
EURANDOM PREPRINT SERIES
2010-012

On some tractable growth collapse processes
with renewal collapse epochs

O. Boxma, O. Kella, D. Perry
ISSN 1389-2355

1



Applied Probability Trust (27 February 2010)

ON SOME TRACTABLE GROWTH COLLAPSE PROCESSES WITH

RENEWAL COLLAPSE EPOCHS

ONNO BOXMA,∗ Eurandom and Eindhoven University of Technology

OFFER KELLA,∗∗ The Hebrew University of Jerusalem

DAVID PERRY,∗∗∗ Haifa University

Abstract

In this paper we generalize existing results for the steady state distribution

of growth collapse processes with independent exponential inter-collapse times

to the case where they have a general distribution on the positive real line

having a finite mean. In order to compute the moments of the stationary

distribution, no further assumptions are needed. However, in order to compute

the stationary distribution, the price that we are required to pay is the

restriction of the collapse ratio distribution from a general one concentrated

on the unit interval to minus-log-phase-type distributions. A random variable

has such a distribution if the negative of its natural logarithm has a phase

type distribution. Thus, this family of distributions is dense in the family of

all distributions concentrated on the unit interval. The approach is to first

study a certain Markov modulated shot-noise process from which the steady

state distribution for the related growth collapse model can be inferred via level

crossing arguments.
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1. Introduction

Consider a growth collapse process that grows linearly at some given rate c. The

collapses occur at renewal instants with inter-renewal time distribution function F

with mean µ and Laplace-Stieltjes transform (LST) G. The remaining level (e.g.,

funds) after a given collapse form a random fraction of the level just before the

collapse occurred. It is assumed that the sequence of random proportions X1, X2, ...

are i.i.d. and independent of the underlying renewal process. Of course, since these are

proportions it is naturally assumed that P [0 ≤ X1 ≤ 1] = 1 and, to avoid trivialities,

that 0 < EX1 < 1. From, e.g., [14] it is known that this process is stable without any

further conditions. We aim at identifying a relatively broad family of distributions of

X1, which is dense in the family of all distributions on [0, 1], for which the stationary

distribution of this process can be calculated.

The idea is to first consider an on/off process, where during on times the process

increases linearly at rate c and during off times, whenever the process is at level x it

decreases at the rate rx for some r > 0. As assumed, on times have some general

distribution F while off times, denoted by P1, P2, . . . , will be assumed to have a phase

type distribution. If we restrict the process to off times, then what we obtain is a

shot-noise type process with upward jumps having the distribution F (·/c) with mean

cµ, LST G(cα), and inter-arrival times which have a phase type distribution.

Given that at the beginning of an off time the level is given by some x, as long as

the period does not end, the dynamics of the process is given via

W (t) = x− r
∫ t

0

W (s)ds (1)

where t is the time that has elapsed since the beginning of this period. Hence, as is well

known, it follows that W (t) = xe−rt for 0 ≤ t ≤ Pi for some index i. Thus at the end

of this period the level will be xe−rPi . Setting Xi = e−rPi we see that when we restrict

our process to on times, then it becomes the type of process that is described in the first

paragraph. For example, when Pi are exponential with rate r thenXi are Uniform(0, 1).

If Pi have an Erlang distribution, then Xi are products of uniform random variables.
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For a general phase-type distribution, Xi are (possibly infinite) mixtures of products

of uniformly (on (0, 1)) distributed random variables. Since phase-type distributions

are dense in the family of all distributions on [0,∞), then the family of distributions

of the collapse ratio is dense in the family of all distributions on [0, 1].

For the process at hand, it follows from [12] that if f0 is the stationary density for the

process restricted to on times and f1 is the stationary density for the process restricted

to off times, provided that they exist (note that starting from a positive state, the

process as described never hits zero), then cpf0(x) = rx(1− p)f1(x) where p = µ
µ+EP1

is the fraction of on times. Thus, studying the workload in the shot-noise-type model

is in some sense equivalent with studying the workload in the growth collapse model.

Also we note that the growth collapse model with growth rate 1 and inter-collapse

times with LST G(cα) has the same stationary distribution as for the model initially

proposed (with growth rate c) and thus we will, without loss of generality, assume from

now on in order to simplify notations, that c = 1.

The paper is organized as follows. Regarding shot noise, in Section 2 we actually

study a more general model and then restrict to the special case of the model proposed

in this introduction. Section 3 relates the moments of the shot noise process to the

moments of the original growth collapse process. Section 4 studies the steady-state

behavior of the growth collapse process right after a collapse. Several distributions for

the intercollapse times and the collapse proportions are being considered.

2. Shot noise type processes with phase type interarrival times

In [3] a shot-noise type process with Markov modulated release rate was considered.

