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Abstract

In call centers it is crucial to staff the right number of agents so that the targeted service
levels are met. These staffing problems typically lead to constraint satisfaction problems that
are hard to solve. During the last decade, a beautiful asymptotic theory has been developed to
solve such problems for large call centers operating in the quality-and-efficiency-driven (QED)
regime. In this asymptotic regime, optimal staffing rules are known to obey the square-root
staffing principle. This paper presents refinements to this principle that take into account the
effect of impatient customers and work well for small systems.

1 Introduction

A key challenge in managing call centers is to balance the trade-off between operational costs
and quality-of-service offered to customers. Most operational costs involve staffing costs, which
makes it essential to develop adequate models of call center operations that relate operational
performance to staffing levels; see Garnett et al. (2002), Gans et al. (2003), and Borst et al. (2004)
for background.

Due to recent theoretical studies, backed up by assessments of empirical data, it is by now
widely accepted that the phenomenon of impatient customers (the fact that waiting customers
may abandon the system before receiving service) is one of the driving factors for call center per-
formance (see Garnett et al. (2002) for a thorough discussion). Among different queueing models
for call centers with impatient customers, the simplest, yet widely used one is the completely
Markovian M /M /s + M model, also referred to as the Erlang A model. Its performance analysis
has been an important subject of study in the literature (see for example Garnett et al. (2002)
and Whitt (2006b)), not only because the Erlang A model is worthy of being used in practice (see
Mandelbaum and Zeltyn (2007)), but also because it delivers valuable approximations for more
general abandonment models (see Whitt (2005a,b)).

There is by now a vast literature on the asymptotic analysis of call center models, which has
proven to provide useful managerial insights. In these asymptotic studies, a finite-size queueing
system is perceived as one in a sequence of queues and then the limiting behavior of this sequence is
used to approximate the performance of this finite-size system. Depending on how this sequence is
parameterized, its limiting behavior is different, giving rise to different approximations (see Borst
et al. (2004) and Mandelbaum and Zeltyn (2008)). More specifically, queues with abandonments
have been analyzed through fluid approximations (see for example Whitt (2005b, 2006a), Kang
and Ramanan (2008), and Zhang (2009)) and diffusion approximations (see, e.g., Dai et al. (2009)
and Mandelbaum and Momcilovic (2009)).
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One of the most effective approximations arises in the Quality-and-Efficiency-Driven (QED)
regime, in which the number of servers s and the offered workload R are related according to
a square-root principle, namely s = R + VR, for a constant 3. Square-root staffing and the
QED limiting regime for multi-server queues without abandonments were brought to the center
of attention by the work of Halfin and Whitt (1981). Garnett et al. (2002) study the steady-state
performance approximation (as well as a process-level approximation) for the Erlang A model
in the QED regime, and Zeltyn and Mandelbaum (2005) extend the asymptotic steady-state
performance analysis to the M /M /s + G model in the QED regime (as well as in other regimes).

Based on the QED diffusion approximations developed by Halfin and Whitt (1981), Borst et al.
(2004) provide a rigorous justification, in an asymptotic framework, of applying the square-root
staffing principle to two classes of problems: constraint satisfaction and cost minimization. They
observe that square-root staffing is accurate over a wide range of system parameters for the Erlang
C (or M/M/s) model without abandonments. Mandelbaum and Zeltyn (2008) apply the results
in Zeltyn and Mandelbaum (2005) to the constraint satisfaction problem for the M/M/s + G
model, and find that square-root staffing is not as robust as in models without abandonments.
In particular, for the Erlang A model, they observe from numerical experiments that square-
root staffing is far from optimal for satisfying loose constraints on the tail of the waiting time
distribution, and recommend staffing based on a new type of limiting approximation referred to
as ED+QED (cf. (35)).

Therefore, for queueing models with abandonments, it is of great interest to understand why the
inaccuracy of square-root staffing arises, and to develop performance approximations and staffing
rules that are accurate in all circumstances. One approach towards accomplishing this goal, which
is taken in the present paper, is to explicitly characterize, and subsequently correct, the errors of
conventional QED diffusion approximation and square-root staffing. Correcting the error of the
diffusion approximation, thus obtaining what is known as corrected diffusion approximation, has
previously been studied by Blanchet and Glynn (2006) and Siegmund (1979) in the random walk
or GI/G/1 queue setting and by Janssen et al. (2008a,b) for the Erlang B and C models. Yet,
the explicit characterization of the error of a staffing prescription is more challenging, because
both the approximative staffing level and the exact (optimal) one are typically defined implicitly,
i.e., characterized as a solution to some equation. The only study in this regard is the work by
Janssen et al. (2008b), which develops refined square-root staffing rules for the Erlang C model.
The present paper extends this approach to the Erlang A model. In comparison to the Erlang C
model, the Erlang A model brings about additional mathematical challenges. This increased level
of technicality gives in return valuable insights for a much more realistic model for call centers
than the Erlang C model (see Mandelbaum and Zeltyn (2007)). Our main results are captured
in Theorems 2, 4, and 6, which formally establish the staffing refinements as a characterization of
the optimality gap of conventional square-root staffing; we believe that the implication of these
results holds in more generality (e.g., for cost minimization, capacity allocation among multi-class
customers, or staffing multi-skill call centers): a refinement of performance approximation by an
order of v/R can be used to yield a refinement of staffing prescription by an order of v/R. Also,
the findings in this paper are completely different: unlike in the Erlang C model, the refinements
are significant in many cases, due to different system parameters. This makes the refined staffing
rules particularly relevant for practical purposes.

Another motivation for this study is to assess analytically the accuracy of square-root staffing
and its underlying QED approximations in the presence of abandonments. Although the develop-
ment of accurate and usable performance approximations has been the primary motivation for a
large body of research over recent decades, there has been little work or success on the analytical
assessment of the accuracy (or equivalently the error) of various asymptotic performance approx-
imations. Most approximations are justified by proving limit theorems, while the assessment of
their accuracy is usually performed empirically or via simulation. The explicit characterization of
the error that we develop allows us to perform this task analytically. One related study in this
regard is the work by Bassamboo and Randhawa (2009), which investigates the error in the fluid
approximations of the steady-state expected queue-length and abandonment probability and shows
that the fluid approximations are O(1) accurate in the overloaded regime under some regularity



conditions.

In short, this paper makes the following contributions. First, for a useful call center model
taking abandonments into account, namely the Erlang A model, we develop corrected diffusion
approximations for several main steady-state performance measures that are of independent in-
terest. Second, we apply the corrected approximations to develop refined square-root staffing
rules for several constraint satisfaction problems with respect to these performance measures. The
refined staffing rules are as easy to implement as the conventional square-root staffing principle,
and yet the error of the refined rules is smaller, as is shown both analytically and numerically.
Also, the explicit form of the refinement yields important insights into the appropriateness of
the conventional square-root staffing for call centers with different demand volumes and staffing
objectives, and enables us to provide practical recommendations on when to use the refined or the
conventional square-root staffing rules.

The remainder of this paper is organized as follows. Section 2 provides a technical overview of
the asymptotic dimensioning framework and our refined staffing approach, as well as a discussion
on the influence of abandonments. In Sections 3, 4, and 5, based on corrected diffusion approxima-
tions, we develop the refined square-root staffing rules for three constraint satisfaction problems.
Section 6 contains concluding remarks.

