λ + ν1 + ν2)λx + ν1ν2.

The roots x∗ and x∗ are given by

x∗ =
λ + ν1 + ν2 −

√

(λ + ν1 + ν2)2 − 4ν1ν2

2λ

and

x∗ =
λ + ν1 + ν2 +

√

(λ + ν1 + ν2)2 − 4ν1ν2

2λ
,

and are such that x∗ ≤ x3 < x4 ≤ x∗. In addition, we know that x∗ > 1 and hence
x∗ ∈ (1, x3]. The variable x∗ can be written as

x∗ =
1

2



1 +
1

ρ1
+

1

ρ2
−

√

(

1 +
1

ρ1
+

1

ρ2

)2

− 4

ρ1ρ2





and does not depend on the probability p.
From the above observations, we deduce the following result.

Proposition 2. The equation Qy(X
∗(y)) = 0 has a solution in (−∞, y3], which is

necessarily equal to y∗ ∈ (1, y3], if and only if x∗ = X−(y∗).
Symmetrically, the equation Qx(Y ∗(x)) = 0 has a solution in (−∞, x3], which is

necessarily equal to x∗ ∈ (1, x3], if and only if y∗ = Y−(x∗).

It is worth noting that we can have x∗ = X∗(y∗) only if 1 = X∗(1), that is
r1 ≤ 1. Similarly, we can have y∗ = Y ∗(x∗) only if 1 = Y ∗(1), that is r1 ≥ r2.

4. Boundary value problems

We first determine the function P (x, 0); the derivation of the function P (0, y) is
completely symmetrical.

Proposition 3. The function P (x, 0) is given by

P (x, 0) =















1

2πi

∫

∂Dx

gx(z)

z − x
dz for x ∈ Dx,

gx(x) +
1

2πi

∫

Cx

gx(z)

z − x
dz for x ∈ C \ Dx,

(12)

where Cx is a contour in Dx surrounding the slit [x1, x2] and such that the function
gx given by

gx(x) = (1 − ρ)
ν2Y

∗(x)(pν1Y
∗(x) − λx2)

(1 − p)xQx(Y ∗(x))

is analytic in the strip delineated by the contours Cx and ∂Dx. The function P (x, 0)
is a meromorphic function in C \ [x3, x4] with singularities at the solutions to the
equation Qx(Y ∗(x)) = 0 if they exist.
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Proof. From the analysis carried out in Section 2, we know that for y in a neigh-
borhood Vy(0) of 0+, X∗(y) is close to 0 in Dx(0, 1) (the unit disk in the x-plane).
For y ∈ Vy(0), we deduce from Equation (1) that

h2(X
∗(y), y)P (X∗(y), 0) + h3(X

∗(y), y)P (0, y) + h4(X
∗(y), y)P (0, 0) = 0,

which implies that

P (X∗(y), 0) =
p

1 − p
P (0, y) − (1 − ρ)

h4(X
∗(y), y)

h2(X∗(y), y)
.

Note that h2(X
∗(y), y) = 0 if and only if Qy(X∗(y)) = 0, which has only real

solutions (see Section 3). From Proposition 2, this equation has a solution in
(−∞, y3] if and only if x∗ = X∗(y∗), which is then the unique solution and which
is in (1, y3]. If α = Y ∗(x2) ≤ 1, the domain Dy is included in the unit disk
Dy(0, 1) and in that case the function h4(X

∗(y), y)/h2(X
∗(y), y) has no singularities

in Dy. If α > 1, then r1 > r2. In this case, x∗ is not equal to X∗(y∗) and the
function h4(X

∗(y), y)/h2(X
∗(y), y) has no singularities in Dy. Hence, by using the

same arguments as in [21], we deduce that the function P (x, 0) can be analytically
continued to the domain Dx. (We use the fact that the function P (x, 0) can be
expanded in a power series of x at point 0 with positive coefficients and P (0, y2) <
∞, which implies that P (x, 0) is analytic in the disk with center 0 and radius X∗(y2)
containing Dx.)

Now, if we use the function X∗(y), we obtain a meromorphic function in a
domain surrounding from outside the domain Dx. If we take y in a sufficiently small
neighborhood of [y1, y2] we can analytically define P (x, 0) in an outer neighborhood
of Dx.

Consider x0 ∈ ∂Dx. Then there exists y0 ∈ [y1, y2] such that X∗(y) → x0 from
inside when y → y0. In that case, X∗(y) → x̄0 from outside. Let us define the
interior (resp. exterior) limit Pi(x, 0) (resp. Pe(x, 0)) of the function P (x, 0) with
respect to the contour ∂Dy by

Pi(x0, 0) = lim
x→x0,x∈Dx

P (x, 0)

(

resp. Pe(x0, 0) = lim
x→x0,x∈C\Dx

P (x, 0)

)

.

We then deduce from the above observation that for x ∈ ∂Dy and y = Y ∗(x)

Pi(x, 0) =
pP (0, y)

1 − p
− (1 − ρ)

h4(x, y)

h2(x, y)
, Pe(x, 0) =

pP (0, y)

1 − p
− (1 − ρ)

h4(x̄, y)

h2(x̄, y)
,

since P (., 0), h2 and h4 have real coefficients. Hence, we arrive at the fact that for
x ∈ ∂Dx and y = Y ∗(x)

Pi(x, 0) − Pe(x, 0) = −2i(1 − ρ)ℑ
(

h4(x, y)

h2(x, y)

)

.

