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Abstract: For critical bond-percolation on high-dimensional torus, this paper proves sharp
lower bounds on the size of the largest cluster, removing a logarithmic correction in the
lower bound in [15]. This improvement finally settles a conjecture by Aizenman [1] about
the role of boundary conditions in critical high-dimensional percolation, and it is a key step
in deriving further properties of critical percolation on the torus. Indeed, a criterion of
Nachmias and Peres [19] implies appropriate bounds on diameter and mixing time of the
largest clusters. We further prove that the volume bounds apply also to any finite number of
the largest clusters. Finally, we show that any weak limit of the largest connected component
is non-degenerate, which can be viewed as a significant sign of critical behavior. The main
conclusion of the paper is that the behavior of critical percolation on the high-dimensional
torus is the same as for critical Erdős-Rényi random graphs.
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1 Introduction

1.1 The model

For bond percolation on a graph G we make any edge (or ‘bond’) occupied with probability p, indepen-
dently of each other, and otherwise leave it vacant. The connected components of the random subgraph
of occupied edges are called clusters. For a vertex v we denote by C(v) the unique cluster containing
v, and by |C(v)| the number of vertices in that cluster. For our purposes it is important to consider
clusters as subgraphs (thus not only as a set of vertices). Our main interest is bond percolation on
high-dimensional tori, but our techniques are based on a comparison with Z

d results. We describe the
Z

d-setting first.
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Bond percolation on Z
d. For G = Z

d, we consider two sets of edges. In the nearest-neighbor model,
two vertices x and y are linked by an edge whenever |x − y| = 1, whereas in the spread-out model,
they are linked whenever 0 < ‖x − y‖∞ ≤ L. Here, and throughout the paper, we write ‖ · ‖∞ for the
supremum norm, and | · | for the Euclidean norm. The integer parameter L is typically chosen large.

The resulting product measure for percolation with parameter p ∈ [0, 1] is denoted by PZ,p, and the
corresponding expectation EZ,p. We write {0 ↔ x} for the event that there exists a path of occupied
edges from the origin 0 to the lattice site x (alternatively, 0 and x are in the same cluster), and define

τZ,p(x) := PZ,p(0 ↔ x) (1.1)

to be the two-point function. By

χZ(p) :=
∑

x∈Zd

τZ,p(x) = EZ,p|C(0)|

we denote the expected cluster size on Z
d. The degree of the graph, which we denote by Ω, is Ω = 2d

in the nearest-neighbor case and Ω = (2L + 1)d − 1 in the spread-out case.
Percolation on Z

d undergoes a phase transition as p varies, and it is well known that there exists a
critical value

pc(Z
d) = inf{p : PZ,p(|C(0)| = ∞) > 0} = sup{p : χZ(p) < ∞}, (1.2)

where the last equality is due to Aizenman and Barsky [2] and Menshikov [17].

Bond percolation on the torus. By Tr,d we denote a graph with vertex set {−⌊r/2⌋, . . . , ⌈r/2⌉−1}d

and two related sets of edges:

(i) The nearest-neighbor torus: an edge joins vertices that differ by 1 (modulo r) in exactly one
component. For d fixed and r large, this is a periodic approximation to Z

d. Here Ω = 2d for
r ≥ 3. We study the limit in which r → ∞ with d > 6 fixed, but large.

(ii) The spread-out torus: an edge joins vertices x = (x1, . . . , xd) and y = (y1, . . . , yd) if 0 <
maxi=1,...,d |xi − yi|r ≤ L (with | · |r the metric on Zr). We study the limit r → ∞, with d > 6
fixed and L large (depending on d) and fixed. This gives a periodic approximation to range-L
percolation on Z

d. Here Ω = (2L+1)d−1 provided that r ≥ 2L+1, which we will always assume.

We write V = rd for the number of vertices in the torus. We consider bond percolation on these tori
with edge occupation probability p and write PT,p and ET,p for the product measure and corresponding
expectation, respectively. We use notation analogously to Z

d-quantities, e.g.

χT(p) :=
∑

x∈Tr,d

PT,p(0 ↔ x) = ET,p|C(0)|

for the expected cluster size on the torus.

Mean-field behavior in high dimensions. In the past decades, there has been substantial progress
in the understanding of percolation in high-dimensions (see e.g. [3, 5, 9, 10, 11, 12, 13, 14, 20] for detailed
results on high-dimensional percolation), and the results show that percolation on high-dimensional
infinite lattices is similar to percolation on infinite trees (see e.g., [8, Section 10.1] for a discussion
of percolation on a tree). Thus, informally speaking, the mean-field model for percolation on Z

d is
percolation on the tree.

More recently, the question has been addressed what the mean-field model is of percolation on finite
subsets of Z

d, such as the torus. Aizenman [1] conjectured that critical percolation on high-dimensional
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tori behaves similarly to critical Erdős-Rényi random graphs, thus suggesting that the mean-field model
for percolation on a torus is the Erdős-Rényi random graph. In the past years, substantial progress
was made in this direction, see in particular [6, 7, 15]. In this paper, we bring this discussion to the
next level, by showing that large critical clusters on various high-dimensional tori share many features
of the Erdős-Rényi random graph.