[16] studied a more general model where the input is a Markov additive process (MAP)

and the release rate is Markov modulated as well. In the latter paper, the MAP is

not the most general possible. In particular it did not include the additional jumps

that can occur at state changes of the underlying Markov chain. This additional

aspect, which we very much need here, can be included applying a technique from

[4]. We will first write some general results regarding the most general setup, that

is, the one dimensional version of [16] but with the possibility of additional jumps at

state change epochs. We will then specialize to the case which we need to solve the
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problem of this paper. Thus, let (X,J) = {(X(t), J(t))| t ≥ 0} be a nondecreasing

MAP (see [4]) with exponent matrix F (α) = Q ◦ G(α) + diag (()φ1(α) . . . φK(α)),

where Q ◦ G(α) ≡ (qijGij(α)), J is an irreducible finite state space continuous time

Markov chain with states 1, . . . ,K and rate transition matrix Q = (qij) and stationary

probability vector π = πi and Gij(α) is the LST of the distribution of the (nonnegative)

jump occuring when the Markov chain J changes states from i to j and Gii(α) ≡ 1 for

all α ≥ 0 (LST of the constant 0). φi is the Laplace exponent of a nondecreasing Lévy

process which is of the form

φi(α) = −ciα−
∫

(0,∞)

(1− e−αx)dνi(x) (2)

where νi is a Lévy measure satisfying
∫

(0,∞)
min(x, 1)dν(x) <∞. Moreover, we assume

that µ(i, j) ≡ −G′ij(0) <∞ and ρ(i) ≡ −φ′i(0) = ci +
∫

(0,∞)
xdνi(x) <∞ for all i and

j.

As in [4], we recall that the process X behaves like a nondecreasing Lévy process

(subordinator) with exponent φi(·) when J is in state i and when J switches from state

i to a different state j, then in addition X jumps up by an independent amount which

has a distribution having the LST Gij(·).

Now consider the following Markov modulated linear dam process:

W (t) = W (0) +X(t)−
∫ t

0

r(J(s))W (s)ds (3)

where the input is the process X and the output rate is proportional to the content of

the dam where the proportion r(J(s)), where r(i) ≥ 0 for all i, is modulated by the

Markov process J . Then we have the following:

Theorem 2.1. If, in addition to the irreducibility of J and the assumption that ρi <∞

and µ(i, j) < ∞ ∀i, j (see above), there is at least one i for which r(i) > 0, then a

unique stationary distribution for the joint (Markov) process (W,J) exists; and it is

also the limiting distribution, which is independent of initial conditions.

Before we prove this result let us first show the following result concerning an alter-

nating renewal process.

Lemma 2.1. Let {(Xn, Yn)| n ≥ 1} be independent pairs of nonnegative random

variables which are identically distributed for n ≥ 2, P [Y2 > 0] > 0 and EX1, EX2 <
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∞. Set S0 = 0, Sn =
∑n
i=1(Xi + Yi) for n ≥ 1 and

I(t) =


0 if t ∈

∞⋃
n=0

[Sn, Sn +Xn+1) ,

1 if t ∈
∞⋃
n=0

[Sn +Xn+1, Sn+1) ,
(4)

Z(t) =
∫ t

0

I(s)ds . (5)

Then, for any positive constant r, E
∫∞

0
e−rZ(t)dt <∞.

Proof. For simplicity, we prove this for the case where (X1, Y1) has the same distri-

bution as for the rest of the sequence. The generalization to the case where the first

pair has a different distribution is trivial. Since∫
[Sn,Sn+1)

e−rZ(t)dt = e−rZ(Sn)(Xn+1 + r−1(1− e−rYn+1)) (6)

and Z(Sn) = Syn where Sy0 = 0 and Syn =
∑n
i=1 Yi for n ≥ 1, it follows that∫ ∞

0

e−rZ(t)dt =
∞∑
n=0

e−rS
y
n(Xn+1 + r−1(1− e−rYn+1)) = r−1 +

∞∑
n=0

e−rS
y
nXn+1 . (7)

Thus, as Ee−rY1 < 1 (since P [Y1 > 0] > 0), it follows that

E

∫ ∞
0

e−rZ(t)dt = r−1 +
EX1

1− Ee−rY1
<∞ , (8)

as required.

We note that in Lemma 2.1, the off-times (Z(t) = 0) must have a finite mean while,

for n ≥ 2, the on-times (Z(t) = 1) cannot be almost surely zero. These are the minimal

assumptions in the sense that if one of them fails to hold then E
∫∞

0
e−rZ(t)dt = ∞.

We note that it is possible that X1, X2 or Y1 are a.s. zero.

Proof. (of Theorem 2.1) From (3) and Theorem 1 of [17] it follows that

W (t) = W (0)e−
R t
0 r(J(s))ds +

∫
(0,t]

e−
R t
u
r(J(s))dsdX(u) (9)

and thus if we start the system with two different initial conditions W 1(0) and W 2(0)

then

W 1(t)−W 2(t) = (W 1(0)−W 2(0))e−
R t
0 r(J(s))ds . (10)
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Since there is at least one i for which r(i) > 0 and J is irreducible, it follows that

a.s.
∫∞

0
r(J(s))ds =∞ so that the right side of (10) converges a.s. to zero as t→∞.

Thus, if there is a limiting distribution for (W (t), J(t)), it does not depend on W (0).

It is standard that J can be coupled with its stationary version after an a.s. finite time.