Note that for x ∈ ∂Dx, we have xx̄ = y/r1 = Y ∗(x)/r1 since x and x̄ are the
two solutions to Equation (1) in x. In addition, from Appendix A, we know that
the resultant Qx(y) can be written as

Qx(y) = px(x, y)h1(x, y) + qx(x, y)h2(x, y),

where px(x, y) and qx(x, y) are polynomials in x and y. For y = Y ∗(x), we have
h1(x, y) = 0 and then

Qx(y) = qx(x, y)h2(x, y).
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Simple computations show that

h4(x, y)

h2(x, y)
= −1 +

ν2x(y − 1)

h2(x, y)

and

qx(x, y) = λyb1(y)x − (λ(1 − p)ν1y
3 + a1(y)b1(y)),

where

a1(y) = (λ + pν1 + (1 − p)ν2)y − (1 − p)ν2,

b1(y) = (1 − p)((ν2 − ν1)y − ν2).

Hence, for x ∈ ∂Dy and y = Y ∗(x), we have

ℑ
(

h4(x, y)

h2(x, y)

)

= ℑ
(

ν2x(y − 1)(λyb1(y)x − (λ(1 − p)ν1y
3 + a1(y)b1(y)))

−ν1(1 − p)2y2(y − 1)Qx(y)

)

.

By using the fact that λyx2 − a1(y)x = −pν1y
2, we have

ℑ
(

h4(x, y)

h2(x, y)

)

= ℑ
(

ν2(pν1b1(y) + λ(1 − p)ν1yx)

ν1(1 − p)2Qx(y)

)

and then,

ℑ
(

h4(x, y)

h2(x, y)

)

=
ν2λyℑ(x)

(1 − p)Qx(y)
=

ν2λy(r1x
2 − y)

2ir1x(1 − p)Qx(y)

We finally arrive at the classical Riemann-Hilbert problem: for x ∈ ∂Dx,

Pi(x, 0) − Pe(x, 0) = (1 − ρ)
ν2Y

∗(x)(pν1Y
∗(x) − λx2)

x(1 − p)Qx(Y ∗(x))
= gx(x).

The solution to this Riemann-Hilbert problem is given by

P (x, 0) =
1

2πi

∫

∂Dx

gx(z)

z − x
dz for x /∈ ∂Dx.

The above formula defines an analytic function in Dx. For x ∈ C \ Dx, let us pick
up a closed contour Cx in Dx surrounding the slit [x1, x2] and so that the function
gx is analytic in the strip delineated by the contours ∂Dx and Cx. Then, we have

1

2πi

∫

∂Dx

gx(z)

z − x
dz = gx(x) +

1

2πi

∫

Cx

gx(z)

z − x
dz.

The function in the right hand side of the above equation defines a meromorphic
function in C \ [x3, x4]. �

We can replace the integrals appearing in Equation (12) with integrals along
the segment [y1, y2]. We then obtain elliptic integrals. Since these integrals do not
appear as simple combinations of Jacobi elliptic functions, we do not investigate
further the connection between the function P (x, 0) and elliptic functions. Finally,
it is worth noting that the radius of convergence of the function P (x, 0) is equal to
either x3 or else x∗ if y∗ = Y ∗(x∗).

By adapting the above proof to the function P (0, y), we obtain the following
result.
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Proposition 4. The function P (0, y) is given by

P (0, y) =















1

2πi

∫

∂Dy

gy(z)

z − y
dz for y ∈ Dy,

gy(y) +
1

2πi

∫

Cy

gy(z)

z − y
dz for y ∈ C \ Dy,

where Cy is a closed contour in Dy surrounding the slit [y1, y2] such that the function
gy given by

gy(y) = (1 − ρ)
λ(pν1y

2 − (1 − p)ν2X
∗(y))

pyQy(X∗(y))

is analytic in the strip delineated by the contours Cy and ∂Dy. The function P (0, y)
is a meromorphic function in C \ [y3, y4] with singularities at the solutions to the
equation Qy(X

∗(y)) = 0 if they exist.

Proof. Denote by Pi(0, y) and Pe(0, y) the interior and exterior limits of the function
P (0, y) with respect to the contour ∂Dy. We have for y ∈ ∂Dy and x = X∗(y)

Pi(0, y) − Pe(0, y) = 2i(1 − ρ)
1 − p

p
ℑ

(

h4(x, y)

h2(x, y)

)

.

We have Qy(x) = qy(x, y)h2(x, y) for x = x∗(y) with

qy(x, y) = (1 − p)ν1[ − ypν1 (p(ν2 − ν1)x + α1(x))

+ pα1(x)(ν2 − ν1)x + α1(x)2 − pν1ν2x].

Then

ℑ
(

h4(x, y)

h2(x, y)

)

=
ν2x

Qy(x)
ℑ ((y − 1)qy(x, y)) =

λ(pν1y
2 − (1 − p)ν2x)

2i(1 − p)yQy(x)
,

which implies that

Pi(0, y) − Pe(0, y) = (1 − ρ)
λ(pν1y

2 − (1 − p)ν2x)

pyQy(x)

= (1 − ρ)
λ(pν1y

2 − (1 − p)ν2X
∗(y))

pyQy(X∗(y))
= gy(y).

