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Abstract: In this paper we study single-server tandem queues withrgkegrervice times and finite
buffers. Jobs are served according to the Blocking-Afewie protocol. To approximately determine
the throughput and mean sojourn time, we decompose thertagdeue into single-buffer subsystems,
the service times of which include starvation and blockengy then iteratively estimate the unknown
parameters of the service times of each subsystem. Thekfeature of this approach is that in each
subsystem successive service times are no longer assumedtdependent, but a successful attempt is
made to include dependencies due to blocking by employingaticept of Markovian service processes.
An extensive numerical study shows that this approach jpesluery accurate estimates for the through-
put and mean sojourn time, outperforming existing methedpgcially for longer tandem queues and
for tandem queues with service times with a high variability
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1 Introduction

This subject of this paper is the approximative analysisingls-server tandem queues with general
service times and finite buffers. The blocking protocol isdking-After-Service (BAS): if the down-
stream buffer is full upon service completion the serverdgked and has to wait until space becomes
available before starting to serve the next job (if therenig)a Networks of queues (and in particular,
tandem queues) with blocking, have been extensively imgagstd in the literature; see e.g. [1, 7, 8, 9].
In most cases, however, queueing networks with finite bsifee analytically intractable and therefore
the majority of the literature is devoted to approximatelgiwal investigations. The approximation de-
veloped in this paper is based on decomposition, followiregpioneering work of [2]: the tandem queue
is decomposed into single-buffer subsystems, the parasnaterhich are determined iteratively. In each
subsystem, the “actual” service time, starvation and bilaclkre aggregated in a single service time,
and these aggregate service times are typically assumedl italbpendent. However, these aggregate
service times are clearly not independent, and especialbnger tandem queues with small buffers and
in tandem queues with highly variable service times, theggeddencies may have a strong impact on
the performance. In this paper an approach is proposed kadmsuch dependencies in the aggregate
service times.

The model considered in the current paper is a tandem qletmnsisting of N servers andV — 1
buffers in between. The servers (or machines) are labelgd = 0, 1, ..., N. The first serveil], acts as
a source for the tandem queue, i.e., there is always a newsgolalsle for servicing. The service times
of serverM; are independent and identically distributed, and they @ iadependent of the service
times of the other servers; denotes the generic service time of ser¥éy, with rate u; and squared
coefficient of variatiorbgi. The buffers are labeleB; and the size of buffeB; is b; (i.e., b; jobs can be
stored inB;). We assume that each server employs the BAS blocking mbtda example of a tandem
gueue with 4 machines is illustrated in Figure 1.

The approximation is based on decomposition of the tandesuejinto subsystems, each one consisting
of a single buffer. To take into account the relation of buff¢ with the upstream and downstream
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Figure 1: A tandem queue with 4 servers.

part of the tandem queue, the service times of seifer; in front of buffer B; and serverM; after
buffer B; are adapted by aggregating the “real” service timfgs, and possible starvation a¥/;_;
before service, and; and possible blocking ol/; after service. The aggregate service processes of
M;_1 andM; are described by employing the concept of Markovian semioeesses, the parameters of
which are determined iteratively. It is important to notattMarkovian service processes can be used to
describe dependencies betwaseiscessiveervice times. Although decomposition technigues forlsing
server queueing networks have also been widely used intdratlire, see e.g. [2, 4, 8, 14, 3, 13], the
distinguishing feature of the current approximation isiti@usion of dependencies between successive
(aggregate) service times by employing Markovian servicegsses.

The paper is organized as follows. In Section 2 we describelitomposition of the tandem queue in
subsystems; the service processes of each subsystem kieedin detail in Sections 3 and 4. Section
4 presents the iterative algorithm. Numerical results @fobnd in Section 5 and they are compared to
simulation and other approximation methods. Finally, ®ecb contains some concluding remarks and
gives suggestions for further research.

