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Abstract

In this paper we look at the pinning of a directed polymer by a one-dimensional linear
interface carrying random charges. There are two phases, localized and delocalized, depend-
ing on the inverse temperature and on the disorder bias. Using quenched and annealed large
deviation principles for the empirical process of words drawn from a random letter sequence
according to a random renewal process (Birkner, Greven and den Hollander [6]), we derive
variational formulas for the quenched, respectively, annealed critical curve separating the two
phases. These variational formulas are used to obtain a necessary and sufficient criterion,
stated in terms of relative entropies, for the two critical curves to be different at a given
inverse temperature, a property referred to as relevance of the disorder. This criterion in
turn is used to show that the regimes of relevant and irrelevant disorder are separated by a
unique inverse critical temperature. Subsequently, upper and lower bounds are derived for
the inverse critical temperature, from which sufficient conditions under which it is strictly
positive, respectively, finite are obtained. The former condition is believed to be necessary
as well, a problem that we will address in a forthcoming paper.

Random pinning has been studied extensively in the literature. The present paper opens
up a window with a variational view. Our variational formulas for the quenched and the
annealed critical curve are new and provide valuable insight into the nature of the phase
transition. Our results on the inverse critical temperature drawn from these variational
formulas are not new, but they offer an alternative approach that is flexible enough to be
extended to other models of random polymers with disorder.
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1 Introduction and main results

1.1 Introduction

I. Model. Let S = (S,)nen, be a Markov chain on a countable state space S in which a given
point is marked 0 (Ny = NU {0}). Write P to denote the law of S given Sy = 0 and E the
corresponding expectation. Let K denote the distribution of the first return time of S to 0, i.e.,

K(n):=P(S,=0,5,#0Y0<m<n), n € N. (1.1)
We will assume that ) K(n) =1 (i.e,, 0 is a recurrent state) and

lim log K (n)

e —(14a) for some a € [0,00). (1.2)

Let w = (wk)gen, be i.i.d. R-valued random variables with marginal distribution po. Write
P = M?NO to denote the law of w, and E to denote the corresponding expectation. We will
assume that

M(A) :=E(eM°) <00 VAER, (1.3)
and that po has mean 0 and variance 1.

Let 8 € [0,00) and h € R, and for fixed w define the law P2 on {0} x S, the set of
n-steps paths in S starting from 0, by putting

n—1

1
((Sk)ir=0) = S P Z(/Bwk —h) 1is,—o0y | Lys.=o}s (1.4)
n k=0

dpshe
dp,,

where P, is the projection of P onto {0} x §™. Here, § plays the role of the inverse temperature,
h the role of the disorder bias, while ZE h is the normalizing partition sum. Note that £k =0
contributes to the sum while £ = n does not. Also note that the path is tied to 0 at both ends.
This is done for later convenience.

Figure 1: A directed polymer sampling random charges at an interface.

Remark 1.1. Note that (1.2) implies p := ged[supp(K)] = 1. If p > 2, then the model can be
trivially restricted to pN, so there is no loss of generality. Moreover, if ) . K(n) < 1, then
the model can be reduced to the recurrent case by a shift of h. Similarly, the restriction to ug
with mean 0 and variance 1 can be removed by a scaling of 5 and a shift of h.

Remark 1.2. The key example of the above setting is the simple random walk on Z, for which
p=2and a =1 (Spitzer [20], Section 1). In that case the process (n,S,)nen, can be thought
of as describing a directed polymer in Ny x Z that is pinned to the interface Ny x {0} by random
charges fw — h (see Fig. 1). When the polymer hits the interface at time k, it picks up a
reward exp|[fwy — h], which can be either > 1 or < 1 depending on the value of wg. For h <0
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the polymer tends to intersect the interface with a positive frequency (“localization”), whereas
for h > 0 large enough it tends to wander away from the interface (“delocalization”). Simple
random walk on Z2 corresponds to p = 2 and a = 0, while simple random walk on Z%, d > 3,
conditioned on returning to 0 corresponds to p =2 and a = g — 1 (Spitzer [20], Section 1).

II. Free energy and phase transition. The quenched free energy is defined as
1
fae(B, h) := lim —log Z2Mw. (1.5)
n—oo N

Standard subadditivity arguments show that the limit exists w-a.s. and in P-mean, and is non-
random (see e.g. Giacomin [11], Chapter 5, and den Hollander [18], Chapter 11). Moreover,
faue(B, h) > 0 because Zpme > e#0=hK(n), n € N, and lim,_,o 2 log K (n) = 0 by (1.2). The
lower bound f¢(3, h) = 0 is attained when S visits the state 0 only rarely. This motivates the
definition of two quenched phases:

L:={(B,h): [™(8,h) >0},
D= {(B,h): f°(8,h) =0},

referred to as the localized phase, respectively, the delocalized phase.

