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Abstract: In this paper we study single-server tandem queues with general service times and finite
buffers. Jobs are served according to the Blocking-After-Service protocol. To approximately determine
the throughput and mean sojourn time, we decompose the tandem queue into single-buffer subsystems,
the service times of which include starvation and blocking,and then iteratively estimate the unknown
parameters of the service times of each subsystem. The crucial feature of this approach is that in each
subsystem successive service times are no longer assumed tobe independent, but a successful attempt is
made to include dependencies due to blocking by employing the concept of Markovian service processes.
An extensive numerical study shows that this approach produces very accurate estimates for the through-
put and mean sojourn time, outperforming existing methods,especially for longer tandem queues and
for tandem queues with service times with a high variability.
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1 Introduction

This subject of this paper is the approximative analysis of single-server tandem queues with general
service times and finite buffers. The blocking protocol is Blocking-After-Service (BAS): if the down-
stream buffer is full upon service completion the server is blocked and has to wait until space becomes
available before starting to serve the next job (if there is any). Networks of queues (and in particular,
tandem queues) with blocking, have been extensively investigated in the literature; see e.g. [1, 7, 8, 9].
In most cases, however, queueing networks with finite buffers are analytically intractable and therefore
the majority of the literature is devoted to approximate analytical investigations. The approximation de-
veloped in this paper is based on decomposition, following the pioneering work of [2]: the tandem queue
is decomposed into single-buffer subsystems, the parameters of which are determined iteratively. In each
subsystem, the “actual” service time, starvation and blocking are aggregated in a single service time,
and these aggregate service times are typically assumed to be independent. However, these aggregate
service times are clearly not independent, and especially in longer tandem queues with small buffers and
in tandem queues with highly variable service times, these dependencies may have a strong impact on
the performance. In this paper an approach is proposed to include such dependencies in the aggregate
service times.

The model considered in the current paper is a tandem queueL consisting ofN servers andN − 1
buffers in between. The servers (or machines) are labeledMi, i = 0, 1, ..., N . The first serverM0 acts as
a source for the tandem queue, i.e., there is always a new job available for servicing. The service times
of serverMi are independent and identically distributed, and they are also independent of the service
times of the other servers;Si denotes the generic service time of serverMi, with rateµi and squared
coefficient of variationc2

Si
. The buffers are labeledBi and the size of bufferBi is bi (i.e.,bi jobs can be

stored inBi). We assume that each server employs the BAS blocking protocol. An example of a tandem
queue with 4 machines is illustrated in Figure 1.

The approximation is based on decomposition of the tandem queue into subsystems, each one consisting
of a single buffer. To take into account the relation of buffer Bi with the upstream and downstream
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Figure 1: A tandem queue with 4 servers.

part of the tandem queue, the service times of serverMi−1 in front of buffer Bi and serverMi after
buffer Bi are adapted by aggregating the “real” service timesSi−1 and possible starvation ofMi−1

before service, andSi and possible blocking ofMi after service. The aggregate service processes of
Mi−1 andMi are described by employing the concept of Markovian serviceprocesses, the parameters of
which are determined iteratively. It is important to note that Markovian service processes can be used to
describe dependencies betweensuccessiveservice times. Although decomposition techniques for single-
server queueing networks have also been widely used in the literature, see e.g. [2, 4, 8, 14, 3, 13], the
distinguishing feature of the current approximation is theinclusion of dependencies between successive
(aggregate) service times by employing Markovian service processes.

The paper is organized as follows. In Section 2 we describe the decomposition of the tandem queue in
subsystems; the service processes of each subsystem are explained in detail in Sections 3 and 4. Section
4 presents the iterative algorithm. Numerical results can be found in Section 5 and they are compared to
simulation and other approximation methods. Finally, Section 6 contains some concluding remarks and
gives suggestions for further research.

2 Decomposition

The original tandem queueL is decomposed intoN − 1 subsystemsL1, L2, . . . , LN−1. SubsystemLi

consists of bufferBi of sizebi , an arrival server in front of the buffer, and a departure server after the
buffer. Figure 2 displays the decomposition of lineL of Figure 1.