2 Decomposition

The original tandem queuk is decomposed int&V — 1 subsystemd., Lo, ..., Ly_1. Subsystent;
consists of bufferB; of sizeb; , an arrival server in front of the buffer, and a departureeseafter the
buffer. Figure 2 displays the decomposition of lihef Figure 1.

OriS O

Figure 2: Decomposition of the tandem queue of Figure 1 irgat&ystems.

The arrival server of subsystefy is, of course, servebf; 1. To account for the connection with the
upstream part of, its service time, however, is different frofy_;. The random variablel; denotes the
service time of the arrival server in subsystém This random variable aggregat8s ; and possible
starvation ofM;_; because of an empty upstream buffér ;. Accordingly, the random variabl®;
represents the service time of the departure server in stdmy,;; it aggregates; and possible blocking
of M, after service completion, because the downstream bisfer is full. Note that successive service
times A; and D; arenot independenta long A; indicating starvation is more likely to be followed by
again along one, and the same holds for a Ibp@ndicating blocking. In the next section we will explain
in more detail the modeling of the service processes of ttieahand departure server of subsystém
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3 Serviceprocessof thearrival server

In this section we model the service process of arrival seife ; of subsysteml;. Note that an
arrival in buffer B;, i.e., a job being served by/;_; moves to buffet3; when space becomes available,
corresponds to a departure from the upstream subsybtem Just after this departure, two situations
may occur: subsysteth;_; is empty with probabilityg{ ,, or it is not empty with probabilityt — ¢f_;
(where, by convention, we do not count the joblt 5 as being inL;_1, if there is any). In the former
situation,M;_1 has to wait for a residual service time of arrival serér , of subsysteni;_;, denoted
asRRA;_1, before the actual servicg_; can start. In the latter situation, the actual senfge; can start
immediately. Hence, we have

p = { RA;_1+ S;—1  with probability ¢¢ 1)

¢ Si_1 otherwise

The determination oRA;_; andg; , is deferred to Section 5. As an approximation, we will act as
if the service times4; are independent and identically distributed, thus igrpdependencies between
successive service times.

4 Service process of the departure server

This section is devoted to a detailed description of theiseprocess of departure servd. To describe
D; we take into account the occupation of the last position ffebuB;, 1 (or serverM; q if b;11 = 0).
A job served byM; may encounter three situations in downstream subsygtgm on departure from
L;, or equivalentlyon arrival at ;  1; see Figure 3.
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Figure 3: Possible situations in downstream subsydtem encountered at a departure frdim

(i) The arrival is triggered by a service completion of deépee serverM; ., of L;,1, i.e., serverM;
wasblockedbecause the last position 8,1 was occupied, and waiting fa¥/; ., to complete
service. Then the next service 8f; (if there is one) and\/; ., start simultaneously and buffer
B; 11 is full. We denote the time elapsing till the next service ptetion of departure serveif; |
by D!, ,, which is, of course, equal to the time the last positio#3jn; will be occupied before it
becomes available again. Hence, in this situationis equal to the maximum of; andeH, if
M; can immediately start with the next service. Otherwis@/jfis starved just after the departure,
D; is equal to the maximum df; and the residual time deH at the service start a¥/;.
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(i) Just before the arrival there is only one position lefthiuffer B; 1. So, right after this arrival,
B, is full. Now we denote the time elapsing till the next servécenpletion of departure server
M;,1 by leﬂ, which is again the time the last position B}, will stay occupied. Thud); is
equal to the maximum of; and the residual tim@lfle at the start of\/;.

(i) Finally, when neither of the above situations occuin® arrival does not fill up buffeB; , 1, because
there are at least two positions availablé3n ;. Hence, the last position iB;; stays empty and
D; is equal toS;.

Now we are not going to act as if the probability that the senof M; starts in either of the three
situations is independent of the past. This would imply thatservice time®); are independent. Instead,
we are going to introduce transition probabilities betw#es above three situations, i.e., the service
process of departure servief; will be described by a Markov chain.

