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Abstract

In a companion paper, a quenched large deviation principle (LDP) has been established
for the empirical process of words obtained by cutting an i.i.d. sequence of letters into words
according to a renewal process. We apply this LDP to prove that the radius of convergence
of the moment generating function of the collision local time of two independent copies of a
symmetric and strongly transient random walk on Z

d, d ≥ 1, both starting from the origin,
strictly increases when we condition on one of the random walks, both in discrete time and in
continuous time. We conjecture that the same holds when the random walk is transient but not
strongly transient. The presence of these gaps implies the existence of an intermediate phase
for the long-time behaviour of a class of coupled branching processes, interacting diffusions,
respectively, directed polymers in random environments.

Key words: Random walks, collision local time, annealed vs. quenched, large deviation principle,
interacting stochastic systems, intermediate phase.
MSC 2000: 60G50, 60F10, 60K35, 82D60.
Acknowledgement: This work was supported in part by DFG and NWO through the Dutch-
German Bilateral Research Group “Mathematics of Random Spatial Models from Physics and
Biology”. MB and AG are grateful for hospitality at EURANDOM.

1 Introduction and main results

In this paper, we derive variational representations for the radius of convergence of the moment gen-
erating functions of the collision local time of two independent copies of a symmetric and transient
random walk, both starting at the origin and running in discrete or in continuous time, when the
average is taken w.r.t. one, respectively, two random walks. These variational representations are
subsequently used to establish the existence of an intermediate phase for the long-time behaviour
of a class of interacting stochastic systems.

1.1 Collision local time of random walks

1.1.1 Discrete time

Let S = (Sk)
∞
k=0 and S′ = (S′

k)
∞
k=0 be two independent random walks on Z

d, d ≥ 1, both starting
at the origin, with an irreducible, symmetric and transient transition kernel p(·, ·). Write pn for the
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n-th convolution power of p, and abbreviate pn(x) := pn(0, x), x ∈ Z
d. Suppose that

lim
n→∞

log p2n(0)

log n
=: −α, α ∈ (1,∞). (1.1)

Write P to denote the joint law of S, S ′. Let

V = V (S, S′) :=

∞∑

k=1

1{Sk=S′
k}

(1.2)

be the collision local time of S, S ′, which satisfies P(V < ∞) = 1 by transience, and define

z1 := sup
{
z ≥ 1: E

[
zV | S

]
< ∞ S-a.s.

}
, (1.3)

z2 := sup
{
z ≥ 1: E

[
zV
]

< ∞
}

. (1.4)

The lower indices indicate the number of random walks being averaged over. Note that, by the tail
triviality of S, the range of z’s for which E[ zV | S ] converges is S-a.s. constant. 1

Let E := Z
d, let Ẽ = ∪n∈NEn be the set of finite words drawn from E, and let P inv(ẼN) denote

the shift-invariant probability measures on ẼN, the set of infinite sentences drawn from Ẽ. Define
f : Ẽ → [0,∞) via

f((x1, . . . , xn)) =
pn(x1 + · · · + xn)

p2bn/2c(0)
[2Ḡ(0) − 1], n ∈ N, x1, . . . , xn ∈ E, (1.5)

where Ḡ(0) =
∑∞

n=0 p2n(0) is the Green function at the origin associated with p2(·, ·), which is
the transition matrix of S − S ′, and p2bn/2c(0) > 0 for all n ∈ N by the symmetry of p(·, ·). The
following variational representations hold for z1 and z2.

Theorem 1.1. Assume (1.1). Then z1 = 1 + exp[−r1], z2 = 1 + exp[−r2] with

r1 ≤ sup
Q∈P inv( eEN)

{∫

eE
(π1Q)(dy) log f(y) − Ique(Q)

}
, (1.6)

r2 = sup
Q∈P inv( eEN)

{∫

eE
(π1Q)(dy) log f(y) − Iann(Q)

}
, (1.7)

where π1Q is the projection of Q onto Ẽ, while Ique and Iann are the rate functions in the quenched,
respectively, annealed large deviation principle that is given in Theorem 2.2, respectively, 2.1 below
with (see (2.4), (2.7) and (2.13–2.14))

E = Z
d, ν(x) = p(x), x ∈ E, ρ(n) = p2bn/2c(0)/[2Ḡ(0) − 1], n ∈ N. (1.8)

Let
Perg,fin(ẼN) = {Q ∈ P inv(ẼN) : Q is shift-ergodic, mQ < ∞}, (1.9)

where mQ is the average word length under Q, i.e., mQ =
∫

eE(π1Q)(y) τ(y) with τ(y) the length
of the word y. Theorem 1.1 can be improved under additional assumptions on the random walk,
namely, 2

∑
x∈Zd

‖x‖δ p(x) < ∞ for some δ > 0, (1.10)

lim inf
n→∞

log[ pn(Sn)/p2bn/2c(0) ]
log n ≥ 0 S − a.s., (1.11)

inf
n∈N

E
[
log[ pn(Sn)/p2bn/2c(0) ]

]
> −∞. (1.12)

1Note that P(V = ∞) = 1 for a symmetric and recurrent random walk, in which case trivially z1 = z2 = 1.
2By the symmetry of p(·, ·), we have supx∈Zd pn(x) ≤ p2bn/2c(0) (see (3.14)), which implies that supn∈N

supx∈Zd

log[pn(x)/p2bn/2c(0)] ≤ 0.
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Theorem 1.2. Assume (1.1) and (1.10–1.12). Then equality holds in (1.6), and

r1 = sup
Q∈Perg,fin( eEN)

{∫

eE
(π1Q)(dy) log f(y) − Ique(Q)

}
∈ R, (1.13)

r2 = sup
Q∈Perg,fin( eEN)

{∫

eE
(π1Q)(dy) log f(y) − Iann(Q)

}
∈ R. (1.14)

In Section 6 we will exhibit two classes of random walks for which (1.10–1.12) hold. We believe
that (1.11–1.12) actually hold in great generality.

Because Ique ≥ Iann, we have r1 ≤ r2, and hence z2 ≤ z1. We prove that strict inequality
holds under the stronger assumption that p(·, ·) is strongly transient, i.e.,

∑∞
n=1 npn(0) < ∞. This

excludes α ∈ (1, 2) and part of α = 2 in (1.1).

Theorem 1.3. Assume (1.1). If p(·, ·) is strongly transient, then 1 < z2 < z1 ≤ ∞.

Since P(V = k) = (1 − F̄ )F̄ k, k ∈ N ∪ {0}, with F̄ := P
(
∃ k ∈ N : Sk = S′

k

)
, an easy computation

gives z2 = 1/F̄ . But F̄ = 1 − [1/Ḡ(0)] (see Spitzer [26], Section 1), and hence

z2 = Ḡ(0)/[Ḡ(0) − 1]. (1.15)

Unlike (1.15), no closed form expression is known for z1. By evaluating the function inside the
supremum in (1.13) at a well-chosen Q, we obtain the following upper bound.

Theorem 1.4. Assume (1.1) and (1.10–1.12). Then

z1 ≤ 1 +

(
∑

n∈N

e−h(pn)

)−1

< ∞, (1.16)

where h(pn) = −
∑

x∈Zd pn(x) log pn(x) is the entropy of pn(·).
There are symmetric transient random walks for which (1.1) holds with α = 1. Examples are

any transient random walk on Z in the domain of attraction of the symmetric stable law of index 1
on R, or any transient random walk on Z

2 in the domain of (non-normal) attraction of the normal
law on R

2. In this situation, the two threshold values in (1.3–1.4) agree.

Theorem 1.5. If p(·, ·) satisfies (1.1) with α = 1 and (1.10–1.12), then z1 = z2.

1.1.2 Continuous time

Next, we turn the discrete-time random walks S and S ′ into continuous-time random walks S̃ =
(St)t≥0 and S̃′ = (S̃′

t)t≥0 by allowing them to make steps at rate 1, keeping the same p(·, ·). Then
the collision local time becomes

Ṽ :=

∫ ∞

0
1{eSt=eS′

t}
dt. (1.17)

For the analogous quantities z̃1 and z̃2, we have the following. 3

Theorem 1.6. Assume (1.1). If p(·, ·) is strongly transient, then 1 < z̃2 < z̃1 ≤ ∞.

An easy computation gives
log z̃2 = 2/G(0), (1.18)

where G(0) =
∑∞

n=0 pn(0) is the Green function at the origin associated with p(·, ·). There is again
no simple expression for z̃1.

Remark 1.7. An upper bound similar to (1.16) holds for z̃1 as well. It is straightforward to show
that z1 < ∞ and z̃1 < ∞ as soon as p(·) has finite entropy.

3For a symmetric and recurrent random walk again trivially ez1 = ez2 = 1.
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1.1.3 Discussion

Our proofs of Theorems 1.3–1.6 will based on the variational representations in Theorem 1.1–1.2.
Additional technical difficulties arise in the situation where the maximiser in (1.7) has infinite mean
word length, which happens precisely when p(·, ·) is transient but not strongly transient. Random
walks with zero mean and finite variance are transient for d ≥ 3 and strongly transient for d ≥ 5
(Spitzer [26], Section 1).

Conjecture 1.8. The gaps in Theorems 1.3 and 1.6 are present also when p(·, ·) is transient but
not strongly transient.

In a 2008 preprint by the authors (arXiv:0807.2611v1), the results in [6] and the present paper
were announced, including Conjecture 1.8. Since then, partial progress has been made towards
settling this conjecture. In Birkner and Sun [7], the gap in Theorem 1.3 is proved for simple
random walk on Z

d, d ≥ 4, and it is argued that the proof is in principle extendable to a symmetric
random walk with finite variance. In Birkner and Sun [8], the gap in Theorem 1.6 is proved for
a symmetric random walk on Z

3 with finite variance, while in Berger and Toninelli [1] the gap in
Theorem 1.3 is proved for a symmetric random walk on Z

3 whose tails are bounded by a Gaussian.
The role of the variational representation for r2 is not to identify its value, which is achieved in

(1.15), but rather to allow for a comparison with r1, for which no explicit expression is available.
It is an open problem to prove (1.11–1.12) under mild regularity conditions on S. Note that the
gaps in Theorems 1.3–1.6 do not require (1.10–1.12).

1.2 The gaps settle three conjectures

In this section we use Theorems 1.3 and 1.6 to prove the existence of an intermediate phase for
three classes of interacting particle systems where the interaction is controlled by a symmetric and
transient random walk transition kernel. 4

1.2.1 Coupled branching processes

A. Theorem 1.6 proves a conjecture put forward in Greven [17], [18]. Consider a spatial population
model, defined as the Markov process (ηt)t≥0, with η(t) = {ηx(t) : x ∈ Z

d} where ηx(t) is the
number of individuals at site x at time t, evolving as follows:

(1) Each individual migrates at rate 1 according to a(·, ·).

(2) Each individual gives birth to a new individual at the same site at rate b.

(3) Each individual dies at rate (1 − p)b.

(4) All individuals at the same site die simultaneously at rate pb.