L1

L2

L3

b1

b2

b3

A1

A2

A3

D1

D2

D3

Figure 2: Decomposition of the tandem queue of Figure 1 into 3subsystems.

The arrival server of subsystemLi is, of course, serverMi−1. To account for the connection with the
upstream part ofL, its service time, however, is different fromSi−1. The random variableAi denotes the
service time of the arrival server in subsystemLi. This random variable aggregatesSi−1 and possible
starvation ofMi−1 because of an empty upstream bufferBi−1. Accordingly, the random variableDi

represents the service time of the departure server in subsystemLi; it aggregatesSi and possible blocking
of Mi after service completion, because the downstream bufferBi+1 is full. Note that successive service
timesAi andDi arenot independent: a longAi indicating starvation is more likely to be followed by
again a long one, and the same holds for a longDi indicating blocking. In the next section we will explain
in more detail the modeling of the service processes of the arrival and departure server of subsystemLi.
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3 Service process of the arrival server

In this section we model the service process of arrival server Mi−1 of subsystemLi. Note that an
arrival in bufferBi, i.e., a job being served byMi−1 moves to bufferBi when space becomes available,
corresponds to a departure from the upstream subsystemLi−1. Just after this departure, two situations
may occur: subsystemLi−1 is empty with probabilityqe

i−1, or it is not empty with probability1 − qe
i−1

(where, by convention, we do not count the job atMi−2 as being inLi−1, if there is any). In the former
situation,Mi−1 has to wait for a residual service time of arrival serverMi−2 of subsystemLi−1, denoted
asRAi−1, before the actual serviceSi−1 can start. In the latter situation, the actual serviceSi−1 can start
immediately. Hence, we have

Ai =

{

RAi−1 + Si−1 with probabilityqe
i−1,

Si−1 otherwise.
(1)

The determination ofRAi−1 andqe
i−1 is deferred to Section 5. As an approximation, we will act as

if the service timesAi are independent and identically distributed, thus ignoring dependencies between
successive service timesAi.

4 Service process of the departure server

This section is devoted to a detailed description of the service process of departure serverMi. To describe
Di we take into account the occupation of the last position in buffer Bi+1 (or serverMi+1 if bi+1 = 0).
A job served byMi may encounter three situations in downstream subsystemLi+1 on departure from
Li, or equivalently,on arrival atLi+1; see Figure 3.

Mi Mi+1Bi+1

(i)

(ii)

(iii)

Figure 3: Possible situations in downstream subsystemLi+1 encountered at a departure fromLi.

(i) The arrival is triggered by a service completion of departure serverMi+1 of Li+1, i.e., serverMi

wasblockedbecause the last position inBi+1 was occupied, and waiting forMi+1 to complete
service. Then the next service ofMi (if there is one) andMi+1 start simultaneously and buffer
Bi+1 is full. We denote the time elapsing till the next service completion of departure serverMi+1

by Db
i+1, which is, of course, equal to the time the last position inBi+1 will be occupied before it

becomes available again. Hence, in this situation,Di is equal to the maximum ofSi andDb
i+1, if

Mi can immediately start with the next service. Otherwise, ifMi is starved just after the departure,
Di is equal to the maximum ofSi and the residual time ofDb

i+1 at the service start ofMi.

3



(ii) Just before the arrival there is only one position left in buffer Bi+1. So, right after this arrival,
Bi+1 is full. Now we denote the time elapsing till the next servicecompletion of departure server
Mi+1 by Df

i+1, which is again the time the last position inBi+1 will stay occupied. ThusDi is

equal to the maximum ofSi and the residual timeDf
i+1 at the start ofMi.

(iii) Finally, when neither of the above situations occurs,the arrival does not fill up bufferBi+1, because
there are at least two positions available inBi+1. Hence, the last position inBi+1 stays empty and
Di is equal toSi.

Now we are not going to act as if the probability that the service of Mi starts in either of the three
situations is independent of the past. This would imply thatthe service timesDi are independent. Instead,
we are going to introduce transition probabilities betweenthe above three situations, i.e., the service
process of departure serverMi will be described by a Markov chain.