Since the value of W at this coupling time has no effect on the limiting distribution

if it exists (for the same reasons as just explained for the initial conditions), we may

assume without loss of generality that J is stationary. For this case the two dimensional

process
{(∫ t

0
r(J(s))ds,Xt

)
| t ≥ 0

}
has stationary increments in the strong sense that

the distribution of
{(∫ t+u

u
r(J(s))ds,Xt+u −Xu

)
| t ≥ 0

}
is independent of u. Thus,

we can extend this process together with J to be a double sided process having these

properties. From Theorem 2 of [17] it follows that to complete the proof it remains to

show that a.s. ∫
(−∞,0]

e−
R 0
u
r(J(s))dsdX(u) <∞ . (11)

We will in fact show that

E

∫
(−∞,0]

e−
R 0
u
r(J(s))dsdX(u) <∞ . (12)

Denoting J̄(t) = J(−t) and X̄(t) = −X(−t) for t ≥ 0 we have that {(X̄(t), J̄(t))| t ≥ 0}

is also a Markov additive process where J̄ is stationary with transition rates q̄ij =

πjqji/πi, Ḡij = Gji and φ̄i = φi. By the method of uniformization, let {N̄(t)| t ≥ 0}

be a Poisson process with some (finite) rate λ ≥ maxi(−q̄ii) = maxi(−qii), in which

arrival epochs we embed a (stationary) discrete time Markov chain {J̄n| n ≥ 0} with

transition probabilities

p̄ij =


q̄ij
λ , i 6= j ,

1 + q̄ii
λ , i = j .

(13)

Now, by conditioning on J̄ we have that

E

∫
(−∞,0]

e−
R 0
u
r(J(s))dsdX(u) = E

∫
[0,∞)

e−
R u
0 r(J̄(s))dsdX̄(u)

= E

∫
[0,∞)

e−
R u
0 r(J̄(s))dsρ(J(t))dt+ E

∫
[0,∞)

e−
R t
0 r(J̄(s))dsd

N̄(t)∑
n=1

µ(J̄n−1, J̄n),
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where we recall that ρ(i) = −φ′i(0) < ∞ and µ(i, j) = −G′ij(0) < ∞. Denoting

ρ̄ = maxi ρ(i) and µ̄ = maxij µ(i, j) we have that the right hand side of (14) is bounded

above by

ρ̄E

∫
[0,∞)

e−
R t
0 r(J̄(s))dsdt+ µ̄E

∫
[0,∞)

e−
R t
0 r(J̄(s))dsdN̄(t) . (14)

Since {N̄(t) − λt| t ≥ 0} is a zero mean right continuous Martingale and e−
R t
0 (J̄(s))ds

is adapted, continuous and bounded, it follows that (14) is equal to

(ρ̄+ λµ̄)E
∫

[0,∞)

e−
R t
0 r(J̄(s))dsdt . (15)

For any i such that r(i) > 0,

E

∫
[0,∞)

e−
R t
0 r(J̄(s))dsdt ≤ E

∫
[0,∞)

e−r(i)
R t
0 1{J̄(s)=i}dsdt (16)

and the right side is finite by the irreducibility, hence positive recurrence, of J̄ (due to

that of J) and Lemma 2.1.

From [4], we have that the following is a zero mean martingale:∫ t

0

e−αW (s)1J(s)dsF (α) + e−αW (0)1J(0) − e−αW (t)1J(t)

+ α

∫ t

0

e−αW (s)1J(s)r(J(s))W (s)ds .

(17)

Thus, if (W ∗, J∗) has the stationary distribution associated with the process (W,J),

then from (17) it follows that

Ee−αW
∗
1J∗F (α) = α

d
dα

Ee−αW
∗
1J∗r(J∗) (18)

and thus, with wi(α) = Ee−αW
∗
1{J∗=i}, w(α) = (wi(α)) and withDr = diag(r(1), . . . , r(K)),

we have that

w(α)TF (α) = αw′(α)TDr (19)

where πi = wi(0) is the stationary distribution for the Markov chain J , summing to

one and satisfying πTQ = 0. We do not expect to be able to solve it analytically.

Nevertheless, it can immediately be deduced from this equation by differentiation that

n∑
k=0

(
n

k

)
w(k)(0)TF (n−k)(0) = nw(n)(0)TDr (20)
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and since F (0)(0) = F (0) = Q we have that

n−1∑
k=0

(
n

k

)
w(k)(0)TF (n−k)(0) = w(n)(0)T (nDr −Q) (21)

Thus, when nDr−Q is invertible, then we have a recursion formula that computes the

moments E(W ∗)n1{J∗=i}.

Specializing to the problem we set out to solve, assume that instead of K states for

the modulating Markov chain there areK+1 indexed by 0, . . . ,K. We will first consider

the modulated process with r(0) = 0, r(1) = . . . = r(K) = 1, with Gi0(α) = G(α)

and for all other i, j, Gij(α) = 1. Finally, we assume that other than the jump

that occurs when entering state 0 and the specified rates, nothing happens. That is,

φ0(α) = . . . = φK(α) = 0. Thus we see that if we restrict the process to the intervals

where the modulating Markov chain spends in the states 1, . . . ,K then we have a

shot-noise process with phase-type inter-arrival times and general i.i.d. jumps.