Note that 0 is a removable singularity of the function gy(y) since X∗(y) ∼ −r2y
2/r1

when y → 0. �

5. Asymptotic analysis

We derive in this section the tail of the distribution of the numbers of customers
in the first and the second queue. For this purpose, we consider the generating
functions P (x, 1) and P (1, y) which satisfy

P (x, 1) =

∞
∑

n=0

P(N1 = n)xn and P (1, y) =

∞
∑

n=0

P(N2 = n)yn,

where N1 and N2 are the numbers of customers in the first and the second queue,
respectively. From Equation (1), we clearly have

P (x, 1) = ν1
(1 − p)P (x, 0) − pP (0, 1)− (1 − p)(1 − ρ)

λx − pν1
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and

P (1, y) =
(ν1y + ν2)((1 − p)P (1, 0)− pP (0, y) − (1 − p)(1 − ρ)) + ν2(1 − ρ)

(1 − p)ν2 − pν1y
.

Note that the normalizing condition P (1, 1) = 1 implies that

(1 − p)P (1, 0) − pP (0, 1) = (1 − p)(1 − ρ) + ρ1 − p. (13)

Lemma 5. If r2 ≤ 1, then

(1 − p)P
(

r−1
1 , 0

)

− pP (0, 1)− (1 − p)(1 − ρ) = 0, (14)

which implies that the point 1/r1 is a removable singularity for the function P (x, 1).
If r2 > 1 (and then r1 ≤ 1 by the stability condition (3)), we have

(1 − p)P
(

r−1
1 , 0

)

− pP (0, 1) − (1 − p)(1 − ρ) < 0 (15)

and the point 1/r1 is a singularity for the function P (x, 1).

Proof. We know that P (x, 0) is a meromorphic function in the disk with center 0
and radius x3, with a unique potential singularity at point x∗. Equation (1) implies
for x 6= x∗ when x∗ is a singularity for P (x, 0)

h2(x, Y ∗(x))P (x, 0) + h3(x, Y ∗(x))P (0, Y ∗(x)) + h4(x, Y ∗(x)) = 0. (16)

When r2 ≤ 1, we have Y ∗(1/r1) = 1 and the above equation implies Equa-
tion (14). When r2 > 1 (and hence r1 ≤ 1), we have Y ∗(1/r1) = 1/r2 < 1, and
Equation (16) implies

(1 − p)P (1/r1, 0) − pP (0, 1/r2) − (1 − p)(1 − ρ) =

(1 − ρ)

ν2

r1

(

1 − 1
r2

)

ν1

r2

(

1
r2

− 1
r1

)

+ ν2

r1

(

1
r2

− 1
) < 0

Since P (0, 1/r2) ≤ P (0, 1), Inequality (15) follows. �

Similar arguments yield the following result for the function P (1, y); the proof
is omitted.

Lemma 6. We have

(1 − p)P (1, 0) − pP (0, r1/r2) − (1 − p)(1 − ρ) + p(1 − ρ) = 0. (17)

and the point r1/r2 is a removable singularity for the function P (1, y).

By using the two above lemmas, we are now able to determine the tails of the
probability distributions of the random variables N1 and N2.

Proposition 5. The quantities P(N1 = n) are when n → ∞ as follows:

Case I: If y∗ = Y ∗(x∗), which can occur only if r1 ≥ r2, then

P(N1 = n) ∼ κ
(1)
1

(

1

x∗

)n

. (18)

Case II: If y∗ 6= Y ∗(x∗), we distinguish two subcases:
Case II.1: If r2 > 1 (and then r1 ≤ 1),

P(N1 = n) ∼ κ
(1)
2 (r1)

n . (19)
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Case II.2: If r2 ≤ 1, 1/r1 is a removable singularity for P (x, 1) and we
have

P(N1 = n) ∼ κ
(1)
3

1

n
√

n

(

1

x3

)n

. (20)

Case III: If x∗ = x3 and y∗ = Y ∗(x3),

P(N1 = n) ∼ κ
(1)
4

1√
n

(

1

x∗

)n

. (21)

Here,

κ
(1)
1 = (1 − ρ)

ν1ν2((1 − p)ν2x
∗ − pν1(y

∗)2)

(λx∗ − pν1)x∗y∗Q′
x(y∗)

,

κ
(1)
2 =

1

p

(

−(1 − p)P
(

r−1
1 , 0

)

+ pP (0, 1) + (1 − p)(1 − ρ)
)

,

κ
(1)
3 =

(1 − ρ)ν1

4
√

π(pν1 − λx3)

λ2(1 − p)x2
3 + 2pν2λx3 − pν2(pλ + ν1)

Qy(x3)Q∗
y(x3)

√
x3τx,

κ
(1)
4 =

(1 − ρ)ν1

2
√

π(pν1 − λx3)

λ2(1 − p)x2
3 + 2pν2λx3 − pν2(pλ + ν1)√
x3Q′

y(x3)Q∗
y(x3)

τx,

with τx =
√

(x3 − x1)(x3 − x2)(x4 − x3) and

Q∗
y(x) =

(

x − pν1y
∗

λx∗

) (

x − pν1y∗
λx∗

)

. (22)

Proof. Note first that we always have 1/r1 ≤ x3 since

D1(1/r1) = (1 − 1/r2)
2/r2

1 ≥ 0.

In case I, note that if r2 ≤ 1, 1/r1 is a removable singularity for the function
P (x, 1). If r2 > 1, then x∗ < 1/r1 ≤ x3 since

Qy(1/r1) = ν1λ(1/r2 − p − (1 − p)/r1) < 0.