If service ofMi starts in situation (i), andMi finishes beforeMi+1 (i.e., Si < Db
i+1), then for sure,

the next service ofMi starts again in (i). However, ifMi+1 finishes first, then on service completion of
Mi, both (ii) or (iii) may be encountered. We denote bypb,nf

i+1 the probability that departure serverMi+1

completes at least two services before the next arrival atLi+1 (given thatMi+1 completes at least one
service before the next arrival). So, ifMi+1 finishes first, then the next service ofMi starts in (iii) with
probabilitypb,nf

i+1 , and in (ii) otherwise. Similarly, if service ofMi starts in situation (ii), andMi finishes

beforeMi+1 (i.e.,Si < Df
i+1), then the next service ofMi certainly starts in (i). IfSi > Df

i+1, thenMi

will start in (iii) with probability pf,nf
i+1 and in (ii) otherwise. Finally, in situation (iii), the nextservice of

Mi+1 can never start in (i); it will start in (ii) with probabilitypnf,f
i+1 and in (iii) otherwise, wherepnf,f

i+1 is
defined as the probability that, on an arrival atLi+1, the buffer ofLi+1 fills up.

This completes the description of the service processes of the arrival and departure servers ofLi. In the
next section we will translate subsystemLi to a Quasi-Birth-Death (QBD) process; see [5].

5 Subsystem

In this section we describe the analysis of a subsystemLi; for ease of notation we drop the subscripti
in the sequel of this section. In order to translateL to a Markov process, we will describe the random
variables introduced in the foregoing sections in terms of exponential phases according to the following
recipe; see e.g. [12]. Consider a random variableX with meanE(X) and squared coefficient of variation
c2
X . If 1/k ≤ c2

X ≤ 1/(k − 1) for somek = 2, 3, . . ., then the mean and squared coefficient of variation
of the Erlangk−1,k distribution with density

f(x) = pµk−1 xk−2

(k − 2)!
e−µt + (1 − p)µk xk−1

(k − 1)!
e−µx, x ≥ 0, (2)

matchE(X) andc2
X , provided the parametersp andµ are chosen as

p =
1

1 + c2
X

(kc2
X − (k(1 + c2

X) − k2c2
X)1/2), µ =

k − p

E(X)
.

Hence, in this case we may describeX in terms a random sum ofk − 1 or k independent exponential
phases, each with rateµ. Alternatively, ifc2

X > 1, then the Hyper-Exponential2 distribution with density

f(x) = pµ1e
−µ1x + (1 − p)µ2e

−µ2x, x ≥ 0, (3)

matchesE(X) andc2
X , provided the parametersp, µ1 andµ2 are chosen as

p =
1

2
(1 +

√

c2
X − 1

c2
X + 1

), µ1 =
2p

E(X)
, µ2 =

2(1 − p)

E(X)
.
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This means thatX can be represented in terms of a probabilistic mixture of twoexponential phases with
ratesµ1 andµ2, respectively. Obviously, there exist many other phase-type distributions matching the
first two (or more) moments; see e.g. [6]. In our experience, however, use of other distributions does not
essentially affect the quality of the approximation.

Now we apply this recipe to represent each of the random variablesA, S, Db andDf in terms of ex-
ponential phases. The status of the service process of the arrival server can be easily described by the
service phase ofA. The description of the service process of the departure server is more complicated.
Here we need to keep track of the phase ofS and the phase ofDb or Df , depending on situation (i), (ii)
or (iii). The description of this service process is illustrated in the following example.

Example: Suppose thatS can be represented by two successive exponential phases,Db by three phases
andDf by a single phase, where each phase possibly has a different rate. Then the phase-diagram for
each situation (i), (ii) and (iii) is sketched in Figure 4. Statesa, b andc are the initial states for each
situation. The grey states indicate that eitherS, Db or Df has completed all phases. A transition from
one of the statesd, e, f , g andh corresponds to a service completion of departure serverM (i.e., a
departure from subsystemL); the other transitions correspond to a phase completion, and do not trigger
a departure. The probability that a transition from statee is directed to initial statea is equal to1; the
probability that a transition from stated is directed to initial statea, b andc is equal to0, 1 − pb,nf and
pb,nf , respectively. The transition probabilities from the other statesf , g andh can be found similarly.