1.2 Random graph asymptotics on high-dimensional tori

We investigate the size of the maximal cluster on the torus Tr,d, i.e.,

|Cmax| := max
x∈Tr,d

|C(x)|, (1.3)

at the critical percolation threshold pc(Z
d). We start by improving the asymptotics of the largest

connected component as proved in [15]:

Theorem 1.1 (Random graph asymptotics of the largest cluster size). Fix d > 6 and L sufficiently
large in the spread-out case, or d sufficiently large for nearest-neighbor percolation. Then there exists a
constant b > 0, such that for all ω ≥ 1 and all r ≥ 1,

P
T,pc(Zd)

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1 − b

ω
. (1.4)

The constant b can be chosen equal to b6 in [6, Theorem 1.3]. Furthermore, there are positive constants
c1 and c2 such that

P
T,pc(Zd)

(
|Cmax| > ωV 2/3

)
≤ c1

ω3/2
e−c2 ω. (1.5)

We recall that r is present in (1.4) in two ways: We consider the percolation measure on Tr,d, and
V = rd is the volume of the torus. The upper bound in (1.4) in Theorem 1.1 is already proved in [15,
Theorem 1.1], whereas the lower bound in [15, Theorem 1.1] contains a logarithmic correction, which
we remove here by a more careful analysis.

We next extend the above result to the other large clusters. For this, we write C(i) for the ith largest
cluster for percolation on Tr,d, so that C(1) = Cmax and |C(2)| ≤ |C(1)| is the size of the second largest
component; etc.

Theorem 1.2 (Random graph asymptotics of the ordered cluster sizes). Fix d > 6 and L sufficiently
large in the spread-out case, or d sufficiently large for nearest-neighbor percolation. For every m =
1, 2, . . . there exist constants b1, . . . , bm > 0, such that for all ω ≥ 1, r ≥ 1, and all i = 1, . . . ,m,

P
T,pc(Zd)

(
ω−1V 2/3 ≤ |C(i)| ≤ ωV 2/3

)
≥ 1 − bi

ω
. (1.6)

Consequently, the expected cluster sizes satisfy E
T,pc(Zd)|C(i)| ≥ b′i V 2/3 for certain constants b′i > 0.

Moreover, |Cmax|V −2/3 is not concentrated.

By the tightness of |Cmax|V −2/3 proved in Theorem 1.1, |Cmax|V −2/3 not being concentrated is
equivalent to the statement that any weak limit of |Cmax|V −2/3 is non-degenerate.

Nachmias and Peres [19] proved a very handy criterion establishing bounds on diameter and mixing
time of lazy simple random walk of the large critical clusters for random graphs obeying (1.4)/(1.6).
The following corollary states the consequences of the criterion for the high-dimensional torus. To this
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end, we call a lazy simple random walk on a finite graph G = (V, E) a Markov chain on the vertices V
with transition probabilities

p(x, y) =





1/2 if x = y;
1

2 deg(x) if (x, y) ∈ E ;

0 otherwise,

(1.7)

where deg(x) denotes the degree of a vertex x ∈ V. The stationary distribution of this Markov chain π
is given by π(x) = deg(x)/(2|E|). The mixing time of lazy simple random walk is defined as

Tmix(G) = min
{
n : ‖pn(x, ·) − π(·)‖TV ≤ 1/4 for all x ∈ V

}
, (1.8)

with pn being the distribution after n steps (i.e., the n-fold convolution of p), and ‖ · ‖TV denoting the
total variation distance. We write diam(C) for the diameter of the cluster C.

Corollary 1.3 (Diameter and mixing time of large critical clusters, [19]). Fix d > 6 and L sufficiently
large in the spread-out case, or d sufficiently large for nearest-neighbor percolation. Then, for every
m = 1, 2, . . . , there exist constants c1, . . . , cm > 0, such that for all ω ≥ 1, r ≥ 1, and all i = 1, . . . ,m,

P
T,pc(Zd)

(
ω−1V 1/3 ≤ diam(C(i)) ≤ ωV 1/3

)
≥ 1 − ci

ω1/3
, (1.9)

P
T,pc(Zd)

(
ω−1V ≤ Tmix(C(i)) ≤ ωV

)
≥ 1 − ci

ω1/34
. (1.10)

1.3 Discussion and open problems

Here, and throughout the paper, we make use of the following notation: we write f(x) = O(g(x))
for functions f, g ≥ 0 and x converging to some limit, if there exists a constant C > 0 such that
f(x) ≤ Cg(x) in the limit, and f(x) = o(g(x)) if g(x) 6= O(f(x)). Furthermore, we write f = Θ(g) if
f = O(g) and g = O(f).

The asymptotics of |Cmax| in Theorem 1.1 is an improvement of our earlier result in [15], which itself
relies in an essential way on the work of Borgs et al. [6, 7]. The contribution of the present paper is the
removal of the logarithmic correction in the lower bound of [15, (1.5)], and this improvement is crucial
for our further results, as we discuss in more detail now. We give an easy proof that the largest m
components obey the same volume asymptotic as the largest connected component, using only Theorem
1.1 and estimates on the moments of the random variable

Z≥k = #{v ∈ Tr,d : |C(v)| ≥ k} (1.11)

derived in [6, 7]. Similar ingredients are used to derive that |Cmax|V −2/3 is not concentrated. Given
these earlier results, our proofs are remarkably simple and robust, and they can be expected to apply
in various different settings. Thus, while our results substantially improve our understanding of the
critical nature of percolation on high-dimensional tori, the proofs given here are surprisingly simple.

