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Abstract

We present an approach for the transition from convex risk measures in discrete time
to their counterparts in continuous time. The aim of this paper is to show that a large
class of convex risk measures in continuous time can be obtained as limits of discrete
time-consistent convex risk measures. The discrete-time risk measures are constructed
from properly rescaled (‘tilted’) one-period convex risk measures, using a d-dimensional
random walk converging to a Brownian motion. Under suitable conditions (covering many
standard one-period risk measures) we obtain convergence of the discrete risk measures to
the solution of a BSDE, defining a convex risk measure in continuous time, whose driver
can then be viewed as the continuous-time analogue of the discrete ‘driver’ characterizing
the one-period risk. We derive the limiting drivers for the semi-deviation risk measure,
Value at Risk, Average Value at Risk, and the Gini risk measure in closed form.
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1 Introduction

In this paper we present an approach for the transition from convex risk measures in discrete
time to their counterparts in continuous time. This allows us to obtain interesting continuous-
time analogues of the many one-period convex risk measures. Consider a position yielding a
payoff depending on some random scenario. The position could be a portfolio containing assets
and liabilities, a derivative, or an insurance contract. The goal of a risk measure is usually
to ‘summarize’ the information about the position in a single number which should in some
form relate to the potential losses of the position. Coherent risk measures (which were later
generalized to convex risk measures) are a particular axiomatic class of risk measures for which
this number can be interpreted as a minimal capital reserve. (If a coherent/convex risk measure
is multiplied by −1 then its value may be viewed as a price.) Coherent (static) risk measure
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were introduced in Artzner et al. (1997, 1999); they were inspired by the capital adequacy
rules laid out in the Basel Accord. The more general concept of a convex risk measure was
developed by Föllmer and Schied (2002, 2004) and Frittelli and Rosazza Gianin (2002). For an
analysis of insurance premiums and risk measures the reader can consult Wang et al. (1997),
Landsman and Sherris (2001), Delbaen (2002) and Goovaerts et al. (2003).

Dynamic risk measures for financial positions, updating the information at every time
instance, have often been considered in a discrete-time setting. Of course, the dynamic theory
is based on the concepts of static (one-period) risk measuring. In a dynamical context time-
consistency is a natural assumption to glue together static risk measures. It means that the
same risk is assigned to a financial position regardless of whether it is calculated over two
time periods at once or in two steps backwards in time. This is in fact equivalent to the
property that if an asset X is preferred to an asset Y under all possible scenarios at some
time t then X should also have been preferred before t. For a comparison with weaker notions
of time-consistency see for instance Roorda and Schumacher (2007). Time-consistent convex
risk measures have been discussed in discrete time by Riedel (2004), Roorda et al. (2005),
Detlefsen and Scandolo (2005), Cheridito et al. (2006), Cheridito and Kupper (2006), Föllmer
and Penner (2006), Ruszczyński and Shapiro (2006b), Bion-Nadal (2006, 2008), Artzner et al.
(2007), Roorda and Schumacher (2007) and Jober and Rogers (2008).

Time-consistent convex risk measures can be also studied in a continuous-time setting,
see for instance Peng (1997, 2004), Barrieu and El Karoui (2004, 2009), Frittelli and Gianin
(2004), Rosazza Gianin (2006), Delbaen (2006), Klöppel and Schweizer (2007), Jiang (2008),
and Bion-Nadal (2008). While being well understood in discrete time, modeling risk mea-
sures in continuous time is more challenging. However, in many situations information arrives
continuously and it seems natural to assume that the agent is allowed to update his capital
reserves at any time. An elegant approach is the use of an operator given by the solution of
a backward stochastic differential equation (BSDE), the so-called g-expectation; see Barrieu
and Peng (1997, 2004), Barrieu and El Karoui (2004, 2009), Coquet et al. (2002), Fritteli
and Rosazzi Gianin (2004), Rosazzi Gianin (2006), and Jiang (2008) and the generalization
of Bion-Nadal (2008). However, when risk measures are modeled as solutions of BSDEs, the
drivers defining the underlying BSDEs are difficult to interpret.

The aim of this paper is to show that a large class of convex risk measures in continuous time
can be obtained as limits of some classes of robust discrete time-consistent convex risk measures.
We will also prove that without scaling discrete-time risk measures which are generated by a
single one-period coherent risk measure blow up when more and more time instances are taken
into account, suggesting that it may not be appropriate to use them without further scaling, in
situations where new information is coming in frequently. Moreover, the risk measures which do
converge without scaling will always converge to quadratic BSDEs which in a one-dimensional
setting corresponds to the entropic risk measure.

We will construct the converging robust discrete risk measures from properly rescaled
(‘tilted’) one-period convex risk measures, using a d-dimensional random walk converging to
a Brownian motion. Under suitable conditions (covering many standard one-period convex
risk measures) we obtain convergence of the discrete convex risk measures to the solution of a
BSDE whose driver can then be viewed as the continuous-time analog of the discrete ‘driver’
characterizing the one-period risk. We will derive the limiting driver for the semi-deviation
risk measure, Value at Risk, Average Value at Risk, and the Gini risk measure in closed form.

In Sections 2-4 we expound the necessary background material and review briefly the re-
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quired recent theory on which our approach is based. In Section 5 we present the underlying
random walk setting, prove that, for instance, coherent risk measures blow up when extended
without further scaling and introduce the scaled and tilted discrete-time convex risk measures.
In Section 6 they are characterized as solutions of discrete-time BSDEs, and their convergence
to continuous-time convex risk measures is derived. The explicit form of the limiting drivers
for some examples of one-period convex risk measures is determined in the final Section 7.

2 Setup

We fix a finite time horizon T > 0. Financial positions are represented by random variables
X ∈ Lp(Ω,FT , P ) (Lp(FT ) for short) with p ∈ {2,∞} on some common probability space
with filtration (Ft)t∈I , where I ⊂ [0, T ] is a set of time instances usually including 0 and T ,
and X(ω) is the discounted net worth of the position at maturity time t under the scenario
ω. Equalities and inequalities between random variables are understood in the P -almost sure
sense. Our goal is to quantify the risk of X at time t by an Ft-measurable random variable
ρt(X) for t ∈ I. ρt(X) is often interpreted as a capital reserve requirement at time t for
the financial position X conditional on the information given by Ft. We call a collection of
mappings ρt : Lp(FT ) → Lp(Ft), t ∈ I a dynamic convex risk measure if it has the following
properties:

• Normalization: ρt(0) = 0.

• Monotonicity: If X,Y ∈ Lp(FT ) and X ≤ Y , then ρt(X) ≥ ρt(Y )

• Ft-Cash Invariance: ρt(X +m) = ρt(X)−m for X ∈ Lp(FT ) and m ∈ L∞(Ft).

• Ft-Convexity: For X,Y ∈ Lp(FT ) ρt(λX + (1 − λ)Y ) ≤ λρt(X) + (1 − λ)ρt(Y ) for all
λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1.

• Ft-Local Property: ρt(IAX1 + IAcX2) = IAρt(X1) + IAcρt(X2) for all X ∈ Lp(FT ) and
A ∈ Ft.

• Time-Consistency: For X,Y ∈ Lp(FT ) ρt(X) ≤ ρt(Y ) implies ρs(X) ≤ ρs(Y ) for all
s, t ∈ I with s ≤ t.

Normalization guarantees that the null position does not require any capital reserves. If ρ is
not normal but satisfies the other axioms then the agent can consider the operator ρ(X)−ρ(0)
without changing his preferences. Monotonicity postulates that if in any scenario X pays not
more than Y then X should be considered at least as risky as Y. Cash invariance gives the
interpretation of ρ(X) as a capital reserve. Convexity, which under cash invariance is equivalent
to quasiconvexity, says that diversification should not be penalized. For a further discussion
of these axioms see also Artzner et al. (1997, 1999). Note that many similar axioms for
premium principles can be found in the literature, see for instance Deprez and Gerber (1985)
or Goovaerts et al. (2003, 2004a). The local property implies that if A is Ft-measurable then
the agent should know at time t if A has happened and adjust his risk evaluation accordingly.
If ρ is not time-consistent then it would be possible that an agent at time s considers the future
payoff X more risky than the future payoff Y although he knows that in the future in every
possible scenario X will actually turn out to be less risky than Y. Time-consistency excludes
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this kind of behavior. For the use of corresponding or similar notions of time-consistency
see also Duffie and Epstein (1992), Chen and Epstein (2002) and the references given in the
introduction. Epstein and Schneider (2003) and Maccheroni et al. (2006) deal with dynamic
preferences.