Here, a(·, ·) is an irreducible random walk transition kernel on Z
d ×Z

d, b ∈ (0,∞) is a birth-death
rate, p ∈ [0, 1] is a coupling parameter, while (1)–(4) occur independently at every x ∈ Z

d. The
case p = 0 corresponds to a critical branching random walk, for which the average number of
individuals per site is preserved. The case p > 0 is challenging because the individuals descending
from different ancestors are no longer independent.

A critical branching random walk satisfies the following dichotomy (where for simplicity we
restrict to the case where a(·, ·) is symmetric): if the initial configuration η0 is drawn from a
shift-invariant and shift-ergodic probability distribution with a positive and finite mean, then η t

4In each of these systems the case of a symmetric and recurrent random walk is trivial and no intermediate phase
is present.
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as t → ∞ locally dies out (“extinction”) when a(·, ·) is recurrent, but converges to a non-trivial
equilibrium (“survival”) when a(·, ·) is transient, both irrespective of the value of b. In the latter
case, the equilibrium has the same mean as the initial distribution and has all moments finite.

For the coupled branching process with p > 0 there is a dichotomy too, but it is controlled by
a subtle interplay of a(·, ·), b and p: extinction holds when a(·, ·) is recurrent, but also when a(·, ·)
is transient and p is sufficiently large. Indeed, it is shown in Greven [18] that if a(·, ·) is transient,
then there is a unique p∗ ∈ (0, 1] such that survival holds for p < p∗ and extinction holds for p > p∗.

Recall the critical values z̃1, z̃2 introduced in Section 1.1.2. Then survival holds if E(exp[bpṼ ] |
S̃) < ∞ S̃-a.s., i.e., if p < p1 with

p1 = 1 ∧ (b−1 log z̃1). (1.19)

This can be shown by a size-biasing of the population in the spirit of Kallenberg [23]. On the other
hand, survival with a finite second moment holds if and only if E(exp[bpṼ ]) < ∞, i.e., if and only
if p < p2 with

p2 = 1 ∧ (b−1 log z̃2). (1.20)

Clearly, p∗ ≥ p1 ≥ p2. Theorem 1.6 shows that if a(·, ·) satisfies (1.1) and is strongly transient, then
p1 > p2, implying that there is an intermediate phase of survival with an infinite second moment.

B. Theorem 1.3 corrects an error in Birkner [3], Theorem 6. Here, a system of individuals living
on Z

d is considered subject to migration and branching. Each individual independently migrates
at rate 1 according to a transient random walk transition kernel a(·, ·), and branches at a rate
that depends on the number of individuals present at the same location. It is argued that this
system has an intermediate phase in which the numbers of individuals at different sites tend to an
equilibrium with a finite first moment but an infinite second moment. The proof was, however,
based on a wrong rate function. The rate function claimed in Birkner [3], Theorem 6, must be
replaced by that in [6], Corollary 1.5, after which the intermediate phase persists, at least in the
case where a(·, ·) satisfies (1.1) and is strongly transient. This also affects [3], Theorem 5, which
uses [3], Theorem 6, to compute z1 in Section 1.1 and finds an incorrect formula. Theorem 1.4
shows that this formula actually is an upper bound for z1.

1.2.2 Interacting diffusions

Theorem 1.6 proves a conjecture put forward in Greven and den Hollander [19]. Consider the
system (X(t))t≥0, with X(t) = {Xx(t) : x ∈ Z

d}, of interacting diffusions taking values in [0,∞)
defined by the following collection of coupled stochastic differential equations:

dXx(t) =
∑

y∈Zd

a(x, y)[Xy(t) − Xx(t)] dt +
√

bXx(t)2 dWx(t), x ∈ Z
d, t ≥ 0. (1.21)

Here, a(·, ·) is an irreducible random walk transition kernel on Z
d × Z

d, b ∈ (0,∞) is a diffusion
constant, and (W (t))t≥0 with W (t) = {Wx(t) : x ∈ Z

d} is a collection of independent standard
Brownian motions on R. The initial condition is chosen such that X(0) is a shift-invariant and
shift-ergodic random field with a positive and finite mean (the evolution preserves the mean).

It was shown in [19], Theorems 1.4–1.6, that if a(·, ·) is symmetric and transient, then there
exist 0 < b2 ≤ b∗ such that the system in (1.21) locally dies out when b > b∗, but converges to an
equilibrium when 0 < b < b∗, and this equilibrium has a finite second moment when 0 < b < b2

and an infinite second moment when b2 ≤ b < b∗. It was conjectured in [19], Conjecture 1.8, that
b∗ > b2. As explained in [19], Section 4.2, the gap in Theorem 1.6 settles this conjecture, at least
when a(·, ·) satisfies (1.1) and is strongly transient, with

b∗ = log z̃1, b2 = log z̃2. (1.22)
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1.2.3 Directed polymers in random environments

Theorem 1.3 disproves a conjecture put forward in Monthus and Garel [25]. Let a(·, ·) be a symmet-
ric and irreducible random walk transition kernel on Z

d×Z
d, let S = (Sk)

∞
k=0 be the corresponding

random walk, and let ξ = {ξ(x, n) : x ∈ Z
d, n ∈ N} be i.i.d. R-valued non-degenerate random

variables satisfying
λ(β) := log E

(
exp[βξ(x, n)]

)
∈ R ∀β ∈ R. (1.23)

Put

en(ξ, S) := exp

[
n∑

k=1

{
βξ(Sk, k) − λ(β)

}
]

, (1.24)

and set

Zn(ξ) := E[en(ξ, S)] =
∑

s1,...,sn∈Zd

[
n∏

k=1

p(sk−1, sk)

]
en(ξ, s), s = (sk)

∞
k=0, s0 = 0, (1.25)

i.e., Zn(ξ) is the normalising constant in the probability distribution of the random walk S whose
paths are reweighted by en(ξ, S), which is referred to as the “polymer measure”. The ξ(x, n)’s
describe a random space-time medium with which S is interacting, with β playing the role of the
interaction strength or inverse temperature.

It is well known that Z = (Zn)n∈N is a non-negative martingale with respect to the family of
sigma-algebras Fn := σ(ξ(x, k), x ∈ Z

d, 1 ≤ k ≤ n), n ∈ N. Hence

lim
n→∞

Zn = Z∞ ≥ 0 ξ − a.s., (1.26)

with the event {Z∞ = 0} being ξ-trivial. One speaks of weak disorder if Z∞ > 0 ξ-a.s. and of
strong disorder otherwise. As shown in Comets and Yoshida [12], there is a unique critical value
β∗ ∈ [0,∞] such that weak disorder holds for 0 ≤ β < β∗ and strong disorder holds for β > β∗.
Moreover, in the weak disorder region the paths have a Gaussian scaling limit under the polymer
measure, while this is not the case in the strong disorder region. In the strong disorder region the
paths are confined to a narrow space-time tube.

Recall the critical values z1, z2 defined in Section 1.1. Bolthausen [9] observed that

E
[
Z2

n

]
= E

[
exp

[
{λ(2β) − 2λ(β)}Vn

]]
, with Vn :=

n∑

k=1

1{Sk=S′
k}

, (1.27)

where S and S ′ are two independent random walks with transition kernel p(·, ·), and concluded
that Z is L2-bounded if and only if β < β2 with β2 ∈ (0,∞] the unique solution of

λ(2β2) − 2λ(β2) = log z2. (1.28)

Since P(Z∞ > 0) ≥ E[Z∞]2/E[Z2
∞] and E[Z∞] = Z0 = 1 for an L2-bounded martingale, it follows

that β < β2 implies weak disorder, i.e., β∗ ≥ β2. By a stochastic representation of the size-biased
law of Zn, it was shown in Birkner [4], Proposition 1, that in fact weak disorder holds if β < β1

with β1 ∈ (0,∞] the unique solution of

λ(2β1) − 2λ(β1) = log z1, (1.29)

i.e., β∗ ≥ β1. Since β 7→ λ(2β)− 2λ(β) is strictly increasing for any non-trivial law for the disorder
satisfying (1.23), it follows from (1.28–1.29) and Theorem 1.3 that β1 > β2 when a(·, ·) satisfies
(1.1) and is strongly transient and when ξ is such that β2 < ∞. In that case the weak disorder
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region contains a subregion for which Z is not L2-bounded. This disproves a conjecture of Monthus
and Garel [25], who argued that β2 = β∗.

Camanes and Carmona [10] consider the same problem for simple random walk and specific
choices of disorder. With the help of fractional moment estimates of Evans and Derrida [16],
combined with numerical computation, they show that β∗ > β2 for Gaussian disorder in d ≥ 5, for
Binomial disorder with small mean in d ≥ 4, and for Poisson disorder with small mean in d ≥ 3.

See den Hollander [21], Chapter 12, for an overview.

Outline

Theorems 1.1, 1.3 and 1.6 are proved in Section 3. The proofs need only assumption (1.1). Theo-
rem 1.2 is proved in Section 4, Theorems 1.4 and 1.5 in Section 5. The proofs need both assumptions
(1.1) and (1.10–1.12)

In Section 2 we recall the LDP’s in [6], which are needed for the proof of Theorems 1.1–1.2 and
their counterparts for continuous-time random walk. This section recalls the minimum from [6]
that is needed for the present paper. Only in Section 4 will we need some of the techniques that
were used in [6].

2 Word sequences and annealed and quenched LDP

Notation. We recall the problem setting in [6]. Let E be a finite or countable set of letters. Let
Ẽ = ∪n∈NEn be the set of finite words drawn from E. Both E and Ẽ are Polish spaces under
the discrete topology. Let P(EN) and P(ẼN) denote the set of probability measures on sequences
drawn from E, respectively, Ẽ, equipped with the topology of weak convergence. Write θ and θ̃ for
the left-shift acting on EN, respectively, ẼN. Write P inv(EN),Perg(EN) and P inv(ẼN),Perg(ẼN) for
the set of probability measures that are invariant and ergodic under θ, respectively, θ̃.

For ν ∈ P(E), let X = (Xi)i∈N be i.i.d. with law ν. For ρ ∈ P(N), let τ = (τi)i∈N be i.i.d. with
law ρ having infinite support and satisfying the algebraic tail property

lim
n→∞

ρ(n)>0

log ρ(n)

log n
=: −α, α ∈ (1,∞). (2.1)

(No regularity assumption is imposed on supp(ρ).) Assume that X and τ are independent and
write P to denote their joint law. Cut words out of X according to τ , i.e., put (see Fig. 2)

T0 := 0 and Ti := Ti−1 + τi, i ∈ N, (2.2)

and let
Y (i) :=

(
XTi−1+1, XTi−1+2, . . . , XTi

)
, i ∈ N. (2.3)

Then, under the law P, Y = (Y (i))i∈N is an i.i.d. sequence of words with marginal law qρ,ν on Ẽ
given by

qρ,ν

(
(x1, . . . , xn)

)
:= P

(
Y (1) = (x1, . . . , xn)

)
= ρ(n) ν(x1) · · · ν(xn), n ∈ N, x1, . . . , xn ∈ E.