2 The Erlang A model and refined staffing

Let us first introduce the Erlang A model, also referred to as the M/M/s+ M queue. Customers
arrive according to a Poisson process with rate A and require service times that are independent
and exponentially distributed with mean 1/u. There are s homogeneous servers working in parallel,
and there is unlimited waiting space. Customers that are waiting in the queue abandon the system
after an exponentially distributed time with mean 1/6. Without loss of generality, we assume p = 1
throughout this paper. Therefore, the traffic intensity is p = A/s. Let W denote the steady-state
waiting time of a customer before receiving service or abandoning the system. We denote P{W >
0} by A(s, A, 6), and henceforth refer to A(s, A, 0) as the Erlang A formula, naturally generalizing
the Erlang B and C formulas through limg_,o, A(s, A, 6) = B(s, A) and limg g A(s, A, 0) = C(s, A).
Let P{Ab} denote the steady-state probability that a customer abandons the system.

2.1 Asymptotic dimensioning

The core of staffing problems in call centers is to determine the right trade-off between quality and
capacity. Quality is formulated in terms of some targeted service level. Take as an example the
delay probability A(s,\,0). A large delay probability is perceived as negative, and the targeted
service level could be to keep the delay probability below some value €. The smaller ¢, the higher
the target, and the better the offered service. Once the targeted service level is set, the objective
from the call center’s perspective is to determine the lowest staffing level s such that the target
A(s, A\, 0) < e is met. This is what we have referred to as a constraint satisfaction problem.

For simplicity, we assume throughout that staffing levels can take on non-integer values. The
delay probability is a function of the three model parameters s, A and 0, and the analytic extension
of A(s, A, 0) to all positive real s is a continuous and monotone decreasing function in s. Therefore,
the constraint satisfaction problem is equivalent to finding the sopy such that A(sept, A, 60) = €.
To solve this inverse problem, we shall invoke the theory of asymptotic dimensioning introduced
in Borst et al. (2004) and extended in Mandelbaum and Zeltyn (2008) to abandonments. This
theory fully exploits the QED regime for large call centers, in a way that reduces considerably the
complexity of the inverse problem. That is, under square-root staffing s = A + 8v/\ with 3 some
fixed constant, and in the QED regime (when s — 00), the performance measures in the Erlang A
model can be approximated by their diffusion limit counterparts. For instance, A(s, A,6) can be
approximated by some function A.(3) that only depends on 8 and 6 (and no longer on s or \).
Hence, the inverse problem can then be approximatively solved by searching for the (3, such that
A.(Bx) = €, and then setting the staffing level according to s. = A + [s VvA. In this asymptotic



approach, it should be intuitively obvious that the better the approximation A(s, A, 8) ~ A.(f),
the smaller the error |sqpt — s«|. Based on the QED regime, one expects the approximation s,
to be accurate for large values of A\, and in particular for large-scale service systems such as call
centers.

2.2 Refined staffing

Mandelbaum and Zeltyn (2008) show that any staffing rule of the form A + B.v/A + o(v/A) is
asymptotically optimal under the M /M /s+ G model assumption, where a function f(A) = o(g(\))
if limy oo f(A)/g(A\) = 0. The main technical contribution of this paper is to develop a stronger
form of optimality by characterizing the 0(\/X) small order term. Specifically, we shall develop
refined staffing rules for the Erlang A model. These refined staffing rules should be capable of
dealing with the effects of abandonments, thus extending the work of Janssen et al. (2008b). Our
approach consists of first developing corrected diffusion approximations for the objective functions,
and then characterizing the approximative solutions to the constraint satisfaction problems. The
refined staffing rules are of the form

S.:)\+6*\/X+6o; (1)

with (3, some function of S, 8, A, and the constraint target level € that depends on the staffing prob-
lem under consideration. For three different constraint satisfaction problems, we shall uniquely
identify ., and prove that the refined staffing level in (1) yields

Sopt — e = ON"Y/?), (2)

where a function f(A) = O(g(N)) if limsupy_, o [f(A)/g(N)] < oco. We refer to the order term
that expresses the difference between the exact optimal staffing level and the approximate staffing
level as the optimality gap. Hence, the optimality gap of s, is O()\*l/ 2), which suggests that the
staffing level s, not only becomes accurate in the QED regime (A — o0), but is also more accurate
in situations away from the limit. Note that se = s, + 8. We shall prove that the optimality gap
of the conventional staffing level s, equals O(1), which indicates that se is a clear improvement.
In addition, because [, in fact describes the optimality gap of s,, it allows us to perform an
analytical assessment of the accuracy of conventional square-root staffing and its underlying QED
approximations, and to make some practical recommendations for call center staffing.

2.3 The influence of abandonments

We consider three different constraint satisfaction problems: (i) zero delay constraint P{IW >
0} <, (ii) excess delay constraint P{W > T} < e with T > 0, and (iii) abandonment constraint
P{Ab} < e. In each problem, we search for the lowest staffing level such that the constraint is
met. Clearly, all three performance measures decrease as a function of s, and higher staffing levels
are required when € becomes smaller.

The influence of abandonments on the accuracy of conventional square-root staffing or the
magnitude of G, is less obvious. By deriving and examining its explicit expression, we find that
for the first two problems, due to the presence of customer abandonments, (3, is significant if €, A,
and/or 6 are large. This is in stark contrast to the fact that in the absence of abandonments, as
reported in Janssen et al. (2008b), G, is mostly negligible and only becomes slightly larger than
one if € is extremely small. Another intriguing observation is that (, is especially significant if
the staffing problem leads to an overloaded system, i.e., 8, < 0 and hence s, < A. For the third
problem (which is not applicable without abandonments), 3, shows a clear insensitivity to § and

A

3 Zero delay constraint

The objective of the zero delay constraint satisfaction problem is to determine the number of servers
that are required to ensure that A(s, A,0) = P{W > 0} is below a threshold e¢. The conventional



square-root staffing rule is to use the approximation A(s, A, 6) ~ A.(3), obtain the solution to
A.(B) = €, say B, and then prescribe the staffing level as s, = A + BV Now, according to
our scheme for refined staffing described in Section 2, we shall first derive a corrected diffusion
approximation for the objective function, and then solve the asymptotic inverse problem. Let
®(-) and ¢(-) denote the standard normal cumulative distribution function and density function,
respectively.

Theorem 1 (Refined approximation for delay probability). Let Ax(8) = A(s, A, 0) with 8 =
(s — M)A\"Y2 assumed fized. Then,

Axo(B) = Au(B) + ABAT2 + OO, ®)
where
4.9 = (1 VBa@H() ()
A.(8) = A0 (3VAHADA) ™ = o)) o)
ho(B) = 5 VBH(5) (GU3) Hy ()62 — GBI +1 4+ 5G(8)) (6)
6 =30, e = 2O @

Our proof of Theorem 1 is based on the following relation between the Erlang A and Erlang
B formulas (e.g., equation (A.1) in Mandelbaum and Zeltyn (2007))

B(s,\)" 1 -1 g
(50)(\J6)~17(5]6, 7]6)’ ®)

with « the incomplete gamma function (cf. (45)) and B(s, A) the Erlang B formula, or the blocking
probability in the corresponding M/M/s/s queue. First, a power series approximation in terms
of s71/2 is derived for the denominator of the second term in (8), which involves the incomplete
gamma function. Then, we combine this result with an approximation of B(s,\)™! developed
in Janssen et al. (2008b) to obtain a series approximation of A(s, \,#)~! with respect to s~1/2.
Finally, we derive the desired power series expansion of the Erlang A formula in A='/2 using the
square-root relation between A and s. We include the full proof in Section A.

