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Abstract

In this paper we propose a prototype model for the problem of man-
aging waiting lists for organ transplantations. Our model captures the
double-queue nature of the problem: there is a queue of patients, but
also a queue of organs. Both may suffer from ”impatience”: the health
of a patient may deteriorate, and organs cannot be preserved longer than
a certain amount of time. Using advanced tools from queueing theory,
we derive explicit results for key performance criteria: the rate of unsat-
isfied demands and of organ outdatings, the steady-state distribution of
the number of organs on the shelf, the waiting time of a patient, and the
long-run fraction of time during which the shelf is empty of organs.

1 Introduction

The problems of managing a list of patients waiting for a transplantation have
attracted the attention of operations researchers from the mid eighties [8, 20,
21, 9, 27, 13, 30, 16, 24]. Zenios et al. [28] contains an excellent introduction
to the modeling of live-organ transplantations by means of a waiting list. The
problem is a hybrid of queueing and inventory aspects, the inventory being a
collection of organs ”on the shelf”. Considering patients who suffer from organ
failure (kidneys, livers, hearts, etc.) and who register on a transplantation list
as ‘customers’ waiting for service, one is tempted to take recourse to queueing
models, but several non-standard features need to be taken into account. First,
the ‘servers’ are organs usually donated from the dead; they arrive sequentially
and randomly, and the transplantation itself only takes a negligible time. One
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thus faces a double matching queue whose two lines (one of organs and one of pa-
tients) can be both empty but, normally, not be both non-empty simultaneously.
Second, both queues are affected by influences which may cause reductions in
their lengths without matchings taking place. One major issue is the health de-
terioration of waiting patients. In the language of queueing theory, one speaks
of impatience, a random positive time-lag, drawn from a general distribution,
which is assigned to any arriving customer (patient). If a customer’s ‘patience’
runs out before being served, he reneges. A second, dual, major issue is that
live organs such as kidneys or livers cannot be preserved for more than a certain
fixed period of time (often about two days), since freezing them is not possible.
This establishes a link with stochastic inventory theory where one speaks of a
perishable inventory system (PIS) whose output process is split into satisfied
demands and outdatings. Obviously, the two types of untimely departures –
impatience and outdating – are not symmetric.

The model that we propose and analyze in this paper captures in full the
double-queue nature of the problem and takes health deterioration (customer
impatience) as well as organ outdating (server removal) into account. In the
basic model presented here we assume a FIFO regime of patients and show
how tools available from queueing theory can be used to derive explicit results
regarding the processes of unsatisfied demands, outdated organs and of wait-
ing patients, and other important information about the efficacy of the issuing
process.

One might criticize the above model in the following two ways.
(1) In most Western countries, the line of organs on the shelf is empty most of
the time. However, this situation is bound to change, due to changes in societal
convention, recent trends in religious attitudes regarding transplantation, but
mostly due to possible new legislation (e.g., if permission of the family to use an
organ from a deceased person is no longer required). In such a case the arrival
rate of organs will increase dramatically – as is already seen in some countries
– and the double-matched queue feature will be a very natural one.
(2) In most organ transplant situations, the issuing policy of organs is not
FIFO. For example, the condition of the patient may play a role, and the level
of matching. Generally speaking, that gives rise to very complicated stochastic
models which are not analytically tractable. However, for a large subset of the
population of patients, a FIFO policy still provides a good representation (see
also Section 7). Our model may be viewed as a prototype model that provides
a useful first approximation of reality, and that allows a methodologically novel
approach that could provide the basis for much further research. In Section 7
we discuss various extensions, among other things returning to the FIFO issue.

Methodology
Our starting-point is the age process of the model, i.e., the evolution of the
age of the oldest organ on the shelf and, as long as the shelf is empty, minus
the waiting time of a (virtual) arriving patient whose patience would be long
enough to eventually receive the first available organ. It should be noticed that
age here can be negative, hence age should be interpreted in a broad sense. A
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key idea is to flip its graphical representation over by 180 degrees (cf. Figure 1
in Section 2), yielding the virtual outdating process (VOP). The VOP provides
the time until the next outdating of an organ if the demand process is stopped
right now. The VOP leads to the key performance criteria of the model. A sec-
ond key idea is to note the analogy of the VOP with the workload process in a
certain M/G/1-type queue with impatience. We use level-crossing, martingales
and other techniques to analyze the latter queue. This leads to explicit results
for important performance criteria of the organ-transplant system.

Literature overview
In the literature one can find approaches to several aspects of organ allocation.
Historically, researchers have sought to formulate and solve the problem of a
single candidate first, that is, assuming only one patient with known relevant
traits, who has no competitors on the donor stream, in the form of an optimal
stopping problem [8, 13]. One current approach to the multi-candidate case is to
use the solutions for single candidates as building blocks for an overall heuristic
allocation policy. In [11] it is proposed to sort the line of candidates by FIFO,
and then to implement the individually optimal policy sequentially for these
candidates, such that rejected organs are offered down the line. An alternative
approach is to conduct simulation studies, based on large amounts of real data
(e.g., the US Registry combined with the US UNOS – United Network of Organ
Sharing – official simulation system for kidneys, UKAM [25, 19, 26]).