Random graph asymptotics at criticality. Our results show that the largest percolation clusters
on the high-dimensional torus behave as they do on the Erdős-Rényi random graph; this can be seen
as the take-home message of this paper. Aldous [4] proved that, for Erdős-Rényi random graphs, the
vector

V −2/3
(
|C(1)|, |C(2)|, . . . , |C(m)|

)

converges in distribution, as V → ∞, to a random vector (|γ1|, . . . , |γm|), where |γj | are the excursion
lengths (in decreasing order) of reflected Brownian motion. Nachmias and Peres [18, Thm. 5] prove
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the same limit (apart from a multiplication with an explicit constant) for random d-regular graphs (for
which the critical value equals (d−1)−1). In light of our Theorems 1.1–1.2, we conjecture that the same
limit, multiplied by an appropriate constant as in [18, Thm. 5], arises for the ordered largest critical
components for percolation on high-dimensional tori.

The role of boundary conditions. The combined results of Aizenman [1] and Hara et al. [10, 11]
show that a box of width r under bulk boundary conditions in high dimension satisfies |Cmax| ≈ r4, which
is much smaller than V 2/3. This immediately implies an upper bound on |Cmax| under free boundary
conditions. Aizenman [1] conjectures that, under periodic boundary conditions, |Cmax| ≈ V 2/3. This
conjecture was proven in [15] with a logarithmic correction in the lower bound. The present paper
(improving the lower bound) is the ultimate confirmation of the conjecture in [1].

The critical probability for percolation on the torus. An alternative definition for the critical
percolation threshold on a general high-dimensional torus, denoted by pc(Tr,d), was given in [6, (1.7)]
as the solution to

χT(pc(Tr,d)) = λV 1/3, (1.12)

where λ is a sufficiently small constant. The definition of the critical value in (1.12) appears somewhat
indirect, but the big advantage is that this definition exists for any torus (including d-cube, Hamming
cube, complete graph), even if an externally defined critical value (such as pc(Z

d) as in (1.2)) does not
exist. It is a major result of Borgs et al. [6, 7] that Theorem 1.1 holds with pc(Z

d) replaced by pc(Tr,d)
for the following tori:

(i) the d-cube T2,d as d → ∞,

(ii) the complete graph (Hamming torus with d = 1 and r → ∞),

(iii) nearest-neighbor percolation on Tr,d with d ≥ 7 and rd → ∞ in any fashion, including d fixed and
r → ∞, r fixed and d → ∞, or r, d → ∞ simultaneously,

(iv) periodic approximations to range-L percolation on Z
d for fixed d ≥ 7 and fixed large L.

Remarkably, our results in Theorem 1.2 and Corollary 1.3 hold also for all of the above listed tori when
pc(Z

d) is replaced by pc(Tr,d). One way of formulating Theorem 1.1 is to say that pc(Tr,d) and pc(Z
d),

under the assumptions of Theorem 1.1, are asymptotically equivalent.
One particularly interesting feature of Theorem 1.2 is its implications for the critical value in (1.12).

Indeed, the definition of the critical value in (1.12) is somewhat indirect, and it is not obvious that
pc(Tr,d) really is the most appropriate definition. In Theorem 1.2, however, we prove that any weak
limit of |Cmax|V −2/3 is non-degenerate, which is the hallmark of critical behavior. Thus, Theorem 1.2
can be seen as yet another justification for the choice of pc(Tr,d) in (1.12).

2 Proof of Theorem 1.1

The following relation between the two critical values pc(Z
d) (which is ‘inherited’ from the infinite

lattice) and pc(Tr,d) (as defined in (1.12)) is crucial for our proof.

Theorem 2.1 (The Z
d critical value is inside the Tr,d critical window). Fix d > 6 and L sufficiently

large in the spread-out case, or d sufficiently large for nearest-neighbor percolation. Then there exists
Cpc > 0 such that pc(Z

d) and pc(Tr,d) satisfy
∣∣∣pc(Z

d) − pc(Tr,d)
∣∣∣ ≤ Cpc V −1/3. (2.1)
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In other words, pc(Z
d) lies in a critical window of order V −1/3 around pc(Tr,d). By the work of Borgs,

Chayes, van der Hofstad, Slade and Spencer [6, 7], Theorem 2.1 has immediate consequences for the
size of the largest cluster, and various other quantities:

Corollary 2.2 (Borgs et al. [6, 7]). Under the conditions of Theorem 2.1, there exist constants b, C > 0,
such that for all ω ≥ C,

P
T,pc(Zd)

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1 − b

ω
. (2.2)

Furthermore,

c V 2/3 ≤ E
T,pc(Zd)

(
|Cmax|

)
≤ C V 2/3 and cχV 1/3 ≤ E

T,pc(Zd)

(
|C|
)
≤ CχV 1/3 (2.3)

for some c, C, cχ, Cχ > 0. Finally, there are positive constants bC, cC, CC such that for k ≤ bCV
2/3,

cC√
k
≤ P

T,pc(Zd)

(
|C| ≥ k

)
≤ CC√

k
. (2.4)

All of these statements hold uniformly as r → ∞.

The reader may verify that Corollary 2.2 indeed follows from Theorem 2.1 by using [6, Thm. 1.3]
in conjunction with [7, Prop. 1.2 and Thm. 1.3]. Note that (2.2) in particular proves (1.4) in Theorem
1.1.

We explicitly keep track of the origin of constants by adding an appropriate subscript. For first
time reading the reader might wish to ignore these subscripts.