(2.4)

Annealed LDP. For N ∈ N, let (Y (1), . . . , Y (N))per be the periodic extension of (Y (1), . . . , Y (N))
to an element of ẼN, and define

RN :=
1

N

N−1∑

i=0

δeθi(Y (1),...,Y (N))per ∈ P inv(ẼN), (2.5)
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τ1

τ2
τ3

τ4

τ5

T1 T2 T3 T4 T5

Y (1) Y (2) Y (3) Y (4) Y (5)
X

Figure 1: Cutting words from a letter sequence according to a renewal process.

the empirical process of N -tuples of words. The following large deviation principle (LDP) is stan-
dard (see e.g. Dembo and Zeitouni [14], Corollaries 6.5.15 and 6.5.17). Let

H(Q | q⊗N

ρ,ν ) := lim
N→∞

1

N
h
(
Q|FN

∣∣∣ (q⊗N

ρ,ν )|FN

)
∈ [0,∞] (2.6)

be the specific relative entropy of Q w.r.t. q⊗N
ρ,ν , where FN = σ(Y (1), . . . , Y (N)) is the sigma-algebra

generated by the first N words, Q|FN
is the restriction of Q to FN , and h( · | · ) denotes relative

entropy.

Theorem 2.1. [Annealed LDP] The family of probability distributions P(RN ∈ · ), N ∈ N,
satisfies the LDP on P inv(ẼN) with rate N and with rate function Iann : P inv(ẼN) → [0,∞] given
by

Iann(Q) = H(Q | q⊗N

ρ,ν ). (2.7)

The rate function Iann is lower semi-continuous, has compact level sets, has a unique zero at
Q = q⊗N

ρ,ν , and is affine.

Quenched LDP. To formulate the quenched analogue of Theorem 2.1, we need some further
notation. Let κ : ẼN → EN denote the concatenation map that glues a sequence of words into a
sequence of letters. For Q ∈ P inv(ẼN) such that mQ := EQ[τ1] < ∞ (recall that τ1 is the length of
the first word), define ΨQ ∈ P inv(EN) as

ΨQ(·) :=
1

mQ
EQ

[
τ1−1∑

k=0

δθkκ(Y )(·)
]

. (2.8)

Think of ΨQ as the shift-invariant version of the concatenation of Y under the law Q obtained after
randomising the location of the origin.

For tr ∈ N, let [·]tr : Ẽ → [Ẽ]tr := ∪tr
n=1E

n denote the word length truncation map defined by

y = (x1, . . . , xn) 7→ [y]tr := (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E. (2.9)

Extend this to a map from ẼN to [Ẽ]Ntr via

[
(y(1), y(2), . . . )

]
tr

:=
(
[y(1)]tr, [y

(2)]tr, . . .
)
, (2.10)

and to a map from P inv(ẼN) to P inv([Ẽ]Ntr) via

[Q]tr(A) := Q({z ∈ ẼN : [z]tr ∈ A}), A ⊂ [Ẽ]Ntr measurable. (2.11)

Note that if Q ∈ P inv(ẼN), then [Q]tr is an element of the set

P inv,fin(ẼN) = {Q ∈ P inv(ẼN) : mQ < ∞}. (2.12)
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Theorem 2.2. [Quenched LDP] (a) Assume (2.1). Then, for ν⊗N–a.s. all X, the family of
(regular) conditional probability distributions P(RN ∈ · | X), N ∈ N, satisfies the LDP on P inv(ẼN)
with rate N and with deterministic rate function Ique : P inv(ẼN) → [0,∞] given by

Ique(Q) :=





Ifin(Q), if Q ∈ P inv,fin(ẼN),

lim
tr→∞

Ifin
(
[Q]tr

)
, otherwise,

(2.13)

where
Ifin(Q) := H(Q | q⊗N

ρ,ν ) + (α − 1)mQ H(ΨQ | ν⊗N). (2.14)

The rate function Ique is lower semi-continuous, has compact level sets, has a unique zero at
Q = q⊗N

ρ,ν , and is affine. Moreover, it is equal to the lower semi-continuous extension of I fin from

P inv,fin(ẼN) to P inv(ẼN).
(b) If (2.1) holds with α = 1, then for ν⊗N–a.s. all X, the family P(RN ∈ · | X) satisfies the LDP
with rate function Iann given by (2.7).

Note that the quenched rate function (2.14) equals the annealed rate function (2.7) plus an addi-
tional term that quantifies the deviation of ΨQ from the reference law ν⊗N on the letter sequence.
This term is explicit when mQ < ∞, but requires a truncation approximation when mQ = ∞.

We close this section with the following observation. Let

Rν :=

{
Q ∈ P inv(ẼN) : w−lim

L→∞

1

L

L−1∑

k=0

δθkκ(Y ) = ν⊗N Q − a.s.

}
. (2.15)

be the set of Q’s for which the concatenation of words has the same statistical properties as the
letter sequence X. Then, for Q ∈ P inv,fin(ẼN), we have (see [6], Equation (1.22))

ΨQ = ν⊗N ⇐⇒ Ique(Q) = Iann(Q) ⇐⇒ Q ∈ Rν . (2.16)

3 Proof of Theorems 1.1, 1.3 and 1.6

3.1 Proof of Theorem 1.1

The idea is to put the problem into the framework of (2.1–2.5) and then apply Theorem 2.2. To
that end, we pick

E := Z
d, Ẽ = Z̃d := ∪n∈N(Zd)n, (3.1)

and choose

ν(u) := p(u), u ∈ Z
d, ρ(n) :=

p2bn/2c(0)

2Ḡ(0) − 1
, n ∈ N, (3.2)

where

p(u) = p(0, u), u ∈ Z
d, pn(v − u) = pn(u, v), u, v ∈ Z

d, Ḡ(0) =

∞∑

n=0

p2n(0), (3.3)

the latter being the Green function of S − S ′ at the origin.
Recalling (1.2), and writing

zV =
(
(z − 1) + 1

)V
= 1 +

V∑

N=1

(z − 1)N

(
V

N

)
(3.4)
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with (
V

N

)
=

∑

0<j1<···<jN<∞

1{Sj1
=S′

j1
,...,SjN

=S′
jN

}, (3.5)

we have

E
[
zV | S

]
= 1 +

∞∑

N=1

(z − 1)NF
(1)
N (X), E

[
zV
]

= 1 +

∞∑

N=1

(z − 1)NF
(2)
N , (3.6)

with

F
(1)
N (X) :=

∑

0<j1<···<jN<∞

P
(
Sj1 = S′

j1 , . . . , SjN
= S′

jN
| X
)
, F

(2)
N := E

[
F

(1)
N (X)

]
, (3.7)

where X = (Xk)k∈N denotes the sequence of increments of S. (The upper indices 1 and 2 indicate
the number of random walks being averaged over.)

The notation in (3.1–3.2) allows us to rewrite the first formula in (3.7) as

F
(1)
N (X) =

∑

0<j1<···<jN <∞

N∏

i=1

pji−ji−1




ji−ji−1∑

k=1

Xji−1+k




=
∑

0<j1<···<jN <∞

N∏

i=1

ρ(ji − ji−1) exp

[
N∑

i=1

log

(
pji−ji−1(

∑ji−ji−1

k=1 Xji−1+k)

ρ(ji − ji−1)

)] (3.8)

Let Y (i) = (Xji−1+1, · · · , Xji). Recall the definition of f : Z̃d → [0,∞) in (1.5),

f((x1, . . . , xn)) =
pn(x1 + · · · + xn)

p2bn/2c(0)
[2Ḡ(0) − 1], n ∈ N, x1, . . . , xn ∈ Z

d. (3.9)

Note that, since Z̃d carries the discrete topology, f is trivially continuous.

Let RN ∈ P inv((Z̃d)N) be the empirical process of words defined in (2.5), and π1RN ∈ P(Z̃d)
the projection of RN onto the first coordinate. Then we have

F
(1)
N (X) = E

[
exp

(
N∑

i=1

log f(Y (i))

)∣∣∣∣∣X
]

= E

[
exp

(
N

∫

f
Zd

(π1RN )(dy) log f(y)

)∣∣∣∣X
]

. (3.10)

where P is the joint law of X and τ (recall (2.2–2.3)). The second formula in (3.7) is obtained by
averaging (3.10) over X:

F
(2)
N = E

[
exp

(
N

∫

f
Zd

(π1RN )(dy) log f(y)

)]
. (3.11)

Without conditioning on X, the sequence (Y (i))i∈N is i.i.d. with law (recall (2.4))

q⊗N

ρ,ν with qρ,ν(x1, . . . , xn) =
p2bn/2c(0)

2Ḡ(0) − 1

n∏

k=1

p(xk), n ∈ N, x1, . . . , xn ∈ Z
d. (3.12)

Next we note that f in (3.9) is bounded from above. Indeed, the Fourier representation of
pn(x, y) reads

pn(x) =
1

(2π)d

∫

[−π,π)d

dk e−i(k·x) p̂(k)n (3.13)
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with p̂(k) =
∑

x∈Zd ei(k·x)p(0, x). Because p(·, ·) is symmetric, we have p̂(k) ∈ [−1, 1], and it follows
that

max
x∈Zd

p2n(x) = p2n(0), max
x∈Zd

p2n+1(x) ≤ p2n(0), ∀n ∈ N. (3.14)

Consequently, f((x1, . . . , xn)) ≤ [2Ḡ(0) − 1] is bounded from above. Therefore, by applying the
annealed LDP in Theorem 2.1 to (3.11), in combination with Varadhan’s lemma (see Dembo and
Zeitouni [14], Lemma 4.3.6), we get z2 = 1 + exp[−r2] with

r2 := lim
N→∞

1

N
log F

(2)
N ≤ sup

Q∈P inv((f
Zd)N)

{∫

f
Zd

(π1Q)(dy) log f(y) − Iann(Q)

}

= sup
q∈P(f

Zd)

{∫

f
Zd

q(dy) log f(y) − h(q | qρ,ν)

} (3.15)

(recall (1.3–1.4) and (3.6)). The second equality in (3.15) stems from the fact that, on the set of Q’s
with a given marginal π1Q = q, the function Q 7→ Iann(Q) = H(Q | q⊗N

ρ,ν ) has a unique minimiser

Q = q⊗N (due to convexity of relative entropy). We will see in a moment that the inequality in
(3.15) actually is an equality.

In order to carry out the second supremum in (3.15), we use the following.

Lemma 3.1. Let Z :=
∑

y∈f
Zd

f(y)qρ,ν(y). Then

∫

f
Zd

q(dy) log f(y) − h(q | qρ,ν) = log Z − h(q | q∗) ∀ q ∈ P(Z̃d), (3.16)

where q∗(y) := f(y)qρ,ν(y)/Z, y ∈ Z̃d.

Proof. This follows from a straightforward computation.