S SS

Db Df

a b c

d

e

f

g h

Figure 4: Phase diagram for the service process of the departure server.

In Figure 4 it is assumed thatM can immediately start with the next serviceS after a departure. How-
ever, if M is starved, thenS will not immediately start but has to wait for the next arrival at L (i.e.,
service completion of the arrival server ofL). However,Db or Df will immediately start completing
their phases, and may even have completed all their phases atthe start ofS.

From the example above it will be clear that the service process of the departure server can be described
by a Markovian Service Process: it is a finite-state Markov process, the generatorQd of which can be
decomposed asQd = Qd0 + Qd1, where the transitions ofQd1 correspond to service completions (i.e.,
departures fromL) and the ones ofQd0 correspond to transitions not leading to departures. The dimen-
sionnd of Qd can be large, depending on the number of phases required forS, Db andDf . Similarly, the
service process of the arrival service can also be describedby a (somewhat simpler) Markovian Arrival
Process, with generatorQa = Qa0 + Qa1 of dimensionna.

SubsystemL can be described by a QBD with states(i, j, l), wherei denotes the number of jobs in
subsystemL, excluding the one at the arrival server. Clearly,i = 0, ..., b + 2, wherei = b + 2 indicates
that the arrival server is blocked because bufferB is full. The state variablesj and l denote the state
of the arrival and departure process, respectively. To specify the generatorQ of the QBD we use the
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Kronecker product: IfA is ann1 ×n2 matrix andB is ann3 ×n4 matrix, the Kronecker productA⊗B
is defined as

A ⊗ B =







A(1, 1)B · · · A(1, n2)B
...

...
A(n1, 1)B · · · A(n1, n2)B






.

We order the states lexicographically and partition the state space intolevels, where leveli = 0, 1, . . . , b+
2 is the set of all states withi jobs in the system. ThenQ takes the form:

Q =





















B00 B01

B10 A1 A0

A2
. . . . ..
. . . . .. A0

A2 A1 C10

C01 C00





















.

Below we specify the submatrices inQ. The transition rates from levels1 ≤ i ≤ b are given by

A0 = Qa1 ⊗ Ind
,

A1 = Qa0 ⊗ Ind
+ Ina

⊗ Qd0,

A2 = Ina
⊗ Qd1,

whereIn is the identity matrix of sizen. The transition rates are different for the levelsi = 0 and
i = b + 2. At level b + 2 the arrival server is blocked, so

C10 = Qa1(:, 1) ⊗ Id,

C00 = Qd0,

C01 = Ina
(1, :) ⊗ Qd1,

whereP (x, :) is thex-th row of matrixP andP (:, y) is theyth column ofP . To specify the transition
rates to level0, we introduce that transition rate matrixQs of dimensionns, describing the progress of
the phases ofDb or Df while the departure server is starved. Further, thend × ns matrix Q̄d1 contains
the transition rates from states inQd, that correspond to a departure, to the initial states inQs. Finally,
Īns,nd

is the 0-1 matrix of sizens ×nd that preserves the phase ofQs (i.e., the phase ofDb or Df ) when
the departure server starts serving the next job after having been starved. Then we obtain

B10 = Ina
⊗ Q̄d1,

B00 = Qa0 ⊗ Ins
+ Ina

⊗ Qs,

B01 = Qa1 ⊗ Īns,nd
.

This concludes the specification ofQ.

The steady-state distribution of the QBD can be determined by the matrix-geometric method; see e.g
[5, 10, 13]. Denoting the equilibrium probability vector oflevel i by πi, thenπi has the matrix-geometric
form

πi = x1R
i−1 + xb+1R̂

b+1−i, i = 1, . . . , b + 1, (4)

whereR is the minimal nonnegative solution of the matrix-quadratic equation

A0 + RA1 + R2A2 = 0,

andR̂ is the minimal nonnegative solution of

A2 + R̂A1 + R̂2A0 = 0.
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The matricesR andR̂ can be efficiently determined by using an iterative algorithm developed in [10].
The vectorsπ0, x1, xb+1 andπb+2 follow from the balance equations at the boundary levels0, 1, b + 1
andb + 2,

0 = π0B00 + π1B10,

0 = π0B01 + π1A1 + π2A2,

0 = πbA0 + πb+1A1 + πb+2C01,

0 = πbC10 + πb+1C00.