We are now turning towards the proof of Theorem 2.1. To this end, we need the following lemma:

Lemma 2.3. For percolation on Z
d with p = pc(Z

d) − KΩ−1V −1/3, there exists a positive constant C̃
(depending on d and K, but not on V ), such that

∑

u,v∈Zd,u 6=v
u−v∈rZd

τp(u) τp(v) ≤ C̃ V −1/3. (2.5)

The lemma makes use of a number of results on high-dimensional percolation on Z
d, to be summa-

rized in the following theorem.

Theorem 2.4 (Zd-percolation in high dimension [9, 10, 11, 12].). Under the conditions in Theorem
1.1, there exist constants cτ , Cτ , cξ, Cξ, cξ2

, Cξ2
> 0 such that

cτ

(|x| + 1)d−2
≤ τ

Z,pc(Zd)(x) ≤ Cτ

(|x| + 1)d−2
. (2.6)

Furthermore, for any p < pc(Z
d),

τZ,p(x) ≤ e
−

‖x‖∞
ξ(p) , (2.7)

where the correlation length ξ(p) is defined by

ξ(p)−1 = − lim
n→∞

1

n
log PZ,p

(
(0, . . . , 0) ↔ (n, 0, . . . , 0)

)
, (2.8)

and satisfies

cξ

(
pc(Z

d) − p
)−1/2

≤ ξ(p) ≤ Cξ

(
pc(Z

d) − p
)−1/2

as p ր pc(Z
d). (2.9)
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For the mean-square displacement

ξ2(p) :=

(∑
v∈Zd |v|2τZ,p(v)∑

v∈Zd τZ,p(v)

)1/2

, (2.10)

we have

cξ2

(
pc(Z

d) − p
)−1/2

≤ ξ2(p) ≤ Cξ2

(
pc(Z

d) − p
)−1/2

as p ր pc(Z
d). (2.11)

Finally, there exists a positive constant C̃χ, such that the expected cluster size χZ(p) obeys

1

Ω (pc(Zd) − p)
≤ χZ(p) ≤ C̃χ

Ω (pc(Zd) − p)
as p ր pc(Z

d). (2.12)

Some of these bounds express that certain critical exponents exist and take on their mean-field
value. For example, (2.6) means that the η = 0, and similarly (2.12) can be rephrased as γ = 1. The
power-law bound (2.6) is due to Hara [10] for the nearest-neighbor case, and to Hara, van der Hofstad
and Slade [11] for the spread-out case. For the exponential bound (2.7), see e.g. Grimmett [8, Prop.
6.47]. Hara [9] proves the bound (2.9), and Hara and Slade [12] prove (2.11) and (2.12) (the latter
in conjunction with Aizenman and Newman [3]). The proof of all of the above results uses the lace
expansion.

Proof of Lemma 2.3. We split the sum on the left-hand side of (2.5) in parts, and treat each part
separately with different methods:

∑

u,v∈Zd:
u 6=v

u−v∈rZd

τZ,p(u) τZ,p(v) ≤ 2
∑

v

∑

u : u 6=v
|u|≤|v|

u−v∈rZd

τZ,p(u) τZ,p(v) = 2
(
(A) + (B) + (C) + (D)

)
, (2.13)

where

(A) =
∑

v

∑

2r≤|u|≤|v|

u−v∈rZd

τZ,p(u) τZ,p(v), (B) =
∑

|v|>MV 1/6 log V

∑

u : |u|≤2r

u−v∈rZd

τZ,p(u) τZ,p(v)

(C) =
∑

2r<|v|≤MV 1/6 log V

∑

u : |u|≤2r
u−v∈rZd

τZ,p(u) τZ,p(v), (D) =
∑

|v|≤2r

∑

u : |u|≤2r
u−v∈rZd

τZ,p(u) τZ,p(v)
(2.14)

and M is a (large) constant to be fixed later in the proof. We proceed by showing that each of the four
summands is bounded by a constant times V −1/3, in that showing (2.5).

Consider (A) first. To this end, we prove for fixed v ∈ Z
d,

∑

2r≤|u|≤|v|

u−v∈rZd

τZ,p(u) ≤ Cτ

|v|2
V

. (2.15)

Indeed, ∑

2r≤|u|≤|v|

u−v∈rZd

τZ,p(u) ≤
∑

2≤|u|≤ |v|
r

+1

u∈Zd

τpc

(
ru + (v mod r)

)
. (2.16)

By (2.6), this is bounded above by

Cτ

∑

2≤|u|≤ |v|
r

+1

(
r
(
|u| − 1

)
+ 1
)−(d−2)

≤ Cτ

rd−2

∑

1≤|u|≤ |v|
r

|u|−(d−2). (2.17)

7



The discrete sum is dominated by the integral

Cτ r−(d−2)

∫

0≤|u|≤
|v|
r

|u|−(d−2) du ≤ Cτ C◦ r−d |v|2
2

≤ Cτ C◦
|v|2
V

, (2.18)

as desired (with C◦ denoting the surface of the (d − 1)-dimensional hypersphere). Consequently, using
(2.15),

(A) ≤ Cτ C◦

V

∑

v

|v|2τZ,p(v) ≤ Cτ C◦

V
ξ2(p)2 χZ(p) ≤

Cτ C◦ C2
ξ2

C̃χ

V

(
pc(Z

d) − p
)−2

(2.19)

by the bounds in Theorem 2.4. Inserting p = pc(Z
d) − KΩ−1V −1/3 yields the desired upper bound

(A) ≤ C V −1/3.
For the bound on (B) we start by calculating

∑

u : |u|≤2r

τZ,p(u) ≤
∑

u : |u|≤2r

τpc(Zd)(u) ≤
∑

u : |u|≤2r

Cτ

(|u| + 1)d−2
≤ O(r2). (2.20)

For the sum over v we use the exponential bound of Theorem 2.4: From (2.8)–(2.9) and our choice of
p it follows that τZ,p(v) ≤ exp

{
− C |v|V −1/6

}
for some constant C > 0. Consequently,

∑

|v|>MV 1/6 log V

u−v∈rZd

τZ,p(v) ≤
∑

|v|> M
r

V 1/6 log V

τZ,p

(
rv + (umod r)

)
≤

∑

|v|> M
r

V 1/6 log V

exp
{
− r
(
|v| − 1

)
CV −1/6

}
.