Inserting (3.16) into (3.15), we see that the suprema are uniquely attained at q = q∗ and Q = Q∗ =
(q∗)⊗N, and that r2 ≤ log Z. From (3.9) and (3.12), we have

Z =
∑

n∈N

∑

x1,...,xn∈Zd

pn(x1 + · · · + xn)
n∏

k=1

p(xk) =
∑

n∈N

p2n(0) = Ḡ(0) − 1, (3.17)

where we use that
∑

v∈Zd pm(u + v)p(v) = pm+1(u), u ∈ Z
d, m ∈ N, and recall that Ḡ(0) is the

Green function at the origin associated with p2(·, ·). Hence q∗ is given by

q∗(x1, . . . , xn) =
pn(x1 + · · · + xn)

Ḡ(0) − 1

n∏

k=1

p(xk), n ∈ N, x1, . . . , xn ∈ Z
d. (3.18)

Moreover, since z2 = Ḡ(0)/[Ḡ(0) − 1], as noted in (1.15), we see that z2 = 1 + exp[− log Z], i.e.,
r2 = log Z, and so indeed equality holds in (3.15).

The quenched LDP in Theorem 2.2, together with Varadhan’s lemma applied to (3.8), gives
z1 = 1 + exp[−r1] with

r1 := lim
N→∞

1

N
log F

(1)
N (X) ≤ sup

Q∈P inv((f
Zd)N)

{∫

f
Zd

(π1Q)(dy) log f(y) − Ique(Q)

}
X − a.s.,

(3.19)
where Ique(Q) is given by (2.13–2.14). Without further assumptions, we are not able to reverse
the inequality in (3.19). This point will be addressed in Section 4 and will require assumptions
(1.10–1.12).
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3.2 Proof of Theorem 1.3

To compare (3.19) with (3.15), we need the following lemma, the proof of which is deferred.

Lemma 3.2. Assume (1.1). Let Q∗ = (q∗)⊗N with q∗ as in (3.18). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).

With the help of Lemma 3.2 we complete the proof of the existence of the gap as follows. Since
log f is bounded from above, the function

Q 7→
∫

f
Zd

(π1Q)(dy) log f(y) − Ique(Q) (3.20)

is upper semicontinuous. Therefore, by compactness of the level sets of I que(Q), the function in
(3.20) achieves its maximum at some Q∗∗ that satisfies

r1 =

∫

f
Zd

(π1Q
∗∗)(dy) log f(y) − Ique(Q∗∗) ≤

∫

f
Zd

(π1Q
∗∗)(dy) log f(y) − Iann(Q∗∗) ≤ r2. (3.21)

If r1 = r2, then Q∗∗ = Q∗, because the function

Q 7→
∫

f
Zd

(π1Q)(dy) log f(y) − Iann(Q) (3.22)

has Q∗ as its unique maximiser. But Ique(Q∗) > Iann(Q∗) by Lemma 3.2, and so we have a
contradiction in (3.21), thus arriving at r1 < r2.

In the remainder of this section we prove Lemma 3.2.

Proof. Note that

q∗((Zd)n) =
∑

x1,...,xn∈Zd

pn(x1 + · · · + xn)

Ḡ(0) − 1

n∏

k=1

p(xk) =
p2n(0)

Ḡ(0) − 1
, n ∈ N, (3.23)

and hence, by assumption (1.2),

lim
n→∞

log q∗((Zd)n)

log n
= −α (3.24)

and

mQ∗ =

∞∑

n=1

nq∗((Zd)n) =

∞∑

n=1

np2n(0)

Ḡ(0) − 1
. (3.25)

The latter formula shows that mQ∗ < ∞ if and only if p(·, ·) is strongly transient. We will show
that

mQ∗ < ∞ =⇒ Q∗ = (q∗)⊗N 6∈ Rν , (3.26)

the set defined in (2.15). This implies ΨQ∗ 6= ν⊗N (recall (2.16)), and hence H(ΨQ∗ |ν⊗N) > 0,
implying the claim because α ∈ (1,∞) (recall (2.14)).

In order to verify (3.26), we compute the first two marginals of ΨQ∗. Using the symmetry of
p(·, ·), we have

ΨQ∗(a) =
1

mQ∗

∞∑

n=1

n∑

j=1

∑

x1,...,xn∈Zd

xj=a

pn(x1 + · · · + xn)

Ḡ(0) − 1

n∏

k=1

p(xk) = p(a)

∑∞
n=1 np2n−1(a)∑∞

n=1 np2n(0)
. (3.27)
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Hence, ΨQ∗(a) = p(a) for all a ∈ Z
d with p(a) > 0 if and only if

a 7→
∞∑

n=1

np2n−1(a) is constant on the support of p(·). (3.28)

There are many p(·, ·)’s for which (3.28) fails, and for these (3.26) holds. However, for simple
random walk (3.28) does not fail, because a 7→ p2n−1(a) is constant on the 2d neighbours of the
origin, and so we have to look at the two-dimensional marginal.

Observe that q∗(x1, . . . , xn) = q∗(xσ(1), . . . xσ(n)) for any permutation σ of {1, . . . , n}. For

a, b ∈ Z
d, we have

mQ∗ΨQ∗(a, b) = EQ∗

[
τ1∑

k=1

1κ(Y )k=a,κ(Y )k+1=b

]

=

∞∑

n=1

∞∑

n′=1

∑

x1,...,xn+n′

q∗(x1, . . . , xn) q∗(xn+1, . . . , xn+n′)

n∑

k=1

1(a,b)(xk, xk+1)

= q∗(x1 = a) q∗(x1 = b) +

∞∑

n=2

(n − 1)q∗
(
{(a, b)} × (Zd)n−2

)
.

(3.29)

Since

q∗(x1 = a) =
p(a)2

Ḡ(0) − 1
+

∞∑

n=2

∑

x2,...,xn∈Zd

pn(a + x2 + · · · + xn)

Ḡ(0) − 1
p(a)

n∏

k=2

p(xk)

=
p(a)

Ḡ(0) − 1

∞∑

n=1

p2n−1(a)

(3.30)

and

q∗
(
{(a, b)} × (Zd)n−2

)
= 1n=2

p(a)p(b)

Ḡ(0) − 1
p2(a + b)

+ 1n≥3
p(a)p(b)

Ḡ(0) − 1

∑

x3,...,xn∈Zd

pn(a + b + x3 + · · · + xn)

n∏

k=3

p(xk)

=
p(a)p(b)

Ḡ(0) − 1
p2n−2(a + b),

(3.31)

we find (recall that Ḡ(0) − 1 =
∑∞

n=1 p2n(0))

ΨQ∗(a, b) =
p(a)p(b)

[ ∞∑
n=1

p2n(0)
][ ∞∑

n=1
np2n(0)

]
([ ∞∑

n=1

p2n−1(a)

][ ∞∑

n=1

p2n−1(b)

]

+

[ ∞∑

n=1

p2n(0)

][ ∞∑

n=2

(n − 1)p2n−2(a + b)

])
.

(3.32)

Pick b = −a with p(a) > 0. Then, shifting n to n − 1 in the last sum, we get

ΨQ∗(a,−a)

p(a)2
− 1 =

[
∞∑

n=1
p2n−1(a)

]2

[ ∞∑
n=1

p2n(0)
][ ∞∑

n=1
np2n(0)

] > 0. (3.33)

This shows that consecutive letters are not uncorrelated under ΨQ∗, and implies that (3.26) holds
as claimed.
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3.3 Proof of Theorem 1.6

The proof follows the line of argument in Section 3.2. The analogues of (3.4–3.7) are

z
eV =

∞∑

N=0

(log z)N Ṽ N

N !
, (3.34)

with
Ṽ N

N !
=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN 1{eSt1=eS′
t1

,..., eStN
=eS′

tN
}, (3.35)

and

E

[
z

eV | S̃
]

=
∞∑

N=0

(log z)N F
(1)
N (S̃), E

[
z

eV
]

=
∞∑

N=0

(log z)N F
(2)
N , (3.36)

with

F
(1)
N (S̃) :=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN P

(
S̃t1 = S̃′

t1 , . . . , S̃tN = S̃′
tN

| S̃
)

, F
(2)
N := E

[
F

(1)
N (S̃)

]
,

(3.37)
where the conditioning in the first expression in (3.36) is on the full continuous-time path S̃ =
(S̃t)t≥0. Our task is to compute

r̃1 := lim
N→∞

1

N
log F

(1)
N (S̃) S̃ − a.s., r̃2 := lim

N→∞

1

N
log F

(2)
N , (3.38)

and show that r̃1 < r̃2.
In order to do so, we write S̃t = X\

Jt
, where X\ is the discrete-time random walk with transition

kernel p(·, ·) and (Jt)t≥0 is the rate-1 Poisson process on [0,∞), and then average over the jump
times of (Jt)t≥0 while keeping the jumps of X \ fixed. In this way we reduce the problem to the
one for the discrete-time random walk treated in the proof of Theorem 1.6. For the first expression
in (3.37) this partial annealing gives an upper bound, while for the second expression it is simply
part of the averaging over S̃.

Define

F
(1)
N (X\) :=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN P(S̃t1 = S̃′
t1 , . . . , S̃tN = S̃′

tN | X\), F
(2)
N := E

[
F

(1)
N (X\)

]
,

(3.39)
together with the critical values

r\
1 := lim

N→∞

1

N
log F

(1)
N (X\) (X\ − a.s.), r\

2 := lim
N→∞

1

N
log F

(2)
N . (3.40)

Clearly,
r̃1 ≤ r\

1 and r̃2 = r\
2, (3.41)

which can be viewed as a result of “partial annealing”, and so it suffices to show that r \
1 < r\

2.
To this end write out

P(S̃t1 = S̃′
t1 , . . . , S̃tN = S̃′

tN | X\)

=
∑

0≤j1≤···≤jN <∞

(
N∏

i=1

e−(ti−ti−1) (ti − ti−1)
ji−ji−1

(ji − ji−1)!

)

∑

0≤j′1≤···≤j′N<∞

(
N∏

i=1

e−(ti−ti−1) (ti − ti−1)
j′i−j′i−1

(j′i − j′i−1)!

) 


N∏

i=1

pj′i−j′i−1




ji−ji−1∑

k=1

X\
ji−1+k




 .

(3.42)
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Integrating over 0 ≤ t1 ≤ · · · ≤ tN < ∞, we obtain

F
(1)
N (X\) =

∑

0≤j1≤···≤jN<∞

∑

0≤j′1≤···≤j′N<∞

N∏

i=1


2−(ji−ji−1)−(j′i−j′i−1)−1 [(ji − ji−1) + (j′i − j′i−1)]!

(ji − ji−1)!(j′i − j′i−1)!
pj′i−j′i−1




ji−ji−1∑

k=1

X\
ji−1+k




 .