Note that normalization and cash invariance yield that ρT (X) = −X. Hence, although the
monotonicity property is listed as an axiom (as it is traditionally done) it follows from time-
consistency. In a setting with only two time instances both notions are equivalent. Furthermore,
if p =∞, the local property is implied by monotonicity and cash invariance since

IAρt(X)
(≥)

≤ IAρt(XIA
(+)
− ||X||∞IAc) = IAρt(XIA).

Hence,

ρt(IAX1 + IAcX2) = IAρt(IAX1 + IAcX2) + IAcρt(IAX1 + IAcX2)
= IAρt(X1) + IAcρt(X2).

Note that due to the normalization, monotonicity and cash invariance, time-consistency is
equivalent to the dynamic programming principle:

For every X ∈ Lp(FT ): ρs(X) = ρs(−ρt(X)) for all s ≤ t.

Given a dynamic convex risk measure (ρs) we define ρs,t to be equal to ρs restricted to Lp(Ft),
i.e., ρs,t = ρs|Lp(Ft). Then the dynamic programming principle is equivalent to

ρs,t(X) = ρs,u(−ρu(X)) for s, u, t ∈ I with s ≤ u ≤ t.

If I = [0, T ] then we call ρ = (ρt)t∈I a dynamic convex risk measure in continuous time
(CCRM). If I = {t0, t1, . . . , tk}, where 0 = t0 < t1 < . . . < tk = T , we call ρ a dynamic convex
risk measure in discrete time (DCRM). Throughout the rest of this paper, | · | will denote the
Euclidean norm.

3 Continuous-time convex risk measures

In the case I = [0, T ] it is well-known that solutions of backward stochastic differential equations
in continuous time (BSDEs) provide CCRMs; see the references listed in the introduction.

Therefore, we start by introducing the definition of a BSDE. As underlying process we
take a d-dimensional Brownian motion W = (Wt)t∈[0,T ] on (Ω, (Ft)t∈[0,T ], P ), where (Ft)t∈[0,T ]

denotes the standard filtration. The driver of the BSDE is a function

g : [0, T ]× Ω× R× Rd → R

which is measurable with respect to P ⊗ B(R) ⊗ B(Rd), where P denotes the predictable σ-
algebra, i.e., the σ-algebra generated by the predictable processes, considered as real-valued
mappings on [0, T ]× Ω.

Next, fix an FT -measurable random variable X as ‘terminal condition’. A solution of the
BSDE defined by g and X is a pair (Yt, Zt), 0 ≤ t ≤ T , of progressively measurable processes
with values in R× Rd satisfying

Yt = X +
∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ] (3.1)
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and

E[(
∫ T

0
|Zs|2s)1/2] <∞, E[ sup

0≤t≤T
|Yt|2] <∞ (3.2)

where products of vectors are understood as scalar products. To ensure that a unique solution
of the above BSDE exists there are two possible assumptions which are usually made:

1. (H1) The standard case (uniformly Lipschitz driver): X ∈ L2,

E[
∫ T

0 |g(t, 0, 0)|2dt] <∞, and g uniformly Lipschitz continuous with respect to (y, z), i.e.,
there exists a constant K > 0 such that dP × dt a.s. for all (y, y0, z, z0) ∈ R2d+2

|g(t, y, z)− g(t, y0, z0)| ≤ K(|y − y0|+ |z − z0|).

Under these assumptions, Pardoux and Peng proved in 1990 the existence and uniqueness
of a solution of the BSDE (3.1)-(3.2).

2. (H2) X ∈ L∞, |g(t, ω, y, z)| ≤ K(1 + |y|+ |z|2) dP × dt a.s. and for every C > 0 there
exists a K̂ such that for all y ∈ [−C,C]

|∂g(t, ω, y, z)
∂y

| ≤ K̂(1 + |z|2) and |∂g(t, ω, y, z)
∂z

| ≤ K̂(1 + |z|) dP × dt a.s.

Under these assumptions Kobylanksi (2000) proved that the BSDE (3.1)-(3.2) has a
unique solution (Yt, Zt) such that Y is bounded.

Now let g be a driver which is independent of y, convex in z satisfying g(t, 0) = 0 and such that
(H1) (or (H2)) holds. We can define the operator Y g which assigns to every financial position
X ∈ L2(FT ) (or L∞(FT )) the first component of the solution of the corresponding BSDE with
terminal condition −X, say Y g

t = Y g
t (−X) . It is known that the mapping X 7→ Y g

t (−X),
X ∈ Lp(FT ), is normal, monotone, cash invariant, convex, time-consistent and satisfies the
local property, for p = 2 (or p =∞). Consequently, for every driver g satisfying (H1) (or (H2))
the operator defined by

ρgt (X) = Y g
t (−X)

defines a CCRM with respect to the filtration (Ft)t∈[0,T ] on L2 (L∞), (see also Fritelli and
Rosazza Gianin (2004), Peng (1997, 2004), Rosazza Gianin (2006), Jiang (2008) and Barrieu
and El Karoui (2009)). There are also certain sufficient conditions under which a CCRM is
induced as a solution of a BSDE satisfying either (H1) (Coquet et al. (2002), Peng (2004) and
Rosazza Gianin (2006)) or (H2) (Hu et al. (2008)).

Thus, BSDEs provide an abundance of dynamic convex risk measures in continuous time.
However, it is very hard to assess the meaning of the function g. From the properties of
BSDEs it follows that if ḡ(t, z) satisfies (H1) (or (H2)) then g ≤ ḡ implies that for every X
in L2(FT ) (L∞(FT )) and any t ∈ [0, T ] we have ρgt (X) ≤ ρḡt (X). Hence, choosing a larger
function ḡ corresponds to using a more conservative risk measures. It is also well known
that if g(t, z) = γ|z|2 with γ > 0 then the CCRM is given by the entropic risk measure
ρgt (X) = eγt (X) = γ ln

(
E[exp{−X/γ}|Ft]

)
, see for instance Proposition 6.4, Barrieu and El

Karoui (2009). Moreover, it is known, see for instance Rosazza Gianin (2006), that in the case
of a financial market with a risky asset given by dSt = St(νtdt+ σtdWt), with processes νt and
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σt satisfying appropriate assumptions, the price of a replicable contingent claim −X at time t
corresponds to ρgt (X) with g(t, z) = − νt

σt
z.

However, in many other cases the corresponding CCRM risk measure is difficult to interpret.
One of the aims of this paper is to show that many CCRMs can be viewed as limits of extensions
of standard one-period convex risk measures. A second goal will be to explicitly extend static
risk measures whose behavior is well understood (like the ones listed as examples below) to a
continuous-time setting.

An important technical tool is the dual representation of Y g
t (Barrieu and El Karoui (2009)).

Let G be the conjugate of g with respect to the variable z, that is,

G(t, ω, u) = ess supz(uz − g(t, ω, z)), u ∈ Rd.

We will usually omit the variable ω in G. For u we insert special processes µt, t ∈ [0, T ].
We call (µt)t∈[0,T ] a BMO if it is a progressively measurable d-dimensional process satisfying
supt E[

∫ T
t |µs|

2ds|Ft] ∈ L∞(FT ). Let Γµ(t) = exp{
∫ t

0 µsdWs − 1/2
∫ t

0 |µs|
ds}. If (µs)s∈[0,T ] is a

BMO, Γµ is a uniformly integrable martingale (Barrieu and El Karoui (2009), Theorem 7.2
or Kazamaki (1994), Section 3.3). Thus, we can define a probability measure Pµ by setting
dPµ

dP
= Γµ. By the Girsanov Theorem, the process Wt −

∫ t
0 µsds is a Brownian motion under

Pµ. We need the following duality (see Theorem 7.4 in Barrieu and El Karoui (2009)):

Theorem 3.1 Suppose that X is in L2(FT ) (or in L∞(FT )) and (H1) (or (H2)) is satisfied.
Then we have

ρgt (X) = ess supµ∈AEµ
[
X −

∫ T

t
G(s, µs)ds

∣∣∣Ft], (3.3)

where under (H1) A is the set of progressively measurable d-dimensional processes bounded by
K and under (H2) A is the set of BMOs. Furthermore, in each case there is a µ∗ ∈ A for
which the essential supremum is attained for every t ∈ [0, T ].

4 Convex risk measures in discrete time

Now we consider the case of discrete time, that is, I = {t0, t1, . . . , tk} where 0 = t0 < t1 <
. . . < tk = T. We will only consider the space L∞(FT ) in this chapter. However, since later
our discrete time filtration will only have finitely many atoms this will not put any restrictions
on our results. From the convexity condition, we can derive a dual representation for DCRMs.
For this, we first have to introduce for i = 0, . . . , k − 1 the set of one-step transition densities

Dti+1 = {ξ ∈ L1
+(Fti+1) | E[ξ|Fti ] = 1}.