(2.21)
This sum is dominated by the integral

∫

|v|> M
r

V 1/6 log V
exp

{
− r |v|CV −1/6

}
exp

{
r C V −1/6

}
dv, (2.22)

which can be shown by partial integration as being less or equal to

const(C,M, d)
V d/6

V
(log V )d exp

{
−M

C
log V

}
exp

{
r C V −1/6

}
. (2.23)

This expression equals
const(C,M, d)V d/6−1−M/C+C(1/d−1/6) (log V )d . (2.24)

We now fix M large enough such that the exponent of V is less than −(1/3 + 2/d). This finally yields

(B) ≤
∑

u : |u|≤2r

∑

|v|>MV 1/6 log V
u−v∈rZd

τZ,p(u) τZ,p(v) ≤ const(C,M, d) r2 o
(
V −(1/3+2/d)

)
= o
(
V −1/3

)
. (2.25)

In order to bound (C) we proceed similarly by bounding

(C) ≤ C2
τ

∑

u : |u|<2r

(|u| + 1)−(d−2)
∑

2r≤|v|≤MV 1/6 log V

u−v∈rZd

(|v| + 1)−(d−2) .
(2.26)

A domination by integrals as in (2.16)–(2.18) allows for the upper bound

C r2 M2 V 1/3 (log V )2

V
, (2.27)
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and this is o
(
V −1/3

)
if d > 6 for any M > 0.

The final summand (D) is bounded as in (2.26) by

C2
τ

∑

u : |u|<2r

(|u| + 1)−(d−2)
∑

v : |v|≤2r
u−v∈rZd

(|v| + 1)−(d−2) . (2.28)

The second sum can be bounded uniformly in u by

∑

v : |v|≤2r

u−v∈rZd

(|v| + 1)−(d−2) ≤ (2r)−(d−2) #{v : |v| ≤ 2r, u − v ∈ rZ
d} ≤ (2r)−(d−2) 5d, (2.29)

while the first sum is bounded by C r2. Together, this yields the upper bound C r−(d−4), and this is
o
(
V −1/3

)
for d > 6.

Finally, we have proved that (A) ≤ C V −1/3, and that (B), (C), (D) are of order o
(
V −1/3

)
. This

completes the proof of Lemma 2.3.

Proof of Theorem 2.1. Assume that the conditions of Theorem 1.1 are satisfied. Then by [15, Corol.
4.1] there exists a constant Λ > 0 such that, when r → ∞,

pc(Z
d) − pc(Tr,d) ≤

Λ

Ω
V −1/3. (2.30)

It therefore suffices to prove a matching lower bound.
We take p = pc(Z

d) − KΩ−1V −1/3. The following bound is proven in [15]:

χT(p) ≥ χZ(p)

(
1 −

(
1

2
+ p Ω2 χZ(p)

) ∑

u,v∈Zd,u 6=v
u−v∈rZd

τZ,p(u) τZ,p(v)

)
. (2.31)

Indeed, this bound is obtained by substituting [15, (5.9)] and [15, (5.13)] into [15, (5.5)]. Furthermore,
by our choice of p and (2.12), K−1V 1/3 ≤ χZ(p) ≤ C̃χK−1V 1/3. Together with (2.5),

χT(p) ≥ K−1V 1/3
(
1 −

(
1/2 + p Ω2 K−1 C̃χ V 1/3

)
C̃V −1/3

)
≥ c̃KV 1/3, (2.32)

where c̃K is a small (though positive) constant. Under the conditions of Theorem 1.1, also the following
bound holds by Borgs et al. [6]: For q ≥ 0,

χT

(
pc(Tr,d) − Ω−1q

)
≤ 2

q
; (2.33)

cf. the upper bound in [6, (1.15)]. The upper bound (2.30) allows K be so large that p < pc(Tr,d).
Consequently, the conjunction of (2.32) and (2.33) obtains

2

Ω(pc(Tr,d) − pc(Zd) + KV −1/3)
≥ χT(p) ≥ c̃KV 1/3. (2.34)

This implies

pc(Z
d) ≥ pc(Tr,d) +

(
K − 2

c̃KΩ

)
V −1/3, (2.35)

as desired.