It is easy to check that (19) becomes

K∑
i=0

wi(α)qij = αw′j(α) (22)

for j 6= 0 and for j = 0 we have that

−q0w0(α) +G(α)
K∑
i=1

wi(α)qi0 = 0 (23)

where q0 = −q00 and by substitution we thus have that for j 6= 0

K∑
i=1

wi(α)
(
qij +

qi0q0j

q0
G(α)

)
= αw′j(α) (24)

with the initial conditions wi(0) = πi where π is the stationary distribution for the

modulating Markov chain. Thus the stationary LST for the shot-noise process with

phase-type inter-arrival times and jumps with distribution having LST G is given by

w(α) =
∑K
i=1 wi(α)
1− π0

. (25)

It is easy to check that
K∑
j=1

(
qij +

qi0q0j

q0

)
= 0 (26)
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and that
K∑
j=1

πi

(
qij +

qi0q0j

q0

)
= 0 (27)

and thus (24) can be written as follows

µ
q0j

q0
Ge(α)

K∑
i=1

wi(α)qi0 = −
K∑
i=1

wi(0)− wi(α)
α

(
qij +

qi0q0j

q0

)
− w′j(α) (28)

where Ge(α) = 1−G(α)
αµ is the stationary residual lifetime LST associated with G. If we

similarly denote

we,i(α) =
wi(0)− wi(α)
−w′i(0)α

=
1− E[e−αW

∗ |J∗ = i]
E[W ∗|J∗ = i]α

(29)

and we let µwn,i = E[(W ∗)n|J∗ = i] then

µ
q0j

q0
Ge(α)

K∑
i=1

wi(α)qi0 = −
K∑
i=1

πiµ
w
1,iwe,i(α)

(
qij +

qi0q0j

q0

)
− w′j(α). (30)

In particular, letting α ↓ 0,

µπ0q0j = µ
q0j

q0

K∑
i=1

πiqi0 = −
K∑
i=1

πiµ
w
1,i

(
qij +

qi0q0j

q0

)
+ πjµ

w
1,j

=
K∑
i=1

πiµ
w
1,i (δij − q̃ij) ,

(31)

where q̃ij = qij + qi0q0j/q0. It follows from (26) and (27) that Q̃ = (q̃ij)1≤i,j≤K is a

rate transition matrix with stationary distribution πi/(1− π0) for i = 1, . . . ,K.

The following is a straightforward exercise, but we include it for ease of reference.

Lemma 2.2. If P is a stochastic matrix, D1 and D2 are nonnegative diagonal matrices

and D1 +D2 has a strictly positive diagonal, then D1 − (D2(P − I)) is nonsingular.

Proof. Note that D1 − (D2(P − I)) = (D1 + D2)(I − (D1 + D2)−1D2P ) and thus

it suffices to show that with A = ((D1 + D2)−1D2P ), An → 0 as n → ∞, since then

(I − A)−1 =
∑∞
n=0A

n. To show this, we note that (D1 + D2)−1D2 is a nonnegative

diagonal matrix where the diagonal entries are all strictly less than one. Thus if we let

d denote the maximum of these entries then An ≤ dnPn and since the entries of Pn

are bounded the result immediately follows.
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Since a rate transition matrix of a finite state space continuous time Markov chain

is of the form D(P − I) for some nonnegative diagonal matrix D and some stochastic

matrix P , it follows from Lemma 2.2 that I − Q̃ is nonsingular and thus (31) has a

unique solution for the unknowns µw1,i. Denoting by µn the nth moment with respect

to the jump distribution F (with LST G) then, since µG(n−1)
e (0) = (−1)n−1 µn

n and

similarly

µw1,iw
(n−1)
e,i (0) = (−1)n−1

µwn,i
n

(32)

then it is easy to check that after differentiating n − 1 times and letting α ↓ 0, the

following recursion holds:

q0j

q0

n−1∑
k=0

(
n− 1
k

)
µk+1

k + 1

K∑
i=1

πiµ
w
n−1−k,iqi0 =

K∑
i=1

πiµ
w
n,i

(
δij −

q̃ij
n

)
(33)

which upon multiplying by n, observing that
(
n−1
k

)
n
k+1 =

(
n
k+1

)
and making an obvious

change of variables in the first sum gives

q0j

q0

n∑
k=1

(
n

k

)
µk

K∑
i=1

πiµ
w
n−k,iqi0 =

K∑
i=1

πiµ
w
n,i (nδij − q̃ij) . (34)

Finally, denoting by p̃0 a vector with coordinates p0j = q0j/q0, then with ãT = p̃T0 (I −

Q̃)−1 we have that

πjµ
w
n,j = ãj

n∑
k=1

(
n

k

)
µk

K∑
i=1

πiµ
w
n−k,iqi0. (35)