(3.43)

Abbreviating

Θn(u) =
∞∑

m=0

pm(u) 2−n−m−1

(
n + m

m

)
, n ∈ N ∪ {0}, u ∈ Z

d, (3.44)

we may rewrite (3.43) as

F
(1)
N (X\) =

∑

0≤j1≤···≤jN<∞

N∏

i=1

Θji−ji−1




ji−ji−1∑

k=1

X\
ji−1+k


 . (3.45)

This expression is similar in form as the first line of (3.8), except that the order of the ji’s is not
strict. However, defining

F̂
(1)
N (X\) =

∑

0<j1<···<jN<∞

N∏

i=1

Θji−ji−1




ji−ji−1∑

k=1

X\
ji−1+k


 , (3.46)

we have

F
(1)
N (X\) =

N∑

M=0

(
N

M

)
[Θ0(0)]

M F̂
(1)
N−M (X\), (3.47)

with the convention F̂
(1)
0 (X\) ≡ 1. Letting

r\
1 = lim

N→∞

1

N
log F̂

(1)
N (X\), X\ − a.s., (3.48)

and recalling (3.40), we therefore have the relation

r\
1 = log

[
Θ0(0) + ebr\

1

]
, (3.49)

and so it suffices to compute r̂\
1.

Write

F
(1)
N (X\) = E

[
exp

(
N

∫

f
Zd

(π1RN )(dy) log f \(y)

)∣∣∣∣X
\

]
, (3.50)

where f \ : Z̃d → [0,∞) is defined by

f \((x1, . . . , xn)) =
Θn(x1 + · · · + xn)

p2bn/2c(0)
[2Ḡ(0) − 1], n ∈ N, x1, . . . , xn ∈ Z

d. (3.51)

Equations (3.50–3.51) replace (3.8–3.9). We can now repeat the same argument as in (3.15–3.21),
with the sole difference that f in (3.9) is replaced by f \ in (3.51), and this, combined with Lemma 3.3

below, yields the gap r\
1 < r\

2.
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We first check that f \ is bounded from above, which is necessary for the application of Varad-
han’s lemma. To that end, we insert the Fourier representation (3.13) into (3.44) to obtain

Θn(u) =
1

(2π)d

∫

[−π,π)d

dk e−i(k·u) [2 − p̂(k)]−n−1, u ∈ Z
d, (3.52)

from which we see that Θn(u) ≤ Θn(0), u ∈ Z
d. Consequently,

f \
n((x1, · · · , xn)) ≤ Θn(0)

p2bn/2c(0)
[2Ḡ(0) − 1], n ∈ N, x1, . . . , xn ∈ Z

d. (3.53)

Next we note that

lim
n→∞

1

n
log

[
2−(a+b)n−1

(
(a + b)n

an

)] {
= 0, if a = b,
< 0, if a 6= b.

(3.54)

From (1.1), (3.44) and (3.54) it follows that Θn(0)/p2bn/2c(0) ≤ C < ∞ for all n ∈ N, so that f \

indeed is bounded from above.
Note that X\ is the discrete-time random walk with transition kernel p(·, ·). The key ingredient

behind r̂\
1 < r̂\

2 is the analogue of Lemma 3.2, this time with Q∗ = (q∗)⊗N and q∗ given by

q∗(x1, . . . , xn) =
Θn(x1 + · · · + xn)

1
2G(0) − Θ0(0)

n∏

k=1

p(xk), (3.55)

replacing (3.18). The proof is deferred to the end.

Lemma 3.3. Assume (1.1). Let Q∗ = (q∗)⊗N with q∗ as in (3.55). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).

This shows that r̂\
1 < r̂\

2 via the same computation as in (3.20–3.22).
The analogue of (3.17) reads

Z\ =
∑

n∈N

∑

x1,...,xn∈Zd

[Θn(x1 + · · · + xn)]
n∏

k=1

p (xk)

=
∑

n∈N

∞∑

m=0

{
∑

x1,...,xn∈Zd

pm(x1 + · · · + xn)
n∏

k=1

p (xk)

}
2−n−m−1

(
n + m

m

)]

= −Θ0(0) +
∞∑

n,m=0

pn+m(0) 2−n−m−1

(
n + m

m

)

= −Θ0(0) + 1
2

∞∑

k=0

pk(0) = −Θ0(0) + 1
2G(0).

(3.56)

Consequently,

log z̃2 = e−er2 = e−r\
2 =

1

Θ0(0) + ebr\
2

=
1

Θ0(0) + Z\
=

2

G(0)
, (3.57)

where we use (3.36), (3.38), (3.41), (3.49) and (3.56).
We close by proving Lemma 3.3.
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Proof. We must adapt the proof in Section 3.2 to the fact that q∗ has a slightly different form,
namely, pn(x1 + · · · + xn) is replaced by Θn(x1 + · · · + xn), which averages transition kernels. The
computations are straightforward and are left to the reader. The analogues of (3.23) and (3.25) are

q∗((Zd)n) =
1

1
2G(0) − Θ0(0)

∞∑

m=0

pn+m(0) 2−n−m−1

(
n + m

m

)
,

mQ∗ =
∑

n∈N

nq∗((Zd)n) =
1

4

1
1
2G(0) − Θ0(0)

∞∑

k=0

kpk(0),

(3.58)

while the analogues of (3.30–3.31) are

q∗(x1 = a) =
p(a)

1
2G(0) − Θ0(0)

1
2

∞∑

k=0

pk(a)[1 − 2−k−1] =
1

2
p(a)

G(a) − Θ0(a)
1
2 G(0) − Θ0(0)

,

q∗
(
{(a, b)} × (Zd)n−2

)
=

p(a)p(b)
1
2G(0) − Θ0(0)

∞∑

m=0

pn−2+m(a + b) 2−n−m−1

(
n + m

m

)
.

(3.59)

Recalling (3.29), we find
ΨQ∗(a,−a) − p(a)2 > 0, (3.60)

implying that ΨQ∗ 6= ν⊗N (recall (3.2)), and hence H(ΨQ∗ | ν⊗N) > 0, implying the claim.

4 Proof of Theorem 1.2

This section uses techniques from [6]. The proof of Theorem 1.2 is based on two approximation
lemmas, which are stated in Section 4.1. The proof of these lemmas is given in Sections 4.2–4.3.

4.1 Two approximation lemmas

Return to the setting in Section 2. For Q ∈ P inv(ẼN), let H(Q) denote the specific entropy of Q.
Write h(· | ·) and h(·) to denote relative entropy, respectively, entropy. Write

Perg(ẼN) = {Q ∈ P inv(ẼN) : Q is shift-ergodic},
Perg,fin(ẼN) = {Q ∈ P inv(ẼN) : Q is shift-ergodic, mQ < ∞}.

(4.1)

Lemma 4.1. Let g : Ẽ → R be such that

lim inf
k→∞

g
(
X|(0,k]

)

log k
≥ 0 for ν⊗N − a.s. all X with X|(0,k] := (X1, . . . , Xk). (4.2)

Let Q ∈ Perg,fin(ẼN) be such that H(Q) < ∞ and G(Q) :=
∫

eE
(π1Q)(dy) g(y) ∈ R. Then

lim inf
N→∞

1

N
log E

[
exp

(
N

∫

eE
(π1RN )(dy) g(y)

) ∣∣∣ X

]
≥ G(Q) − Ique(Q) for ν⊗N–a.s. all X. (4.3)

Lemma 4.2. Let g : Ẽ → R be such that

sup
k∈N

∫

Ek

|g
(
(x1, . . . , xk)

)
| ν⊗k(dx1, . . . , dxk) < ∞. (4.4)
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Let Q ∈ Perg(ẼN) be such that Ique(Q) < ∞ and G(Q) ∈ R. Then there exists a sequence (Qn)n∈N

in Perg,fin(ẼN) such that

lim inf
n→∞

[G(Qn) − Ique(Qn)] ≥ G(Q) − Ique(Q). (4.5)

Moreover, if E is countable and ν satisfies

∀µ ∈ P(E) : h(µ | ν) < ∞ =⇒ h(µ) < ∞, (4.6)

then (Qn)n∈N can be chosen such that H(Qn) < ∞ for all n ∈ N.

Lemma 4.2 yields the following.

Corollary 4.3. If g satisfies (4.4) and ν satisfies (4.6), then

sup
Q∈P inv( eEN)

{∫

eE
(π1Q)(dy) g(y) − Ique(Q)

}
= sup

Q∈Perg,fin( eEN)
H(Q)<∞

{∫

eE
(π1Q)(dy) g(y) − Ique(Q)

}
. (4.7)

With Corollary 4.3, we can now complete the proof of Theorem 1.2.

Proof. Return to the setting in Section 3.1. In Lemma 4.1, pick g = log f with f as defined in
(3.9). Then (1.11) is the same as (4.2), and so it follows that

lim inf
N→∞

1

N
log E

[
exp

(
N

∫

f
Zd

(π1RN )(dy) log f(y)

) ∣∣∣ X

]

≥ sup
Q∈Perg,fin((

f
Zd)N)

H(Q)<∞

{∫

f
Zd

(π1Q)(dy) log f(y) − Ique(Q)

}
,

(4.8)

where the condition that the first term under the supremum be finite is redundant because g = log f
is bounded from above. Recalling (3.10) and (3.19), we thus see that

r1 ≥ sup
Q∈Perg,fin(

g
(Zd)N)

H(Q)<∞

{∫

f
Zd

(π1Q)(dy) log f(y) − Ique(Q)

}
. (4.9)

The right-hand side of (4.9) is the same as that of (1.13), except for the restriction that H(Q) < ∞.
To remove this restriction, we use Corollary 4.3. First note that, by (1.12), condition (4.4) in
Lemma 4.2 is fulfilled for g = log f . Next note that, by (1.10) and Remark 4.4 below, condition
(4.6) in Lemma 4.2 is fulfilled for ν = p. Therefore Corollary 4.3 implies that r1 equals the right-
hand side of (1.13), and that the suprema in (1.13) and (1.6) agree.

Remark 4.4. Every ν ∈ P(Zd) for which
∑

x∈Zd ‖x‖δ ν(x) < ∞ for some δ > 0 satisfies (4.6).

Proof. Let µ ∈ P(Zd), and let πi, i = 1, . . . , d, be the projection onto the i-th coordinate. Since
h(πiµ | πiν) ≤ h(µ | ν) for i = 1, . . . , d and h(µ) ≤ h(π1µ) + · · · + h(πdµ), it suffices to check the
claim for d = 1.

Let µ ∈ P(Z) be such that h(µ | ν) < ∞. Then
∑

x∈Z

µ(x) log(e + |x|) =
∑

x∈Z

µ(x)≥(e+|x|)δ/2ν(x)

µ(x) log(e + |x|) +
∑

x∈Z

µ(x)<(e+|x|)δ/2ν(x)

µ(x) log(e + |x|)

≤ 2

δ

∑

x∈Z

µ(x)≥ν(x)

µ(x) log

(
µ(x)

ν(x)

)
+
∑

x∈Z

ν(x) (e + |x|)δ/2 log(e + |x|)

≤ 2

δ
h(µ | ν) + C

∑

x∈Z

ν(x) |x|δ < ∞

(4.10)
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for some C ∈ (0,∞). Therefore

h(µ) =
∑

x∈Z

µ(x) log

(
1

µ(x)

)
=

∑

x∈Z

µ(x)≤(e+|x|)−2

µ(x) log

(
1

µ(x)

)
+

∑

x∈Z

µ(x)>(e+|x|)−2

µ(x) log

(
1

µ(x)

)

≤
∑

x∈Z

2 log(e + |x|)
(e + |x|)2 + 2

∑

x∈Z

µ(x) log(e + |x|) < ∞,

(4.11)
where the last inequality uses (4.10).