Relation (8) can be further exploited to derive a set of upper and lower bounds for the Erlang
A formula. Specifically, the incomplete gamma function term ~(:) in (8) can be expressed in
terms of the (complete) gamma function I'(+), for which sharp bounds are derived in Spira (1971).
This, combined with the bounds for the Erlang B formula developed in Janssen et al. (2008a),
immediately yields bounds for A(s, ), ).

The corrected diffusion approximation for the delay probability is thus given by the two terms
on the right-hand side of (3), where we ignore the order term. If the second term is also ignored,
we retrieve the conventional first-order diffusion approximation Ay ¢(5) = A.(5) that was derived
in Garnett et al. (2002). An additional check follows from the case without abandonments. Indeed,
by letting  — 0 in (3) and using Hy(8) ~ B/v/8, we retrieve Theorem 2 of Janssen et al. (2008b).

Despite the complicated expression of the corrected diffusion approximation, its computation
is as easy as the conventional approximation, because the additional computation of the higher-
order term only involves simple algebraic operations on quantities which are already required for
evaluating the first-order diffusion approximation (e.g., G(83) and Hy(5)).

We shall now use the corrected diffusion approximation to derive a refined staffing level.

A(s,\, )1 =1+

Theorem 2 (Refined staffing level for zero delay constraint). Let sopt € (0,00) be the solution to
A(s,\,0) = €. Let B, be the solution to A.(B8) =€, s. = A+ BV, and se = s, + Be with

o ﬂf \/aHG(ﬂ*)
&FQEWW)' o)



Then,

Sopt — S5 = O(1), (10)
Sopt — 5S¢ = O(ATV/2). (11)
Proof. Proof. Define (35 as the solution to
Ac(B) + A(BOAT2 =, (12)
Let g(A\) := Bx — B«, and then (12) can be rewritten as
Au(Be 4+ 9(N) + Ae(Be + gA)AT? =€ (13)
A first-order Taylor expansion of (13) yields
A(B) + O(g(N) + Ae(B)AH2 + O(g(NA?) = €. (14)
Because A, (83.) = €, it immediately follows that
g(A) = O(V3). (15)
Then, we apply a second-order Taylor expansion to (13) to have
Au(Be) + ALBGN) + O(g(A)?) + Aa(BIAT2 + O(gAT2) = . (16)
Using (15) and A, (8x) = €, we solve (16) and obtain that
g(\) = —jﬁ:ggjwﬂ +O(\). (17)
Therefore, 3y is well approximated by S, + BeA™ 2, up to O(A™1), where
=K )

By using (4), (5), and A.(8«) =€, (18) can be further simplified as (9).

We next turn to proving the optimality gap results in (10) and (11). Let SBops = (Sopt — A2,
The desired result is equivalent to
Bopt — B = OA71/2), (19)
Bopt = (B + BA712) =01, (20)
From Theorem 1, we have that
€= Ax0(Bopt) = Au(Bopt) + ONV/2). (21)
Let g«(A\) := Bopt — B+. Then applying a first-order Taylor expansion to (21), we obtain that
€= A.(B.) + O(g.(\) + O(A~1/?). (22)
Since A.(B:) = €, g«(\) = O(A"1/2) or (19) holds. Because the derivation of 3, implies that
Br— (8.4 BA72) =00, (23)
in order to conclude (20), it suffices to prove that
Bopt — Br = O(A1). (24)
Let go(A) := Bopt — Bx. The rest of the proof is similar as above:
€= Axo(Bopt) = Ax(Bopt) + Au(Bop) A2 + O(AT) (25)
= A.(8) + Ogs (V) + Au(BIA2 + O(g0 (MA™2) + OO, (26)
?in;:e AL(Br) + Ae(BA"Y2 = €, we find that go(\) = O(A™1), which proves the assertion in
24). O



For the zero delay constraint satisfaction problem, we recommend the refined staffing level
Se = Sx + Be, with S, defined in (9). Note that G, is just a simple function of S., 6, and e. Since
the classical staffing scheme already requires solving for (., which is the hardest task, adapting
the refined scheme using (o requires hardly any additional computation. Therefore, we claim that
obtaining s, is as easy as S., while s, achieves a stronger asymptotic optimality than s.. One
interpretation of Theorem 2 is that [, as defined by (9), exactly captures the dominating term
of the error of s,, or the O(1) term in (10). By adding the refinement J,, the optimality gap of
se decreases at the rate of \™'/2. We remark that it is proved in Mandelbaum and Zeltyn (2008)
that sopt — 8+ = o(vV/X\), whereas our refined staffing approach enables us to show that the o(v/A)
gap is actually O(1).

3.1 Numerical experiments

In our extensive numerical experiments, |Sops — Se| is almost always less than 1. As an indication
of the error made by the conventional square-root staffing, B, becomes more significant as the
abandonment rate 6 increases. Also, with the increase of 6, B, gradually becomes a monotone
increasing function of the targeted delay probability.

0.7
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0. —9—9:1/2
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Figure 1: The refinement (3, as a function of €, with 6 < 1.
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Figure 2: The refinement (3, as a function of €, with 6 > 1.



Figure 1 shows that, when 6 < 1, 8, is always less than 1 and its curve gradually turns to
symmetrically bowl-shaped from monotone decreasing in €, as 6 increases to 1. In Figure 2, as 6
further increases from 1 to 15, 8, becomes more significant. In particular, when 6 > 5, 3, is always
larger under a looser delay constraint (i.e., a greater e value). For example, as € increases from
0.1 to 0.9, B, increases from about 1 to 6, for # = 10, and from 1 to nearly 9, for #=15. Because
(e does not depend on A, such errors are rather severe for a small or moderate size system. For
instance, Tables 1 and 2 display the case of A = 30, in which the rather large errors are almost
completely corrected by (.