This implies that x∗ is the singularity with the smallest module. The residue of the
function P (x, 0) at point x∗ is equal to

(1 − ρ)
ν2y

∗(pν1y
∗ − λ(x∗)2)

(1 − p)x∗Q′
x(y∗) ∂Y ∗

∂x

∣

∣

x=x∗

Since h1(x, Y ∗(x)) = 0, we deduce that

∂Y ∗

∂x

∣

∣

∣

∣

x=x∗

= −
∂h1

∂x (x∗, y∗)
∂h1

∂y (x∗, y∗)
=

(y∗)2(pν1y
∗ − λ(x∗)2)

x∗(pν1(y∗)2 − (1 − p)ν2x∗)
.

A direct application of Darboux’s method then yields Equation (18).
In case II.1, the point r1 ≤ 1 is the pole with the smallest module for the function

P (x, 1) and Darboux’s method yields Equation (19).
In case II.2, the function P (x, 1) has no singularities in the disk D(0, x3) with

center 0 and radius x3. In that case, the function P (x, 0) can be represented as
follows: for |x| < x3,

P (x, 0) =
1

2iπ

∫

C(x3)

gx(z)

z − x
dz,
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where C(x3) is the circle with center 0 and radius x3. By using Equation (14), we
have

P (x, 1) = ν1(1 − p)
P (x, 0) − P (1/r1, 0)

λx − pν1
=

1

2iπ

∫

C(x3)

hx(z)

z − x
dz,

where

hx(z) = ν1(1 − p)
gx(z)

λz − pν1
.

As shown in Section 3, the point x∗ may be a pole of the function hx. Let
Res(hx; x∗) denote the residue of the function hx at point x∗. By deforming the
integration contour so as to encompass the segment [x3, x4] and since |hx(z)| <
Kx/|z| for some constant Kx > 0 when |z| → ∞, we deduce that

P (x, 1) =
1

2iπ

∫ x4

x3

hx(z + 0i) − hx(z − 0i)

z − x
dz +

Res(hx; x∗)

x − x∗

and then

P (x, 1) =
−1

π

∫ x4

x3

(1 − ρ)ν1ν2

ξ(λξ − pν1)(ξ − x)
ℑ

(

Y ∗(ξ)(λξ2 − pν1Y
∗(ξ))

Qx(Y ∗(ξ))

)

dξ

+
Res(hx; x∗)

x − x∗
.

We have

ℑ
(

Y ∗(ξ)(λξ2 − pν1Y
∗(ξ))

Qx(Y ∗(ξ))

)

=
ℑ

(

Y ∗(ξ)(λξ2 − pν1Y
∗(ξ))Qx(Y ∗(ξ))

)

Qx(Y ∗(ξ))Qx(Y ∗(ξ))
.

When ξ ∈ [x3, x4], we have

Y ∗(ξ) = Y∗(ξ)

and tedious computations show that Qx(Y ∗(ξ))Qx(Y∗(ξ)) is a quadratic polynomial
in ξ. We specifically have

Qx(Y ∗(ξ))Qx (Y∗(ξ)) =

(λν1)
2(Y ∗(ξ) − y∗)(Y ∗(ξ) − y∗) (Y∗(ξ) − y∗) (Y∗(ξ) − y∗)

By definition, we know that the above quantity vanishes for x equal to x∗ or x∗.
More precisely, in case II.2, we have Y∗(x

∗) = y∗. In addition, Y∗(x∗) or Y ∗(x∗)
is equal to y∗. Finally, we note that if x is such that h1(x, y) = 0 then pν1y/(λx)
is also such that h1(x, y) = 0. This implies that the four roots of the polynomial
Qx(Y ∗(ξ))Qx(Y∗(ξ)) are x∗, x∗, pν1y

∗/(λx∗) and pν1y∗/(λx∗). Hence,

Qx(Y ∗(ξ))Qx (Y∗(ξ)) = −λ3ν2
2

p2ν1
(ξ − x∗)(ξ − x∗)

(

ξ − pν1y
∗

λx∗

) (

ξ − pν1y∗
λx∗

)

= − λν2
2

p2ν1
Qy(ξ)Q∗

y(ξ),

where the polynomial Q∗
y(x) is defined by (22).

Moreover, we have

ℑ
(

Y ∗(ξ)(pν1Y
∗(ξ) − λξ2)Qx(Y ∗(ξ))

)

=

λ

2pν1

(

−λ2ν2(1 − p)

p
ξ3 + ν2

2(pλ + ν1)ξ − 2ν2
2λξ2

)

√

−D1(ξ).
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It follows that

P (x, 1) =
1

π

∫ x4

x3

Hx(ξ)

ξ − x
dξ +

Res(hx; x∗)

x − x∗
,

where

Hx(ξ) =
(1 − ρ)ν1

pν1 − λξ

λ2(1 − p)ξ2 + 2pλν2ξ − pν2(pλ + ν1)

2Qy(ξ)Q∗
y(ξ)

√

−D1(ξ)

and then

P(N1 = n) =
1

π

∫ x4

x3

Hx(ξ)

ξ
e−n log ξdξ − Res(hx; x∗)

(x∗)n+1
. (23)

In the neighborhood of x3, we have

− log ξ = − log x3 −
1

x3
(ξ − x3) + o(ξ − x3)

and
Hx(ξ)

πξ
= k

(1)
1

√

ξ − x3 + o(
√

ξ − x3),

where

k
(1)
1 =

(1 − ρ)ν1

2π(pν1 − λx3)

λ2(1 − p)x2
3 + 2pν2λx3 − pν2(pλ + ν1)

x3Qy(x3)Q∗
y(x3)

τx.