Substitution of (4) forπ1 andπb+1 in the above equations yields a set of linear equations forπ0, x1,
xb+1 andπb+2, which together with the normalization equation, has a unique solution. This completes
the determination of the equilibrium probabilities vectors πi. Once these probability vectors are known,
we can easily derive performance measures and quantities required to describe the service times of the
arrival and departure server.

Throughput:
The throughputT satisfies

T = π1B10e +
b+1
∑

i=2

πiA2e + πb+2C01e (5)

= π0B01e +
b

∑

i=1

πiA0e + πb+1C10e,

wheree is the all-one vector.

Service process of the arrival server:
To specify the service time of the arrival server we need the probability qe that the system is empty just
after a departure and the first two moments of the residual service timeRA of the arrival server at the
time of such an event. The probabilityqe is equal to the mean number of departures per time unit leaving
behind an empty system divided by the mean total number of departures per time unit. So

qe = π1B10e/T.

The moments ofRA can be easily obtained, once the distribution of the phase ofthe service time of the
arrival server, just after a departure leaving behind an empty system, is known. Note that component
(j, k) of the vectorπ1B10 is the mean number of transitions per time unit from level1 entering state
(j, k) at level0. By adding all components withj = l and dividing byπ1B10e, i.e., the mean total
number of transitions per time unit from level1 to 0, we obtain the probability that the arrival server is
in phasel just after a departure leaving behind an empty system.

Service process of the departure server:
We need to calculate the first two moments ofDb andDf and the transition probabilitiespb,nf , pf,nf and
pnf,f . This requires the distribution of the initial phase upon entering levelb + 1 due to a departure (or
arrival). Clearly, component(j, k) of πb+2C01 is equal to the number of transitions per time unit from
level b + 2 entering state(j, k) at levelb + 1. Hence,πb+2C01/πb+2C01e yields the distribution of the
initial phase upon entering levelb + 1 due to a departure. DefiningDb(1) andDb(2) as the time till
the first, respectively second, departure andAb(1) as the time till the first arrival, from the moment of
entering levelb + 1, it is straightforward to calculate the moments ofDb(1) ≡ Db and the probabilities
Pr[Db(1) < Ab(1)] andPr[Db(2) < Ab(1)]. Transition probabilitypb,nf now follows from

pb,nf = Pr[Db(2) < Ab(1)|Db(1) < Ab(1)] =
Pr[Db(2) < Ab(1)]

Pr[Db(1) < Ab(1)]
.

Calculation of the moments ofDf and transition probabilitypf,nf proceeds along the same lines, where
the distribution of the initial phase upon entering levelb + 1 due to an arrival is given byπbA0/πbA0e.
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Finally, pnf,f satisfies

pnf,f =
πbA0e

π0B01e +
∑b

i=1 πiA0e
.

6 Iterative method

This section is devoted to the description of the iterative algorithm to approximate the performance of
tandem queueL. The algorithm is based on decomposition ofL in N −1 subsystemsL1, L2, . . . , LN−1.

Step 0: Initialization

The first step of the algorithm is to initially assume that there is no blocking. This means that the random
variablesDb

i andDf
i are initially set to0.

Step 1: Evaluation of subsystems

We subsequently evaluate each subsystem, starting fromL1 and up toLN−1. First we determine new
estimates for the first two moments ofAi, before calculating the equilibrium distribution ofLi.

(a) Service process of the arrival server

For the first subsystemL1, the service timeA1 is equal toS0, because serverM0 cannot be starved.
For the other subsystems we proceed as follows in order to determine the first two moments ofAi. By
Little’s law we have for the throughputTi of subsystemLi,

Ti =
1 − pi,bi+2

E(Ai)
, (6)

wherepi,bi+2 denotes the long-run fraction of time the arrival server of subsystemLi is blocked. By

substituting in (6) the estimateT (k)
i−1 for Ti, which is the principle of conservation of flow, andp

(k−1)
i,bi+2 for

pi,bi+2 we get as new estimate forE(Ai),

E(A
(k)
i ) =

1 − p
(k−1)
i,bi+2

T
(k)
i−1

,

where the superscripts indicate in which iteration the quantities have been calculated. The second mo-
ment ofAi cannot be obtained by using Little’s law. Instead we calculate qe

i−1 and the first two moments
of RAi−1 from the equilibrium distribution ofLi−1 as described in Section 5. Then the squared coeffi-
cient of variationc2

Ai
can be determined from (1), after which the second moment ofAi readily follows

from E(A2
i ) = (1 + c2

Ai
)/µ2

a,i.