€ Sopt s Sy Sopt — S e Se Sopt — Se
0.1 35.6364 0.8568 34.6932  0.9432  0.9267 35.6199  0.0165
0.2 32.2059 0.2161 31.1838  1.0222  0.9927 32.1764  0.0295
0.3 29.5538 -0.3028 28.3416  1.2123  1.1717 29.5132  0.0406
0.4 27.1519 -0.7918 25.6630  1.4889  1.4348 27.0978  0.0541
0.5 24.7924 -1.2909 22.9292 1.8632 1.7898  24.7190 0.0734
0.6 223326 -1.8324 19.9637 2.3690 2.2654 22.2291  0.1036
0.7 19.6159 -2.4580 16.5368  3.0791  2.9241 19.4609  0.1550
0.8 16.3821 -3.2471 12.2151  4.1669  3.9130 16.1281  0.2540
0.9 11.9658 -4.4276 5.7491 6.2167 5.7145 11.4636 0.5022

Table 1: P{W >0} =¢,6 = 10, A = 30

€ Sopt s Sx Sopt — S e Se Sopt — Se
0.1 35.1431 0.7333 34.0162 1.1269 1.0923 35.1085  0.0346
0.2 31.5051 0.0320 30.1751 1.3299  1.2773 31.4524  0.0527
0.3 28.6506 -0.5502 26.9865  1.6642  1.5944 28.5809  0.0697
0.4 26.0387 -1.1095 23.9231 2.1156  2.0238 25.9469  0.0918
0.5 23.4556 -1.6893 20.7473  2.7083  2.5836 23.3309  0.1247
0.6 20.7546 -2.3265 17.2570  3.4976  3.3201 20.5771  0.1776
0.7 17.7769 -3.0710 13.1796  4.5973  4.3282 17.5078  0.2691
0.8 14.2667 -4.0185  7.9900 6.2767  5.8296 13.8196  0.4471
0.9 9.6101 -5.4473 0.1639 9.4462  8.5488  8.7128 0.8973

Table 2: P{W > 0} =¢,6 = 15, A = 30

€ Sopt ﬂ* Sx Sopt — Sx ﬂo Se Sopt — Se
0.1 2996.8250 -0.1231  2993.2590  3.5659 3.5069  2996.7660  0.0591
0.2 2933.3450 -1.3225  2927.5630  5.7820 5.6995  2933.2620  0.0824
0.3 2874.1970 -2.4526  2865.6640  8.5331 8.4198  2874.0840  0.1133
0.4 2812.8280 -3.6347  2800.9180 11.9103 11.7517 2812.6700  0.1586
0.5 27457460 -4.9359  2729.6470 16.0990 15.8728 2745.5200  0.2263
0.6 2669.3000 -6.4292  2647.8580 21.4421 21.1122 2668.9700  0.3299
0.7 2577.8430 -8.2299  2549.2310 28.6124 28.1160 2577.3470  0.4964
0.8 2459.8590 -10.5766 2420.6950 39.1638 38.3702 2459.0650  0.7936
0.9 22814960 -14.1803 2223.3110 58.1854  56.7158 2280.0270  1.4696

Table 3: P{W > 0} = ¢, = 100, A = 3000

For large systems, if the customer patience level is low, (B, can be quite substantial. For
example, Table 3 shows that, when § = 100, s. can be off by as many as 20 to 60 servers, while
se provides an extremely accurate approximation of sop¢. We note that 3, tends to be significant
when (. < 0, as illustrated in Tables 1, 2, and 3. For a number of other cases, especially when
B« > 0, the refinement |3,| turns out to be less than one, which provides theoretical support for the



adequacy of square-root staffing or QED approximation in those parameter regions. Therefore, we
recommend that the refined square-root staffing rule should be adopted for any small to moderate
size call center and any large size call center with impatient customers, especially if it operates
under a moderate or loose zero delay constraint. In other cases, the conventional staffing rule can
be followed without running the risk of substantial inaccuracies.

4 Excess delay constraint

We now turn to the constraint satisfaction problem in which the objective function is the steady-
state probability that the delay exceeds a certain level T. Specifically, we want to determine the
minimum number of servers required to meet the constraint P{W > T} < e. We start by deriving
a corrected diffusion approximation for this performance measure.

Theorem 3 (Refined approximation for excess delay). Let 3 = (s — \)A~Y/? assumed fized.
P{W > A2} = Au(B)da (B, 1) + [Au(8)de (B, 1) + As(B)du (B, )] ATH/2 + O(ATY), (27)

where
(=0t — BO~1/2)
o(=po )
R )
(—v/Bt— B6-172)

d.(B,t) =

(0.0 = .(58.0) (1 (6.6/2.0 - (0200 H0(5) 01 (29)

I (a,b,t) = / exp{—ay — by*}y>dy, Va >0,b>0,t>0. (30)
t
The main step in the proof of Theorem 3 is to show that
P{W > tA7Y2W > 0} = du (B, 1) + du(B, A2+ O(A7). (31)

We prove (31) by deriving and combining corrected approximations for two integral-form building
blocks of the exact expression for P{W > tA~'/2|W > 0}. In particular, we apply the Laplace
method to analyze their asymptotic behavior and refine the results presented in Section 10 and
Theorem 4.1(g) in Zeltyn and Mandelbaum (2005). The detailed proof is included in Section B.

The right-hand side of (27), excluding the order term, serves as the corrected diffusion approx-
imation for P{W > t\~1/2} while the conventional diffusion approximation is given by the first
term only, i.e., P{W > tA\~1/2} = A, (B)d.(3,t). Again, the evaluation of the correction term only
involves simple algebra on known quantities from the computation of the conventional diffusion
approximation, and in particular I4(a, b,t) can be calculated fast using (68), where it is expressed
explicitly in terms of ®(-).

Now we first consider the constraint of the form P{W > tA~1/2} <. Because the (corrected)
diffusion approximations for P{W > tA~'/2} in (27) and P{W > 0} in (3) have exactly the
same order in each corresponding term, the staffing procedure in Section 3 and, in particular, the
expression (18) can be directly applied here with proper substitutions, leading to the following
result:

Theorem 4 (Refined staffing level for excess delay constraint). Let sope € (0, 00) be the solution to
P{W >t \"1/2} = ¢, for some t > 0. Let (3, be the solution to A,(3)d,(3,t) =€, s, = A+ SV,

and Se = S4 + (e wWith
As(Bi)de(Bs,t) + Ae(Bi)du(Bs, 1)

ﬁo - - 5 32

4,3 (B..1) + A (B)d 5. ) 32)
where d,,(-,-) denotes the derivative of d.(-,-) with respect to the first arqument. Then,

Sopt — 82 = O(L), (33)

Sopt — 5S¢ = O(NTV/2). (34)



Proof. Proof. We follow the same procedure as for Theorem 2, by replacing P{W > 0} with
P{W > tA"12} A,(-) with A,(-)d«(-), and A(-) with A, (-)de(-) + Ae(-)dx(-). We omit further
details. 0

For staffing in practice, when the constraint has the form P{WW > T} < ¢, for a fixed T, we
let t = T/A. Then the constraint to satisfy becomes P{W > tA\~1/2} < ¢, and the above staffing
rule applies. In this case, O, depends on 6, €, A, and T (through S, and t).

4.1 Numerical experiments

In this subsection, we investigate numerically the gain of refined staffing. We also compare square-
root staffing, both conventional and refined, with ED+QED staffing, which is a staffing principle
developed for satisfying the excess delay constraint in Mandelbaum and Zeltyn (2008). Specifically,
for the constraint P{WW > T'} < ¢, Theorem 4.4 in Mandelbaum and Zeltyn (2008) prescribes the
staffing level

spq = e TA 4+ 6"V, (35)
where
=31 —e-eT)Vhe T, (36)

Note that, if € > e~ 7, Sopt = 0. We do not consider such cases.