Denote by P ti the measure P conditioned on Fti . Every sequence (ξtj )j=i+1,...,k ∈ Dti+1 ×
Dti+2 × . . .×Dtk induces a P -martingale

M ξ
tr =


r∏

j=i+1

ξtj if r ≥ i+ 1

1 if r ≤ i
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and a probability measure Qξ by
dQξ

dP
= M ξ

T . We may identify Qξ with its density ξ. Set

D = Dt1 ×Dt2 × . . . ×Dtk . Note that for Qξ ∈ D and an Fti+1-measurable bounded random

variable X, E[X
k−1∏
j=i

ξtj+1 |Fti ] is defined P -a.s. whereas EQξ [X|Fti ] is defined only Qξ-a.s.

However, following Cheridito and Kupper (2006) we will use the notation

EQξ [X|Fti ] := E[X
k−1∏
j=i

ξtj+1 |Fti ] for i = 0, . . . , k.

For Q ∈ Dti+1 we define EQ[X|Fti ] similarly. Now let us assume that we have one-period
convex risk measures Fti : L∞(Fti+1) → L∞(Fti) for i = 0, . . . , k − 1. A one period convex
risk measure Fti may be seen as a dynamic risk measure with two time instances ti and ti+1.
However, we have already noted before that in this case time-consistency is redundant. Hence,
Fti is a one period convex risk measure if and only if it satisfies normalization, monotonicity,
Fti-translation invariance, the Fti-local property, and Fti-convexity. The interpretation is that
the agent is at time ti and evaluates payoffs with maturity ti+1. Subsequently, we will also call
the (Fti)i∈{0,...,k−1} the generators. Some examples of generators are

Examples 4.1 • Entropic risk measure:

eγti(X) = γ ln
(

E
[

exp{−X
γ
}|Fti

])
, γ ∈ (0,∞).

• Semi-deviation risk measure:

Sλ,qti (X) = E[−X|Fti ] + λ||(X − E[X|Fti ])−||ti,q, λ ∈ [0, 1], q ∈ [1,∞)

where the Lq-norm is taken with respect to the measure P conditioned on Fti.

• Gini risk measure:

V θ
ti (X) = ess supQ∈Dti+1

{
EQ[−X|Fti ]−

1
2θ
Cti(Q|P )

}
, θ > 0

where Cti(Q|P ) is the Gini index, that is, for a measure Q ∈ Dti+1 with corresponding
conditional density ξti+1

Cti(Q|P ) = E
[( dQ
dP ti

− 1
)2
|Fti

]
= E

[
(ξti+1 − 1)2|Fti

]
.

• Value at Risk:

V@Rαti(X) = inf{m Fti −measurable |P [X +m < 0|Fti ] ≤ α}, α ∈ (0, 1].

• Average Value at Risk:

AV@Rαti(X) =
1
α

∫ α

0
V@Rλti(X)dλ, α ∈ (0, 1].
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The entropic risk measure is also called the exponential premium in the insurance literature
(Goovaerts et al. (2004b)). It is well-known, that its dual is equal to the Kullback-Leibler
divergence. The semi-deviation risk measure penalizes negative deviations of X from its mean.
The Gini risk measure is closely related to a mean-variance evaluation. The mean-variance
operator E[−X]+ θ

2Var(X) is not a convex risk measure since it is not monotone. The Gini risk
measure is the largest convex risk measure which agrees with the mean-variance risk measure
on its domain of monotonicity, see Maccheroni et al. (2004, 2006). From the definition above we
can see that measures Q are penalized according to their deviation from the reference measure
P ti .

Of course, contrary to all other examples above, V@R is not a true generator since it is
not convex. However, we will also consider it in our analysis since it is the risk measure which
is most often used in practice. V@R is one of the cornerstones of the Basel II accord and
the Solvency II requirements. It corresponds to the smallest amount of capital a bank or an
insurance needs to add to its position and invest in a risk-free asset such that the probability
of a negative outcome is kept below α. However, it is clear from its definition that Value at
Risk does not capture the size of a loss if it occurs. Average Value at Risk takes the average
of all Values at Risk between zero and α. It is, with sometimes slightly different definitions
for non-continuous distributions, also often referred to as Conditional Value at Risk, Expected
Shortfall or Tail Value at Risk. Denote by L̄+(Ft) the set of all Ft-measurable functions from
Ω to [0,∞].

Definition 4.2 We call a mapping Dti+1 → L̄+(Fti) a one-step penalty function if it satisfies

(i) ess infξ∈Dti+1
φti(ξ) = 0;

(ii) φti(IAξ1 + IAcξ2) = IAφti(ξ1) + IAcφti(ξ2) for all A ∈ Fti .

We define the penalty function φFti of a one-period convex risk measure Fti on Dti+1 as

φ
Fti
ti

(ξ) = ess supX∈L∞(Fti+1 ){E[−Xξ|Fti ]− Fti(X)}.

Examples 4.3 The penalty functions in Examples 4.1 are (see also Föllmer and Schied (2004),
and Ruszczyński and Shapiro (2006a))

• for the entropic risk measure:

φe
γ

ti (ξti+1) = γE
[
ξti+1 log

(
ξti+1

)
|Fti

]
;

• for the semi-deviation risk measure:

φ
Sλ,qti
ti

(ξti+1) = J
Mλ,q
ti

(ξti+1)

with

Mλ,q
ti

= {ξ ∈ Dti+1 |ξ = 1 + ξ̄ −
∫
ξ̄dP ti for some ξ̄ ∈ Lq′(Fti+1 , P

ti),

||ξ̄||q′ ≤ λ, ξ̄ ≥ 0},

where q′ is chosen such that 1/q + 1/q′ = 1 and JA(Q) is the indicator function which is
0 if Q ∈ A and infinity otherwise;
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• for the Gini risk measure:

φV
θ

ti (ξti+1) =
1
2θ

E
[
(ξti+1 − 1)2|Fti

]
.

• for Average Value at Risk:

φAV@Rα

ti (ξti+1) = JMα
ti

(ξti+1)

where Mα
ti is the set of all conditional ti+1-one-step densities which are bounded by 1/α.

Definition 4.4 For 0 ≤ t ≤ T , we call a mapping I : L∞(FT ) → L∞(Ft) continuous from
above if I(Xn)→ I(X) P-almost surely for every sequence (Xn)n≥1 in L∞(FT ) that decreases
P-almost surely to some X ∈ L∞(FT ). We call a dynamic convex risk measure (ρt)t∈I on
L∞(FT ) continuous from above if, for each t ∈ I, ρt is continuous from above.

Recall that given a DCRM (ρtj ), ρtj ,tj+1 is defined as ρtj restricted to tj+1. For Q ∈ D with
corresponding sequence of one-step densities (ξ) define φti(Q) = φti(ξti+1). Now in the case
that p =∞ for a DCRM Theorem 3.4 and Corollary 3.8 of Cheridito and Kupper (2006) give
the following representation.

Proposition 4.5 Let I = {t0, . . . , tk} where 0 = t0 < t1 < . . . < tk = T. Suppose that(
ρs : L∞(FT )→ L∞(Fs)

)
s∈I

is a DCRM which is continuous from above. Then

ρti(X) = ess supQ∈D EQ[−X −
k−1∑
j=i

φtj (Q)|Fti ] (4.1)

where the φtj are the penalty functions with corresponding generators ρtj ,tj+1 , i.e., φtj =
φ
ρtj ,tj+1

tj
. On the other hand, given penalty functions φtj , with corresponding generators

(Ftj )j=0,...,k−1, defining ρ by (4.1) always yields a dynamic convex risk measure which is con-
tinuous from above, with ρtj ,tj+1 = Ftj for j = 0, . . . , k − 1.

Hence, starting with convex risk measures like the ones from Example 4.1 we can construct a
risk measure by (4.1), which behaves locally like Ftj . Now it is natural to ask what happens
if more and more time instances are taken into account. We will present a setting in which
DCRMs can be constructed from properly rescaled one-period convex risk measures (with cor-
responding scaled penalty functions) such that these DCRMs converge to convex risk measures
in continuous time. We will obtain classes of CCRMs which may be interpreted as the limits
of discrete time-consistent robust extensions of (scaled and tilted) standard one-period convex
risk measures.