Thus, setting mw
n =

∑K
i=1 πiµ

w
n,iqi0 and

ã =
K∑
i=1

ãiqi0 =
1
q0

K∑
i=1

K∑
j=1

q0i(I − Q̃)−1
ij qj0 , (36)

we have that for n ≥ 1

mw
n = ã

n∑
k=1

(
n

k

)
µkm

w
n−k (37)

so that

µwn,j =
ãj
πj ã

mw
n (38)

and the unconditional moment is

1
1− π0

K∑
j=1

πjµ
w
n,j =

mw
n

(1− π0)ã

K∑
j=1

ãj . (39)
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From (37) it follows that

mw
n =

ã

1 + ã

n∑
k=0

(
n

k

)
µkm

w
n−k +

1
1 + ã

δ0n (40)

and upon multiplying by (−α)n, dividing by n! and summing and noting that if G is

uniquely defined by its moments then G(α) =
∑∞
k=0

(−1)kµk
k! αk, one obtains that

mw(α) =
∞∑
n=0

(−1)nmw
n

n!
αn =

1
1+ã

1− ã
1+ãG(α)

=
∞∑
k=0

1
1 + ã

(
ã

1 + ã

)k
Gk(α) . (41)

This implies that if we let

H(x) =
∞∑
k=0

1
1 + ã

(
ã

1 + ã

)k
F ∗k(x) , (42)

then mw
n is the nth moment with respect to H. If Sn is a sum of n i.i.d. random

variables distributed F (S0 = 0) and N is an independent geometric random variable

with probability of success (1 + ã)−1, counting only the number of failures, then H is

the distribution of SN . Although this seems nice, we should point out that the analysis

is not complete as we have not shown that these moments define a unique distribution.

2.1. The case K = 2

With aij = qi0q0j
q0

, (24) reduces to

αw′1(α) = w1(α)(q11 + a11G(α)) + w2(α)(q21 + a21G(α)) , (43)

αw′2(α) = w1(α)(q12 + a12G(α)) + w2(α)(q22 + a22G(α)) . (44)

Differentiating the second of these equations, using (43) for w′1(α) and finally (44) to

eliminate w1(α), we obtain the following second order differential equation in w2(α):

αw′′2 (α) = w′2(α)
[
−1 + q22 + a22G(α) + q11 + a11G(α) +

αa12G
′(α)

q12 + a12G(α)

]

+w2(α)
[

1
α

(q21 + a21G(α))(q12 + a12G(α)) + a22G
′(α) (45)

− 1
α

(q22 + a22G(α))(q11 + a11G(α)) +
q22 + a22G(α)
q12 + a12G(α)

a12G
′(α)

]
.

Now consider the special case of exp(µ) jumps, i.e., G(α) = µ
µ+α , and the following

Markov transition rates: q12 = −q11 = ν1, q20 = −q22 = ν2, and q01 = −q00 = ν0, i.e.,
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the times in state i are exp(νi) distributed, for i = 0, 1, 2. Then (45) reduces to

α(µ+ α)w′′2 (α) + (ν1 + ν2 + 1)(µ+ α)w′2(α) + ν1ν2w2(α) = 0. (46)

Taking z = µ + α, a = ν1, b = ν2 and c = 0 in the differential equation (15.5.1) on

p. 562 of [1] reduces that differential equation to (46). Its solution is given by the

hypergeometric functions 15.5.20 and 15.5.21 on p. 564 of [1].

3. Back to the growth collapse model

In this section we relate the nth moment of the stationary distribution of the growth

collapse model to the n + 1st moment of the stationary distribution of the shot noise

model. Consider the growth collapse model with collapse ratio distribution being

minus-log-phase-type. Let P denote a generic interarrival time of the corresponding

shot-noise process; P is phase-type (cf. Section 1). An expression for EP is given via

the system of equations for the ti, which are mean interarrival times when the first

phase is i:

ti =
1
qi

+
∑
j 6=0,i

qij
qi
tj (47)

or equivalently ∑
j 6=0

qijtj = −1 (48)

which has a unique solution. EP is then a weighted average of t1, . . . , tK where the

weights are the initial distribution of the phase-type distribution which is in our case

chosen to be q0i/q0.

From [12] we recall that, for the on/off model of Section 1, the relationship between

the stationary density during on times (f0(·)) and that during off times (f1(·)) is given

by pf0(x) = (1− p)xf1(x), where p = µ/(µ+ EP ). Hence∫ ∞
0

e−αxf0(x)dx =
EP

µ

∫ ∞
0

e−αxxf1(x)dx = −EP
µ

d
dα

∫ ∞
0

e−αxf1(x)dx (49)

so that the nth moment of the stationary distribution for the growth collapse model

is given by EP/µ times the n + 1st moment (see (39)) for the shot noise model with

phase type inter-arrival times.
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4. The discrete time process embedded after collapse epochs

In this section we study the steady-state behavior of the growth collapse process

right after the nth collapse, Vn, defined by

Vn = (Vn−1 + Yn)Xn, (50)

where V0 is the initial state.