4.2 Proof of Lemma 4.1

Proof. The idea is to make the first word so long that it ends in front of the first region in X that
looks like the concatenation of N words drawn from Q, and after that cut N “Q-typical” words
from this region. Condition (4.2) ensures that the contribution of the first word to the left-hand
side of (4.3) is negligible on the exponential scale.

To formalize this idea, we borrow some techniques from [6], Section 3.1. Let H(ΨQ) denote
the specific entropy of ΨQ (defined in (2.8)), and Hτ |κ(Q) the “conditional specific entropy of word
lengths under the law Q given the concatenation” (defined in [6], Lemma 1.7). We need the relation

H(Q | q⊗N

ρ,ν ) = mQH(ΨQ | ν⊗N) − Hτ |κ(Q) − EQ [log ρ(τ1)] . (4.12)

First, we note that H(Q) < ∞ and mQ < ∞ imply that H(ΨQ) < ∞ and Hτ |κ(Q) < ∞ (see
[6], Lemma 1.7). Next, we fix ε > 0. Following the arguments in [6], Section 3.1, we see that for
all N large enough we can find a finite set A = A (Q, ε,N) ⊂ ẼN of “Q-typical sentences” such
that, for all z = (y(1), . . . , y(N)) ∈ A , the following hold:

1

N

N∑

i=1

log ρ(|yi|) ∈
[
EQ [log ρ(τ1)] − ε,

[
EQ [log ρ(τ1)] + ε

]
,

1

N
log
∣∣{z′ ∈ A : κ(z′) = κ(z)}

∣∣ ∈
[
Hτ |κ(Q) − ε,Hτ |κ(Q) + ε

]
,

1

N

N∑

i=1

g(y(i)) ∈
[
G(Q) − ε,G(Q) − ε

]
.

(4.13)

Put B := κ(A ) ⊂ Ẽ. We can choose A in such a way that the elements of B have a length in[
N(mQ − ε), N(mQ + ε)

]
. Moreover, we have

P
(
X begins with an element of B

)
≥ exp

[
− Nχ(Q)

]
, (4.14)

where we abbreviate
χ(Q) := mQH(ΨQ | ν⊗N) + ε. (4.15)

Put
τN := min

{
i ∈ N : θiX begins with an element of B

}
. (4.16)

Then, by (4.14) and the Shannon-McMillan-Breiman theorem, we have

lim sup
N→∞

1

N
log τN ≤ χ(Q). (4.17)
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Indeed, for each N , coarse-grain X into blocks of length LN := bN(mQ + ε)c. For i ∈ N ∪ {0}, let
AN,i be the event that θiLN X begins with an element of B. Then, for any δ > 0,

{
τN > exp[N(χ(Q) + δ)]

}
⊂

exp[N(χ(Q)+δ)]/LN⋂

i=1

Ac
N,i, (4.18)

and hence

P

(
τN > exp[N(χ(Q) + δ)]

)
≤
(
1 − exp[−Nχ(Q)]

)exp[N(χ(Q)+δ)]/LN

=

{(
1 − exp[−Nχ(Q)

])exp[Nχ(Q)
]}eδN/LN

≤ exp[−eδN/LN ],

(4.19)

which is summable in N . Thus, lim supN→∞
1
N log τN ≤ χ(Q)+δ by the first Borel-Cantelli lemma.

Now let δ ↓ 0, to get (4.17).
Next, note that

E

[
exp

(
(N + 1)

∫

eE
(π1RN+1)(dy) g(y)

) ∣∣∣ X

]

=
∑

0<j1<···<jN+1

N+1∏

i=1

ρ(ji − ji−1) exp

(
N+1∑

i=1

g
(
X|(ji−1 ,ji]

)
)

≥ ρ(τN ) exp[g(X|(0,τN ])]
∑

∗

N+1∏

i=2

ρ(ji − ji−1) exp

(
N+1∑

i=2

g
(
X|(ji−1,ji]

)
)

,

(4.20)

where
∑

∗ in the last line refers to all (j1, . . . , jN+1) such that j1 := τN < j2 < · · · < jN+1 and
(X|(j1 ,j2], . . . , X|(jN ,jN+1]) ∈ A . Combining (2.1), (4.13), (4.17) and (4.20), we obtain that X-a.s.

lim inf
N→∞

1

N + 1
log E

[
exp

[
(N + 1)

∫

eE
(π1RN+1)(dy) g(y)

] ∣∣∣ X

]

≥ −αχ(Q) + lim inf
N→∞

g(X|(0,τN ])

N
+ Hτ |κ(Q) + EQ [log ρ(τ1)] + G(Q) − 3ε.

(4.21)

By Assumption (4.2), lim infN→∞ N−1g(X|(0,τN ]) ≥ 0, and so (4.21) yields that X-a.s.

lim inf
N→∞

1

N
log E

[
exp

(
N

∫

eE
(π1RN )(dy) g(y)

) ∣∣∣ X

]

≥ G(Q) − αmQH(ΨQ | ν⊗N) + Hτ |κ(Q) + EQ [log ρ(τ1)] − (3 + α)ε

= G(Q) − Ique(Q) − (3 + α)ε,

(4.22)

where we use (2.13–2.14), (4.12) and (4.15). Finally, let ε ↓ 0 to get the claim.

4.3 Proof of Lemma 4.2

Proof. Without loss of generality we may assume that mQ = ∞, for otherwise Qn ≡ Q satisfies
(4.5). The idea is to use a variation on the truncation construction in [6], Section 3. For a given
truncation level tr ∈ N, let Qν

tr be the law obtained from Q by replacing all words of length ≥ tr
by words of length tr whose letters are drawn independently from ν. Formally, if Y = (Y (i))i∈N has
law Q and Ỹ = (Ỹ (i))i∈N has law (ν⊗tr)⊗N and is independent of Y , then Ȳ = (Ȳ (i))i∈N) defined
by

Ȳ (i) :=

{
Y (i), if |Y (i)| < tr,

Ỹ (i), if |Y (i)| ≥ tr,
(4.23)

has law Qν
tr.
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Lemma 4.5. For every Q ∈ P inv,erg(ẼN) such that Ique(Q) < ∞ and every tr ∈ N,

H(Qν
tr | q⊗N

ρ,ν ) ≤ H([Q]tr | q⊗N

ρ,ν ),

H(ΨQν
tr
| ν⊗N) ≤ H(Ψ[Q]tr | ν⊗N).

(4.24)

Proof. The intuition is that under Qν
tr all words of length tr have the same content as under

q⊗N
ρ,ν , while under [Q]tr they do not. The proof is straightforward but lengthy, and is deferred to

Appendix A.

Using (4.24) and noting that mQν
tr

= m[Q]tr < ∞, we obtain (recall (2.13–2.14))

lim sup
tr→∞

Ique(Qν
tr) ≤ Ique(Q). (4.25)

On the other hand, we have
∫

eE
(π1Q

ν
tr)(dy) g(y)

=

∫

eE
(π1Q)(dy)

�

{|y|<tr} g(y) + Q(τ1 ≥ tr)

∫

Etr

ν⊗tr(dx1, . . . , dxtr) g((x1, . . . , xtr))

−→
tr→∞

G(Q) =

∫

eE
(π1Q)(dy) g(y),

(4.26)

where we use dominated convergence for the first summand and condition (4.4) for the second
summand. Combining (4.25–4.26), we see that we can choose tr = tr(n) such that (4.5) holds for
Qn = Qν

tr(n).

It remains to verify that, under condition (4.6), H(Qν
tr) < ∞ for all tr ∈ N. Since H(Qν

tr) ≤
h(π1Q

ν
tr), it suffices to verify that h(π1Q

ν
tr) < ∞ for all tr ∈ N. To prove the latter, note that (we

write LQν
tr
(τ1) to denote the law of τ1 under Qν

tr, etc.)

h(π1Q
ν
tr) = h(LQν

tr
(τ1)) +

tr∑

`=1

Qν
tr(τ1 = `)h

(
LQν

tr

(
Y (1)|τ1 = `

))

≤ log tr +

tr−1∑

`=1

∑̀

k=1

h
(
LQν

tr

(
Y

(1)
k |τ1 = `

))
+ trh(ν).

(4.27)

Since h(π1Q | qρ,ν) ≤ H(Q | q⊗N
ρ,ν ) = Iann(Q) ≤ Ique(Q) < ∞, we have

h(π1Q | qρ,ν) = h(LQ(τ1) | ρ) +
∞∑

`=1

Q(τ1 = `)h
(
LQ

(
Y (1)|τ1 = `

)
| ν⊗`

)
< ∞. (4.28)

Moreover, for all ` < tr and k = 1, . . . , `,

h
(
LQν

tr

(
Y

(1)
k |τ1 = `

)
| ν
)
≤ h

(
LQν

tr

(
Y (1)|τ1 = `

)
| ν⊗`

)
= h

(
LQ

(
Y (1)|τ1 = `

)
| ν⊗`

)
. (4.29)

Combine (4.28–4.29) with (4.6) to conclude that all the summands in (4.27) are finite.

5 Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Let q ∈ P(Z̃d) be given by

q(x1, . . . , xn) := ρ̄(n) ν(x1) · · · ν(xn), n ∈ N, x1, . . . , xn ∈ Z
d, (5.1)
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for some ρ̄ ∈ P(N) with
∑

n∈N
nρ̄(n) < ∞, and let Q = q⊗N. Then Q is ergodic, mQ < ∞, and

(recall (2.4))
Ique(Q) = H

(
q⊗N | (qρ,ν)

⊗N
)

= h(ρ̄ | ρ) (5.2)

because ΨQ = ν⊗N. Now pick tr ∈ N, ρ̄ = [ρ∗]tr with ρ∗ given by

ρ∗(n) :=
1

Z
exp[−h(pn)], n ∈ N, Z :=

∑

n∈N

exp[−h(pn)], (5.3)

ν(·) = p(·), and compute (recall (3.2) and (3.9))
∫

f
Zd

(π1Q)(dy) log f(y) =

∫

f
Zd

q(dy) log f(y)

=
∑

n∈N

∑

x1,...,xn∈Zd

ρ̄(n) p(x1) · · · p(xn) log

(
pn(x1 + · · · + xn)

ρ(n)

)

=
∑

n∈N

ρ̄(n) [− log ρ(n) − h(pn)]

= log Z +
∑

n∈N

ρ̄(n) log

(
ρ∗(n)

ρ(n)

)

= log Z + h
(
ρ̄ | ρ

)
− h
(
ρ̄ | ρ∗

)
.