Returning to analytical contributions, a significant body of research in this
area is due to Su and Zenios [30, 22, 23, 24], who use a variety of approaches.
Originally, the multi-attribute nature of the problem was treated in [28] by as-
suming many simultaneous streams of customers and applying fluid approxima-
tions to the generated system. The obtained set of linear differential equations
leads, after further simplifying assumptions, to a Gittins index policy, the per-
formance of which is then tested by simulation for various weight combinations
of tri-criteria optimization, accounting for both “efficiency” and “equity.” Sim-
ilar techniques of fluid and Brownian approximation are used in further papers
(e.g. [30]). In a different approach [23] they adopted the framework of anal-
ysis known as sequential stochastic assignment, which dates back to [12] and
had been used in earlier investigations see [20, 21, 9, 10]. In [23] these models
were extended significantly and an important feature was added by allowing
for ”patient choice” in kidney allocation and analyzing the tension due to this
option between the social planner and the individual planner. For performance
evaluation and numerical studies [23] again resorted to simulation. In [29] “im-
patience” is taken into account in the context of a random allocation policy
without real interaction between kidney types and customer types.

Summarizing, the existing literature consists, apart from pure simulation
studies, either of simplified models which provide important insights but which
do not capture certain important facets of the complicated problem, or of more
elaborate approaches that focus on competing allocation policies, which are
evaluated exclusively by simulation. In this paper we present the problem in
the framework of queueing theory, which allows an analytic treatment.
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Organization of the paper
In Section 2 we describe the model, expound the key ideas mentioned above,
and introduce the main performance criteria of the organ-transplant system that
we will derive: the rate of the instants at which demands leave unsatisfied and
that of organ outdatings, the steady-state laws of the number of organs on the
shelf and of the waiting time of a patient, and the long-run fraction of time
during which the shelf is empty of organs. The VOP is analyzed in Sections 3
and 4. The performance criteria are then explicitly computed in Section 5. In
the special case of Poisson arrival of organs and exponential patience times we
study the outdating process in Section 6. Finally, Section 7 presents possible
extensions of the basic model which we intend to pursue in the future.

2 Model description and preliminaries

We consider the following model. Perishable items (donated organs) arrive at
the organ bank according to a renewal process with interrenewal time distribu-
tion function G, having mean 1/λ and Laplace-Stieltjes transform (LST) G∗.
The arrival times of the demands (patients needing transplantation) are inde-
pendent of those of the items (in the case of kidneys this may not be quite
true) and form a Poisson process, of rate µ, which is independent of the item
arrival times. A demand that upon its arrival finds the shelf of items not empty
is satisfied immediately by the oldest organ present. Demands that arrive at
an empty organ bank join the line of waiting demands (if any); newly arriving
organs are assigned on the spot to waiting demands on a first-come-first-served
basis.

Each demand possesses its own random patience time, which can be inter-
preted as the time until the patient’s physical condition no longer allows carrying
out a transplantation. Denoting by Pn the patience time of the nth arriving
patient, we assume that {Pn : n = 1, 2, ...} is a sequence of independent, identi-
cally distributed, positive random variables which are independent of the arrival
times of organs and demands. Pn has the distribution function H, the mean
1/η and the LST H∗. If the waiting time of the nth patient exceeds his patience
he abandons the waiting line without receiving treatment. On the other hand,
the ‘shelf lifetime’ of the stored organs, i.e., their maximum usage time, is a
prespecified constant that we set equal to 1 (without loss of generality). Thus,
each organ is stored until it either satisfies some demand or, after one time unit
on the shelf, is outdated (and then scrapped).

According to the above description two connected queueing systems of the
FCFS type are generated (for a related but slightly different model see [18]).
The first queue consists of the stored organs on the shelf while the second one
is given by the line of patients waiting for these organs. The two queues cannot
be simultaneously non-empty, but it is possible that both of them are empty.

In our paper we focus on five performance criteria which are key character-
istics of the efficiency of the organ bank:
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1. the rate of the times of organ outdatings;

2. the rate of the times at which demands leave unsatisfied;

3. the steady-state law of the number of organs on the shelf;

4. the steady-state law of the waiting time of a patient;

5. the length and long-run fraction of time during which the shelf is empty
of organs.

We now give a global outline of our approach to study these performance cri-
teria, explaining the basic ideas by referring to Figure 1. We use the following
notation:

• An is the arrival time of the nth organ;

• Dn is the arrival time of the nth demand;

• Pn is the patience time of the nth patient;

• On is the time of the nth outdating.