The proof of Theorem 2.1 concludes the proof of (1.4) in Theorem 1.1, and it remains to prove (1.5).
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Proof of (1.5). The proof uses the exponential bound proven by Aizenman and Newman [3, Proposition
5.1] that, for any k ≥ χT(p)2,

PT,p

(
|C| ≥ k

)
≤
( e

k

)1/2
exp

{
− k

2χT(p)2

}
. (2.36)

In order to apply this bound on the torus, we bound

PT,p

(
|Cmax| ≥ k

)
≤ 1

k

∑

v∈VPT,p

(
|Cmax| ≥ k, v ∈ Cmax

)
≤ V

k
PT,p

(
|C| ≥ k

)
. (2.37)

Together with (2.36), we obtain for ω > χT(p)2V −2/3,

PT,p

(
|Cmax| ≥ ωV 2/3

)
≤ e1/2

ω3/2
exp

{
− ωV 2/3

2χT(p)2

}
. (2.38)

We now choose p = pc(Z
d) and use that χT(pc(Z

d)) ≤ CχV 1/3 to see that indeed, for ω > C2
χ , by (2.12),

P
T,pc(Zd)

(
|Cmax| ≥ ωV 2/3

)
≤ e1/2

ω3/2
exp

{
− ω

2C̃2
χ

}
. (2.39)

3 Proof of Theorem 1.2

Proof of (1.6). The upper bounds on |C(i)| in Theorem 1.2 follow immediately from the upper bound
on |Cmax| in Theorem 1.1. Thus, we only need to establish the lower bound.

Recall the definition of Z≥k in (1.11), and note that

Ep(Z≥k) = V PT,p

(
|C| ≥ k

)
. (3.1)

By construction, |Cmax| ≥ k if and only if Z≥k ≥ k. We shall make essential use of properties of the
sequence of random variables {Z≥k} proved in [6]. Indeed, [6, Lemma 7.1] states that, for all p and all
k, Varp(Z≥k) ≤ V χT(p). When we take p = pc(Z

d), then, by (2.3) in Corollary 2.2 above, there exists a
constant CZ such that χT(pc(Z

d)) ≤ CZV 1/3. Consequently,

Varpc(Zd)(Z≥k) ≤ CZV 4/3 (3.2)

uniformly in k. Now, further, by (2.4) in Corollary 2.2, there exists cC > 0 such that

P
T,pc(Zd)

(
|C| ≥ k

)
≥ 2 cC√

k
. (3.3)

Take k = V 2/3/ω, for some ω ≥ 1 sufficiently large. Together with the identity in (3.1),

Epc(Zd)(Z≥k) ≥ 2 cC ω1/2V 2/3. (3.4)

Thus, by the Chebychev inequality,

Ppc(Zd)

(
Z≥k ≤ cCω

1/2V 2/3
)
≤ Ppc(Zd)

(∣∣Z≥k − Epc(Zd)(Z≥k)
∣∣ ≥ cC ω1/2V 2/3

)

≤ c−2
C ω−1 V −4/3 Varpc(Zd)(Z≥k) ≤ CZ

c2
C ω

. (3.5)
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We take ω > 0 large. Then, the event Z≥k > cC ω1/2V 2/3 holds with high probability. On this event,
there are two possibilities. Either |Cmax| ≥ cC ω1/2V 2/3/i, or |Cmax| < cC ω1/2V 2/3/i, in which case there
are at least cC ω1/2V 2/3/|Cmax| ≥ i distinct clusters of size at least k = ω−1V 2/3. We conclude that

P
T,pc(Zd)

(
|C(i)| ≤ ω−1V 2/3

)
≤ Ppc(Zd)

(
Z≥k ≤ cC ω1/2V 2/3

)
+ Ppc(Zd)

(
|Cmax| ≥ cC ω1/2V 2/3/i

)

≤ CZ

c2
C ω

+
i b̃

cCω
, (3.6)

where b̃ is chosen appropriately from the exponential bound in (1.5). This identifies bi as bi = ib̃/cC +
CZ/c2

C, and proves (1.6).

We complete this section with the proof that any weak limit of |Cmax|V −2/3 is non-degenerate. Theorem
1.1 proves that the sequence |Cmax|V −2/3 is tight, and, therefore, any subsequence of |Cmax|V −2/3 has a
further subsequence that converges in distribution.

Proposition 3.1 (|Cmax|V −2/3 is not concentrated). Under the conditions of Theorem 1.1, |Cmax|V −2/3

is not concentrated.

In order to prove Proposition 3.1, we start by establishing a lower bound on the variance of Z≥k.
That is the content of the following lemma:

Lemma 3.2 (A lower bound on the variance of Z≥k). For each k ≥ 1,

Varp(Z≥k) ≥ V PT,p

(
|C| ≥ k

)[
k − V PT,p

(
|C| ≥ k

)]
. (3.7)

Proof. We have that

Varp(Z≥k) =
∑

u,v

PT,p

(
|C(u)| ≥ k, |C(v)| ≥ k

)
−
[
V PT,p

(
|C| ≥ k

)]2
. (3.8)

Now, we trivially bound

∑

u,v

PT,p

(
|C(u)| ≥ k, |C(v)| ≥ k

)
≥
∑

u,v

PT,p

(
|C(u)| ≥ k, u ↔ v

)
= V E[|C|1{|C|≥k}] ≥ V k PT,p

(
|C| ≥ k

)
.

(3.9)
Rearranging terms proves Lemma 3.2.