(5.4)

Then (1.13), (5.2) and (5.4) give the lower bound

r1 ≥ log Z − h
(
ρ̄ | ρ∗

)
. (5.5)

Let tr → ∞, to obtain r1 ≥ log Z, which proves the claim (recall that z1 = 1 + exp[−r1]).
It is easy to see that the choice in (5.3) is optimal in the class of q’s of the form (5.1) with

ν(·) = p(·). By using (3.14), we see that h(p2n) ≥ − log p2n(0) and h(p2n+1) ≥ − log p2n(0). Hence
Z < ∞ by the transience of p(·, ·).

Proof of Theorem 1.5. The claim follows from the representations (1.13–1.14) in Theorem 1.2, and
the fact that Ique = Iann when α = 1.

6 Examples of random walks satisfying assumptions (1.10–1.12)

In this section we exhibit two classes of random walks for which (1.10–1.12) hold.

1. Let S be an irreducible random walk on Z
d with E[‖S1‖3] < ∞. Then standard cumulant

expansion techniques taken from Bhattacharya and Ranga Rao [2] can be used to show that for
every C1 ∈ (0,∞) there is a C2 ∈ (0,∞) such that

pn(x) =
c

nd/2
exp

[
− 1

2n
(x,Σ−1x)

](
1 + O

((log n)C2

n1/2

))
,

n → ∞, ‖x‖ ≤
√

C1n log log n, pn(x) > 0,

(6.1)

where Σ is the covariance matrix of S1 (which is assumed to be non-degenerate), and c is a constant
that depends on p(·). The restriction pn(x) > 0 is necessary: e.g. for simple random walk x and n
in (6.1) must have the same parity. The Hartman-Wintner law of the iterated logarithm (see e.g.
Kallenberg [24], Corollary 14.8), which only requires S1 to have mean zero and finite variance, says
that

lim sup
n→∞

|(Sn)i|√
2Σii n log log n

= 1 a.s., i = 1, . . . , d, (6.2)
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where (Sn)i is the i-th component of S1. Using ‖Sn‖ ≤
√

dmax1≤i≤d |(Sn)i|, we obtain that there
is a C3 ∈ (0,∞) such that

lim sup
n→∞

‖Sn‖√
n log log n

≤ C3 S − a.s. (6.3)

Combining and (6.1) and (6.3), we find that there is a C4 ∈ (0,∞) such that

log[ pn(Sn)/p2bn/2c(0) ] ≥ −C4 ‖Sn‖2/n ∀n ∈ N S − a.s. (6.4)

Combining (6.3) and (6.4), we get (1.11).

To get (1.12), we argue as follows. Let E(S1) = 0 and E(‖S1‖2) < ∞. For n ∈ N, we have

∑

x∈Zd

pn(x) log[pn(x)/p2bn/2c(0)] =: Σ1(n) + Σ2(n), (6.5)

where the sums run over, respectively,

I1(n) := {x ∈ Z
d : pn(x)/p2bn/2c(0) ≥ exp[−n−1‖x‖2 − 1]},

I2(n) := {x ∈ Z
d : pn(x)/p2bn/2c(0) < exp[−n−1‖x‖2 − 1]}.

(6.6)

We have
Σ1(n) ≥

∑

x∈Zd

pn(x) [−n−1‖x‖2 − 1] = −E(‖S1‖2) − 1. (6.7)

Since u 7→ u log u is non-increasing on the interval [0, e), we also have

Σ2(n) ≥
∑

x∈Zd

{p2bn/2c(0) exp[−n−1‖x‖2 − 1]} [−n−1‖x‖2 − 1] ≥ −p2bn/2c(0)C5n
d/2

(6.8)

for some C5 ∈ (0,∞). By the local central limit theorem, we have p2bn/2c(0) ∼ C6n
−d/2 as n → ∞

for some C6 ∈ (0,∞). Hence Σ1(n) + Σ2(n) is bounded away from −∞ uniformly in n ∈ N, which
proves (1.12).

2. Let S be a random walk on Z that is in the normal domain of attraction of a symmetric stable
law with index a ∈ (0, 1), i.e., P (S1 = x) = [1+o(1)]Cx−1−a, |x| → ∞ for some C ∈ (0,∞). Then,
as shown e.g. in Chover [13] and Heyde [20],

|Sn| ≤ n1/a(log n)1/a+o(1) a.s. n → ∞. (6.9)

The standard local limit theorem gives (see e.g. Ibragimov and Linnik [22], Theorem 4.2.1)

pn(x) = [1 + o(1)]n−1/a f(xn−1/a), |x|/n1/a = O(1), (6.10)

with f the density of the stable law. The remaining region was analyzed in Doney [15], Theorem A,
namely,

pn(x) = [1 + o(1)]C n |x|−1−a, |x|/n1/a → ∞. (6.11)

In fact, the proof of (6.11) shows that for K sufficiently large there exist c ∈ (0,∞) and n0 ∈ N

such that

c−1 ≤ pn(x)

n |x|−1−a
≤ c, n ≥ n0, |x| ≥ Kn1/a. (6.12)

Combining (6.9–6.11), we get

log[ pn(Sn)/p2bn/2c(0) ] ≥ [−(1 + a)/a + o(1)] log log n a.s., (6.13)
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which proves (1.11).

To get (1.12), we argue as follows. Pick K and c such that (6.12) holds. Obviously, it suffices to
check (1.12) with the infimimum over N restricted to n ≥ n0. Because f is uniformly positive and
bounded on [−K,K], (6.11) gives

inf
n≥n0

∑

|x|≤Kn1/a

pn(x) log[ pn(x)/p2bn/2c(0) ] ≥ log
(

inf
y∈[−K,K]

f(y)/2
)

> −∞. (6.14)

Applying (6.10) to p2bn/2c(0) and (6.11) to pn(x) we obtain

∑

|x|>Kn1/a

pn(x) log[ pn(x)/p2bn/2c(0) ] ≥ −c1

∑

|x|>Kn1/a

1

n1/a

(
|x|/n1/a

)−1−a
(1 + a) log

(
c2|x|/n1/a

)

(6.15)
for some c1, c2 ∈ (0,∞). The right-hand side is an approximating Riemann sum for the integral

−2c1(1 + a)

∫ ∞

K
dy y−1−a log(c2y) > −∞. (6.16)

A Appendix: Proof of Lemma 4.5

For the first inequality in (4.24), apply Lemma A.1 below with F = Ẽ, G = Etr, ν = qρ,ν ,
q = πn[Q]tr, where πn denotes the projection onto the first n words. This yields

h(πnQν
tr | q⊗n

ρ,ν ) ≤ h(πn[Q]tr | q⊗n
ρ,ν ), n ∈ N, (A.1)

implying H(Qν
tr | q⊗N

ρ,ν ) ≤ H([Q]tr | q⊗N
ρ,ν ).

Lemma A.1. Let F be countable, G ⊂ F , ν ∈ P(F ), n ∈ N, q ∈ P(F n). Define q′ ∈ P(F n) via

q′(x) = q(ξG(x))
∏

i∈IG(x)

νG(xi), x = (x1, . . . , xn) ∈ F n, (A.2)

where IG(x) = {1 ≤ i ≤ n : xi ∈ G}, ξG(x) = {y ∈ F n : yi ∈ G if i ∈ IG(x), yi = xi if i 6∈ IG(x)},
νG(·) = ν(· ∩G)/ν(G), i.e., a q′-draw arises from a q-draw by replacing the coordinates in G by an
independent draw from ν conditioned to be in G. Then

h(q′ | ν⊗n) ≤ h(q | ν⊗n). (A.3)

Proof. For I ⊂ {1, . . . , n}, we write I c := {1, . . . , n} \ I. For y ∈ (F \ G)Ic
, z ∈ F I , we denote

by (y; z) the element of F {1,...,n} defined by (y; z)i = zi if i ∈ I, (y; z)i = yi if i ∈ Ic. Put
qI,y(z) := q(y; z)/q(ξG,I (y)), where ξG,I(y) = {(y; z′) : z′ ∈ GI}, i.e., qI,y ∈ P(GI ) is the law of the
coordinates in I under q given that these take values in G and that the coordinates in I c are equal
to y.

Fix I ⊂ {1, . . . , n}, y ∈ (F \ G)Ic
. We first verify that

∑

z∈GI

q′(y; z) log

(
q′(y; z)

ν⊗n(y; z)

)
≤
∑

z∈GI

q(y; z) log

(
q(y; z)

ν⊗n(y; z)

)
. (A.4)

By definition, the left-hand side of (A.4) equals

q(ξG,I(y))
∑

z∈GI

(∏

i∈I

νG(zi)
)

log

(
q(ξG,I(y))

ν(G)|I|
∏

j∈Ic ν(yj)

)
= q(ξG,I(y)) log

(
q(ξG,I(y))

ν(G)|I|
∏

j∈Ic ν(yj)

)
,

(A.5)
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whereas the right-hand side of (A.4) is equal to

q(ξG,I(y))
∑

z∈GI

qI,y(z) log

(
q(ξG,I(y))qI,y(z)∏

i∈I ν(zi) ×
∏

j∈Ic ν(yj)

)
. (A.6)

Thus, the right-hand side of (A.4) minus the left-hand side of (A.4) equals

q(ξG,I(y))
∑

z∈GI

qI,y(z) log

(
qI,y(z)∏
i∈I νG(zi)

)
= q(ξG,I(y))h

(
qI,y(·) | ν

⊗|I|
G

)
≥ 0. (A.7)

The claim follows from (A.4) by observing that

h(q′ | ν⊗n) =
∑

I⊂{1,...,n}

∑

y∈(F\G)Ic

∑

z∈GI

q′(y; z) log

(
q′(y; z)

ν⊗n(y; z)

)
, (A.8)

and analogously for h(q | ν⊗n).

For the proof of the second inequality in (4.24), i.e.,

H(ΨQν
tr
| ν⊗N) ≤ H(Ψ[Q]tr | ν⊗N), (A.9)

we need some further notation. Let tr ∈ N be a given truncation level, ∗ a new symbol, ∗ 6∈ E,
E∗ := E∪{∗}, Ẽ∗ := ∪∞

n=0(E∗)
n, where Ẽ0

∗ := {ε} with ε the empty word (i.e., the neutral element

of Ẽ∗ viewed as a semigroup under concatenation). For y ∈ Ẽ, let

Ẽ∗ 3 [y]tr,∗ :=

{
y, if |y| < tr,

∗tr, if |y| ≥ tr,
(A.10)

where ∗tr = ∗ · · · ∗ denotes the word in Ẽ∗ consisting of tr times ∗, and

Etr ∪ {ε} 3 [y]tr,∼ :=

{
ε, if |y| < tr,

[y]tr, if |y| ≥ tr.
(A.11)

Let Q ∈ Perg(ẼN) satisfy H([Q]tr) < ∞. For Y = (Y (i))i∈N with law Q and N ∈ N, let

K(N,tr) := κ([Y (1)]tr, . . . , [Y
(N)]tr),

K(N,tr,∗) := κ([Y (1)]tr,∗, . . . , [Y
(1)]tr,∗),

K(N,tr,∼) := κ([Y (1)]tr,∼, . . . , [Y (1)]tr,∼).