A direct application of Laplace’s method [2, 8] then yields

P(N1 = n) ∼ k
(1)
1 Γ (3/2)

1

n3/2

(

1

x3

)n− 3
2

when n → ∞. Since Γ(3/2) =
√

π/2, Equation (20) follows.
In case III, we have for ξ in the neighborhood of x3

Qy(ξ) = Q′
y(x3)(ξ − x3) + o(ξ − x3)

and then
Hx(ξ)

2πξ
= k

(1)
2 (ξ − x3)

−1/2 + o((ξ − x3)
−1/2),

where

k
(1)
2 =

(1 − ρ)ν1

2π(pν1 − λx3)

λ2(1 − p)x2
3 + 2pν2λx3 − pν2(pλ + ν1)

x3Q′
y(x3)Q∗

y(x3)
τx.

Laplace’s method then yields

P(N1 = n) ∼ k
(1)
2 Γ (1/2)

1

n1/2

(

1

x3

)n− 1
2

and by using the fact that Γ(1/2) =
√

π, Equation (21) follows. �

Remark. (Priority case) When we set p = 0 we give full priority to queue 2 and
the functional equation greatly simplifies due to h3(x, y) = 0. Then, for ζ(x) =
ν2/(λ + ν2 − λx), we see that h1(x, ζ(x)) = 0 and hence

P (x, 0) = −h4(x, ζ(x))P (0, 0)

h2(x, ζ(x))
=

(ν1ν2 − λν1x)(1 − ρ)

Qy(x)

=
(ν1ν2 − λν1x)(1 − ρ)

λ2(x − x∗)(x − x∗)
=

c1

x − x∗
+

c2

x − x∗
,
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with

c1 =
(ν1ν2 − λν1x∗)(1 − ρ)

λ2(x∗ − x∗)
, c2 =

(ν1ν2 − λν1x
∗)(1 − ρ)

λ2(x∗ − x∗)
.

This gives

P (x, 1) =
ν1

λx

[

c1

x − x∗
+

c2

x − x∗
− (1 − ρ)

]

and

P(N1 = n) ∼ ν2
1λx∗ − ν2

1ν2

λ3(x∗ − x∗)(x∗)2
(1 − ρ)

(

1

x∗

)n

.

Note that this agrees with regime I in Proposition 5 if

ν1(λx∗ − ν2)

λ2(x∗ − x∗)x∗
=

ν2
2

ν2
2 + λν1(y∗)2

,

which can indeed be shown to be true.

For the second queue, we first note by using Lemma 6 that the point r1/r2 is
always a removable singularity for the function P (1, y).

Proposition 6. The quantities P(N2 = n) are when n → ∞ as follows:

Case I: If x∗ = X∗(y∗), which can occur only when r1 ≤ 1, then

P(N2 = n) ∼ κ
(2)
1

(

1

y∗

)n

. (24)

Case II: If x∗ 6= X∗(y∗), then

P(N2 = n) ∼ κ
(2)
2

1

n
√

n

(

1

y3

)n

. (25)

Case III: If x∗ = X∗(y∗) and y∗ = y3,

P(N2 = n) ∼ κ
(2)
3

1√
n

(

1

y∗

)n

. (26)

Here,

κ
(2)
1 =

(1 − ρ)λ(ν1y
∗ + ν2)(pν1y

∗ − λ(x∗)2)

((1 − p)ν2 − pν1y∗)x∗Q′
y(x∗)

,

κ
(2)
2 =

(1 − ρ)(ν2 + ν1y3)
(

λp(pν2 + (1 − p)ν1)y
2
3 + 2λp(1 − p)ν2y3 − (1 − p)ν2

2

)

2
√

πp2(pν1y3 − (1 − p)ν2)Qx(y3)Q∗
x(y3)

√
y3τy,

κ
(2)
3 =

(1 − ρ)(ν2 + ν1y3)
(

λp(pν2 + (1 − p)ν1)y
2
3 + 2λp(1 − p)ν2y3 − (1 − p)ν2

2

)

√
π
√

y3p2(pν1y3 − (1 − p)ν2)Q′
x(y3)Q∗

x(y3)
τy,

with τy =
√

pν1(y3 − y1)(y3 − y2)/λ and

Q∗
x(y) =

(

y − (1 − p)ν2x
∗

pν1y∗

) (

y − (1 − p)ν2x∗

pν1y∗

)

. (27)
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Proof. In case I, y∗ is the pole with the smallest module for the function P (1, y)
and a direct application of Darboux’s method yields

P(N2 = n) ∼ (1 − ρ)λ

(1 − p)ν2 − pν1y∗

(1 − p)ν2x
∗ − pν1(y

∗)2

(y∗)2Q′
y(x∗) ∂X∗

∂y

∣

∣

∣

y=y∗

(

1

y∗

)n

and Equation (24) follows.
In case II, the function P (1, y) is analytic in the disk with center 0 and radius

y3 and we have

P (0, y) =
1

2iπ

∫

C(y3)

gy(z)

z − y
dz,

where C(y3) is the circle with center 0 and radius y3. By using Equation (17), we
have

P (1, y) = 1− ρ +
(ν1y + ν2)p(P (0, r1/r2) − P (0, y))

(1 − p)ν2 − pν1y
= 1− ρ +

1

2iπ

∫

C(y3)

hy(z)

z − x
dz,

where

hy(z) =
p(ν2 + ν1z)gy(z)

pν1z − (1 − p)ν2
.