First, we focus on the constraints with small 7" values, which describes some of the key per-
formance measures for call centers. For example, extremely small T" and ¢ values may correspond
to emergency call centers, such as 911 in the U.S., and P{W >20 seconds} < ¢, for some ¢ at the
order of 10%, is the rule of thumb for many other types of call centers. Note that, in the following
analysis, T' = 0.05 is equivalent to 20 seconds if the average service time is 400 seconds.

€ Sopt s Sx Sopt — S« e Se Sopt — Se SEQ Sopt — SEQ
0.001 47.001 2.845 45.585 1.417 1.501 47.086  -0.085 41.051 5.951
0.002 45.688 2.637 44.444 1.244 1.316  45.760 -0.072 40.238 5.451
0.003 44.890 2.510 43.745 1.144 1.209 44.954  -0.065 39.738 5.152
0.004 44.307 2.416 43.233 1.074 1.134 44.367  -0.060 39.371 4.937
0.005 43.846 2.342 42.826 1.020 1.076  43.902  -0.056 39.078 4.768
0.006 43.463 2.280 42.487 0.976 1.029 43.516  -0.053 38.834 4.629
0.007 43.134 2.226 42.194 0.939 0.990 43.184 -0.051 38.624 4.510
0.008 42.845 2.179 41.937 0.907 0.956 42.893  -0.049 38.438 4.407
0.009 42.587 2.137 41.708 0.880 0.926 42.634  -0.047  38.272 4.315
0.010 42.354 2.099 41.499 0.855 0.900 42.399  -0.045 38.121 4.233

Table 4: P{W > 0.05} = ¢,0 = 0.5, A\ = 30, e = 0.001 to 0.01

€ Sopt s Sy Sopt — Sx Be Se Sopt — Se SEQ Sopt — SEQ
0.1 36.429 1.110 36.080 0.349 0.366  36.445  -0.017  34.106 2.322
0.2 34.118 0.712 33.898 0.219 0.230 34.129  -0.011 32.410 1.708
0.3 32.528 0.434 32.375 0.153 0.161 32.535  -0.008 31.182 1.346
0.4 31.219 0.202 31.108 0.111 0.117 31.224 -0.006 30.128 1.090
0.5 30.035 -0.009 29.953 0.082 0.086  30.039  -0.004 29.138 0.897
0.6 28.886 -0.214 28.826 0.060 0.062 28.888  -0.002 28.139 0.747
0.7 27.685 -0.429 27.648 0.037 0.037 27.685  -0.000 27.056 0.629
0.8 26.301 -0.675 26.303 -0.002 -0.003 26.300 0.001 25.754 0.547
0.9 24.336 -1.007 24.486 -0.150 -0.135 24.351 -0.015 23.812 0.523

Table 5: P{W > 0.05} =¢,0 =0.5,\ = 30, =0.1 to 0.9
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€ Sopt s S Sopt — S« e Se Sopt — Se SEQ Sopt — SEQ
0.001 45.791 2.680 44.678 1.113 1.226 45.904  -0.113 54.599 -8.808
0.002 44.360 2.452 43.429 0.931 1.031  44.460  -0.099 52.459 -8.099
0.003 43.479 2.310 42.653 0.826 0.918 43.571 -0.092 51.141 -7.662
0.004 42.831 2.205 42.079 0.751 0.838 42917  -0.086 50.173 -7.342
0.005 42.313 2.121 41.619 0.694 0.776  42.396  -0.082 49.400 -7.087
0.006 41.880 2.051 41.233 0.647 0.726  41.959  -0.079 48.755 -6.875
0.007 41.506 1.990 40.898 0.608 0.684 41.582  -0.076 48.198 -6.692
0.008 41.175 1.936 40.602 0.573 0.647 41.249  -0.074  47.707 -6.531
0.009 40.879 1.887 40.336 0.544 0.615 40.951 -0.072 47.267 -6.387
0.010 40.610 1.843 40.093 0.517 0.587 40.680  -0.070 46.867 -6.257

Table 6: P{WW > 0.05} =¢,0 =4,A=30

In this case, if the abandonment rate is low, the conventional square-root staffing is extremely
accurate, regardless of the system size or the targeted service level. Tables 4 and 5 illustrate the
cases for small \ values; similar findings hold for other A and e values. ED4+QED staffing tends
to prescribe staffing levels that are too low, especially under tight constraints, as shown in Table
4. This parameter region is of particular interest to the staffing of emergency call centers, having
relatively patient customers and tight delay constraints.

€ Sopt Be 54 Sopt — S« e Se Sopt — Se SEQ Sopt — SEQ

0.05 909.683 -3.046 903.683 6.000 6.535 910.218  -0.535  907.195 2.488
0.10 887.412 -3.766 880.908 6.504 7.086 887.994  -0.582  885.363 2.049
0.15 872.193 -4.254 865.473 6.720 7.341 872.814  -0.621 870.418 1.775
0.20 859.959 -4.643 853.183 6.775 7.437 860.621  -0.662  858.366 1.592
0.25 849.332 -4.976 842.630 6.702 7.414 850.044  -0.713  847.863 1.468
0.30 839.652 -5.276  833.147 6.504 7.283 840.430  -0.779  838.265 1.387
0.35 830.530 -5.554 824.358 6.173 7.041 831.399  -0.869  829.190 1.340
0.40 821.696 -5.818 816.015 5.682 6.677 822.691  -0.995  820.372 1.324
0.45 812932 -6.073 807.942 4.990 6.168 814.110 -1.178  811.593 1.339
0.50 804.026 -6.325 799.996 4.030 5.480 805.476  -1.450  802.642 1.384

Table 7: P{W > 0.05} =¢,0 =4, A = 1000

If the abandonment rate is high, the conventional square-root staffing is still very accurate
for small systems (or small \’s), while ED+QED staffing tends to overstaff, especially under tight
constraints (see Table 6). For large A’s, when the constraint can be satisfied with the system being
overloaded, 8. becomes substantial and sgq also becomes more accurate than s.. Table 7 shows
such an example.

Next, we consider the constraints with moderate or large T values. As illustrated in Man-
delbaum and Zeltyn (2008), s, is accurate when the load is small, but not so when the load is
moderate or large. In the latter case, the refinement significantly improves the accuracy. Table 8
displays the same example as considered in Section 5.3 of the online appendix of Mandelbaum and
Zeltyn (2008). For P{W > %}, 6 = 0.5, and A = 1000, s, always underestimates sopt by nearly
10 servers, while the difference between sop¢ and s, is less than 1.

The fact that s., as an asymptotic approximation, is less accurate for larger A values might
seem counterintuitive, but it can be easily explained with the aid of the explicit G, expression.
Again, we consider the above example, i.e., T = % and § = 0.5. In Figure 3, with € fixed at
different values, we plot the 3, as a function of A, calculated by (32). The plot clearly shows the
growth of B, with A. It is interesting to note that the increase is approximately linear and that
the five lines corresponding to different € values do not differ much.