If service of M; starts in situation (i), and/; finishes beforeM;,; (i.e., S; < D§’+1), then for sure,
the next service olM/; starts again in (i). However, i#/;,, finishes first, then on service completion of
M;, both (i) or (iii) may be encountered. We denoteﬁﬁflf the probability that departure servif;
completes at least two services before the next arrival, at (given thatM;; completes at least one
service before the next arrival). So,Af;, 1 finishes first, then the next service &f; starts in (iii) with

probabilitypi.’ff, and in (ii) otherwise. Similarly, if service d¥/; starts in situation (ii), and/; finishes

beforeM;,1 (i.e.,5; < leﬂ), then the next service dff; certainly starts in (i). IfS; > sz+1’ then;

will start in (iii) with probability p{ﬁf and in (ii) otherwise. Finally, in situation (iii), the nesérvice of
M1, can never start in (i); it will start in (ii) with probabilitp?f’lf and in (iii) otherwise, Wherp?f’lf is

defined as the probability that, on an arrivalat ,, the buffer ofL;; fills up.

This completes the description of the service processdseditrival and departure serversiof In the
next section we will translate subsystdimto a Quasi-Birth-Death (QBD) process; see [5].

5 Subsystem

In this section we describe the analysis of a subsydignfior ease of notation we drop the subscript
in the sequel of this section. In order to translatéo a Markov process, we will describe the random
variables introduced in the foregoing sections in termskpbeential phases according to the following
recipe; see e.g. [12]. Consider a random varidbleith meanE (X ) and squared coefficient of variation
& If1/k <% <1/(k—1) for somek = 2,3, ..., then the mean and squared coefficient of variation
of the Erlang_, ;, distribution with density

i -1 o
k-1

k—2
@) = it gy + (L= v 20, @

matchE(X ) andc%, provided the parametegsandy: are chosen as
1 k—p
= —— (k) — (k(1 4 &) — K2%)'? = =

Hence, in this case we may descriliein terms a random sum d@f — 1 or k£ independent exponential
phases, each with rate Alternatively, if c% > 1, then the Hyper-Exponentiatlistribution with density

f(x) = pure™% + (1 — p)uge 2%, x>0, (3)

matchest(X) andc%, provided the parameters y; and s are chosen as

1 3 —1 2p 2(1—p)
p=501+ C§(+1), mEExy M T EmX




This means thak can be represented in terms of a probabilistic mixture oféwmonential phases with
ratesp; andus, respectively. Obviously, there exist many other phape-tjistributions matching the
first two (or more) moments; see e.g. [6]. In our experienogydver, use of other distributions does not
essentially affect the quality of the approximation.

Now we apply this recipe to represent each of the randomblasal, S, D’ and D/ in terms of ex-
ponential phases. The status of the service process of filial &erver can be easily described by the
service phase aofl. The description of the service process of the departusesées more complicated.
Here we need to keep track of the phase@nd the phase ab® or D, depending on situation (i), (ii)
or (iii). The description of this service process is illaged in the following example.

Example: Suppose tha$ can be represented by two successive exponential phasésy, three phases
and D/ by a single phase, where each phase possibly has a diffetentThen the phase-diagram for
each situation (i), (ii) and (iii) is sketched in Figure 4.at&fsa, b andc are the initial states for each
situation. The grey states indicate that eitSeD® or D has completed all phases. A transition from
one of the stated, ¢, f, ¢ andh corresponds to a service completion of departure selydi.e., a
departure from subsysteit); the other transitions correspond to a phase completiwhda not trigger

a departure. The probability that a transition from state directed to initial state is equal tol; the
probability that a transition from statgis directed to initial state, b andc is equal to0, 1 — p»™f and
p»"f , respectively. The transition probabilities from the atbitesf, g andh can be found similarly.

O-@-

O-O-®
P OO0 P O-D-
HO0 HO® @06

Figure 4: Phase diagram for the service process of the depastrver.