(b) Analysis of subsystem Li

Based on the new estimates for the first two moments ofAi, we calculate the equilibrium probability
vectorsπ0, π1, . . . , πbi+2 for subsystemLi as described in Section 5.

(c) Determination of the throughput of Li

Once the equilibrium distribution is known, we determine the new throughputT (k)
i according to (5).

Step 2: Service process of the departure server
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From subsystemLN−2 down toL1, we calculate new estimates for the first two moments ofDb
i andDf

i

and the transition probabilitiespb,nf
i , pf,nf

i andpnf,f
i , as explained in Section 5. Note thatDb

N−1 and

Df
N−1 are0, because serverMN−1 can never be blocked.

Step 3: Convergence

After Step 1 and 2 we verify whether the iterative algorithm has converged or not by comparing the
throughputs in the(k − 1)-th andk-th iteration. When

N−1
∑

i=1

|T
(k)
i − T

(k−1)
i | < ε,

we stop and otherwise repeat Step 1 and 2.

7 Numerical Results

In order to investigate the quality of the current method we evaluate a large set of examples and compare
the results with discrete-event simulation. We also compare the results with the approximation of [13]. In
each example we assume that only mean and squared coefficientof variation of the service times at each
server are known, and we match, both in the approximation anddiscrete-event simulation, mixed Erlang
or Hyper-exponential distributions to the first two momentsof the service times, depending on whether
the coefficient of variation is less or greater than1; see (2) and (3) in Section 5. Then we compare the
throughput and the mean sojourn time (i.e., the mean time that elapses from the service start at server
M0 until service completion at serverMN−1) produced by the current approximation and the one in [13]
with the ones produced by discrete-event simulation. Each simulation run is sufficiently long such that
the widths of the 95% confidence intervals of the throughput and mean sojourn time are smaller than 1%.

We use the following set of parameters for the tests. The meanservice times of the servers are all set
to 1. We vary the number of servers in the tandem queue between 4, 8, 16, 24 and 32. The squared
coefficient of variation (SCV) of the service times of each server is the same and is varied between 0.5,
1, 2, 3 and 5. The buffer sizes between the servers are the sameand varied between 0, 1, 3 and 5. We
will also test three kinds ofimbalancein the tandem queue. We test imbalance in the mean service times
by increasing the average service time of the ’even’ serversfrom 1 to 1.2. The effect of imbalance in the
SCV is tested by increasing the SCV of the service times of the’even’ servers by 0.5. Finally, imbalance
in the buffer sizes is tested by increasing the buffers size of the ’even’ buffers by 2. This leads to a total
of 800 test cases.

The results for each category are summarized in Tables 1 up to4. Each table lists the average error in the
throughput and the mean sojourn time compared with simulation results. Each table also gives for three
error-ranges the percentage of the cases that fall in that range, and the average error of the approximation
of van Vuuren and Adan [13], denoted by VA.

From the tables we can conclude that the current method performs well and better than [13]. The overall
average error in the throughput is2.56% and the overall average error in the mean sojourn time is2.54%,
while the corresponding percentages for [13] are4.40% and5.82%, respectively.