In summary, for the excess delay constraint satisfaction problem, we recommend that refined
staffing should always be adopted. Also, the experimental results show that the accuracy im-
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€ Sopt s Sx Sopt — S Be Se Sopt — Se SEQ Sopt — SEQ

0.06 878.999 -4.107 870.113 8.885 9.409 879.523  -0.524  878.630 0.369
0.10 871.130 -4.364 861.990 9.140 9.681 871.671  -0.540  870.847 0.283
0.15 865.771 -4.538 856.509 9.263 9.816 866.325  -0.554  865.534 0.238
0.20 861.469 -4.675 852.153 9.317 9.884 862.037  -0.567  861.260 0.209
0.25 857.737 -4.794 848.415 9.322 9.905 858.320  -0.583  857.547 0.191
0.30 854.343 -4.900 845.059 9.283 9.886 854.945  -0.602  854.165 0.178
0.35 851.150 -4.998 841.949 9.200 9.828 851.778  -0.628  850.979 0.171
0.40 848.066 -5.091 838.998 9.067 9.730 848.729  -0.663  847.899 0.167
0.45 845.017 -5.182 836.143 8.874 9.586 845.729  -0.712  844.850 0.167
0.50 841.936 -5.270 833.333 8.602 9.385 842.718  -0.782  841.764 0.171

Table 8: P{W > 1} = ¢,0 = 0.5, A = 1000

1

“10 100 190 280 370 460A550 640 730 820 910 1000

Figure 3: The refinement f, as a function of A, for P{W > 1} = € with § = 0.5. The five lines
corresponding to different e values are either indistinguishable or very close.

provement due to the refinement is especially significant if 8, < 0; this is the same as in Section
3.

5 Abandonment constraint

In this section, we develop the refined staffing rule for satisfying the constraint on the steady-state
abandonment probability. Again, we start with a refined diffusion approximation.

Theorem 5 (Refined approximation for abandonment probability). Let 8 = (s—A\)A"1/? assumed
fized.

P{Ab} = b (BN 2 + be (BN + O(N3/2), (37)

where
b.(8) = (VOHp(B) — B)A(B),  be(B) = ug(B)bu (), (38)
ws(B) = ~ho(5)A-(9) ~ S Ho(B)6~ /2 + SoHa(BVE(VEH(9) ~5) . (39)

We prove Theorem 5 by first deriving a power series approximation of P{Ab|W > 0} in terms
of s71/2, then combining this with the refined approximation of P{W > 0} to get the series
expansion of P{Ab} in terms of s~/2, and finally obtaining (37) by exploiting the square-root
relation between A and s. The full proof can be found in Section C.

12



We consider the constraint of the form P{Ab} < eA"1/2 | and refined staffing again strengthens
the asymptotic optimality:
Theorem 6 (Refined staffing level for abandonment constraint). Let sopy € (0,00) be the solution
to P{Ab} = eA=Y/2. Let B, be the solution to by(B)A"Y2 = eX™1/2 or b.(B) =€, 5. = A + BV,
and Se = S+ + (e wWith

__be(By)
T o
Then,
Sopt — S5 = O(1), (41)
Sopt — 5S¢ = O(ATV/2). (42)

The proof of Theorem 6 is similar to Theorem 2 and is included in Section D. Furthermore,
simple calculations show that

be(B) = ug(B)eVA (43)

and

V.(B) = (6A.(B)ho (B2 — B071) eV + (Hp(B,)* — 52071 — 1) A(By). (44)

Therefore, one may use (43) and (44) to evaluate (40). In practice, the constraint of the form
P{Ab} < € can be first translated into P{Ab} < exA~/2, where €\ := e/), and then one can
apply (40), (43), and (44), in which € is replaced by ey and S, is the solution to b.(5) = €x (see
Remark 4.3 in Mandelbaum and Zeltyn (2008) on the scaling).

5.1 Numerical experiments

When the abandonment probability constraint becomes very tight (e= 0.1% or even smaller), G,
becomes non-negligible and its magnitude is not sensitive to the abandonment rate or the offered
load. For example, Tables 9 and 10 show that, for e = 1072, s, is always off by a couple of servers,
for a wide range of # and A values. For loose or moderate constraints, |3e| is mostly less than 1.
Again, in all cases, the refined square-root staffing rule yields an accurate approximation of sqpt.
Therefore, we recommend that, for call centers with a tight abandonment constraint, the refined
staffing procedure should be followed, regardless of the customer patience level, and s, can be
used otherwise.

>\ Sopt ﬂ* Sx Sopt — Sx ﬂo Se Sopt — Se
1 7.0643 3.9236 4.9236 2.1407  2.7156 7.6392 -0.5749
2 9.6022 3.8434 7.4355 2.1668 2.6114 10.0468 -0.4446

5 15.5222 3.7354 13.3526 2.1696  2.4741 15.8267 -0.3045
10 23.6967 3.6519 21.5485 2.1482  2.3707 23.9191 -0.2225
20 38.0604 3.5669 35.9518 2.1086  2.2677 38.2195 -0.1591
50 76.4422 3.4520 74.4093 2.0329  2.1323 76.5416 -0.0994
100 135.5921  3.3630  133.6302 1.9620  2.0304 135.6605  -0.0684
200 248.1577  3.2722  246.2752 1.8825  1.9290  248.2042  -0.0465
500 572.1810  3.1490  570.4127 1.7683  1.7959  572.2086  -0.0276
1000 1098.2300 3.0533 1096.5520  1.6775  1.6959 1098.2480 -0.0184

Table 9: P{Ab} =10"5,0=1

Finally, note that, since 6 - E[W]| = P{Ab}, the result in this section also holds for staffing
with respect to the mean waiting time.
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Sopt B S Sopt — Sx e Se Sopt — Se
7.8970 4.4461 5.4461 2.4510  3.4560 8.9021 -1.0051
10.6991 4.3699 8.1800 2.5191 3.3441 11.5241 -0.8250
17.1268 4.2673 14.5419 2.5849 3.1961 17.7381 -0.6113
25.8574 4.1880 23.2437 2.6137  3.0843 26.3280 -0.4706
40.9903 4.1073 38.3684 2.6219  2.9726 41.3410 -0.3507
50 80.8694 3.9982 78.2715 2.5978  2.8250 81.0966 -0.2272
100 141.6912  3.9137  139.1373 25539 27135  141.8508  -0.1596
200 256.6201  3.8275  254.1288 2.4913  2.6021  256.7309 -0.1107
500 585.3574  3.7105  582.9701 2.3874 24549  585.4250 -0.0676
1000 1116.7620 3.6197 1114.4640 2.2974 2.3437 1116.8080  -0.0463

DN —
55 oo >

Table 10: P{Ab} = 10750 = 50

6 Conclusions

The analytical assessment and numerical experiments in Sections 3 and 4 clearly suggest that
the first-order diffusion approximations and conventional square-root staffing with respect to the
tail probability of the customer delay are less accurate for overloaded systems. It is shown that
significant [, values arise when 3, < 0 (especially when 3, is relatively small or more negative),
while 3, > 0 is typically associated with a small G,. In these two types of constraint satisfaction
problems, 3, < 0 can be due to different system parameters, such as a large e (i.e., a loose
constraint), a large A (due to economy of scale), and/or a large § (more “contribution” from
customer abandonment). In these cases, the refinement term (in either the approximation or
staffing) significantly improves the accuracy, and such an improvement leads to the right staffing
level in most cases of practical interest to call center staffing.

Although ED+QED staffing is more accurate than conventional square-root staffing when
the system is more overloaded, refined square-root staffing is the most accurate in all cases (in
particular, as accurate as ED4+QED in the overloaded case) and thus overall the most reliable
method, at least under our model assumptions.