In Figure 4 it is assumed that’ can immediately start with the next serviSeafter a departure. How-
ever, if M is starved, ther will not immediately start but has to wait for the next artied L (i.e.,
service completion of the arrival server bj. However,D? or D/ will immediately start completing
their phases, and may even have completed all their phaties start ofS.

From the example above it will be clear that the service poad the departure server can be described
by a Markovian Service Process: it is a finite-state Markacess, the generat@},; of which can be
decomposed a9, = Q40 + Qq1, Where the transitions d@),; correspond to service completions (i.e.,
departures fronl) and the ones af) ;o correspond to transitions not leading to departures. Timeal
sionng of Q4 can be large, depending on the number of phases requirét ot andD/. Similarly, the
service process of the arrival service can also be descbhped(somewhat simpler) Markovian Arrival
Process, with generat6}, = Q.0 + Q41 Of dimensionn,,.

Subsysteml can be described by a QBD with statgsj, !), wherei denotes the number of jobs in
subsystent,, excluding the one at the arrival server. Cleaily 0, ..., b + 2, wherei = b + 2 indicates

that the arrival server is blocked because buffeis full. The state variableg and! denote the state
of the arrival and departure process, respectively. Toigptee generatorQ of the QBD we use the
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Kronecker product: If4 is ann; x no matrix andB is anng x n4 matrix, the Kronecker produdt ® B
is defined as

A(LD)B - A(l,n)B
A(nl, 1)B s A(nl, TZQ)B

We order the states lexicographically and partition theestpace intéevels where level = 0,1, ..., b+
2 is the set of all states withjobs in the system. The@ takes the form:

Boo  Bo1
By A1 A
Q- A
., AO
Ay Ay Cyo
Cor Coo

Below we specify the submatrices @. The transition rates from levels< i < b are given by

AO = Qal & Ind7

Al = QQO b2y Ind + Ina b2y Qd07

Ay = In, ®Qa,
where I, is the identity matrix of sizex. The transition rates are different for the levels= 0 and
1 = b+ 2. Atlevel b + 2 the arrival server is blocked, so

ClO - Qal(:)l) ®Ida

Coo = Quo,

Coi = In,(1,:) ® Qu1,
whereP(z, ) is thez-th row of matrix P and P(:, y) is theyth column of P. To specify the transition
rates to leveD, we introduce that transition rate matd; of dimensionn, describing the progress of
the phases ab® or D/ while the departure server is starved. Further,ithex ns matrix Q4 contains
the transition rates from states @y, that correspond to a departure, to the initial state@JnFinally,
I, n, is the 0-1 matrix of sizev; x n4 that preserves the phase@®f (i.e., the phase ab® or DY) when
the departure server starts serving the next job after padvéen starved. Then we obtain

By = In, ®Qua,

BOO = QQO & Ins + Ina ® QS7

BOl = Qal b2y Ins,nd-

This concludes the specification @f.

The steady-state distribution of the QBD can be determinethé matrix-geometric method; see e.g
[5, 10, 13]. Denoting the equilibrium probability vectorlefel i by =;, thenr; has the matrix-geometric
form

7 = 1R+ @y RO i=1,...,b+1, (4)
whereR is the minimal nonnegative solution of the matrix-quadrajuation

Ao+ RA, + R?A, = 0,
and R is the minimal nonnegative solution of

Ay + RAy + R2A, = 0.



The matricesk and R can be efficiently determined by using an iterative alganittieveloped in [10].
The vectorsrg, x1, 2,11 andm,, o follow from the balance equations at the boundary levels b + 1
andb + 2,

0 = mBoo + m1Bo,

0 = mBo1 + mA1 + mAs,

0 = mAg+ mpr1 A1 + mpr2C01,
0 = mCio + mpy1C00-

Substitution of (4) forr; and ., in the above equations yields a set of linear equationsr§orr,
xp+1 andmyy o, Which together with the normalization equation, has awmigolution. This completes
the determination of the equilibrium probabilities vestar. Once these probability vectors are known,
we can easily derive performance measures and quantitieged to describe the service times of the
arrival and departure server.