Lemma 3.3 (An upper bound on the third moment of Z≥k). For each k ≥ 1,

Ep[Z
3
≥k] ≤ V χT(p)3 + 3 Ep[Z≥k]V χT(p) + Ep[Z≥k]

3. (3.10)

Proof. We compute

Ep[Z
3
≥k] =

∑

u1,u2,u3

PT,p

(
|C(u1)| ≥ k, |C(u2)| ≥ k, |C(u3)| ≥ k

)

=
∑

u1,u2,u3

PT,p

(
|C(u1)| ≥ k, u1 ↔ u2, u3

)

+ 3
∑

u1,u2,u3

PT,p

(
|C(u1)| ≥ k, u1 ↔ u2, |C(u3)| ≥ k, u1 ↔/ u3

)

+
∑

u1,u2,u3

PT,p

(
|C(u1)| ≥ k, |C(u2)| ≥ k, |C(u3)| ≥ k, ui ↔/ uj∀i 6= j

)

= (I) + 3 (II) + (III). (3.11)
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We shall bound these terms one by one, starting with (I),

(I) ≤
∑

u1,u2,u3

PT,p

(
|C(u1)| ≥ k, u1 ↔ u2, u3

)
= V Ep[|C|21{|C|≥k}] ≤ V Ep[|C|2] ≤ V χT(p)3, (3.12)

by the tree-graph inequality (see [3]). We proceed with (II), for which we use the BK-inequality, to
bound

(II) ≤
∑

u1,u2,u3

PT,p({|C(u1)| ≥ k, u2 ∈ C(u1)} ◦ {|C(u3)| ≥ k}
)

≤
∑

u1,u2,u3

PT,p(|C(u1)| ≥ k|, u2 ∈ C(u1)) PT,p(C(u3)| ≥ k)

= V Ep[|C|1{|C|≥k}] Ep[Z≥k] ≤ Ep[Z≥k]V χT(p). (3.13)

We complete the proof by bounding (III), for which we again use the BK-inequality, to obtain

(III) ≤
∑

u1,u2,u3

PT,p({|C(u1)| ≥ k} ◦ {|C(u2)| ≥ k} ◦ {|C(u3)| ≥ k}
)

≤
∑

u1,u2,u3

PT,p(|C(u1)| ≥ k|) PT,p(C(u2)| ≥ k) PT,p(|C(u3)| ≥ k) = Ep[Z≥k]
3. (3.14)

This completes the proof.

Now we are ready to complete the proof of Proposition 3.1:

Proof of Proposition 3.1. By Theorem 1.1, we know that the sequence |Cmax|V −2/3 is tight, and so is
V 2/3/|Cmax|. Thus, there exists a subsequence of |Cmax|V −2/3 that converges in distribution, and the
weak limit, which we shall denote by X∗, is strictly positive and finite with probability 1. Thus, we are
left to prove that X∗ is non-degenerate. For this, we shall show that there exists an ω > 0 such that
P(X∗ > ω) ∈ (0, 1).

To prove this, we choose an ω that is not a discontinuity point of the distribution function of X∗

and note that
P(X∗ > ω) = lim

n→∞
P

T,pc(Zd)(|Cmax|V −2/3
n > ω), (3.15)

where the subsequence along which |Cmax|V −2/3 converges is denoted by {Vn}∞n=1. Now, using (1.11),
we have that

P
T,pc(Zd)(|Cmax|V −2/3

n > ω) = P
T,pc(Zd)

(
Z

>ωV
2/3
n

> ωV 2/3
n

)
. (3.16)

The probability P
T,pc(Zd)

(
Z

>ωV 2/3 > ωV 2/3
)

is monotone decreasing in ω. By the Markov inequality
and (2.4), for ω ≥ 1 large enough and uniformly in V ,

P
T,pc(Zd)

(
Z

>ωV 2/3 > ωV 2/3
)
≤ ω−1V −2/3V P

T,pc(Zd)

(
|C| ≥ ωV 2/3

)
≤ CC

ω3/2
< 1. (3.17)

In particular, the sequence Z
>ωV 2/3V −2/3 is tight, so we can extract a further subsequence {Vnl

}∞l=1 so

that also Z
>ωV 2/3V −2/3 converges in distribution, say to Z∗

ω. Then, (3.17) implies that

P(Z∗
ω = 0) = 1 − P(Z∗

ω > 0) = 1 − lim
l→∞

P
T,pc(Zd)

(
Z

>ωV
2/3
nl

> 0
)

= 1 − lim
l→∞

P
T,pc(Zd)

(
Z

>ωV
2/3
nl

> ωV 2/3
nl

)
> 0. (3.18)
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Further, by Lemma 3.2,

Varpc(Zd)(Z>ωV 2/3V −2/3) ≥ V −1/3
P

T,pc(Zd)

(
|C| > ωV 2/3)

[
ωV 2/3 − V P

T,pc(Zd)(|C| > ωV 2/3)
]

≥ V 1/3
P

T,pc(Zd)(|C| > ωV 2/3)
[
ω − CCω

−1/2
]
, (3.19)

which remains uniformly positive for ω ≥ 1 sufficiently large, by (2.4). Since there is also an upper
bound on Varpc(Zd)(Z>ωV 2/3V −2/3) (this follows from (3.2)), it is possible to take a further subsequence

{Vnlk
}∞k=1 for which Varpc(Zd)(Z>ωV 2/3V −2/3) converges to σ2(ω) > 0. Since, by Lemma 3.3, the third

moment of Z
>ωV 2/3V −2/3 is bounded, the random variable (Z

>ωV 2/3V −2/3)2 in uniformly integrable,

and, thus, along the subsequence for which Z
>ωV 2/3V −2/3 weakly converges and Varpc(Zd)(Z>ωV 2/3V −2/3)

converges in distribution to Z∗
ω, we have

Var(Z∗
ω) = lim

k→∞
Varpc(Zd)(Z>ωV

2/3
nlk

V −2/3
nlk

) = σ2(ω) > 0. (3.20)

Since Var(Z∗
ω) > 0, we must have that P(Z∗

ω = 0) < 1. Thus, by (3.18) and the above, we obtain that
P(Z∗

ω = 0) ∈ (0, 1), so that

P(X∗ > ω) = lim
n→∞

P
T,pc(Zd)

(
|Cmax|V −2/3

n > ω
)

= lim
k→∞

P
T,pc(Zd)

(
Z

>ωV
2/3
nlk

V −2/3
nlk

> 0
)

= P(Z∗
ω > 0) ∈ (0, 1). (3.21)

This proves Proposition 3.1.