Let A(t) be defined as follows. As long as the shelf is not empty, A(t) is the
shelf age of the oldest organ in the system. When the shelf is empty, A(t) is
minus the waiting time of a (virtual) patient arriving at time t whose patience
would be long enough to eventually receive the first available organ. In Figure
1(a) an exemplary sample path of this process is depicted. At time A1 the first
organ arrives at an empty shelf, and there are no waiting demands. At time D1

a demand arrives that takes this organ. The organ which had arrived at time
A2 < D1 becomes the oldest one, and now its age is drawn in the picture. At
D2, it is taken. At time O1 the organ which had arrived at A3 becomes outdated
as its age reaches 1. At D3 the fourth organ is taken by the third demand and
the system again becomes empty of organs and demands; both queues are now
empty. A(t) jumps down to the negative of the time until the arrival of the next
organ. The patience time P4 of the fourth demand (arriving at D4) is not large
enough so that this patient leaves unsatisfied. The fifth demand has enough
patience to wait for the next (the fifth) organ arrival and the process jumps
down to the negative of the residual waiting time for the sixth organ arrival.
This organ is taken upon its arrival by the sixth demand. The seventh organ
arrives at an empty shelf without waiting demands and the process A(t) starts
anew.
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Figure 1: a typical sample path of A(t) (1a) and the corresponding sample path
of the VOP (1b).

In Figure 1(b) the sample path of 1(a) has been reflected along the horizontal
line at height 1/2 and shows the resulting virtual outdating process (VOP) V =
{V (t) : t ≥ 0}. Clearly, V (t) = 1−A(t) is the time from t till the next outdating
of an organ that would occur if the demand arrival process was completely
stopped at t. We shall mainly concentrate on V, deriving results for the above-
mentioned performance criteria from it. A crucial observation is that, because of
the Poisson nature of the demand arrivals, V is a Markov process whose sample
path can also be interpreted as the workload process of a special M/G/1-type
queueing system with abandonments (or impatience). In this system customers
arrive according to a Poisson process with rate µ and have service requirements
with distribution G (having mean 1/λ). These service requirements are not
observable: upon arrival the customers don’t see their waiting times. Let Wn

be the waiting time of the nth arriving customer. The patience of the nth
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customer is 1 + Pn, where the Pn are i.i.d. with distribution H. Therefore, the
nth customer is admitted to the system if Wn ≤ 1; if Wn > 1 the nth customer
is refused if Pn < Wn − 1 and admitted otherwise. We call this system an
M/G/1 + G queue. Finally, the idle periods are deleted and the busy periods
are glued together. The resulting workload process has the same law as V.

Given V (t) ≤ 1, the age of the oldest organ on the shelf at time t is given
by 1 − V (t). Note that (i) an outdating of an organ occurs at time t if and
only if V (t) = 0 and (ii) if V (t) > 1 the shelf is empty of organs at t. By
interpreting the VOP of the organ-transplant model as the work process V of the
special queueing model with abandonments as described above, the outdating
times of organs form a renewal process whose interrenewal times have the same
law as that of a busy period in that queue. It constitutes our performance
criterion 1, and is studied in Section 5. In particular, we will obtain the rate
λ∗ = λ∗(λ, µ) of the outdating times. The unsatisfied demand process (Criterion
2), which in our interpretation counts the abandoned customers, is in general
not a renewal process – not even in the special case of Poisson arrivals of organs
and of demands. Its law seems difficult to obtain. However, once the law of
the outdating process is known we can derive the value of λ∗(λ, µ) and then
the rate µ∗ = µ∗(λ, µ) of unsatisfied demands is obtained from the following
conservation law :

λ− λ∗(λ, µ) = µ− µ∗(λ, µ). (1)

To see (1) note that since λ is the arrival rate of organs into the system, it is also
their departure rate out of the system in steady state. Thus, the left-hand side
of (1) represents the long-run average rate of organs which are not outdated,
i.e., are used to satisfy demands, while the right-hand side of (1) is just the rate
of satisfied demands. As a result, once we have computed λ∗(λ, µ), the rate
µ∗(λ, µ) is also known.

Criteria 3 and 4 are also closely related to the age process, and hence to the
VOP, and are studied in Section 5. Criterion 5 is also considered there.

3 The steady-state law of V

The important basic quantity for our analysis is the steady-state law of V.
Evidently, by level crossing theory (LCT; see e.g. [6]) this steady-state dis-
tribution is absolutely continuous and its density f at level x is equal to the
long-run average number of downcrossings of x, which is of course equal to the
long-run average number of upcrossings of x (similar statements hold for other
steady-state densities which will be considered furtheron). This approach leads
to
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Theorem 1 The stationary density f of V satisfies the integral equation

f(x) =



µ

∫ x

0

[1−G(x− w)]f(w) dw + f(0)[1−G(x)], 0 < x ≤ 1,

µ

∫ 1

0

[1−G(x− w)]f(w) dw + f(0)[1−G(x)]

+µ
∫ x

1

[1−G(x− w)][1−H(w − 1)]f(w) dw,

x > 1.