(A.12)

Thus, K(N,tr,∗) consists of the letters in the first N words from [Y ]tr such that letters in words of
length exactly equal to tr are masked by ∗’s, while K (N,tr,∼) consists of the letters in words of length
tr among the first N words of [Y ]tr. Note that by construction there is a deterministic function
Ξ: Ẽ∗ × Ẽ → Ẽ such that K(N,tr) = Ξ(K(N,tr,∗),K(N,tr,∼)). We assume that Q(τ1 ≥ tr) > 0,
otherwise K(N,tr,∼) is trivially equal to ε for all N .

Extend [·]tr,∗ and [·]tr,∼ in the obvious way to a map on ẼN and P(ẼN). Then [Q]tr, [Q]tr,∗,

[Q]tr,∼ ∈ Perg(ẼN
∗ ), m[Q]tr = m[Q]tr,∗ ≤ tr, m[Q]tr,∼ = tr, Ψ[Q]tr,Ψ[Q]tr,∗ ,Ψ[Q]tr,∼ ∈ Perg(EN

∗ ). By
ergodicity of Q, we have (see [5], Section 3.1, for analogous arguments)

lim
N→∞

1

N
log Q(K(N,tr)) = −m[Q]trH(Ψ[Q]tr) a.s. (A.13)

lim
N→∞

1

N
log Q(K(N,tr,∗)) = −m[Q]trH(Ψ[Q]tr,∗) a.s. (A.14)
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Since Q(K(N,tr)) = Q(K(N,tr,∗),K(N,tr,∼)) = Q(K(N,tr,∗))Q(K(N,tr,∼)) | K(N,tr,∗)), we see from
(A.13–A.14) that

lim
N→∞

1

N
log Q(K(N,tr,∼))|K(N,tr,∗)) = −m[Q]tr

(
H(Ψ[Q]tr) − H(Ψ[Q]tr,∗)

)
=: −Htr,∼|∗(Q) a.s.

(A.15)
The assumption H([Q]tr) < ∞ guarantees that all the quantities appearing in (A.13–A.15) are
proper. Note that Htr,∼|∗(Q) can be interpreted as the conditional specific relative entropy of the
letters in the “long” words of [Y ]tr given the letters in the “short” words (see Lemma A.2 below).
Note that Htr,∼|∗(Q) in (A.15) is defined as a “per word” quantity. Since the fraction of long words
in [Y ]tr is Q(τ1 ≥ tr) and each of these words contains tr letters, the corresponding conditional
specific relative entropy “per letter” is Htr,∼|∗(Q)/[Q(τ1 ≥ tr) tr], as it appears in (A.22) below.

Proof of (A.9). Without loss of generality we may assume that Q(τ1 ≥ tr) ∈ (0, 1). Indeed, if
Q(τ1 ≥ tr) = 0, then Qν

tr = [Q]tr, while if Q(τ1 ≥ tr) = 1, then ΨQν
tr

= ν⊗N. In both cases (A.9)
obviously holds.

Step 1. We will first assume that |E| < ∞. Then H([Q]tr) < ∞ is automatic. Since ν⊗N is a
product measure, we have, for any Ψ ∈ P inv(EN),

H(Ψ | ν⊗N) = −H(Ψ) −
∑

x∈E

Ψ({x} × EN) log ν(x), (A.16)

where H(Ψ) denotes the specific entropy of Ψ. We have

H(Ψ[Q]tr | ν⊗N) = − H(Ψ[Q]tr) −
1

m[Q]tr

EQ

[ τ1∧tr∑

j=1

log ν(Y
(1)
j )

]
,

H(ΨQν
tr
| ν⊗N) = − H(ΨQν

tr
) − 1

m[Q]tr

(
EQ

[ τ1∧tr∑

j=1

log ν(Y
(1)
j ); τ1 < tr

]
− Q(τ1 ≥ tr) tr h(ν)

)
,

(A.17)
where h(ν) = −∑x∈E ν(x) log ν(x) is the entropy of ν. Hence

H(Ψ[Q]tr | ν⊗N) − H(ΨQν
tr
| ν⊗N)

= −
[
H(Ψ[Q]tr) − H(ΨQν

tr
)
]
− 1

m[Q]tr

EQ

[ tr∑

j=1

log ν(Y
(1)
j ); τ1 ≥ tr

]
− Q(τ1 ≥ tr)tr

m[Q]tr

h(ν).
(A.18)

By (A.15) applied to Q and to Qν
tr (note that [Qν

tr]tr = Qν
tr), we have

H(Ψ[Q]tr) = H(Ψ[Q]tr,∗) +
1

m[Q]tr

Htr,∼|∗(Q), (A.19)

H(ΨQν
tr
) = H(Ψ[Qν

tr]tr,∗
) +

1

m[Qν
tr]tr

Htr,∼|∗(Q
ν
tr). (A.20)

By construction, m[Qν
tr]tr

= m[Q]tr, [Qν
tr]tr,∗ = [Q]tr,∗, Htr,∼|∗(Q

ν
tr) = Q(τ1 ≥ tr) trh(ν). Combining

(A.18–A.20), we obtain

H(Ψ[Q]tr | ν⊗N) − H(ΨQν
tr
| ν⊗N) =

1

m[Q]tr

(
− Htr,∼|∗(Q) − EQ

[ tr∑

j=1

log ν(Y
(1)
j ); τ1 ≥ tr

])
. (A.21)
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Finally, we observe that

1

Q(τ1 ≥ tr)tr

(
− Htr,∼|∗(Q) − EQ

[ tr∑

j=1

log ν(Y
(1)
j ); τ1 ≥ tr

])

=
−Htr,∼|∗(Q)

Q(τ1 ≥ tr)tr
− 1

tr
EQ

[∑tr

j=1
log ν(Y

(1)
j )

∣∣∣τ1 ≥ tr
] (A.22)

is the “specific relative entropy of the law of letters in the concatenation of long words given the
concatenation of short words in [Q]tr with respect to ν⊗N”, which is ≥ 0 (see Lemma A.2 below).

Step 2. We extend (A.9) to a general letter space E by using the coarse-graining construction
from [6], Section 8. Let Ac = {Ac,1, . . . , Ac,nc}, c ∈ N, be a sequence of nested finite partitions of
E, and let 〈·〉c : E → 〈E〉c be the coarse-graining map as defined in [6], Section 8. Since 〈E〉c is
finite and the word length truncation [·]tr and the letter coarse-graining 〈·〉c commute, we have

H(〈ΨQν
tr
〉c | 〈ν⊗N〉c) ≤ H(〈Ψ[Q]tr〉c | 〈ν⊗N〉c) for all c ∈ N (A.23)

by Step 1. This implies (A.9) by taking c → ∞ (see the arguments in [6], Lemma 8.1 and the
second part of (8.13)).

Lemma A.2. Assume |E| < ∞. Let tr ∈ N, Q ∈ P erg(ẼN) with Q(τ1 ≥ tr) > 0. For N ∈ N, put
L̃N := |K(N,tr,∼)|. Then a.s.

0 ≤ lim
N→∞

1

L̃N

h
(
Q(K(N,tr,∼) ∈ · | K(N,tr,∗))

∣∣ ν⊗L̃N
)

=
−Htr,∼|∗(Q)

Q(τ1 ≥ tr) tr
− 1

tr
EQ




tr∑

j=1

log ν(Y
(1)
j )

∣∣∣ τ1 ≥ tr


 .

Proof. Note that, by construction, L̃N = L̃N (K(N,tr,∗)) is a deterministic function of K (N,tr,∗)

(namely, the number of ∗’s in K (N,tr,∗)), and

lim
N→∞

L̃N/N = trQ(τ1 ≥ tr) a.s. (A.24)

by ergodicity of Q. Fix ε > 0. By ergodicity of Q, there exists a random N0 < ∞ such that for
all N ≥ N0 there is a finite (random) set BN,ε = BN,ε(K

(N,tr,∗)) ⊂ EL̃N such that Q(K(N,tr,∼) ∈
BN,ε | K(N,tr,∗)) ≥ 1 − ε,

1

N
log Q(K(N,tr,∼) = b | K(N,tr,∗)) ∈

[
− Htr,∼|∗(Q) − ε,−Htr,∼|∗(Q) + ε

]
(A.25)

and

1

L̃N

L̃N∑

j=1

log ν(bi) ∈ [χ − ε, χ + ε] with χ =
1

tr
EQ

[∑tr
j=1 log ν(Y

(1)
j )

∣∣τ1 ≥ tr
]

(A.26)

for all b = (b1, . . . , bL̃N
) ∈ BN,ε. Here, (A.25) follows from (A.15), while for (A.26) we note that

lim
N→∞

N−1

|K(N,tr)|∑

j=1

log ν(K
(N,tr)
j ) = EQ

[ tr∧τ1∑

j=1

log ν(Y
(1)
j )

]
,

lim
N→∞

N−1

|K(N,tr,∼)|∑

j=1

log ν(K
(N,tr,∼)
j ) = EQ

[ tr∑

j=1

log ν(Y
(1)
j ); τ1 ≥ tr

]
,

(A.27)
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and recall (A.24). It follows that

1

L̃N

h
(
Q(K(N,tr,∼) ∈ · | K(N,tr,∗))

∣∣ ν⊗L̃N
)

=
1

L̃N

∑

b∈EL̃N

Q(K(N,tr,∼) = b | K(N,tr,∗)) log


Q(K(N,tr,∼) = b | K(N,tr,∗))

∏L̃N
j=1 ν(bj)


 =: Σ1 + Σ2,

(A.28)

where Σ1 runs over b ∈ BN,ε and Σ2 over b ∈ EL̃N \ BN,ε. We have

Σ1 ∈
[
χ′ − ε′, χ′ + ε′] with χ′ = −

Htr,∼|∗(Q)

trQ(τ1 ≥ tr)
− 1

tr
EQ

[∑tr
j=1 log ν(Y

(1)
j )

∣∣τ1 ≥ tr
]

(A.29)

for N ≥ N0 by (A.24–A.26), where ε′ = ε′(Q, ε) tends to zero as ε ↓ 0. Multiplying and dividing by
Q(K(N,tr,∼) 6∈ BN,ε | K(N,tr,∗)), we see that

|Σ2| ≤ Q(K(N,tr,∼) 6∈ BN,ε | K(N,tr,∗))max
b∈E

log

(
1

ν(b)

)

− Q(K(N,tr,∼) 6∈ BN,ε | K(N,tr,∗)) log Q(K(N,tr,∼) 6∈ BN,ε | K(N,tr,∗))

+ Q(K(N,tr,∼) 6∈ BN,ε | K(N,tr,∗)) log |E|,

(A.30)

which tends to zero as ε ↓ 0 because Q(K (N,tr,∼) 6∈ BN,ε | K(N,tr,∗)) ≤ ε.
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