4 Diameter and mixing time

Let dC denote the graph metric (or intrinsic metric) on the percolation cluster C.

Theorem 4.1 (Nachmias–Peres [19]). Consider bond percolation on the graph G with vertex set V,
V = |V| < ∞, with percolation parameter p ∈ (0, 1). Assume that for all subgraphs G

′ ⊂ G with vertex
set V

′,

(a) EG′,p

∣∣E
(
{u ∈ C(v) : dC(v)(v, u) ≤ k}

)∣∣ ≤ d1k, v ∈ V
′;

(b) PG′,p

(
∃u ∈ C(v) : dC(v)(v, u) = k

)
≤ d2/k, v ∈ V

′,

where E(C) denotes the number of open edges with both endpoints in C. If for some cluster C

PG,p

(
ω−1V 2/3 ≤ |C|

)
≥ 1 − b

ω
, (4.1)

then there exists c > 0 such that for all ω ≥ 1,

PG,p

(
ω−1V 1/3 ≤ diam(C) ≤ ωV 1/3

)
≥ 1 − c

ω1/3
, (4.2)

PG,p

(
Tmix(C) > ωV

)
≤ c

ω1/6
, (4.3)

PG,p

(
ω−1V > Tmix(C)

)
≤ c

ω1/34
. (4.4)

We apply the theorem for G = Tr,d and p = pc(Z
d). Theorem 1.2 implies that (4.1) holds for the

ith largest cluster C = C(i), i ∈ N. Hence Corollary 1.3 follows from Theorems 1.2 and 4.1 once we have
verified conditions (a) and (b) in the above theorem. In fact, (4.3) is a slight improvement over (1.10).
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Before proceeding with the verification, we shall comment on how to obtain Theorem 4.1 from the
work of Nachmias and Peres [19]. Indeed, Theorem 4.1 is very much in the spirit of [19, Theorem
2.1], though the O-notation there depends on β. The bound (4.2) is nevertheless straightforward from
[19, proof of Theorem 2.1(a)] and (4.1). For (4.3) we use (4.2) together with the bound Tmix(G) ≤
8 |E|diam(G), valid for any finite (random or deterministic) graph G with edge set E , cf. [19, Corollary
4.2].

Furthermore, subject to conditions (a) and (b) of Theorem 4.1, there exist constants C1, C2 > 0
such that for any β > 0, D > 0,

PG,p

(
∃v ∈ V : |C(v)| > βV 2/3, Tmix(C(v)) <

β21

1000D13
V

)
≤ D−1

(
C1 + C2β

3D−2
)
; (4.5)

which is obtained by combining [19, (5.4)] with the display thereafter. From this we can deduce (4.4)
by choosing D = 1000−1/13ω and β = ω−1/34.

We complete the proof of Corollary 1.3 by verifying that the conditions in Theorem 4.1(a) and (b)
indeed hold for critical percolation on the high-dimensional torus:

Verification of Theorem 4.1(a). The cluster C(v) is a subgraph of the torus with degree Ω, therefore
we can replace the number of edges on the left hand side by the number of vertices (and accommodate
the factor Ω in the constant d1). In [15, Proposition 2.1], a coupling between the cluster of v in the torus
and the cluster of v in Z

d was presented, which proves that C(v) can be obtained by identifying points
which agree modulo r in a subset of the cluster of v in Z

d. A careful inspection of this construction
shows that this coupling is such that it preserves graph distances. Since

∣∣{u ∈ C(v) : dC(v)(v, u) ≤ k}
∣∣

is monotone in the number of edges of the underlying graph, the result in Theorem 4.1(a) for the torus
follows from the bound Ep

∣∣{u ∈ C(v) : dC(v)(v, u) ≤ k}
∣∣ ≤ d1k for critical percolation on Z

d. This bound
was proved in [16, Theorem 1.2(i)].

Verification of Theorem 4.1(b). For percolation on Z
d, this bound was proved in [16, Theorem

1.2(ii)]. However, the event
{
∃u ∈ C(v) : dC(v)(v, u) = k

}
is not monotone, and, therefore, this does not

prove our claim. However, a close inspection of the proof of [16, Theorem 1.2(ii)] shows that it only
relies on the bound that

P
T,pc(Zd)(|C(v)| ≥ k) ≤ C1/k

1/2 (4.6)

(see in particular, [16, Section 3.2]). The bound (4.6) holds for k ≤ b1V
2/3 by [6, (1.19)] and Theorem

2.1 (where b1 is a certain positive constant appearing in [6, (1.19)]). For k > b1V
2/3 we use instead

(2.36). Alternatively, one obtains (4.6) from the corresponding Z
d-bound (proven by Barsky–Aizenman

[5] and Hara–Slade [12]), together with the fact that Z
d-clusters stochastically dominate Tr,d-clusters

by [15, Prop. 2.1]. This completes the verification of Theorem 4.1(b).
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