5 DCRMs on a filtration generated by a Random walk

Let N ∈ N. Suppose that for every N we are given a finite sequence 0 = tN0 < tN1 < tN2 . . . <
tNk(N) = T satisfying

lim
N→∞

sup
j=1,...,k(N)

∆tNj → 0
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where ∆tNj = tNj − tNj−1. We may assume without loss of generality that for every N ∈ N,
supj=1,...,k(N) ∆tNj ≤ 1. Let BN,l

j be i.i.d. Bernoulli variables so that P (BN,l
j = ±1) = 1/2,

l = 1, . . . , d, j = 1, . . . , k(N). Consider the d-dimensional random walk RNt = (RN,1t , . . . , RN,dt )
which is constant on each of the intervals [tNi , t

N
i+1) and whose components at time tNi are given

by

RN,l(tNi ) =
i∑

j=1

√
∆tNj B

N,l
j , i = 0, ..., k(N), l = 1, . . . , d.

Denote by FN = (FNt )t∈[0,T ] the filtration generated by the random walk process. As the
filtration FN is finite the spaces L∞(FNT ) and L2(FNT ) coincide. As a result we do not need
to distinguish anymore the cases p = 2 and p =∞ and will subsequently write L0(FNT ). Using
Theorem I.2.3 in Kunita and Watanabe (1981) we can, after changing the probability space,
assume that there exists a standard Brownian motion Wt such that

sup
0≤t≤T

|RNt −Wt| → 0 in L2.

For an FN -adapted process (UN )t∈{tN0 ,...,tNk }, let ∆UN
tNi

= UN
tNi
− UN

tNi−1
for i = 1, . . . , k. Sub-

sequently, we will omit the index N whenever N is fixed except (to avoid ambiguities) when
referring to the filtration.

Our aim is to extend certain one-period risk measures to discrete multi-period convex risk
measures (adapted to the filtration FN ) and then to obtain convergence to continuous-time
convex risk measures when taking the limit N → ∞. This will give an approximation, and
a nice interpretation, for certain CCRMs. Take, for example, the entropic risk measure in
continuous time

eγt (X) = γ ln
(
E[exp{−X

γ
}|Ft]

)
, t ∈ [0, T ]

and its discrete-time counterpart

eN,γt (XN ) = γ ln
(
E[exp{−X

N

γ
}|FNt ]

)
, t ∈ [0, T ].

Of course, eγt and eN,γt are dynamic convex risk measures. Let XN be terminal conditions
for the Nth DCRM respectively, with supN ||XN ||∞ < ∞. Now we can use the tools of weak
convergence of filtrations1 to conclude that the convergence of XN to some bounded X in
probability implies that

sup
0≤t≤T

|E[exp{−XN}|FNt ]− E[exp{−X}|Ft]| → 0 in probability as N →∞

(see Proposition 2 and the second point of Remark 1 in Coquet et al. (2001)). As the XN are
uniformly bounded, exp{−XN

γ } is uniformly bounded away from zero which implies that

sup
0≤t≤T

|eN,γt (XN )− eγt (X)| → 0 in probability as N →∞.

1FN converges weakly to F if for every A ∈ FT , E[IA|FN. ] converges in the Skohorod J1-topology in proba-
bility to E[IA|F.]. If the limit is continuous the convergence holds uniformly in t.
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So in the case of the entropic risk measure the transition from discrete to continuous time
is straightforward. However, most convex risk measures cannot be written as conditional
expectations. In particular, for CCRMs that are only implicitly defined as the solutions of
BSDEs it is not clear what they really mean. Our goal will be to interpret the notions of risk
for these convex risk measures in continuous time by means of the analogous notions of risk
for DCRMs whose local behavior is well understood.

From (3.3) we see that the conjugate G(s, ω, µs)ds plays the role of the penalty functions
(φti(ξti+1))i∈{0,...,k−1} in (4.1) where we identified Q with the corresponding sequence of its
conditional one-step densities (ξti+1). Suppose that (µt) is an Rd-valued, deterministic process.
Then to determine which discrete time penalty functions (φti(ξti+1))i∈{0,...,k−1} could relate to
a function of the form G(s, ω, µs)ds in the limit, we have to find out first how (µs)s∈[0,T ] relates
to (ξti+1)i∈{0,...,k−1}. Let us consider the random walk with drift

∑
tj≤t µtj∆tj+1. Define

ξµti+1
= 1 + µti∆R

N
i+1 = 1 +

d∑
l=1

µlti∆R
N,l
i+1, i = 0, . . . , k(N)− 1 (5.1)

and assume that

ξµti+1
> 0, i = 0, . . . , k(N)− 1.

Define P̃µ by

dP̃µ

dP
=

k(N)−1∏
i=0

ξµti+1
.

It is not difficult to show that P̃µ is the probability measure under which the random walk
with drift is a martingale, i.e., for l = 1, . . . , d, the one-dimensional processes

RN,µ,lti+1
= RN,lti+1

−
∑

j: tj≤ti

µltj∆tj+1, i = 0, . . . , k(N)− 1

are martingales under P̃µ. (This can be checked by proving that for each l = 1, . . . , d the
conditional expectation of ∆RN,lti+1

− µlti∆ti+1, given FNti , is zero under ξµti+1
dP.) Therefore, P̃µ

may be interpreted as the discrete-time analogue of Pµ, defined shortly before Theorem 3.1.
Let BN

i+1 = (BN,1
i+1 , . . . , B

N,d
i+1). Now suppose that the one-step penalty functions

(φNti )i=0,...,k(N)−1 are homogeneous, that is, φNti (f(BN
i+1)) is independent of N and i for any

measurable function f : Rd → R. As we have a filtration generated by a binomial random
walk with a homogeneous structure, this assumption seems reasonable and in fact is satisfied
in all our examples above. Thus, we may omit the N and i and just write φ(f(B1)) even
when passing to the limit. Considering (3.3), and (4.1) and (5.1) we see that if the risk
measures in discrete time have the same scaling as in continuous time we must have that
φ
(
1 + µ∆RNi+1

)
= φ

(
1 + µB1

√
∆ti+1

)
is equal to G(ti, ω, µ)∆ti+1 + o(∆ti+1). Since ∆ti+1 gets

arbitrarily small this implies φ(1) = 0. Furthermore, the convex function hφ(x) := φ(1 + xB1),
mapping Rd to R,must satisfy h′φ(0) = 0. To see that fix t ∈ [0, T ) and let i(N) = sup{j|tNj ≤ t}.
Assume that G is continuous in t a.s. and that for every fixed arbitrary µ ∈ Rd, we have
φ
(
1 + µB1

√
∆tNi+1

)
= G(tNi , ω, µ)∆tNi+1 + o(∆tNi+1) for N ∈ N and i = 0, . . . , k(N) − 1. Then,
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as limN supi ∆tNi = 0 we have

lim
N→∞

φ
(
1 + µB1

√
∆tNi(N)+1

)
− φ(1)

∆tNi(N)+1

= lim
N→∞

φ0

(
1 + µB1

√
∆tNi(N)+1

)
∆tNi(N)+1

= G(t, ω, µ).

Hence, G is independent of t and h′φ(0) = 0. Denote the transposed of µti by µ#
ti
. It follows

that
1
2
µ#

tNi
h′′φ(0)µtNi ∆tNi+1 ≈ φ

(
1 + µtNi

Bi+1

√
∆tNi+1) ≈ G(ω, µtNi )∆tNi .

In particular, if d = 1 then G(µ) = γ|µ|2 for a γ ≥ 0, which corresponds to the entropic risk
measure. Hence, the arguments above suggest that the only one-period risk measures which
may be extended homogeneously to continuous time are those with a corresponding function
hφ with hφ(1) = h′φ(1) = 0. Moreover, if the discrete-time risk measures converge, then if
d = 1 the limit must be the entropic risk measure. Furthermore, even in higher dimensions
these extensions are not very rich since they are limited to BSDEs driven by purely quadratic
drivers. For a study of more general multi-dimensional quadratic BSDEs and their role in
indifference evaluation see Frei et al. (2009). The next proposition shows that all one-period
coherent risk measures1 explode in the limit if they are not properly rescaled.

Proposition 5.1 Suppose that (FNti )N,i is a family of homogeneous coherent risk measures,
i.e., for every function f : Rd → R, FNti (f(BN

i+1)) is independent of N and i. Furthermore,
suppose that FN is more conservative than a conditional expectation evaluation, i.e., there
exists a z0 ∈ Rd such that FNti (z0B

N
i+1) > 0. For discrete time payoffs XN define

ρNT (XN ) = −XN and ρNti (X) = FNti (−ρNti+1
(XN )). (5.2)

Then there exists discrete payoffs XN converging to a continuous time payoff X in L2 such
that for all t ∈ [0, T ) we have

ρNt (XN ) N→∞→ ∞.