By deforming the integration contour along the segment [y3,∞) and since the
function hy(z) is such that |hy(z)| < Ky/|z| for some constant Ky > 0 when
|z| → ∞, we deduce that

P (1, y) = (1 − ρ) +
1

2iπ

∫ ∞

y3

hy(z + 0i) − hy(z − 0i)

z − y
dz

and then

P (1, y) = (1 − ρ) +
−1

π

∫ ∞

y3

(1 − ρ)λ(ν2 + ν1z)

z(pν1z − (1 − p)ν2)
ℑ

(

(pν1y
2 − (1 − p)ν2X

∗(y))

Qy(X∗(y))

)

dz.

There holds

ℑ
(

(pν1y
2 − (1 − p)ν2X

∗(y))

Qy(X∗(y))

)

=
ℑ

(

(pν1y
2 − (1 − p)ν2X

∗(y))Qy(X∗(y))
)

Qy(X∗(y))Qy(X∗(y))
.

When z ∈ [y3,∞), we have

X∗(z) = X∗(z).

It is easily checked that the function z → z2Qy(X∗(z))Qy(X∗(z)) is a quadratic
polynomial in z. By definition, we know that this polynomial vanishes for y equal
to y∗ or y∗. More precisely, in case II, we have X∗(y

∗) = x∗. In addition X∗(y∗)
or X∗(y∗) is equal to x∗. If y is such that h1(x, y) = 0 then (1 − p)ν2x/(pν1y)
is also such that h1(x, y) = 0. This implies that the four roots of the polynomial
z2Qy(X∗(z))Qy(X∗(z)) are y∗, y∗, (1 − p)ν2x

∗/(pν1y
∗) and (1 − p)ν2x∗/(pν1y∗).

Hence,

z2Qy(X∗(z))Qy (X∗(z)) =

λ2p2ν2
1(z − y∗)(z − y∗)

(

z − (1 − p)ν2x
∗

pν1y∗

) (

z − (1 − p)ν2x∗

pν1y∗

)

and then
z2Qy(X∗(z))Qy (X∗(z)) = λν1p

2Qx(z)Q∗
x(z),

where the polynomial Q∗
x(z) is defined by Equation (22).
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Moreover, we have in the neighborhood of y3

ℑ
(

(pν1y
2 − (1 − p)ν2X

∗(y))Qy(X∗(y))
)

=

− ν1

2y

(

λp(pν2 + (1 − p)ν1)y
2 + 2λp(1 − p)ν2y − (1 − p)ν2

2

)
√

−D2(y).

It follows that

P (1, y) = (1 − ρ) +
1

π

∫ ∞

y3

Hy(z)

z − x
dz,

where the function Hy(z) is defined for z in the neighborhood of y3 by

Hy(z) =
(1 − ρ)(ν2 + ν1z)

2p2(pν1z − (1 − p)ν2)Qx(z)Q∗
x(z)

×
(

λp(pν2 + (1 − p)ν1)z
2 + 2λp(1 − p)ν2z − (1 − p)ν2

2

)
√

−D2(z).

Then, for n ≥ 1,

P(N2 = n) =
1

π

∫ ∞

y3

Hy(z)

z
e−n log zdz. (28)

In the neighborhood of y3, we have

− log z = − log y3 −
1

y3
(z − y3) + o(z − y3)

and
Hy(z)

πz
= k

(2)
1

√
z − y3 + o(

√
z − y3),

where

k
(2)
1 =

(1 − ρ)(ν2 + ν1y3)
(

λp(pν2 + (1 − p)ν1)y
2
3 + 2λp(1 − p)ν2y3 − (1 − p)ν2

2

)

2πy3p2(pν1y3 − (1 − p)ν2)Qx(y3)Q∗
x(y3)

×
√

4pν1(y3 − y1)(y3 − y2)/λ.

A direct application of Laplace’s method [8, Paragraph IV.2] then yields

P(N2 = n) ∼ k
(2)
1 Γ(3/2)

1

n3/2

(

1

y3

)n− 3
2

when n → ∞. Since Γ(3/2) =
√

π/2, Equation (25) follows.
In case III, we have for z in the neighborhood of y3

Qx(z) = Q′
x(y3)(z − y3) + o((z − y3))

and then
Hy(z)

2πz
= k

(2)
2 (z − y3)

−1/2 + o((z − y3)
−1/2),

where

k
(2)
2 =

(1 − ρ)(ν2 + ν1y3)
(

λp(pν2 + (1 − p)ν1)y
2
3 + 2λp(1 − p)ν2y3 − (1 − p)ν2

2

)

2πy3p2(pν1y3 − (1 − p)ν2)Q′
x(y3)Q∗

x(y3)

×
√

4pν1(y3 − y1)(y3 − y2)/λ.