Throughput:
The throughpufl” satisfies

b+1
T = mBe+ ZﬂiAQG-i-?TbJrQCme (5)
=2
b
= moBoie + Z miApe + mp11Croe,
i=1
wheree is the all-one vector.

Service process of thearrival server:

To specify the service time of the arrival server we need théability ¢° that the system is empty just
after a departure and the first two moments of the residusicgetime RA of the arrival server at the
time of such an event. The probabil§ is equal to the mean number of departures per time unit lgavin
behind an empty system divided by the mean total number drtiges per time unit. So

qe = ﬂlBloe/T.

The moments oR A can be easily obtained, once the distribution of the phasieecdervice time of the
arrival server, just after a departure leaving behind antgreypstem, is known. Note that component
(4, k) of the vectorr; By is the mean number of transitions per time unit from leventering state
(j, k) at level0. By adding all components with = [ and dividing by Byge, i.e., the mean total
number of transitions per time unit from leveto 0, we obtain the probability that the arrival server is
in phas€ just after a departure leaving behind an empty system.

Service process of the departure server:

We need to calculate the first two momentg¥fand D/ and the transition probabilitieg/, p/f and
p"f-f . This requires the distribution of the initial phase upoteeing levelb + 1 due to a departure (or
arrival). Clearly, componenj, k) of m,,2Cp; is equal to the number of transitions per time unit from
level b + 2 entering statéj, k) at levelb + 1. Hence,m,2Co1/m4+2C01€ Yields the distribution of the
initial phase upon entering levél+- 1 due to a departure. Defining?(1) and D°(2) as the time ftill
the first, respectively second, departure a&‘hﬂl) as the time till the first arrival, from the moment of
entering leveb + 1, it is straightforward to calculate the momentsl®f(1) = D® and the probabilities
Pr[D%(1) < A%(1)] andPr[D®(2) < A®(1)]. Transition probabilityo?™/ now follows from

_ Pr[DP(2) < A%(1)]

P =Pr[D"(2) < A°(1)|D"(1) < A*(1)] = Pr[Db(1) < Ab(1)]'

Calculation of the moments d/ and transition probabilitp/"/ proceeds along the same lines, where
the distribution of the initial phase upon entering level 1 due to an arrival is given by, Ag/m, Age.
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Finally, p// satisfies

nff _ 7TbAob6 .
moBoie + Zi:l m;Age

p

6 Iterative method

This section is devoted to the description of the iteratig®@thm to approximate the performance of
tandem queué. The algorithm is based on decomposition.dh N — 1 subsystemd.{, Lo, ..., Ly_1.

Step O: Initialization

The first step of the algorithm is to initially assume thatéhis no blocking. This means that the random
variablesD? andDZf are initially set ta0.

Step 1: Evaluation of subsystems

We subsequently evaluate each subsystem, starting froand up toLy_;. First we determine new
estimates for the first two moments 4f, before calculating the equilibrium distribution bf.

(a) Service process of thearrival server

For the first subsysteni, the service timed; is equal t0Sy, because serverl, cannot be starved.
For the other subsystems we proceed as follows in order &rdite the first two moments of;. By
Little’s law we have for the throughpdt; of subsystend,,

1 — pip+2
T, = ——1—= 6
wherep; ;,+2 denotes the long-run fraction of time the arrival serveruifsystemL; is blocked. By
substituting in (6) the estima@(f)1 for T;, which is the principle of conservation of flow, apgﬁ;i; for
Pibi+2 We get as new estimate fii( A; ),

(k=1)
1—p
E(A(k)) _ pzk;bi—f—Z
T

)

where the superscripts indicate in which iteration the ¢jtias have been calculated. The second mo-
ment of A; cannot be obtained by using Little’s law. Instead we catewjg ; and the first two moments

of RA;_, from the equilibrium distribution of;_; as described in Section 5. Then the squared coeffi-
cient of variationcii can be determined from (1), after which the second momendt; oéadily follows
fromE(A?) = (1+c4)/u2,.