The proof will be deferred to an appendix. Therefore, our approach in the sequel will be to
additionally scale and tilt the one-period risk measures and to investigate which continuous
time risk measures may be interpreted as their limit. We will see that under scaling and tilting
actually all homogenous risk measures can be extended to continuous time. We will first of all
scale penalty functions by the factor ∆ti, i.e., we will consider φti(ξ

µ)∆ti+1. Now

φti(ξ
µ)∆ti+1 = φti

(
1 + µti

√
∆ti+1B

N
ti+1

)
∆ti+1

and G(ti, ω, µti)∆ti+1 both use a different scaling of µ. Thus, they also measure the risk
at different scales and it seems unreasonable to assume that they both should in any form
correspond in the limit. However, if we consider penalty functions which have the form φti(1 +
ξµ − 1√
∆ti+1

), we might obtain a limiting relation of the form

φti(1 +
ξµ − 1√
∆ti+1

)∆ti+1 = φti
(
1 + µtiB

N
ti+1

)
∆ti+1

??
≈ G(ti, ω, µti)∆ti+1.

1A one-period convex risk measure Fti is coherent if Fti(λX) = λFti(X) for all λ ∈ L∞+ (Fti).
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Now let us carry out our program: to define a DCRM from one-period convex risk measures
in a time-consistent way and to scale the penalty functions by a time-dependent transformation
such that in the limit a CCRM is obtained.

For generators (Fti)i=0,...,k−1, we introduce (φ
Fti
ti

(1+
ξti+1 − 1
√

∆ti+1
)∆ti+1)i∈{0,...,k−1} as dynamic

penalty functions, where (φ
Fti
ti

)i∈{0,...,k−1} are the one-period penalty functions of Fti . Using
(4.1) and identifying Q with its conditional densities then leads to the following definition for
our DCRM.

Definition 5.2 For a collection of generators (Fti)i=0,...,k−1, with penalty functions (φ
Fti
ti

)i=0,...,k−1,
we define its robust extension as

ρti(X) = sup
Q∈D

EQ
[
−X −

k−1∑
j=i

φ
Ftj
tj

(1 +
ξQtj+1

− 1√
∆tj+1

)∆tj+1

∣∣∣FNti ]. (5.3)

We call (ρti)i=0,...,k defined by (5.3) the robust extended discrete-time convex risk measure.

The above definition scales the penalty function similarly to the continuous time case. The
term robustness is motivated in the following way: assume that all one-period risk measures
are ‘the same’, like for example in the case FNti = AV@Rαti for all N and all ti. Then we will see
later that if the grid reaches a certain refinement, increasing the number of time instances at
which the risk manager recalibrates his risk does not lead to a substantial change of this risk.
Without this kind of robustness dynamic risk measurements are not suitable in situations where
information is coming in frequently, since slightly different time grids can lead to completely
different risk evaluations.

Corollary 5.3 ρ defined by (5.3) is a DCRM which is continuous from above.

Proof. Since the filtration is finite, the supremum and the essential supremum in (5.3) are
identical. Set φ̄ti(ξ) = φ

Fti
ti

(1 + ξ−1√
∆ti+1

)∆ti+1. Let us prove that φ̄ti is a dynamic penalty

function. First of all note that, as by assumption supj ∆tNj ≤ 1, the mapping ξ 7→ 1 + ξ−1√
∆ti+1

from Dti+1 to Dti+1 is one-to-one. Hence,

ess infξ∈Dti+1
φ̄ti(ξ) = ess infξ∈Dti+1

φ
Fti
ti

(ξ)∆ti+1 = 0.

Furthermore, clearly for A ∈ FNti and ξ1, ξ2 ∈ Dti+1

φ̄ti(IAξ1 + IAcξ2) = φ
Fti
ti

(
IA

(
1 +

ξ1 − 1√
∆ti+1

)
+ IAc

(
1 +

ξ2 − 1√
∆ti+1

))
∆ti+1

=
(
IAφ

Fti
ti

(1 +
ξ1 − 1√
∆ti+1

) + IAcφ
Fti
ti

(1 +
ξ2 − 1√
∆ti+1

)
)

∆ti+1

= IAφ̄ti(ξ1) + IAc φ̄(ξ2).

Therefore, the φ̄ti are indeed one-step penalty functions. Now the corollary follows from Propo-
sition 4.5. 2
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Note that another way of obtaining a DCRM from the generators Fti would be to glue them
together in a time-consistent way on t0, . . . , T by recursively defining

ρT (X) = −X and ρti(X) = Fti(−ρti+1(X)). (5.4)

This procedure always leads to a DCRM (ρti) such that the restriction of ρti to Fti+1 is equal
to Fti . However, since by Proposition 4.5 this is equivalent to defining (ρti) by (4.1) with
penalty functions (φ

Fti
ti

), by the discussion above an additional scaling and tilting is needed
(otherwise for instance all non-trivial coherent risk measures would blow up, see Proposition
5.1). Namely, there is an equivalent way to obtain the robust extension (5.3) by tilting the
generators. Assume that we have generators Fti (given for instance by Examples 4.1). Define

σti(X) =
√

∆ti+1Fti

(
1√

∆ti+1

(
X − E[X|FNti ]

))
.

Note that σti satisfies the axioms of a general deviation measure given in Rockafellar et al.
(2006), except that sublinearity has to be replaced by convexity (in many of our examples,
however, σti is actually a true general deviation measure in the sense of Rockafellar et al.
(2006)). With a slight abuse of notation (which however is justified as we will see shortly) we
define tilted one-period convex risk measures ρti,ti+1 by

ρti,ti+1(X) = E[−X|FNti ] +
√

∆ti+1σti(X) (5.5)

= (1−
√

∆ti+1)E[−X|FNti ] +
√

∆ti+1F̂ti(X) (5.6)

for any FNti+1
-measurable X, where we have set

F̂ti(X) =
√

∆ti+1Fti
( X√

∆ti+1

)
, ti ∈ {t0, . . . , tk−1}.

With these specific generators ρti,ti+1(X) we can define a DCRM ρt for t ∈ {t0, . . . , tk} by
gluing the operators ρti,ti+1 together, using (5.4) with Fti replaced by ρti,ti+1 , that is, by setting

ρT (X) = −X and ρti(X) = ρti,ti+1(−ρti+1(X)). (5.7)

Note that the restriction of (ρti) to Fti+1 indeed is equal to ρti,ti+1 .

Proposition 5.4 The DCRMs defined by (5.3) and by (5.5)-(5.7) coincide.

Proof. We prove the assertion by showing that the operator ρ defined by (5.5)-(5.7) has indeed
the dual representation given by (5.3). Since the σ-algebra FNT is finite, as it is generated by
the Bernoulli random walk, we just need to look at finitely many atoms at the time instances
ti. Consider the functional Eti [·] = E[·|FNti ] from L0(FNti+1

) to L0(FNti ). Note that for the
conjugate of −Eti we have on every atom of FNti that

(
− Eti

)∗(ξ) = J{ξ=1} where J{ξ=1} is
the indicator function which is zero if ξ = 1 and infinity otherwise. Introduce the operation
(φ1�φ2)(ξ) = infξ1+ξ2=ξ{φ1(ξ1) + φ2(ξ2)}. It is well-known that for dual conjugates of con-
vex lower-semicontinuous functions the following relationships hold (see for instance Zalinescu
(2002), Theorem 2.3.1):

• For every α > 0,
(
αf(u)

)∗ = αf∗(u/α) and
(
αf(u/α)

)∗ = αf∗(u)
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• (f + g)∗(u) = (f∗�g∗)(u).

As the probability space is finite, ρti may be viewed as a real-valued convex function from a
finite-dimensional Euclidean space to R. It is well known that such functions are continuous
in the Euclidean norm. Together with the definition of ρti,ti+1 for ξti+1 ∈ Dti+1 this yields on
every atom of FNti that

φ
ρti,ti+1

ti
(ξti+1) = ρ∗ti,ti+1

(ξti+1)

=
(
− (1−

√
∆ti+1)Eti +

√
∆ti+1F̂ti

)∗
(ξti+1)

=
(
− (1−

√
∆ti+1)Eti

)∗
�
(√

∆ti+1F̂ti

)∗
(ξti+1)

= inf
ξ1+ξ2=ξti+1

{
J{ξ1/(1−

√
∆ti+1)=1} +

(√
∆ti+1F̂ti

)∗
(ξ2)

}
= inf

ξ1+ξ2=ξti+1

{
J{ξ1/(1−

√
∆ti+1)=1} +

√
∆ti+1F̂

∗
ti

( ξ2√
∆ti+1

)}
=
√

∆ti+1F̂
∗
ti

(ξti+1 +
√

∆ti+1 − 1
√

∆ti+1

)
= ∆ti+1F

∗
ti

(ξti+1 +
√

∆ti+1 − 1
√

∆ti+1

)
= ∆ti+1φ

Fti
ti

(
1 +

ξti+1 − 1
√

∆ti+1

)
.