Laplace’s method then yields

P(N2 = n) ∼ k
(2)
2 Γ(1/2)

1

n1/2

(

1

y3

)n− 1
2
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Figure 5. Comparisons between x∗, X∗(y∗) and y∗, Y ∗(x∗) when
p varies. Here, λ = 1.5, ρ1 = .4, ρ2 = .3 and x∗ = 1.5890,
y∗ = 1.2146.

and by using the fact that Γ(1/2) =
√

π, Equation (26) follows. �

5.1. Numerical examples. We shall now compare the asymptotic estimates in
Propositions 5 and 6 against results obtained by numerical calculations. Truncating
the state space by bounding one of the queue lengths leads to a Markov process on
an infinite strip, better known as a Quasi-Birth-Death (QBD) process. For these
processes, fast numerical algorithms are available (see [25]). All numerical results
presented were obtained by imposing an upper bound on the second queue of 500.

For a first scenario we take λ = 1.5, ρ1 = .4 and ρ2 = .3. Figure 5 compares
X∗(y∗) with x∗ and Y ∗(x∗) with y∗, when p varies. For example, we see that for
p < .6, Y ∗(x∗) = y∗. For p = .5, we have regime (18) for queue 1 and regime (25)
for queue 2. Results for this case are presented in Table 1. Note that (18) converges
fast to the true (numerical) value. The convergence of the branch point asymptotics
(25) seems slower, in particular the convergence of the last column in Table 1 to

the value κ
(2)
2 = 20.7454. In order to demonstrate that κ

(2)
2 is indeed the leading

constant, we compare (25) against the integral representation (28) (omitting the

residue term); see Table 2. Indeed, this confirms the correctness of κ
(2)
2 = 20.7454.

Results for p = .65 are presented in Table 3 in which case we have regime (20)
for queue 1 and regime (25) for queue 2. Note again the slow convergence to the

asymptotic constants κ
(1)
3 and κ

(2)
2 .

Table 4 illustrates some results for λ = 1.5, ρ1 = .2, ρ2 = .4 and p = .4, in which
case we have regimes (19) and (24).

Appendix A. The resultant of the polynomials h1 and h2

Generally speaking, when we have two polynomials in two variables, say,

f1(x, y) = a0(y) + a1(y)x + · · · + an(y)xn,

f2(x, y) = b0(y) + b1(y)x + · · · + bm(y)xm,
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n P(N1 = n) κ
(1)
1 (x∗)−n P(N2 = n) n−3/2(y3)

−n P(N2=n)
n−3/2(y3)−n

5 2.8301e-002 2.4891e-002 1.0567e-002 5.1414e-003 2.0553e+000
10 2.5852e-003 2.4569e-003 3.6384e-004 1.0449e-004 3.4821e+000
15 2.4842e-004 2.4252e-004 1.5032e-005 3.2693e-006 4.5978e+000
20 2.4237e-005 2.3938e-005 6.7391e-007 1.2206e-007 5.5210e+000
50 2.2151e-011 2.2140e-011 1.0132e-014 1.1140e-015 9.0958e+000

100 1.9438e-021 1.9438e-021 1.8829e-027 1.5511e-028 1.2139e+001
200 1.4983e-041 1.4983e-041 1.2762e-052 8.5067e-054 1.5002e+001
300 1.1549e-061 1.1549e-061 1.1804e-077 7.1825e-079 1.6434e+001

Table 1. Illustration of (18) and (25) for λ = 1.5, ρ1 = .4, ρ2 = .3,
p = .5. In this case x∗ = 1.5890, X∗(y∗) = 0.9555, y∗ = Y ∗(x∗) =

1.2146. We find that κ
(2)
2 = 20.7454.

n (28) n−3/2(y3)
−n P(N2=n)

n−3/2(y3)−n

102 1.8301e-27 1.5509e-28 1.1801e+1
103 4.8227e-252 2.5453e-253 1.8947e+1
104 2.3446e-2486 1.1415e-2487 2.0540e+1
105 2.4607e-24816 1.1873e-24817 2.0725e+1
106 1.1550e-248102 5.5682e-248104 2.0743e+1
107 1.8797e-2480952 9.0611e-2480954 2.0745e+1

Table 2. Comparison of (28) and (25) for λ = 1.5, ρ1 = .4,

ρ2 = .3, p = .5 and κ
(2)
2 = 20.7454.

n P(N1 = n) n−3/2(x3)
−n P(N1=n)

n−3/2(x3)−n P(N2 = n) n−3/2(y3)
−n P(N2=n)

n−3/2(y3)−n

5 2.0854e-002 7.4520e-003 2.7985e+000 2.6154e-002 2.7103e-002 9.6499e-001
10 1.2811e-003 2.1951e-004 5.8359e+000 4.1746e-003 2.9037e-003 1.4377e+000
15 8.6268e-005 9.9552e-006 8.6656e+000 8.3828e-004 4.7896e-004 1.7502e+000
20 6.0730e-006 5.3873e-007 1.1273e+001 1.8669e-004 9.4268e-005 1.9804e+000
50 1.0651e-012 4.5586e-014 2.3364e+001 4.9780e-008 1.8464e-008 2.6961e+000

100 9.3290e-024 2.5976e-025 3.5914e+001 1.3411e-013 4.2613e-014 3.1472e+000
200 1.1821e-045 2.3856e-047 4.9552e+001 2.2323e-024 6.4202e-025 3.4770e+000
300 1.9248e-067 3.3732e-069 5.7061e+001 5.3829e-035 1.4892e-035 3.6146e+000