(2)

Proof. The long-run average number of upcrossings of x is given by the right-
hand side of (2). To see this, first note that the arrival rate of upward jumps is
µ, and that by PASTA the density at a jump epoch is also f . When starting a
jump from w ∈ (0,min(x, 1)], the probability to end up above x is 1−G(x−w).
When starting from w ∈ (1, x), the probability to jump at all upon a demand
arrival is 1−H(w− 1) and then, given that a jump takes place, the probability
to jump above x is 1−G(x−w). Multiplying we get [1−H(w−1)][1−G(x−w)].
Moreover, level x can also be upcrossed from level 0 at the end of a cycle. The
rate of cycle endings is f(0) and 1 − G(x) is the probability to upcross level x
jumping from 0. The proof is complete.

In case that the arrival times of organs form a Poisson process, the VOP is
the workload process in an M/M/1 + G queue with deleted idle periods. Eq.
(2) becomes

f(x) =



µ

∫ x

0

e−λ(x−w)f(w) dw + f(0)e−λx, 0 < x ≤ 1,

µ

∫ 1

0

e−λ(x−w)f(w) dw + f(0)e−λx

+µ
∫ x

1

e−λ(x−w)[1−H(w − 1)]f(w) dw,
x > 1.

(3)

Solving for f in (3) we obtain (see also Section IV of [2])

f(x) =

 k0e
−(λ−µ)x, 0 < x ≤ 1,

k1 exp
{
−[λx− µ

∫ x
1

(1−H(z − 1))dz]
}
, x > 1,

(4)

for certain constants k0 and k1. To find k0 and k1 note that f(x) is continuous
at 1. We get k0 = k1e

µ and k0 can be easily calculated via the normalizing
condition for f . We find that

k0 =
[ ∫ 1

0

e−(λ−µ)xdx+ eµ
∫ ∞

1

exp
{
−[λx− µ

∫ x

1

(1−H(z − 1))dz]
}
dx

]−1

.
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In particular, if the patience is exp(η)-distributed, (4) yields

f(x) =


k0e
−(λ−µ)x, 0 < x ≤ 1,

k0 exp
{
−[λx− µ− µ

η (1− e−η(x−1))]
}
, x > 1.

4 Decomposition and explicit computation of f

The workload density f for general G and H can be obtained from Theorem 1
in the following way. (i) solve the integral equation (2) in the interval [0, 1] (in
terms of an infinite series of convolutions and the constant f(0)); (ii) insert this
solution in the equation for x ∈ (1,∞), which can then also be solved in terms
of an infinite series of convolutions in which the first series occurs as under
the integral sign; and (iii) determine f(0) from the normalization condition∫∞
0
f(x) dx = 1. We will proceed somewhat differently by providing a more

intuitive argument for the decomposition of f .
The VOP V can be separated into two different processes. The first one is

constructed by deleting the time periods in which the shelf is empty of organs,
i.e., V > 1, and gluing together the remaining time periods in which the shelf
is not empty, i.e., in which V ≤ 1. The second one is generated by gluing
together the time periods in which V > 1. We denote these two processes by
VD = {VD(t) : t ≥ 0} and VP = {VP (t) : t ≥ 0}, respectively. D indicates a
relation to finite Dams, and P a relation to models with (im)Patience. Indeed,
one easily sees that VD describes the content level in an M/G/1 queue with
finite capacity 1 (and idle periods deleted), also called finite dam, while VP− 1
represents the workload of an M/G/1 + G queue with deleted idle periods.
However, VP − 1 has a special feature because the overflow of V above level 1
is the residual service time of the first customer in the busy period of VP − 1,
so that VP − 1 is the workload process of an M/G/1 +G queue (with deleted
idle periods) in which the first service time of a busy period has a different
distribution.

Let fD and fP be the conditional densities of V given that V ≤ 1 and that
V > 1, respectively. With I· denoting an indicator function, and with ν being
the fraction of time that V > 1, we have

f(x) = (1− ν)fD(x)Ix≤1 + νfP (x)Ix>1.

Let us now compute fD(x), fP (x) and ν.

(A) Computation of fD(x)
The appropriate balance equation for fD(x) is given by

fD(x) = µ

∫ x

0

[1−G(x− w)]fD(w)dw + fD(0)[1−G(x)], 0 ≤ x ≤ 1 (5)

and coincides with the corresponding equation for the workload density in the
standard M/G/1 queue with finite capacity 1. One possible approach is to
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distinguish between ρ = µ/λ < 1 and ρ ≥ 1 and to observe the following. If ρ <
1 then the workload density is proportional to the steady-state workload density
of the unrestricted M/G/1 queue. If ρ ≥ 1 then the steady-state distribution of
the workload still exists (recall that we consider a system with finite capacity)
but the solution procedure has to be adapted slightly (see [7], pp. 72-73 or
Section 2 of [5]).