In table 1 it is striking that in case of zero buffers the current method produces the most accurate esti-
mates, while the method of [13] produces the least accurate results. A possible explanation is that for
each subsystem the current method keeps track of the status of the downstream server while its depar-
ture server is starved; this is not done in [13]. Both methodsseem to be robust to variations in buffer
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Buffer Error (%) in the throughput Error (%) in mean sojourn time
sizes Avg. 0-2 2-4 > 4 VA Avg. 0-2 2-4 > 4 VA
0, 0, . . . 1.41 88 10 2 7.22 3.94 53 19 28 11.66
1, 1, . . . 3.99 46 36 18 4.6 2.89 59 30 11 7.14
3, 3, . . . 3.32 56 28 16 3.85 2.03 75 25 0 4.61
5, 5, . . . 2.23 75 20 5 3.69 2.25 66 32 2 3.89
0, 2, . . . 1.56 89 11 0 4.70 2.38 75 23 2 6.76
1, 3, . . . 3.36 58 27 15 3.95 2.41 69 31 0 4.94
3, 5, . . . 2.71 66 21 13 3.63 1.88 77 22 1 3.88
5, 7, . . . 1.88 79 21 0 3.53 2.50 66 30 4 3.70

Table 1: Overall results for tandem queues with different buffer sizes.

SCVs Error (%) in the throughput Error (%) in mean sojourn time
Avg. 0-2 2-4 > 4 VA Avg. 0-2 2-4 > 4 VA

0.5, 0.5, . . . 0.77 100 0 0 1.03 2.37 70 21 9 2.67
1, 1, . . . 1.22 100 0 0 1.27 2.18 75 19 6 2.83
2, 2, . . . 1.85 90 10 0 3.09 2.24 76 20 4 4.95
3, 3, . . . 2.90 51 49 0 5.53 2.40 75 23 2 7.20
5, 5, . . . 5.58 15 45 40 9.64 3.29 48 45 7 10.31

0.5, 1, . . . 0.88 100 0 0 1.60 2.53 70 23 7 3.08
1, 1.5, . . . 1.22 100 0 0 1.85 2.26 73 21 6 3.20
2, 2.5, . . . 2.00 85 15 0 3.74 2.23 76 20 4 5.60
3, 3.5, . . . 3.19 41 59 0 6.18 2.40 75 23 2 7.75
5, 5.5, . . . 5.96 14 40 46 10.06 3.43 38 51 11 10.63

Table 2: Overall results for tandem queues with different SCVs of the service times.

sizes along the line. Table 2 convincingly demonstrates that especially in case of service times with high
variability the current approximation performs much better than [13]. Remarkably, Table 4 shows that
the average error in the throughput does not seem to increasefor longer lines, a feature not shared by the
approximation of [13].

8 Conclusions

In this paper we developed an approximate analysis of single-server tandem queues with finite buffers,
based on decomposition into single-buffer subsystems. Thedistinguishing feature of the analysis is
that dependencies between successive aggregate service times (including starvation and blocking) are
taken into account. Numerical results convincingly demonstrated that it pays to include such dependen-
cies, especially in case of longer tandem queues and servicetimes with a high variability. The price to be
paid, of course, is that the resulting subsystems are more complex and computationally more demanding.

We conclude with a remark on the subsystems. There seems to bean asymmetry in the modeling of the
service processes of the arrival and departure server; the service times of the arrival server are simply
assumed to be independent and identically distributed, whereas the service times of the departure server
are modeled by a Markovian service process, carefully taking into account dependencies between suc-
cessive service times. Investigating whether a similar Makovian description of the service process of the
arrival server is also feasible (and rewarding) seems to be an interesting direction for future research.

Mean service Error (%) in the throughput Error (%) in mean sojourn time
times Avg. 0-2 2-4 > 4 VA Avg. 0-2 2-4 > 4 VA

1, 1, . . . 2.65 68 23 9 4.23 2.50 69 26 5 5.71
1, 1.2, . . . 2.46 71 21 8 4.57 2.57 67 27 6 5.93

Table 3: Overall results for tandem queues with different mean service times.
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Servers Error (%) in the throughput Error (%) in mean sojourn time
in line Avg. 0-2 2-4 > 4 VA Avg. 0-2 2-4 > 4 VA

4 2.26 69 29 2 0.57 1.77 83 17 0 0.95
8 2.68 66 27 7 2.87 1.82 81 18 1 2.80

16 2.68 68 21 11 5.30 1.63 88 9 3 5.39
24 2.55 72 17 11 6.41 2.65 66 26 8 8.38
32 2.61 73 16 11 6.84 4.80 19 62 19 11.59

Table 4: Overall results for tandem queues of different length.
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