As the upper continuity assumption of the first part of Proposition 4.5 is satisfied, we can
conclude that indeed

ρti(X) = sup
Q∈D

EQ
[
−X −

k−1∑
j=i

∆tj+1φ
Ftj
tj

(
1 +

ξQtj+1
− 1√

∆tj+1

)
|FNti

]
.

2

6 DCRMs and BS∆Es

In the sequel we will show that in the setting of Section 5 we can write the DCRM defined by
(5.3) by means of a discrete BSDE (BS∆E). If d = 1 then by the predictable representation
property of a one-dimensional Bernoulli random walk we have that for every Z ∈ L0(FNT ) there
exists an FNti -adapted process (γti)i∈{0,...,k(N)−1} such that

Z = E[Z] +
k(N)−1∑
i=0

γti∆R
N
ti+1

.

On the other hand if d > 1 by adding for every i, additional Bernoulli random variables
(B̂N,l

i )l=1,...,2d−d−1, such that for every fixed N and i, {(BN,l
i )l=1,...,d, (B̂N,l

i )l=1,...,2d−d−1} are
pairwise independent, we can define an auxiliary FN -adapted (2d-d-1)-dimensional random
walk

R̂N,l
tNi+1

=
i∑

j=1

√
∆tNj B̂

N,l
j , i = 1, . . . , k(N), l = 1, . . . , 2d − d− 1
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which is orthogonal to RN , has pairwise independent components and independent increments,
such that (RN , R̂N ) have the predictable representation property. That is, for any FNti+1

-
measurable random variable Y, there exist FNti -measurable βti , γti , γ̂ti such that

Y = βti + γti∆R
N
ti+1

+ γ̂ti∆R̂
N
ti+1

,

see for instance Lemma 3.1 in Cheridito et al. (2009) or Lemma 4.3.1 and its discussion in
Stadje (2009). Consequently, we can also find FNti -measurable βti , γti and γ̂ti such that

ρti+1(X) = βti + γti∆R
N
ti+1

+ γ̂ti∆R̂
N
ti+1

.

This yields

∆ρti+1(X) = ρti+1(X)− ρti(X)
= ρti+1(X)− ρti,ti+1(−ρti+1(X))

= βti + γti∆R
N
ti+1

+ γ̂ti∆R̂
N
ti+1
− ρti,ti+1

(
− βti − γti∆RNti+1

− γ̂ti∆R̂Nti+1

)
= −ρti,ti+1(−γti∆RNti+1

− γ̂ti∆R̂Nti+1
) + γti∆R

N
ti+1

+ γ̂ti∆R̂
N
ti+1

(6.1)

where we have used cash invariance in the last equation. From now on we index again everything
by N . For z1 ∈ Rd and z2 ∈ R2d−d−1 let

gN (tNi , z1, z2) =
1

∆tNi+1

ρN
tNi ,t

N
i+1

(−z1∆RN
tNi+1
− z2∆R̂N

tNi+1
)

= FN
tNi

(
− 1√

∆tNi+1

(√
∆tNi+1

(
z1B

N
i+1 + z2B̂

N
i+1

)))
= FN

tNi
(−z1B

N
i+1 − z2B̂

N
i+1) (6.2)

where we have used (5.6). Recall that the BN
i+1, B̂

N
i+1 are the Bernoulli variables which were

introduced to generate the random walks RN , R̂N . From (6.1) we get

∆ρN
tNi+1

(X) = −∆tNi+1g
N (tNi , γ

N
tNi
, γ̂N
tNi

) + γN
tNi

∆RN
tNi+1

+ γ̂N
tNi

∆R̂N
tNi+1

.

This entails

ρNT (X)− ρN
tNi

(X) =
k(N)−1∑
j=i

∆ρN
tNj+1

(X)

= −
k(N)−1∑
j=i

gN (tNj , γ
N
tNj
, γ̂N
tNj

)∆tNj+1 +
k(N)−1∑
j=i

(
γN
tNj

∆RN
tNj+1

+ γ̂N
tNj

∆R̂N
tNj+1

)
.

From ρNT (XN ) = −XN we obtain

ρN
tNi

(XN ) = −XN +
k(N)−1∑
j=i

gN (tNj , γ
N
tNj
, γ̂N
tNj

)∆tNj+1 −
k(N)−1∑
j=i

(
γN
tNj

∆RN
tNj+1

+ γ̂N
tNj

∆R̂N
tNj+1

)
.
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Setting γNs = γN
tNi

and γ̂Ns = γ̂N
tNi

for tNi ≤ s < tNi+1 we can write the last equation also in the
form of a discrete backward stochastic differential equation (BS∆E)

ρNt (XN ) = −XN +
∫ T

t
gN (s−, γNs−, γ̂Ns−)dsN −

∫ T

t
γNs−dR

N
s −

∫ T

t
γ̂Ns−dR̂

N
s . (6.3)

Thus we have proved the following proposition.

Proposition 6.1 The robust extension ρN defined by (5.3) is the solution of the BS∆E (6.3).

Remark 6.2 While Definition 5.2 requires the convexity of the generators, to arrive at (6.3)
from (5.5)-(5.7) only the cash invariance of FN

tNi
is needed. Thus, defining a robust extension

by (5.5)-(5.7) for one-period operators satisfying cash invariance (but possibly not convexity)
we can also obtain (6.3). In particular, also V@R can be extended to discrete time in this way
and the extension satisfies (6.3).

The introduction of the γ̂N
tNi

is due to the fact that the Bernoulli random walk in higher
dimensions does not have the predictable representation property. However, when N gets
large the random walk converges to a Brownian motion W which does have the predictable
representation property. Thus, we might expect that for large N the γ̂N converge to zero.

From now on we assume
(B1): There exists a function g(t, ω, z1) satisfying the assumptions stated in (H1) or (H2)

such that for every z1 ∈ Rd

sup
0≤t≤T

|gN (t, z1, 0)− g(t, z1)| N→∞→ 0 in L2.

Note that (B1) is satisfied if gN is independent of ω, t and of N . This is the case the following
condition holds:

(B2)The homogenous case: FN
tNi

(−z1B
N
i+1− z2B̂

N
i+1) is deterministic and independent of N

and i.
Assumption (B2), and thus also (B1), is satisfied in the Examples 4.1. Notice that FN

tNi
(−z1B

N
i+1−

z2B̂
N
i+1) is always deterministic provided FNti is law-invariant under P [·|FNti ].
The BSDE corresponding to (6.3) should be

ρt(X) = −X +
∫ T

t
g(s, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ]. (6.4)

Now, we want that if XN converges to some random variable X, then in some sense of pro-
cess convergence, ρN tends to the process ρ which appears in the solution of the corresponding
BSDE (6.4).

Proposition 6.3 Suppose that the the operators FN
tNi

are monotone and cash invariant (not

necessarily convex). Then for every tNi , g
N (tNi , z1, z2), defined by (6.2), is uniformly Lipschitz

continuous in (z1, z2) with Lipschitz constant max(
√
d,
√

2d − d− 1).
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Proof. Let z1, z
′
1 ∈ Rd and z2, z

′
2 ∈ R2d−d−1. From (6.2),

gN (tNi , z1, z2) = FN
tNi

(−z1B
N
i+1 − z2B̂

N
i+1)

≤ FN
tNi

(
− z′1BN

i+1 − z′2B̂N
i+1 − ||(−z1 + z′1)BN

i+1 + (−z2 + z′2)B̂N
i+1||∞

)
= FN

tNi

(
− z′1BN

i+1 − z′2B̂N
i+1

)
+ ||(−z1 + z′1)BN

i+1 + (−z2 + z′2)B̂N
i+1||∞

≤ FN
tNi

(
− z′1BN

i+1 − z′2B̂N
i+1

)
+ ||(−z1 + z′1)BN

i+1||∞ + ||(−z2 + z′2)B̂N
i+1||∞

≤ gN (tNi , z
′
1, z
′
2) +

√
d| − z1 + z′1|+

√
2d − d− 1| − z2 + z′2|.