However, we follow a more direct approach. Let ge be the equilibrium density
of G, i.e., ge(x) = λ[1−G(x)]. Then (5) can be rewritten as

fD = kge + ρge ∗ fD
where k is a certain constant, and ∗ denotes convolution. Solving for fD we get

fD = kge + ρge ∗ [kge + ρge ∗ fD]
= k[ge + ρg

∗(2)
e + ρ2g

∗(3)
e + . . .]

= kQ,

where Q =
∑∞
n=1 ρ

n−1g
∗(n)
e , and the constant k can be computed from the

normalizing condition
∫ 1

0
kQ(x) dx = 1, yielding

fD(x) =
Q(x)∫ 1

0
Q(y) dy

. (6)

Remark 1 In the special case of a Poisson arrival process of organs, fD(x) is
the workload density in the M/M/1 queue with capacity 1 and with idle periods
deleted, which is a truncated exponential density:

fD(x) =


(λ−µ)e−(λ−µ)x

1−e−(λ−µ) , λ 6= µ,

1, λ = µ.

(7)

It should be noticed that the density is uniform when λ = µ, in this case of an
M/M/1 queues with barriers 0 and 1 and idle periods deleted.

(B) Computation of fP (x)
We first need to determine the distribution function, say A, of the overshoot

of V above level 1, which is also the distribution function of the first service
time in a busy period of VP − 1 (recall that it is in general different from the
other ones). For this purpose we construct a modified work process Vconst =
{Vconst(t) : t ≥ 0} which is a special case of V. We define Vconst as the workload
process of the M/G/1 +D type queue with deleted idle periods, arrival rate µ,
service rate λ and constant patience times equal to 1. In this queue the workload
can jump above 1 but customers do not admit to the system if they have to
wait in line more than 1. In other words, customers leave unsatisfied if they
see an empty shelf at their arrival. It turns out that there is a simple relation
between the distribution of the first service in the busy period of VP−1 and the
steady-state law of Vconst. Let fconst(x) be the steady-state density of Vconst.
In the next lemma we express the law of the first service time of the busy period
of VP − 1 in terms of fconst.
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Remark 2 The workload process Vconst is the same process as that described
in [14] (under a different motivation). By LCT, the balance equation of fconst
is given by

fconst(x) = µ

∫ x∧1

0

[1−G(x− w)]fconst(w)dw + fconst(0)[1−G(x)]. (8)

The balance equation (8) is given in [14] but without its solution. We will
introduce the solution here (in terms of the Neumann series) after the proof of
the lemma.

Lemma 1 Let A be the distribution function of the first service time in the busy
period of VP − 1. Then, for all x > 0,

A(x) = 1− fconst(x+ 1)
fconst(1)

.

Proof. Let
Fconst(x) =

∫ x

0

fconst(w)dw

be the steady-state distribution function of Vconst. On the one hand, the func-
tion

ae(x) :=
fconst(x+ 1)
1− Fconst(1)

(9)

is the conditional steady-state density of fconst given Vconst > 1. By the strong
Markov property, the overflows above level 1 are i.i.d. random variables so that
if we delete the time periods in which Vconst ≤ 1 and glue together the time
periods in which Vconst > 1 we get a sample path of a renewal process in which
the asymptotic density of the forward recurrence time is given by (9). On the
other hand, as ae(x) is the equilibrium density of the overflow, we have

ae(x) = ζ[1−A(x)] (10)

where ζ−1 =
∫∞
0

[1−A(x)]dx. Taking x = 0 in (9) and (10) yields

ζ =
fconst(1)

1− Fconst(1)
. (11)

Substitute (11) in (10) and the lemma follows by equating the right hand side
of (9) with the right hand side of (10).

Note that, by Lemma 1, fconst(x+ 1) is a monotone decreasing function.
To solve for fconst in (8) we start with the solution for x ≤ 1. We designate

ρ̄ = µ/λ and get
fconst = ρ̄ge ∗ fconst + Cge (12)

where ge := λ[1−G(x)] and the constant C := fconst(1)/λ. The unique solution
of (12) is known to be

fconst(x) = C

∞∑
n=1

ρ̄n−1gn∗e (x). (13)
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For x > 1 we get in (8)

fconst = ρ̄

∫ 1

0

ge(x− w)fconst(w)dw + Cge(x). (14)

By substituting (13) in (14) we get

fconst(x) = ρ̄

∫ 1

0

ge(x− w)C
∞∑
n=1

ρ̄n−1gn∗e (w)dw + Cge(x)

where C is obtained via the normalizing condition

C =
(∑∞

n=1 ρ̄
n−1

∫ 1

0
gn∗e (x)dx

+
∑∞
n=1 ρ̄

n
∫∞
1

∫ 1

0
ge(x− w)gn∗e (w)dwdx+

∫∞
1
ge(x)dx

)−1

.