As observed, for example in (2) of [14],

Vn = V0

n∏
j=1

Xj +
n∑
i=1

Yi

n∏
j=i

Xj . (51)

We assume in the sequel that {Xi|i ≥ 1} and {Yi|i ≥ 1} are independent sequences of

i.i.d. random variables distributed like X and Y , where X and Y are independent and

nonnegative. We shall initially assume that X has support [0, 1]. From [14] it follows

that when EX < 1 and EY < ∞, a limiting distribution for the process {Vn| n ≥ 0}

exists, which is independent of the initial condition V0; and it has a unique stationary

version. It is easy to check that this continues to hold when X is nonnegative but is

not necessarily restricted to [0, 1], as when EX1 < 1,
∏n
j=1Xj → 0 a.s. as n→∞ and∑n

i=1 Yi
∏n
j=iXj is stochastically increasing (as it is distributed like

∑n
i=1 Yi

∏i
j=1Xj)

and its mean is bounded above by EY EX
1−EX < ∞. Thus, throughout this section it is

assumed that EX < 1 and EY <∞.

The fact that when starting from V0 = 0, Vn is stochastically increasing can also be

used to justify the fact that the limiting distribution of Vn has a finite mth moment if

and only if EY m <∞ and EXm < 1, as in this case

(1− EXm)EV mn ≤ EV mn − EXmEV mn−1 = EXm
m−1∑
k=0

(
m

k

)
EV kn−1EY

m−k, (52)

where by induction, EV kn < ∞ and converges to the kth moment of the limiting

distribution by monotone convergence (finite or infinite). Thus if the first m − 1

moments of the limiting distribution of Vn are finite, EY m < ∞ and EXm < 1 then

the mth moment is finite as well. If either EY m = ∞ or EXm ≥ 1 then (52) also

implies that the mth moment of the limiting distribution of Vn is necessarily infinite.

Let V denote a random variable having this distribution, such that X, Y and V are

independent. Then

V
d= (V + Y )X. (53)
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We might also focus on Z := V + Y , which has the limiting distribution of the state

of the system right before collapses. This leads to

Z
d= ZX + Y. (54)

Much of the literature on Equation (50) has concentrated on the existence of a

limiting distribution, and on the tail behavior of that limiting distribution. In the

present section we know that this limiting distribution exists provided that EX < 1.

Our goal is to determine it, for a number of choices for the distributions of X and Y .

We start with the following formula for the LST ψ(α) of V , with η(α) denoting the

LST of Y ,

ψ(α) = Eψ(αX)η(αX) =
∫

[0,1]

ψ(αx)η(αx)dFX(x), (55)

where FX(x) = P [X ≤ x]. We shall also study EV n in a number of cases, comparing

it with the expression

EV n =
EXn

1− EXn

n−1∑
j=0

(
n

j

)
EV jEY n−j , (56)

as in (34) of [14]. In the sequel we assume that all required moments of Y are finite,

with the exception of an example of regular variation at the end of the section, and

note that since X has support [0, 1] and EX < 1 then also EXn < 1 for all n ≥ 1.

We start with a case that has already been treated by Vervaat [21]. We review it

here, as it is the basis for extensions later in this section.

4.1. Case 1: X ∼ Beta(D, 1)

In this case, X has distribution F (x) = P (X ≤ x) = xD, 0 ≤ x ≤ 1. When D is a

positive integer, X is distributed like the maximum of D independent random variables

distributed U [0, 1]. From (55) we have

ψ(α) =
∫ α

0

ψ(u)η(u)D
(u
α

)D−1 du
α
, (57)

or

αDψ(α) = D

∫ α

0

ψ(u)η(u)uD−1du. (58)

Differentiation yields, after some rearrangement, that

ψ′(α) = −Dψ(α)
1− η(α)

α
, (59)
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so, since ψ(0) = 1,

ψ(α) = e−D
R α
v=0

1−η(v)
v dv = e−DEY

R α
0 ηe(v)dv (60)

where ηe(v) = 1−η(v)
vEY is the LST of the stationary residual lifetime distribution of Y .

Remark 4.1. For D = 1, ψ(α) is the LST of the classical shot-noise process, see [13].

For integer D > 1, V apparently is the sum of D independent shot-noise processes

each having D = 1. This is not a coincidence. It follows from the fact that if

Wi(t) = Xi(t)− r
∫ t

0

Wi(s)ds (61)

for i = 1, . . . , D, then

D∑
i=1

Wi(t) =
D∑
i=1

Xi(t)− r
∫ t

0

D∑
i=1

Wi(s)ds (62)

so that if Xi(·) are independent processes then also Wi(·) are independent shot-noise

processes and
∑D
i=1Wi(·) is itself a shot-noise process with driving process

∑D
i=1Xi(·).

In this particular case one may observe from the relationship discussed earlier between

the shot-noise and growth collapse processes, that a uniformly distributed jump ratio

for the growth collapse process corresponds to exponentially distributed inter-jump

times for the shot noise process. Thus in this case for D = 1, Xi(·) are independent

compound Poisson processes with arrival rate λ = 1 and jumps distributed like Y , so

that
∑D
i=1Xi(·) is also a compound Poisson process with arrival rate D and jumps

distributed like Y .

4.1.1. Moments It follows from (59) after k − 1 differentiations and denoting by Ye a

random variable with the stationary residual lifetime distribution associated with Y ,

that

EV n = DEY

n−1∑
k=0

(
n− 1
k

)
EV kEY n−1−k

e , (63)

from which recursion all moments of V can be obtained (starting with EV = DEY ).