(b) Analysis of subsystem L;

Based on the new estimates for the first two momentd,ofwe calculate the equilibrium probability
vectorsmy, 1, . . ., T, 42 fOr subsystent; as described in Section 5.

(c) Determination of the throughput of L;

Once the equilibrium distribution is known, we determine tiew throughpuﬂ(k) according to (5).

Step 2: Service process of the departure server



From subsystend. 55 down to L1, we calculate new estimates for the first two moment@bhndsz
and the transition probabilitieﬁf’”f, pzf’”f andp?f’f, as explained in Section 5. Note thaf, , and
Djfv_1 are(, because serve¥/_; can never be blocked.

Step 3: Convergence

After Step 1 and 2 we verify whether the iterative algorithas ftonverged or not by comparing the
throughputs in thék — 1)-th andk-th iteration. When

N—-1
ST 7Y <,
=1

we stop and otherwise repeat Step 1 and 2.

7 Numerical Results

In order to investigate the quality of the current method vadate a large set of examples and compare
the results with discrete-event simulation. We also comfpa results with the approximation of [13]. In
each example we assume that only mean and squared coefitiemntation of the service times at each
server are known, and we match, both in the approximatiord&awlete-event simulation, mixed Erlang
or Hyper-exponential distributions to the first two momeunitshe service times, depending on whether
the coefficient of variation is less or greater tharsee (2) and (3) in Section 5. Then we compare the
throughput and the mean sojourn time (i.e., the mean timteethpses from the service start at server
M until service completion at servéi ;1) produced by the current approximation and the one in [13]
with the ones produced by discrete-event simulation. Eauohlation run is sufficiently long such that
the widths of the 95% confidence intervals of the throughpdtraean sojourn time are smaller than 1%.

We use the following set of parameters for the tests. The rsearce times of the servers are all set
to 1. We vary the number of servers in the tandem queue betweenl#, 4 and 32. The squared
coefficient of variation (SCV) of the service times of eachveeis the same and is varied between 0.5,
1, 2, 3 and 5. The buffer sizes between the servers are theaainaaried between 0, 1, 3 and 5. We
will also test three kinds dmbalancein the tandem queue. We test imbalance in the mean servies tim
by increasing the average service time of the 'even’ serfvers 1 to 1.2. The effect of imbalance in the
SCV is tested by increasing the SCV of the service times ofven’ servers by 0.5. Finally, imbalance
in the buffer sizes is tested by increasing the buffers dizkeo’even’ buffers by 2. This leads to a total
of 800 test cases.

The results for each category are summarized in Tables 14ipHach table lists the average error in the
throughput and the mean sojourn time compared with sinatsults. Each table also gives for three
error-ranges the percentage of the cases that fall in thgerand the average error of the approximation
of van Vuuren and Adan [13], denoted by VA.

From the tables we can conclude that the current methodrpesfavell and better than [13]. The overall
average error in the throughputi$6% and the overall average error in the mean sojourn timReifo,
while the corresponding percentages for [13] 4% and5.82%, respectively.

In table 1 it is striking that in case of zero buffers the cantmmethod produces the most accurate esti-
mates, while the method of [13] produces the least accuestdts. A possible explanation is that for
each subsystem the current method keeps track of the sfativs downstream server while its depar-
ture server is starved; this is not done in [13]. Both meth&elsm to be robust to variations in buffer
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Buffer Error (%) in the throughput Error (%) in mean sojourn time

sizes Avg. | 0-2 | 24| >4 VA | Avg. | 0-2 | 24| >4 VA

0,0,... | 1.41| 88| 10 21 722| 394 | 53| 19 28 | 11.66
1,1,... | 399 | 46 | 36 18 46| 289 | 59| 30 11 7.14
3,3,... | 332| 56| 28 16 | 3.85| 203 | 75| 25 0 4.61
5,5,. 223 | 75| 20 5| 369| 225| 66 | 32 2 3.89
0,2,... | 156 | 89| 11 0| 470 | 238 | 75| 23 2 6.76
1,3,... | 336 | 58 | 27 15 | 395| 241 | 69| 31 0 4.94
3,5,... | 271 66| 21 13 | 363 | 188 | 77| 22 1 3.88
57...] 188 | 79| 21 0| 353| 250| 66 | 30 4 3.70

Table 1: Overall results for tandem queues with differerftdoisizes.