We are now in a position to compute hP (x) = fP (x+ 1). Its balance equation
contains the distribution function A:

hP (x) = µ

∫ x

0

[1−G(x− w)]hP (w) dw + hP (0)[1−A(x)]. (15)

To solve (15) for hP we write it as

hP = k̄ae + ρge ∗ hP ,

so that

hP = k̄ae ∗
∞∑
n=1

ρn−1gn∗e = k̄ae ∗Q,

and the constant k̄ can again be calculated from the normalizing condition. We
obtain

fP (x) = (ae ∗Q)(x− 1)/
∫ ∞

0

(ae ∗Q)(y) dy. (16)

(C) The value of ν
By regenerative theory ν is equal to the ratio of the expected busy period of
VD and the sum of the expected busy periods of VP and VD, and this ratio is
equal to

ν =
1/fD(0)

(1/hP (0) + (1/fD(0))
=

fP (1)
fD(0) + fP (1)

.

Summarizing, we have proved

Theorem 2 The steady-state density f is given by

f(x) =


fP (1)

fD(0) + fP (1)
fD(x), 0 ≤ x ≤ 1

fD(0)
fD(0) + fP (1)

fP (x), x > 1

where fD(x) and fP (x) are given by (6) and (16).
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Remark 3 In the special case of a Poisson arrival process of organs, there is
no need to calculate fconst(x), because the distribution A of the overshoot above
1 is exp(µ) by the memoryless property. Finally hP (x) follows from the known
results for an M/M/1 +G queue; see, e.g., [3].

5 The performance criteria

From the steady-state law of V we can now obtain several performance charac-
teristics.

1. The rate of organ outdatings, λ∗, is given by

λ∗ = f(0),

and hence, using Theorem 2,

λ∗ =
fD(0)fP (1)
fD(0) + fP (1)

.

In the special case of Poisson organ arrival times of intensity λ we obtain from
the example in Section 3

λ∗ =
[∫ 1

0

e−(λ−µ)xdx+ eµ
∫ ∞

1

e−[λx−µ
R x
1 (1−H(z−1))dz]dx

]−1

.

2. The rate of unsatisfied demands, µ∗, is, by (1),

µ∗ = µ− λ+ f(0).

Also, by using level crossing theory, f(1) can be interpreted as the rate of organ
arrivals at an empty system.

3. The number of organs on the shelf is zero as long as V > 1 and
equal to one plus the number of arrivals during the age of the oldest organ if
V ≤ 1. Thus, if N0 denotes the number of organs on the shelf in steady state,
its generating function is given by

EzN0 =
∫ ∞

1

f(x) dx+
∫ 1

0

∞∑
n=1

znP(n− 1 arrivals in a time interval of

length 1− x)f(x) dx

=
∫ ∞

1

f(x) dx+
∫ 1

0

∞∑
n=1

zn(G(n−1)∗(1− x)−Gn∗(1− x))f(x) dx. (17)

Hence, in the M/M/1 +G case (organs arrive according to a Poisson process),

EzN0 =
∫ ∞

1

f(x) dx+ z

∫ 1

0

e−λ(1−z)(1−x)f(x) dx.
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4. The steady-state law of the waiting time can be determined as
follows. A patient arriving at time t does not have to wait if A(t) ≥ 0 and has
to wait for −A(t) time units, provided his patience does not run out before.

The steady-state probability that A(t) ≥ 0 is equal to 1 − ν =
fD(0)

fD(0) + fP (1)
,

and the steady-state probability of having to wait between x and x + dx time
units (assuming sufficient patience) is νfP (x− 1) dx.

For the M/M/1 +M -type system, with exp(λ) organ interarrival times and
exp(η) patience times, the steady-state law of the number of waiting
patients, say Nc, (including those who are going to leave unsatisfied) can be
easily derived. The conditional law of Nc, given that the system is empty of
organs, can be calculated from the linear set of balance equations

µp0 = λp1

µpn = (λ+ nη)pn+1, n = 1, 2, . . . , (18)

where pn is the conditional steady-state probability of n customers being present.
So pn = p0µ

n/
∏n−1
j=0 (λ+ jη), and

ENc =
∫ ∞

1

f(x) dx ·
∞∑
n=1

npn = p0

∫ ∞
1

f(x) dx
∞∑
n=1

nµn∏n−1
j=0 (λ+ jη)

,

where

p0 =

[
1 +

∞∑
n=1

µn∏n−1
j=0 (λ+ jη)

]−1

.

Finally notice that p̃n, the probability of n customers waiting for organs, equals
pn+1, n = 0, 1, . . . ; the number of waiting patients equals the number of cus-
tomers in the corresponding M/M/1 +M queue minus one.
In the case of general patience one can obtain the generating function of the
number of waiting patients, E[zNc ] = Θ(z)/z, where Θ(z) is the generating
function of the number of customers in M/M/1 +G. Θ(z) has been derived in
[3]:

Θ(z) =
∫ ∞

0

exp{−λ(1− z)
∫ t

0

[1−H(s)]ds}dF̃ (t),

with F̃ (t) denoting a distribution with LST∫ ∞
0

e−αtdF̃ (t) = E[e−αVH(V )] +G∗(α)E[e−αV (1−H(V ))],

where V is the steady-state workload – which is the same as VP − 1. If organs
don’t arrive according to a Poisson process, we have to consider an M/G/1 +G
queue in which the first service time in a busy period has a special distribution.
This requires further research; in [3] we only considered the number of customers
in the ordinary M/G/1 +G queue.