The equivalence with (56) follows by observing that EXn = D
D+n and that EY ne =

EY n+1

(n+1)EY .
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4.2. Case 2: X ∼ Beta(ζ1, ζ2) and Y ∼ Gamma(ζ2, β)

In this case there is the following short-cut. It is well known (usually given as a stan-

dard exercise in a first year probability course when discussing multi-dimensional trans-

formations and Jacobians) that if V is Gamma(ζ1, β) distributed and Y is Gamma(ζ2, β)

distributed, V and Y are independent, then V
V+Y is distributed Beta(ζ1, ζ2) and is

independent of V + Y , which is distributed Gamma(ζ1 + ζ2, β). Thus, the joint

distribution of (X,V + Y ) is the same as that of
(

V
V+Y , V + Y

)
which implies that

X(V + Y ) is distributed like V , so that (53) is satisfied. As there is a unique limiting

distribution for the recursion (50), it must be Gamma(ζ1, β).

Remark 4.2. It is easily verified that, in the case of Y being exponentially distributed,

i.e., Gamma(1, β), and X being Beta(D, 1) distributed as in Case 1, Formula (60) yields

that ψ(α) = ( 1
1+βα )D; so indeed V has a Gamma(D,β) distribution. This particular

case is mentioned on p. 765 of Vervaat [21].

4.2.1. Moments Since V has a Gamma(ζ1, β) distribution, it immediately follows that

EV n = βn
Γ(ζ1 + n)

Γ(ζ1)
. (64)

4.3. Case 3: X has an atom at zero

Suppose that P (X = 0) = p > 0, and that X assumes with probability 1− p values

on (0,∞) (so we do not necessarily restrict X to [0, 1]). It is easy to see that the

limiting distribution of {Vn| n ≥ 0} always exists as zero is a regenerative state with

geometrically distributed (hence, aperiodic finite mean) regeneration epochs. We shall

study several subcases.

4.4. Case 3a: X has atoms at 0 and c

Assume that P (X = 0) = 1 − P (X = c) = p, with p > 0 and c > 0 (allowing also

c > 1). From (50),

ψ(α) = p+ (1− p)ψ(cα)η(cα), (65)

of which repeated iterations yield

ψ(α) =
∞∑
j=0

p(1− p)j
j∏
i=1

η(ciα). (66)
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The sum obviously converges for all 0 < p ≤ 1. Inversion of the LST reveals that

V
d=

N∑
i=1

ciYi, (67)

where N is geometrically distributed (counting only failures) with probability of success

p and is independent of {Yi| i ≥ 1}. Indeed, this also follows directly by applying (50),

in the form Vn = c(Vn−1 + Yn), N times, with V0 = 0. See also p. 762 of Vervaat [21]

(where c = 1).

4.4.1. Moments From (67),

EV n =
∞∑
j=0

p(1− p)j
∑

Pj
i=1 ni=n

n!∏j
i=1 ni!

c
Pj
i=1 ini

j∏
i=1

EY ni . (68)

4.5. Case 3b: X ∼ mixture of an atom at 0 and Beta(D, 1)

Assume that P (X ≤ x) = p+(1−p)xD, 0 ≤ x ≤ 1, p > 0. In this case, (55) reduces

to

ψ(α) = p+ (1− p)
∫ 1

0

ψ(αx)η(αx)dx, (69)

yielding after similar manipulations as in Case 1:

ψ′(α) =
pD

α
+ ψ(α)

(1− p)Dη(α)−D
α

. (70)

The solution of this first-order inhomogeneous differential equation is:

ψ(α) = C exp
[
D

∫ α

0

(1− p)Dη(v)−D
v

dv
]

+
∫ α

0

pD

z
exp

[∫ α

z

(1− p)Dη(v)−D
v

dv
]

dz. (71)

It is easily seen that the first integral on the right hand side of (71) diverges, so we

have to take C = 0. By observing that (1−p)Dη(v)−D
v is bounded between −D/v and

−pD/v, and that hence the expression in the last line of (71) is bounded between∫ α
0
pD
z (z/α)pDdz and

∫ α
0
pD
z (z/α)Ddz, it follows that the expression in the last line of

(71) has a value between p and 1. When α ↓ 0, then the above bound −pD/v becomes

tight and the expression in the last line of (71) approaches 1.
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4.5.1. Moments The most suitable approach to obtain EV n via the LST here seems

to be to multiply both sides of Formula (70) with α and differentiate k − 1 times.

However, the resulting calculation is not really easier then when starting from (56),

and hence we omit it.

4.5.2. Tail behavior Suppose that the distribution of Y is regularly varying at infinity

with index −ν. Then application of Lemma 8.1.6 of [5] to (71) readily shows that

V is also regularly varying, with the same index. We don’t provide details, because

considerably more general tail results can be obtained for (50); see Volkovitch and

Litvak [20] for regularly varying Y , and Denisov and Zwart [8] for light-tailed Y .