As for staffing under the abandonment constraint (or equivalently the mean waiting time
constraint), we observe in Section 5 that the refinement is significant when the constraint is tight,
regardless of the customer patience level or the system size. In all our experiments, the refined
square-root staffing rule yields satisfactory results.

A  Proof of Theorem 1

We denote the incomplete gamma functions by

a (oo}
v(s,a) = / ts"te7tdt, T(s,a)= / ts e tdt, (45)
0 a
and the gamma function by I'(s) = v(s,a) + I'(s,a). Using the relations
Ase=A D(s+1,))
A) = rs)(1-—1 =2 4
o) = 2= re) (1- ) (46)
and \
e\
B == 4
N = Fer (47)
yields
A T 1 A
Se 7(3,)\)=1+M_B(57)\)_1. (48)

A8 A8
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In Janssen et al. (2008b), it is shown that

s -1 = %51/2 2 5172
B(s, \) oo’ T3t O(s—/?), (49)
where
a=+/-2s(1—p+Inp), sign(a)=sign(l - p), (50)

a simple function of A and s with a — 3 as s — oo. By letting p(s) := s®e~*v2ms I'(s +1)71, we
rewrite the second term in (48) as

I(s+1)e*  s'/2
N Her® oy
Applying (49) and (51) to (48) yields
A _
Tl = Gy e g o6 (52)
which, upon inversion, becomes
Ner ¢(a) —12 1 #(a) ? -1 —3/2
S a1 (e o o

We now restate (8) in the main paper, the relation between Erlang A and Erlang B formulas

B(s,\)"! -1

AN = A O = e o) T s B B o
Substituting (53) and (49) into (54) then yields
A3 = Ay (1= JVBH()s™2) + 07 (55)
Simple computations show that
Gla) = G(B) ~ 56 (1 + BG(B) A2 + OO, (56)
Bla)™ = 4(8) ™ — B8N+ O, 7)
and s~Y/2 = \=Y/2 - O(A~1). Subtracting (56) from (57) yields
e(—a) _ 2(-8) 1 B Be(-B) —1/2 -1
o G (el ) R o
Inverting (58) gives
o) _ 9(B) 1 o(8)? _ Bé(3) —1/2 —1
st~ w0 (som )OO o
Using (56) and (59) in (55), we arrive at
Au(a)h = A (B) T+ he(BATVP+O(AT) (60)
and
1— %\/éﬂg(a)s*ﬂ =1- %\@Hg(ﬂ))flﬂ + 0. (61)
Therefore, by multiplying (60) and (61), we obtain that
o) = 48) 7+ (m(9) - VBHIO)A. G )N 00T (62

Finally, inverting (62) yields (3).
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B Proof of Theorem 3

We first show a technical lemma, which is needed in the later proof.

Lemma 1. Let

va(z) = exp{—b1V Az — bpAz?}(1 4 byAz?), (63)
wy () = exp{—bVAz — byAz? + bsAz’}, (64)
where b; > 0, i =1,2,3, are constants. Lett >0 and § € (t\~/2 by /b3) be a constant, and define
6 oo
I\ = / wy(x)dx, Ig(\) = / v (z)dz. (65)
tA—1/2 tA—1/2
Then,
I = L) +00\?), (66)
O — /2bat — L byby
Ii(\) = ( - _1/“25 - ) A2 4 Ly, ba, D)bsA ™, (67)
gb(ﬁble )\/ng
where, Ya > 0,b > 0,t > 0,
(oo}
Io(a,b,t) = / exp{—ay — by*}y’dy
t
1
= b2 2V (a2 — 2abt + 4b (1 + bt?))
2 (a+2bt)? /4b 1 —1/2
+a (a2 + 6b) e \/E(Erfbb (a+ th)} - 1)} . (68)

Proof. Proof. We have that

5
I\ = / wy (x)dx
tA—1/2
LIVAN
=712 / exp{—b1y — bay® + bsy* X/} dy
t
6/z
= z/ exp{—b1y — bay® + bsy>2}dy (69)
t

with y = 2v/A and z = A~/2. By Taylor series expansion, for some ¢ € (0, z),

. 1 -
exp{—by — bay® + bay’z} = exp{—bry — bay?} (1 + by’ + Sb3ylelov’<:2).

Therefore,
I(A\) = Li(A) + I2(N), (70)
where
6/z
L\ = z/ exp{—b1y — bng}(l + bay32)dy, (71)
t
1 . 6/2 3
I(A) = 533/ exp{—b1y — bay?}b3y eV *dy. (72)
t

Let 1a,(\) = fg\,lm vx(z)dz and Ia,(N) = [;° va(z)dz, and then we have

Ta(A) = La, (N) + La, (V). (73)
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It is easy to verify that
The fact that

follows from

1 5/2
I(A) = —23/ exp{—bry — bay?}b3yPet Edy
t

2
1. 6/z
< 523/ exp{—b1y — bng}bgyGebSngzdy (because y < §/z and € < z)
¢
1 6/z
= 523/ exp{—b1y — bay® + bsy?d}b3ySdy
¢
15 [
< 523/ exp{—b1y — (ba — b30)y* }b3y°dy
0
= 0023 = Co)\73/2, (76)

for some constant Cj > 0, because we assume ¢ < by /bs or by — b3d > 0.
Next we show that
Ia,(\) = o(e™*"), for some vy > 0. (77)

For an arbitrarily chosen Cy € (0,1), 3Ap; by 65,0, > 0 such that, for any A > Xp, b, 65,01, Ua(T) <
exp{—baC1\z?}. After integration, I4,(\) < féoo exp{—beC1 Az }dz, for any A > Ap, by bs.Cy-
Then by Lemma 4.3 in the Internet supplement to Zeltyn and Mandelbaum (2005), we have
[5° exp{—b2C1A2?}dz = o(e=*"), for some v, > 0, and thus (77) follows.

Using (74), (75), and (77), we subtract (73) from (70) and arrive at

IA) = La(\) = OA32) 4 o(e™?) = O(A73/2). (78)
Expression (67) follows from straightforward calculations. (]
Define
un(z) = A7 (1 — e %) — Xz — BV A, (79)
1) = [ expus@idr, vy 2o (%0)
y

Next, we use Lemma 1 to derive the refined asymptotic expansions for J(tA~/2) and J(0), which
are key components of the expression of P{W > tA\~'/2|W > 0}.

Lemma 2.
7 O(—V0t — po~1/2) 1 1 _ _3
J(ATY?) = ANV D (B, 50,t) - 0P O e 81
(A1) = = v tl(g0) A ro0 ), (s
“1p-1/2y-1/2 , 1 1 2\ 1 _3
J(0) = He(5)1071/2 +EI'<5’ 50.0) - 62\ + o), (82)
Proof. Proof. We start from
1 1
e 9 =10+ 592302 - 693303 + o(2?). (83)

Therefore, Ve > 0, 36(¢) > 0, such that, for any = € [0, J(¢)]

le™07 — (1 — Oz + 36%2% — 26%23)|

3

<e. (84)
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Combining (84) with (79), we have that
—BVa — —om + 9( 0> — e)Aa® < () < —BVAw - —9>\9: + 9( 0 +e)aid (3)

In particular, we only consider those € € (0, %93) (so that the coefficient %93 — € in the lower bound

part of (85) is positive) and choose d(€) such that

Lo (1l o
0(e) e (0,207 =6° +¢ : (86)
2 6
With fixed € and §(e), let A(e,d) = t2/5(e)%. Then, for any A > A(e, d), we have
A2 < 5(e), (87)
and thus, by (85), we have that
5(e) 4(e)
/ exp{ BV Az — —9)\ + - ( 3 —e))\x3}dx S/ exp{ux(z)}dz
tA—1/2 9 tA—1/2
(88)

<

/6(61)/2 exp{ BV Az — —9)\ + 9( 93+e))\:c }d:c.