5. For our last performance criterion, the long-run fraction of time the
shelf is empty, we restrict ourselves to the case of Poisson arrivals of organs.

14



The consecutive periods of time during which the shelf is empty and non-empty
form an alternating renewal process. Whenever V ≤ 1 (ON period) the shelf
is not empty and whenever V > 1 (OFF period) the shelf is empty. From the
description above the OFF period has the same law as the busy period in the
M/M/1 +G queue with arrival rate µ, service rate λ and patience distribution
H(·). It should be noted that the busy period distribution for M/M/1 + G is
only known in special cases, in particular for discrete patience times (see [4];
see [3] for preliminary results on the busy period for M/G/1 +G). Let f̂(·) be
the steady-state density of the workload of this queue. Then, using a similar
argument as in the proof of Theorem 1 we have for all x > 0

f̂(x) = µ

∫ x

0

[1−H(w)]e−λ(x−w)f̂(w) dw + f̂(0)e−λx. (19)

Solving for f̂(·) in (19) we get

f̂(x) = k̂e−[λx−µ
R x
0 (1−H(y)) dy] (20)

where

k̂ =
[∫ ∞

0

e−[λx−µ
R x
0 (1−H(y))dy]

]−1

. (21)

By renewal theory,

E[ length of an OFF period ] = 1/f̂(0),

and
E[ cycle length ] = 1/f(1).

The renewal reward theorem now shows that the long-run fraction of time that
the shelf is empty is equal to σ = f(1)/f̂(0), where f(1) and f̂(0) = k̂ are given
by (4) and (21), respectively.

6 The outdating process in the Markovian case

In this section we derive the LST of the inter-outdating times in the special case
of Poisson arrivals of organs and of H(x) = 1− e−ηx. Recall that the outdating
process of organs is a renewal process and let τ be the time period between two
successive outdatings. To compute its LST Γ(β) = Ee−βτ , we write it as

Γ(β) =
∫ ∞

0

Exe−βτλe−λxdx, (22)

where Ex denotes conditional expectation given that V (0) = x. Let L be the
time from a moment the shelf becomes empty of organs (say, for the first time)
until the next arrival of an organ (see also Item 4 in Section 5). From our
assumptions, the strong Markov property and the lack-of-memory property of
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the jump sizes it follows that L has the same law as the busy period of the
M/M/1 +M queue with arrival rate µ, service rate λ and patience rate η. For
its LST Ψ(β) no analytic expression is known; however, in Sect. 3 of [4] it is
given in the form of a continued fraction that can be derived from the recursion
Ψ(β) = Ψ1(β) and

Ψn(β) =
µ+ (n− 1)ξ

µ+ (n− 1)ξ + β + λ(1−Ψn+1(β))
, n ≥ 1.

We note that EL is known in closed form [4]:

EL =
∞∑
k=0

µk∏k
j=0(λ+ jη)

.

Lemma 2

Γ(β) =
∫ 1

0

Exe−βτλe−λxdx+ e−λEe−βLE1e
−βτ .

Proof. By (22) it is enough to show that∫ ∞
1

Exe−βτλe−λxdx = e−λEe−βLE1e
−βτ .

If the first jump in the cycle is greater than 1, the excess beyond level 1 is
exp(λ)-distributed and the cycle starts with an interval of length L. After that
interval it follows by the strong Markov property that the LST of the time until
the next outdating is E1e

−βτ . Finally, the probability that a cycle will start
with a jump above level 1 is e−λ.

By Lemma 2, it is enough to compute Exe−βτ for 0 < x ≤ 1. Define the
stopping time T = inf{t > 0 : V (t) = 0 or V (t) > 1} and

φ∗(x, β) = Exe−βT 1{V (T )=0},

φ∗(x, β) = Exe−βT 1{V (T )≥1}.

Then we have for any 0 < x ≤ 1:

Exe−βτ = φ∗(x, β) + φ∗(x, β)Ee−βLE1e
−βτ .

In particular, for x = 1,

E1e
−βτ =

φ∗(1, β)
1− φ∗(1, β)Ee−βL

,

so that for any 0 < x < 1

Exe−βτ = φ∗(x, β) + φ∗(x, β)
φ∗(1, β)Ee−βL

1− φ∗(1, β)Ee−βL
.

This leads to
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Theorem 3

Γ(β) =
∫ 1

0

[
φ∗(x, β) + φ∗(x, β)

φ∗(1, β)Ee−βL

1− φ∗(1, β)Ee−βL

]
λe−λxdx+e−λEe−βLE1e

−βτ .

(23)

Thus, in order to obtain Γ(β) explicitly in terms of Ee−βL it remains to compute
φ∗(x, β), φ∗(x, β) and the integrals

∫ 1

0
φ∗(x, β)e−λxdx and

∫ 1

0
φ∗(x, β)e−λxdx.