Table 3. Illustration of (20) and (25) for λ = 1.5, ρ1 = .4, ρ2 = .3,
p = .65. In this case x∗ = 1.5890, X∗(y∗) = 1.2421, y∗ = 1.2146

and Y ∗(x∗) = 0.9392. We find that κ
(1)
3 = 81.6727 and κ

(2)
2 =

3.7799.

the resultant of the polynomials f1 and f2 with respect to x is the determinant
Resx(f1, f2) of the matrix

























an · · · a0 0 · · · · · ·
0 an · · · a0 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 an · · · a0

bm · · · b0 0 · · · · · ·
0 bm · · · b0 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 bm · · · b0































m rows







n rows



RARE EVENTS IN THE QUARTER PLANE 25

n P(N1 = n) κ
(1)
2 (r1)

n rel. error P(N2 = n) κ
(2)
1 (y∗)−n

5 2.5017e-003 2.1008e-003 1.1909 3.7599e-002 3.7227e-002
10 1.0008e-005 8.6452e-006 1.1577 2.8912e-002 2.8894e-002
15 4.0423e-008 3.5577e-008 1.1362 2.2428e-002 2.2427e-002
20 1.6403e-010 1.4641e-010 1.1204 1.7407e-002 1.7407e-002
50 7.6060e-025 7.1109e-025 1.0696 3.8058e-003 3.8058e-003

100 1.0262e-048 9.9052e-049 1.0360 3.0199e-004 3.0199e-004
200 1.9451e-096 1.9219e-096 1.0120 1.9014e-006 1.9014e-006
300 3.7427e-144 3.7292e-144 1.0036 1.1972e-008 1.1972e-008

Table 4. Illustration of (19) and (24) for λ = 1, ρ1 = .1, ρ2 = .85,
p = .3. In this case x∗ = X∗(y∗) = 1.0581, y∗ = 1.0520 and
Y ∗(x∗) = 0.2761.

which is a polynomial in y. The polynomials f1 and f2 have a non trivial root
(x0, y0) in common if and only if the resultant with respect to x is 0 at y0. This leads
to the resolution of a polynomial equation. Note that by adding to the (m + n)th
column, the ith column multiplied by xm+n−i for 0 ≤ i < n + m, Resx(f1, f2) is
equal to the determinant of the matrix

























an · · · a0 0 · · · xm−1f1

0 an · · · a0 0 xm−2f1

· · · · · · · · · · · · · · · · · ·
· · · · · · 0 an · · · f1

bm · · · b0 0 · · · xn−1f2

0 bm · · · b0 0 xn−2f2

· · · · · · · · · · · · · · · · · ·
· · · · · · 0 bm · · · f2

























,

which can written as p(x, y)f1(x, y)+q(x, y)f2(x, y), where p and q are polynomials
in variables x and y.

A.1. Resultant in x. In the case of the polynomials h1(x, y) and h2(x, y), the
resultant in x, denoted by Qx(y), is the determinant of the matrix





−λy a1(y) −pν1y
2

b1(y) (1 − p)ν1y
2 0

0 b1(y) (1 − p)ν1y
2



 ,

where a1(y) = (λ+pν1 +(1−p)ν2)y− (1−p)ν2 and b1(y) = (1−p)((ν2−ν1)y−ν2).
Straightforward computations show that

Qx(y) = −ν1(1 − p)2y2(y − 1)Qx(y),

where

Qx(y) = λν1y
2 + ν2(ν2 − ν1 + λ)y − ν2

2 .

It is easily checked that the quadratic polynomial Qx(y) has two roots with
opposite sign, as stated in Section 3. The positive root is

y∗ =
ν2

2λν1

(

−(ν2 − ν1 + λ) +
√

(ν2 − ν1 + λ)2 + 4λν1

)
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and the negative root is

y∗ =
ν2

2λν1

(

−(ν2 − ν1 + λ) −
√

(ν2 − ν1 + λ)2 + 4λν1

)

.

In addition, the value of this polynomial at point 1 is equal to λ(ν1 + ν2)− ν1ν2 =
ν1ν2(ρ1 + ρ2 − 1) < 0, which implies that y∗ > 1.

A.2. Resultant in y. The resultant in y of the polynomials h1(x, y) and h2(x, y)
is denoted by Qy(x) and is equal to the determinant of the matrix









−pν1 α1(x) −(1 − p)ν2x 0
0 −pν1 α1(x) −(1 − p)ν2x

(1 − p)ν1 (1 − p)(ν2 − ν1)x −ν2(1 − p)x 0
0 (1 − p)ν1 (1 − p)(ν2 − ν1)x −ν2(1 − p)x









,

where α1(x) = x(λ + pν1 + (1 − p)ν2 − λx). Straightforward computations show
that

Qy(x) = −ν2ν1(1 − p)2x2(x − 1)
(

λ2x2 − (λ + ν1 + ν2)λx + ν1ν2

)

.

The quadratic polynomial in the right hand side of the above equation has two
positive roots equal to

x∗ =
λ + ν1 + ν2 −

√

(λ + ν1 + ν2)2 − 4ν1ν2

2λ

and

x∗ =
λ + ν1 + ν2 +

√

(λ + ν1 + ν2)2 − 4ν1ν2

2λ
.

If we set Qy(x) = λ2x2 − (λ + ν1 + ν2)λx + ν1ν2, x∗ and x∗ are the two roots of
this polynomial with x∗ < x∗ and since Qy(1) = ν1ν2(1 − ρ1 − ρ2) > 0, x∗ > 1.
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