SCVs Error (%) in the throughput Error (%) in mean sojourn time
Avg. | 0-2 | 24| >4 VA | Ag. [ 02| 24| >4 VA

0.5,0.5,... | 0.77 | 100 0 0 1.03| 237 | 70| 21 9 2.67
1,1,... | 1.22| 100 0 0 127 | 218 | 75| 19 6 2.83
2,2,... | 1.85| 90 | 10 0 3.09| 224 | 76| 20 4 4.95
3,3,... | 290 | 51| 49 0 553 | 240 | 75| 23 2 7.20
5,5,... | 558 | 15| 45 40 9.64 | 329 | 48 | 45 7 | 10.31
0.5,1,... | 0.88 | 100 0 0 160 | 253 | 70| 23 7 3.08
1,1.5,... | 1.22 | 100 0 0 185| 226 | 73| 21 6 3.20
2,2.5,... | 200 | 85| 15 0 374 | 223 | 76 | 20 4 5.60
3,35,... | 319 | 41| 59 0 6.18 | 240 | 75| 23 2 7.75
5,6.,5,... | 596 | 14 | 40 46 | 10.06 | 3.43 | 38| 51 11 | 10.63

Table 2: Overall results for tandem queues with different/SGf the service times.

sizes along the line. Table 2 convincingly demonstratesatecially in case of service times with high
variability the current approximation performs much bettean [13]. Remarkably, Table 4 shows that
the average error in the throughput does not seem to incfealemger lines, a feature not shared by the
approximation of [13].

8 Conclusions

In this paper we developed an approximate analysis of ss@ieer tandem queues with finite buffers,
based on decomposition into single-buffer subsystems. di$tenguishing feature of the analysis is
that dependencies between successive aggregate seméz (fhcluding starvation and blocking) are
taken into account. Numerical results convincingly dentraed that it pays to include such dependen-
cies, especially in case of longer tandem queues and s¢ivies with a high variability. The price to be
paid, of course, is that the resulting subsystems are mongles and computationally more demanding.

We conclude with a remark on the subsystems. There seemsato &®/mmetry in the modeling of the
service processes of the arrival and departure serveretivics times of the arrival server are simply
assumed to be independent and identically distributedradisethe service times of the departure server
are modeled by a Markovian service process, carefully tpkito account dependencies between suc-
cessive service times. Investigating whether a similar &&n description of the service process of the
arrival server is also feasible (and rewarding) seems tabetaresting direction for future research.

Mean service Error (%) in the throughput Error (%) in mean sojourn time
times Avg. | 0-2 | 24| >4 VA [ Ag. | 0-2 | 24| >4 VA
1,1,... | 265| 68 | 23 9| 423 | 250 | 69 | 26 51| 571
1,1.2,... | 246 | 71| 21 8 | 457 | 257 | 67 | 27 6 | 5.93

Table 3: Overall results for tandem queues with differenamservice times.
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Servers Error (%) in the throughput Error (%) in mean sojourn time
in line Avg. | 0-2 | 24| >4 | VA | Avg. [ 02| 24| >4 VA
4] 226 | 69| 29 2| 057 | 177 | 83| 17 0 0.95

8| 268 | 66 | 27 7287 | 182 | 81| 18 1 2.80

16 | 268 | 68 | 21 11| 530 | 1.63 | 88 9 3 5.39

24 | 255 | 72| 17 11 | 6.41| 265 | 66 | 26 8 8.38

32| 261 73| 16 11| 6.84| 480 | 19| 62 19 | 11.59

Table 4: Overall results for tandem queues of different lieng
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