To this end we use the fact that for ϕ(α) = α− µα
λ+α the process

(ϕ(α)− β)
∫ t

0

e−αV (s)−βsds+ e−αV (0) − e−αV (t)−βt, t ≥ 0

is a Kella-Whitt martingale (see [15] or [1], Sect. IX.3). Applying to this
martingale the stopping time T we get the identity

(ϕ(α)− β)Ex
∫ T

0

e−αV (s)−βsds = −e−αx + Exe−αV (T )−βT . (24)

The solutions of ϕ(α)− β = 0 are

θ1, θ2 =
−(λ− µ− β)±

√
(λ− µ− β)2 + 4λβ
2

.

Inserting θ1, θ2 in (24) we obtain the two equations

e−θix = φ∗(x, β) +
λ

λ+ θi
φ∗(x, β), i = 1, 2.

This yields

φ∗(x, β) =
e−θ1x − e−θ2x

λ
λ+θ1

− λ
λ+θ2

,

and

φ∗(x, β) =
(λ+ θ1)e−θ1x − (λ+ θ2)e−θ2x

θ1 − θ2
.

Finally, ∫ 1

0

φ∗(x, β)e−λxdx =
e−(λ+θ2) − e−(λ+θ1)

θ1 − θ2
,

and ∫ 1

0

φ∗(x, β)e−λxdx =
(λ+ θ2)(1− e−(λ+θ1))− (λ+ θ1)(1− e−(λ+θ2))

λ(θ2 − θ1)
.

Now insert all these terms in (23) to get Γ(β).
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7 Possible extensions

Our model calls for various extensions to incorporate the special characteristics
of transplant allocation. We finally present a list of some of the features that
we intend to investigate in the future.

1. Issuing policies. Any blood transfusion is prohibitively conditioned by
an asymmetric ABO-matching between the donor and the recipient, as blood-
type O can be donated universally, blood-type A only to blood-types A and
AB, etc. In addition, immunology recognizes the importance of HLA (Hu-
man Leukocyte Antigens) tissue matching, especially in kidney transplantation.
Human tissue cells contain proteins that vary from person to person and are
considered to be potential transplant antigens. When transplanted in another
individual, they can cause an immunological response resulting in the formation
of antibodies that can lead to the rejection of the transplanted organ. The HLA
system contains these immunologically relevant antigens and arranges them in
sites (“loci”). Every site contains two antigens (as formed by two “allelic” genes,
one contributed by the father and one by the mother). It is traditionally held
that any antigen present in the donor which is foreign to the recipient can trig-
ger an immune response. The higher the number of such antigens, the lower the
chance of a successful transplant. Thus, some finite number of possible match-
levels can be identified. The ideal situation would be the case of no mismatches.
In this paper we have assumed a FIFO regime, but it is a challenging problem to
introduce and analyze matching policies based entirely or partially on the num-
ber of foreign antigens in the organs. However, it is to be noted that priority
point systems (implemented worldwide for allocation and organ sharing), while
seeking to take into account antigen matching, all prioritize patients who wait
the longest. Thus, due to the increasing gap between supply and accelerating
demand, the waiting time criterion (subject to ABO) is still the dominating one,
effectively allocating the organs according to the FIFO rule.

Another feature that implies that the organ issuing policy is not FIFO is
that the condition of the patients may play a role. To incorporate that into our
model is another topic for further research.

2. Variable arrival rate. The arrival rate of new organs may depend
on the current waiting times of patients in order to increase the number of
transplantations. For example, the arrival rate of organs could be changed from
λ to some λ′ > λ whenever the waiting time of all patients present gets larger
than some constant or random b, and back to λ when the waiting times become
again sufficiently small. This could represent situations in which temporary
promotional efforts are made to increase donation, or even situations in which
organs are bought from abroad. The analytical investigation of the latter is
important especially since the ethics involved are under debate. In our model
this means that the arrival rate of organs is dependent on the state of the VOP,
being λ(x) at time t if V (t) = x.

3. Non-constant shelf life. In our basic model it is supposed that any
organ is scrapped after spending a constant period of time unused on the shelf.
It is possible to generalize this assumption to the case of random shelf lifetimes.
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For example one could assume that every organ is rechecked when reaching age
1 and is deleted with probability p but still found suitable for transplantation
with probability 1− p in which case it will stay on the shelf for another a time
units.

4. Performance measures and objectives. The widespread and high-
tone debates on transplantation stem directly from the different and often con-
tradicting relevant performance measures or objective functions. We refer to [28]
for the important notions of QALY, discounted-QALY and the (post-transplant)
k-year graft-survival criterion as well as for equity criteria related to waiting
times and to the likelihoods of transplantation for different sub-populations.
Our present study does not yet lead to these performance measures. A more
refined matching queue model could serve as the basis for a quantitative analysis
of these criteria.
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