4.6. Case 3c: X ∼ mixture of an atom at 0 and a product of two i.i.d.

U [0, 1]

The density of the product of two i.i.d. random variables which are uniformly

distributed on [0, 1] is − lnx, 0 < x < 1. Formula (55) now reduces to:

ψ(α) = p− (1− p)
∫ 1

0

ψ(αx)η(αx) lnxdx, (72)

so

αψ(α) = pα− (1− p)
∫ α

0

ψ(u)η(u)ln(u/α)du, (73)

which after two differentiations leads to

α2ψ′′(α) + 3αψ′(α) + (1− (1− p)η(α))ψ(α) = p. (74)

In the special case that Y ∼ exp(µ), hence η(α) = µ
µ+α , this equation simplifies into

α2(µ+ α)ψ′′(α) + 3α(µ+ α)ψ′(α) + (µ+ α− (1− p)µ)ψ(α) = p. (75)

p = 0 gives a known case:

α(µ+ α)ψ′′(α) + 3(µ+ α)ψ′(α) + ψ(α) = 0. (76)

Note that this is the differential equation (46) for the case of ν1 = ν2 = 1, which

makes sense: Y being exponential and X being a product of two independent U [0, 1]

random variables corresponds to having an exponential on-time distribution and an

Erlang-2 off-time distribution in the on-off model of Section 1 (that was directly related
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to the growth collapse model and the shot noise model). Slightly more generally, if

X = U
1/ν1
1 U

1/ν2
2 , with U1 and U2 independent and U [0, 1] distributed, then one gets

(46) with ν1 and ν2.

Remark 4.3. We note that the density of the product of k ≥ 2 i.i.d. random variables

which are uniformly distributed on [0, 1] is (−ln(x))k−1

(k−1)! , 0 < x < 1, thus in a similar

manner one may derive a kth order differential equation for ψ(α).

Remark 4.4. When p = 0 and η(α) = ( µ
µ+α )2, i.e., Y is Erlang-2, then (74) becomes:

ψ′′(α) +
3
α
ψ′(α) +

α+ 2µ
α(µ+ α)2

ψ(α) = 0. (77)

When p = 0 and η(α) = b µ1
µ1+α + (1− b) µ2

µ2+α with 0 < b < 1, i.e., Y is hyperexponen-

tially distributed, then (74) becomes:

ψ′′(α) +
3
α
ψ′(α) +

b(µ2 + α) + (1− b)(µ1 + α)
α(µ1 + α)(µ2 + α)

ψ(α) = 0. (78)

Both (77) and (78) are special cases of Heun’s differential equation, cf. [10].

4.7. Case 4: X ∼ U [0, a]

We are interested in studying a case in which X is not restricted to [0, 1]. We assume

that X is U [0, a] distributed, with EX = a/2 < 1. As noted in the first paragraph of

this section, together with EY <∞ this implies stability. Formula (55) now becomes

ψ(α) =
1
a

∫ a

0

ψ(αx)η(αx)dx =
1
aα

∫ aα

0

ψ(u)η(u)du , (79)

and differentiation gives (see (59))

ψ′(α) = ψ(aα)
η(aα)
α
− ψ(α)

α
. (80)

By introducing ζ(α) ≡ ψ(eα) one can rewrite (80) as the differential-difference equation

ζ ′(α) = ζ(α+ c)ξ(α+ c)− ζ(α), (81)

with c = lna < 0 and ξ(α) := η(eα). There is an extensive literature on differential-

difference equations, see for example [11]. However, solutions of such equations are
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only known in special cases such as when ξ(α) is a constant. Below we consider (80)

in the special case that Y ∼ exp(µ). Equation (80) then reduces to

(µ+ aα)αψ′(α) = µψ(aα)− (µ+ aα)ψ(α). (82)

One might solve it by introducing the Taylor series expansion ψ(α) ≡
∑∞
n=0 fnα

n,

with f0 = ψ(0) = 1, and solving the resulting recursion for fn (which is (−1)nEV n

n! ).

We prefer an alternative approach, starting from (56):

EV n =
EXn

1− EXn

n−1∑
k=0

(
n

k

)
EV kEY n−k

= n!
an

n+ 1− an
n−1∑
k=0

EV k

k!
1

µn−k
.

If we denote Bn =
∑n
k=0

µkEV k

k! then Bn − Bn−1 = an

n+1−anBn−1 so that Bn =
n+1

n+1−anBn−1 which implies that Bn = (n+1)!Qn
i=1(i+1−ai) . Hence

µnEV n

n!
= Bn −Bn−1 =

ann!∏n
i=1(i+ 1− ai)

and thus when a < (1 + n)1/n:

EV n =
(a/µ)n(n!)2∏n
i=1(i+ 1− ai)

.

Remark 4.5. a = 1 yields EV n = n!
(µ)n , corresponding to V being exponentially

distributed; see already Remark 2. We further recall EV n <∞ if and only if EXn =
an

n+1 < 1 (see (52) and discussion there). Note that (1 + n)1/n equals 2 for n = 1 and

decreases to 1 as n → ∞, so that for 0 < a ≤ 1 all the moments exist but not for

1 < a < 2.
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