A~
5(e)
» exp{ux(z)}dx +

From (11.10) on p. 33 of Zeltyn and Mandelbaum (2005), J(tA=*/%) = [1},

o(e~"1*), for some vy > 0. Substituting this into (88) yields

4(€)
/ exp{ ﬂ\/_:cf—w\a: + ( 03 — ))\:c?’}d:cho( —1Ay < (A2
e 0

( 03 + e))\x }daz +o(e™"). (89)

tAT

5(e) 1
< / eXp{ BV Az — =0Xa® + =

tA—1/2 2
Now, (86) and (87) allow us to apply Lemma 1 to (89) (with ¢ replaced by d(€), by by 3, ba by

0, and by by #(£6% £ ¢€)), and it follows that

1
(VB F671) g, (ﬁ, %9,75) : %(193 - e))\_l +ON32) < J(ATY2)

6

H(80-112)\o
o(—VoL—po-1%) ) 1 1/1 4 . 3/2
RN +1(8,50,1) - 5 (56 + )N+ O, (90)
From (90), we have that, for fixed € > 0, 3Aa(e) > A(¢, d) such that for any A > Aa(e)
(- \/_t BO2) iy 1 Lel s -1 ~1/2
(=t — o~/ ~1/2 3 1
EEENG oA\ +1.(5 9t) 9( 0% +¢)(1+ A (91)
or
1 1/1 . B 3 @(7\/515*59*1/2) B
L(8.50.t) - 5(50" = )a—ant < JeATV) - RN 12
1 1/1
S IO (ﬂa §9at) . 5(693 +€) (]. +€)>\_1. (92)
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Letting A — oo, we have that

1 (5,50:t) - 5 (567~ €)1 — ) <limin (AJ(tA—1/2) _ &

0 A—00

Vot — B9~/
$(B0-1/2)V0 ﬁ)
O(—0t — po~1/?)

¢(B0-1/2)V0 ﬁ)
1

<1.(s %G,t) ¥ (%93 +e)(1+e) (93)

A—00

< limsup <)\J(t)\_1/2) -

Letting € — 0 yields

Bt pp—1/2
lim ()\J(tAl/Q) - ®(¢(5\/§9t1/§)9\/5 )\/X> = %I. (5, %9,15)92. (94)

This implies that
d(—V/0t — BH1/2)
$(30-112)V0

and then, from (90), we know that this o(A~') is indeed O(A~3/2). This yields the desired result
(81), and (82) follows by letting ¢ = 0. O

J(NT1/?) =

1 1
-1/2 | + 1 2y—1 -1
A2 4 61.(5, 29,t)9 At oA, (95)

Finally, we complete the proof of Theorem 3.

Proof. Proof of Theorem 3. From equations (9.7) and (9.15) in Zeltyn and Mandelbaum (2005),
we have that, for Vt > 0,

6791&/\’1/2 J(tAfl/Q)

p tAT/2 = 96
(W > 172 > 0} 7 (96)
A straightforward Taylor series expansion yields
eI 1 a2 oY, (97)
Substituting (97), (81), and (82) into (96), we obtain that
P{W > tAT 2 |W > 0} = du(B,1) + da(B,)A"1/2 + O(A ). (98)
Multiplying (3) with (98) yields (27).
o
C Proof of Theorem 5
From equation (A.2) in Mandelbaum and Zeltyn (2007), we have that
-1
P{Ab|W >0} = (psH_le)‘/e()\/9)_8/‘97(3/9, A/G)) +1-p, (99)
where we note that
= 0(), (100)
1—p ' =0\ 2)=0(s7). (101)
Substituting (53) into (99), we obtain that
1
P{AB|W >0} =1—p~t + VOH(a)p s/ - gp_ng(Oé)295_1 + O(s73/?). (102)
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Inverting (55) yields
P{W > 0} = A(s, 1, 0) = A.(a) + %J@A*(a)ﬂa(a)s—m +O(sY), (103)

By noting (100), (101), A.(a) = O(1), and Hy(a) = O(1), we multiply (102) and (103) to arrive
at

P{Ab} = A.(a)(1 — p~1) + %(2 + )AL (@) Ho(@)VBp s~ 2+ O(s73/2). (104)
We then just need to derive the series expansion of (104). Inverting (60) yields
As(@) = A(B) = ho(B) AL (B A2 + OAT). (105)
Then, using 1 — p~' = —BA~1/2, we have that
Ad@)(L=p71) = —ALB)BAT2 4 ho(B)AL(B) AN+ O(A2). (106)
To expand the second term of (104), we first note that
sTHE= T2 %ﬂ)\’l + O\, (107)

Combining (107) with (59) and (105), we obtain that

L2+ )AL (@) Ho(0)VEp 5™ = ALBWVBHW (A + [~ Z0A(5) Ho(9)
(BHo(8) = 30712 = VB) = ha(B) A (B Ho(BVI| 2! + OO/2). (108)

Summing (106), (108) and O(s~3/2) = O(A~3/2) yields the desired result.

D Proof of Theorem 6
Let () be the solution to
be (BN £ b (BN = eX1/2, (109)

or equivalently
be(Br) + e (BN = ¢ (110)

Then (40) can be derived the same way as (18) in the proof of Theorem 2. Let Bopt = (Sopt —
MA~Y/2 and b(3) := P{Ab}. The desired result on the optimality gaps is equivalent to

ﬂopt - ﬂ* = O()‘_l/2)a (111)
Bopt — (5* + ﬁ.A‘1/2> =0(™). (112)

It follows from Theorem 5 that
6)\71/2 - b(ﬂopt) = b* (6opt)>\71/2 + O()\il) (113)

Let g«(A\) := Bopt — B+. Applying a first-order Taylor expansion, we have that
A V2 = b (BINTY2 4 O(g. (MANTZ) O\, (114)

Since by (B)A"2 = eA™1/2, g, (\) = O(A~1/2) or (111) holds. Because the derivation of 3, implies
that
Br— (B +BA72) =07, (115)
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in order to conclude (112), it suffices to prove
Bopt — Br = O(A7H). (116)
Let go(A) := Bopt — Bx. The rest of the proof is again similar as above:

A2 = b(Bopt) = b (Bopt) A2 + ba(Bopt)A ™! + O(AT3/2) (117)
= b (BN + O(ge (MAT2) + b (BAA! 4+ O(ga (WA + O(A3/2). (118)

Since by (Ba)AY2 + be(B)AT! = eX™V2) go(N) = O(A™1) or (116) holds.
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