We have used the monotonicity in the first inequality and cash invariance in the second equality.
In the last inequality we have applied Cauchy’s inequality. 2

Now everything is ready for the following convergence theorem.

Theorem 6.4 Assume that (B1) holds and the FNT -measurable discrete-time payoffs XN con-
verge to the FT -measurable continuous-time payoff X in L2. Let ρNt (XN ) be the robust exten-
sion of given generators (FN

tNi
)i=0,...,k−1 and the dynamic continuous time risk measure ρt(X)

be defined by (6.4). Then we have

sup
0≤t≤T

|ρNt (XN )− ρt(X)| N→∞→ 0 in L2. (6.5)

Furthermore,

E[
[ ∫ T

0

(
|γNs− − γs−|2 + |γ̂Ns−|2

)
ds
]
→ 0 as N →∞. (6.6)

Proof. By Proposition 6.1 ρN satisfies the BS∆E (6.3). Because of Proposition 6.3 the driver gN

is uniformly Lipschitz, with Lipschitz constant independent of N . Furthermore, gN (t, 0, 0) = 0
for all N ∈ N. This together with (B1) yields that the assumptions of Theorem 12 in Briand
et al. (2002) are satisfied and we can conclude that (6.5)-(6.6) hold. 2

Remark 6.5 Actually for d > 1 a slight generalization of the result by Briand et al. (2002)
is needed because in their paper drivers of the BS∆Es, which are independent of y, have the
form gN (s−, ω, γNs−) while in our case we consider drivers gN (s−, ω, γNs−, γ̂Ns−). However, in the
multi-dimensional situation the proof in Briand et al. (2002) can easily be extended to this
case.

Thus, the continuous-time convex risk measure ρ satisfying a BSDE with Lipschitz continuous
driver g can be interpreted very naturally as the limit of discrete-time risk measures ρN .
Now, how can one find FNT -measurable XN converging to a given X? Two possibilities are of
particular interest:

(a) Let X ∈ L2(FT ) be of the form X = h(WT ) where h : R→ R is a continuous function
which grows at most polynomially. Then we can define XN = h(RNT ).

(b) For general X ∈ L2(FT ) define XN = E[X|FNT ].
In both cases we have

sup
0≤t≤T

|ρNt (XN )− ρt(X)| → 0
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in L2. Theorem 6.4 also shows that in a certain sense the risk modeling in discrete time with
the tilted operators ρN is robust. Let XN be a L2 Cauchy sequence of discrete-time terminal
conditions. Then we have seen that for every ε > 0 there exists an N0 such that for all
N,M ≥ N0 we have |ρN0 (XN )− ρM0 (XM )| ≤ ε. Thus, refining the time grid only leads to small
changes in the risk evaluation from a certain index on. Contrary to that, Proposition 5.1 shows
that if the discrete-time risk measure is constructed as in (5.2) without further scaling, then,
if for instance the one-period risk measures are coherent, the discrete-time risk measurement
will blow up when more and more time instances are taken into account. So in particular for
Value at Risk, Average Value at Risk or the Semi-deviation our additional scaling is necessary.
For Average Value at Risk it has been observed before that (5.2) leads to a too conservative
risk measurement, see Roorda and Schumacher (2007).

7 Examples of one-period convex risk measures extended to
continuous time

7.1 Semi-Deviation

Suppose that the generators FN
tNi

correspond to the semi-deviation risk measure from Example

4.1. We get from (6.2) for tNi ≤ t < tNi+1, z1 ∈ Rd and z2 ∈ R2d−d−1

gN (t, z1, z2) = λ

∣∣∣∣E[(− d∑
l=1

zl1B
N,l
i+1 −

2d−d−1∑
l=1

zl2B̂
N,l
i+1

)q
−

]∣∣∣∣1/q .
These driver functions are in fact independent of N and t. In particular we may write g(z1, z2).
By Proposition 6.1 the robust extension ρN of the semi-deviation one-period risk measures to
discrete time is given by

ρNt (XN ) = −XN +
∫ T

t
g(γNs−, γ̂

N
s−)dsN −

∫ T

t
γNs−dR

N
s −

∫ T

t
γ̂Ns−dR̂

N
s .

The robust extension (which corresponds to using locally tilted semi-deviations) should be used
if information is coming in frequently to ensure that updating does not lead the risk measure
to blow up. For z ∈ Rd with z = (z1, . . . , zd) define

g(z) = gN (z, 0) = λ

∣∣∣∣ 1
2d

∑
(k1,...,kd)∈{−1,1}d

(
−

d∑
l=1

klz
l
)q
−

∣∣∣∣1/q.
Let (ρt(X), Zt) be the solution of

ρt(X) = −X +
∫ T

t
g(Zs)ds−

∫ T

t
ZsdWs.

Then Theorem 6.4 yields that for every X ∈ L2(FT ) and every sequence XN ∈ L0(FNT )
converging to X in L2, we have

sup
0≤t≤T

|ρNt (XN )− ρt(X)| N→∞→ 0 in L2.
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7.2 Value at Risk

For the generators FN
tNi

being equal to Value at Risk, we obtain from (6.2) for tNi ≤ t < tNi+1,

z1 ∈ Rd and z2 ∈ R2d−d−1

gN (t, z1, z2) = V@RN,α
tNi

(
−

d∑
l=1

zl1B
N,l
i+1 −

2d−d−1∑
l=1

zl2B̂
N,l
i+1

)
.

As gN (t, z1, z2) is independent of N and t we may write g(z1, z2). Define

xp = p-th largest element of the set

{(−1)k1z1 + . . . (−1)kdzd|kl ∈ {1, 2}, l = 1, . . . , d} (7.1)

for p = 1, . . . , 2d. Note that we have xp = −x2d+1−p. Now extending Value at Risk to discrete
time in the way proposed in Remark 6.2 gives

ρNt (XN ) = −XN +
∫ T

t
g(γNs−, γ̂

N
s−)dsN −

∫ T

t
γNs−dR

N
s −

∫ T

t
γ̂Ns−dR̂

N
s . (7.2)

For z ∈ Rd let

gα(z) = g(z, 0) = −x2d−bα2dc. (7.3)

For example if α <
1
2d
,

gα(z) = −x2d = |z1|+ . . .+ |zd|.

If
1
2d
≤ α < 2

2d
,

gα(z) = w[2] + . . .+ w[d] − w[1]

where we applied the order statistic [·] to the components of the d-dimensional vector w =
(|z1|, . . . , |zd|). Note that gα is not convex if 1 > α ≥ 1/2d, which is due to the lack of
convexity of V@R. Let (ρt(X), Zt) be the solution of

ρt(X) = −X +
∫ T

t
gα(Zs)ds−

∫ T

t
ZsdWs.

Since (ρN
tNi

)i=0,...,k is defined directly by (7.2) instead of (5.3) (because of the non-convexity of
V@R), we can not use Theorem 6.4. However, we can apply Theorem 12 from Briand et al.
(2002) directly. This yields that for every X ∈ L2(FT ) and every sequence XN converging to
X in L2 we have

sup
0≤t≤T

|ρNt (XN )− ρt(X)| N→∞→ 0 in L2.
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7.3 Average Value at Risk

From (6.2) we have for tNi ≤ t < tNi+1, z1 ∈ Rd and z2 ∈ R2d−d−1

gN (t, z1, z2) = AV@RN,λ
tNi

(
−

d∑
l=1

zl1B
N,l
i+1 −

2d−d−1∑
l=1

zl2B̂
N,l
i+1

)
.

As gN is independent of N and t, we get the continuous-time driver, for z ∈ Rd,

g(z) =
1
α

∫ α

0
gλ(z)dλ = − 1

α

(
x2d−d2dαe+1

(
α− d2

dαe − 1
2d

)
+

1
2d

d2dαe−1∑
j=1

x2d−j+1(z)
)
,

where gλ and (xp)p=1,...,2d were defined in (7.3) and (7.1). Let ρN be the robust extension of
Average Value at Risk and let (ρt(X), Zt) be the solution of

ρt(X) = −X +
∫ T

t
g(Zs)ds−

∫ T

t
ZsdWs.

Theorem 6.4 yields that for every X ∈ L2(FT ) and every discrete time sequence XN converging
to X in L2, we have

sup
0≤t≤T

|ρNt (XN )− ρt(X)| N→∞→ 0 in L2.

7.4 The Gini risk measure

Let (ρN
tNi

)i=0,...k(N) be the robust extension of the one-period Gini risk measures V N,θ

tNi
from

Example 4.1. Let z1 ∈ Rd and z2 ∈ R2d−d−1. From (6.2) and the definition of the Gini risk
measure we have for tNi ≤ t < tNi+1,

gN (t, z1, z2) = V N,θ

tNi

(
−

d∑
l=1

zl1B
N,l
i+1 −

2d−d−1∑
l=1

zl2B̂
N,l
i+1

)
.

As gN is independent of t and N we can set

g(z) = gN (t, z, 0) = sup
q

{
− qtx− 1

2θ
(2d||q||22 − 1)}, (7.4)

where (xp)p=1,...,2d was defined in (7.1) and the supremum is taken over all q = (q1, . . . , q2d) ∈
R2d with 0 ≤ qp and

∑2d

p=1 qp = 1.
Let us derive an explicit formula for the driver in continuous time. Since (7.4) is a concave

optimization problem and Slater’s condition is satisfied, the solution is uniquely determined by
the Karush-Kuhn-Tucker conditions:

qp ≥ 0, λp ≥ 0, λpqp = 0, xp +
2dqp
θ
− ν − λp = 0 for p = 1, . . . , 2d and 1tq = 1.

From the last equation, xp +
2dqp
θ
− ν = λp. Thus, we have to solve the system

θ

2d
(ν − xp) ≤ qp, (7.5)
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(xp +
2dqp
θ
− ν)qp = 0,

qp ≥ 0 for p = 1, . . . , 2d and 1tq = 1.

Therefore, we can conclude that qp = 0 or ν = xp +
2dqp
θ

for every p = 1, . . . , 2d. This and

(7.5) yields,

qp =
θ

2d
max(0, ν − xp) for p = 1, . . . , 2d. (7.6)

Consequently, ν is obtained as the unique solution of the equation

θ

2d

2d∑
p=1

max(0, ν − xp) = 1. (7.7)

Let us look at (7.6)-(7.7) a little closer. Note that ν − xp is increasing in p. Therefore, if
ν − xw−1 ≤ 0, for an index w − 1, we have ν − xp ≤ 0 for all p ≤ w − 1. Thus, there exists
an index w ∈ {1, . . . , 2d} such that qp = (θ/2d)(ν − xp) for p = 2d, . . . , w and qp = 0 for
p = 1, . . . , w − 1. Hence,

∑2d

p=w(ν − xp) = 2d/θ and ν − xw−1 ≤ 0. This yields

ν =
2d

θ(2d + 1− w)
+

∑2d

p=w xp

2d + 1− w

and w is uniquely determined as follows:

w = sup
{
w
∣∣for all j ∈ {2d, . . . , w} :

2d

θ(2d + 1− w)
> −

∑2d

p=j xp

2d + 1− w
+ xj

and
2d

θ(2d + 1− w)
≤ −

∑2d

p=w xp

2d + 1− w
+ xw−1

}
∨ 1. (7.8)

Since xp and therefore also w depend on z, we will subsequently write w(z) and xp(z). Inserting
the values for ν and qp, p = 1, . . . , 2d, into (7.4) we get

g(z) = − θ

2d

2d∑
p=w(z)

[
νxp(z)− x2

p(z)
]

− 2d−1

θ

2d∑
p=w(z)

[
(θ/2d)2(ν2 − 2νxp(z) + x2

p(z))
]

+
1
2θ

= − θ

2d

2d∑
p=w(z)

[
νxp(z)− x2

p(z)
]
− θ

2d+1

2d∑
p=w(z)

[
(ν2 − 2νxp(z) + x2

p(z))
]

+
1
2θ

=
θ

2d+1

(
− (2d + 1− w(z))ν2 +

2d∑
p=w(z)

x2
p(z)

)
+

1
2θ
.
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Hence,

g(z) =
θ

2d+1

(
− 22d

θ2(2d + 1− w(z))
− 2d+1

∑2d

p=w(z) xp

θ(2d + 1− w(z))
−

(∑2d

p=w(z) xp(z)
)2

2d + 1− w(z)

+
2d∑

p=w(z)

x2
p(z)

)
+

1
2θ
.

Thus, the driver for the BSDE extension of the Gini risk measure is given by

g(z) = − 2d−1

θ(2d + 1− w(z))
+

1
2θ
−
∑2d

j=w(z) xi(z)

2d + 1− w(z)

+
θ

2d+1

( 2d∑
j=w(z)

x2
j (z)−

(∑2d

j=w(z) xi(z)
)2

2d + 1− w(z)

)
. (7.9)

Note that if z = 0 then w = 1 and hence by the symmetry of the xi we have g(0) = 0 which is
necessary for the risk measure to be normalized. In the special case d = 1 we get from (7.8)
that w = 1 if |z| < 1/θ, and w = 2 if |z| ≥ 1/θ. Thus, (7.9) implies that g is equal to the Huber
penalty function

g(z) =


|z| − 1

2θ
, if |z| ≥ 1/θ

θ

2
z2, if |z| < 1/θ.

The Huber penalty function plays an important role in regression. It penalizes large errors with
the L1 norm (for robustness reasons) and small errors with the L2 norm. It is continuously
differentiable. Now let (ρt(X), Zt) be the solution of

ρt(X) = −X +
∫ T

t
g(Zs)ds−

∫ T

t
ZsdWs.

Then Theorem 6.4 yields

sup
0≤t≤T

|ρNt (XN )− ρt(X)| N→∞→ 0 in L2

for every X ∈ L2(FT ) and every discrete time sequence XN converging to X in L2.

8 Appendix

Proof of Proposition 5.1. Define g(z1, z2) = FNti (z1B
N
i+1 + z2B̂

N
i+1). As the right hand side is

independent of N and i, g is well-defined. Following the lines of the proof of Proposition 6.1,
with the tilted generator ρti,ti+1 replaced by FNti , we can see, using the assumption that FNti are
coherent, that for every discrete time payoff XN , ρN constructed by (5.2) satisfies the BS∆E

ρN
tNi

(XN ) = −XN +
k(N)−1∑
j=i

(∆tNj+1)−1/2g(γN
tNj
, γ̂N
tNj

)∆tNj+1 −
k(N)−1∑
j=i

(
γN
tNj

∆RN
tNj+1

+ γ̂N
tNj

∆R̂N
tNj+1

)
.

(8.1)
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Let us introduce suitable XN ’s. Define

XN = −z0R
N
T and X = −z0WT .

Clearly, XN converges in L2 to X. Moreover, using the tools of weak convergence of filtrations,
Proposition 2 and the second point of Remark 1 in Coquet et al. (2001) yield that E[XN |FN. ]
converges to E[X|F.] uniformly in probability. Passing to a subsequence if necessary we may
assume that E[XN |FN. ] converges to E[X|F.] uniformly a.s.

Now let us prove that ρNt (XN ) N→∞→ ∞ for t ∈ [0, T ). The process Y N defined by

Y N
tNi

=
k(N)−1∑
j=i

g(z0, 0)
√

∆tNj+1 − E[XN |FN
tNi

]

and Y N
t = Y N

tNi
for tNi ≤ t < tNi+1 is FN -adapted, and

Y N
tNi

=
k(N)−1∑
j=i

(∆tNj+1)−1/2g(z0, 0)∆tNj+1 +
i−1∑
j=0

z0∆RN
tNj+1

= −XN +
k(N)−1∑
j=i

(∆tNj+1)−1/2g(z0, 0)∆tNj+1 −
k(N)−1∑
j=i

z0∆RN
tNj+1

,

where we used in the last equation that XN = −
∑k(N)−1

j=0 z0∆RN
tNj+1

. Hence, Y N is a solution of

the BS∆E (8.1) with terminal condition −XN and γNtj = z0 and γ̂Ntj = 0. Therefore, ρNt (XN ) =
Y N
t . Now let ΠN = maxj=0,...,k(N)−1 ∆tNj+1. Since g(z0, 0) > 0 we get for every t ∈ [0, T )

ρNt (XN ) = Y N
t = −E[XN |FNt ] +

∑
j: tNj+1>t

(∆tNj+1)−1/2g(z0, 0)∆tNj+1

≥ −E[XN |Ft] + (ΠN )−1/2g(z0, 0)
∑

j: tNj+1>t

∆tNj+1

≥ −E[XN |FNt ] + (ΠN )−1/2g(z0, 0)(T − t−ΠN ).

As for every fixed t, E[XN |FNt ] converges a.s. to the finite random variable E[X|Ft], and
ΠN → 0, it follows that lim infN ρNt (XN ) =∞. 2
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[20] Föllmer, H., Schied, A., (2002). Convex measures of risk and trading constraints. Finance and Stochastic
6, 429-447.
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