(1.6)

Since h — f9"¢(5, h) is non-increasing for every f € [0, 00), the two phases are separated by
a quenched critical curve

hd'e(B) :=inf {h: fI°(3,h) =0}, B € [0,00). (1.7)

with £ the region below the curve and D the region on and above. Since (3, h) — f1¢(3,h) is
convex and D = {(B,h): f4(B,h) < 0} is a level set of f4%¢ it follows that D is a convex set
and hd"™ is a convex function. Since 3 = 0 corresponds to a homopolymer, we have hd"®(0) = 0
(see Appendix A). It was shown in Alexander and Sidoravicius [2] that hd"®(8) > 0 for 8 €
(0,00). Therefore we have the qualitative picture drawn in Fig. 2. We further remark that
limg_, he(8)/8 is finite if and only if supp(po) is bounded from above.

Figure 2: Qualitative plot of 5+ hd"¢(/3). The fine details of this curve are not known.

The mean value of the disorder is E(Swy — h) = —h. Thus, we see from Fig. 2 that for
the random pinning model localization may even occur for moderately negative mean values of
the disorder, contrary to what happens for the homogeneous pinning model, where localization
occurs only for a strictly positive parameter (see Appendix A). In other words, even a globally
repulsive random interface can pin the polymer: all that the polymer needs to do is to hit some
positive values of the disorder and avoid the negative values of the disorder.



The annealed free energy is defined by
1
ann 1 - B h,w
(B h) = nhm nlogE(Zn ). (1.8)

Since B
E(Z)") =B (exp [Z[log M(B) — h] 1{Sk0}] 1{Sno}> : (1.9)
=0

we have that f2"(8,h) is the free energy of the homopolymer with parameter log M(3) — h.
The associated annealed critical curve

RZ(B) == inf{h: f*(B,h) =0}, B € [0,00), (1.10)
therefore equals
B2 (8) = log M(8). (1.11)
Since faU¢ < fM1 we have ha ¢ < 200,

Definition 1.3. The disorder is said to be relevant for a given choice of K, pg and 5 when
hé™e(B) < ha™ (), otherwise it is said to be irrelevant.

Note: In the physics literature, the term relevant disorder is reserved for the situation where
the disorder not only changes the critical value but also changes the behavior of the free energy
near the critical value. In the present paper we adopt the more narrow definition above.

Our main focus in the present paper will be on deriving variational formulas for he'® and
ha'" and on investigating under what conditions on K, po and § the disorder is relevant,
respectively, irrelevant.

1.2 Main results

This section contains three theorems and four corollaries, all valid subject to (1.2-1.3). To state
these we need some further notation.

I. Notation. Abbreviate
E :=supp[uo] C R. (1.12)

Let E := UrenE® be the set of finite words consisting of letters drawn from E. Let P(EN)
denote the set of probability measures on infinite sentences, equipped with the topology of weak
convergence. Write 6 for the left-shift acting on EN, and Pm"(EN) for the set of probability
measures that are invariant under 6.

For Q € PinV(EN), let m11Q € P(E) denote the projection of () onto the first letter of the
first word. Define the set

— {Q e P (EN): / |z d(711Q)(z) < oo} : (1.13)
E
and on this set the function

D(Q) = /Exd(ﬂ'l,lQ)(x), QeC. (1.14)



We also need two rate functions on PinV(EN), denoted by I*"" and 9", which will be defined
in Section 2. These are the rate functions of the annealed and the quenched large deviation
principles that play a central role in the present paper, and they satisfy [9"¢ > 2",

II. Theorems. With the above ingredients, we obtain the following characterization of the
critical curves.

Theorem 1.4. Fix g and K. For all 8 € [0, 00),

he*(B) = Ztélé[ﬁfb(Q)—Ique(Q)], (1.15)
he™(B) = Zlélé[@(@)—fann@)]- (1.16)

We know that h2"" () = log M (/). However, the variational formula for h2""(53) will be
important for the comparison with he < (3).

Next, for 8 € [0,00) define the probability measures

dpg(z) = Mtﬁ) P dpg(x), re L, (1.17)
and

dgg(x1, 2, ..., 2n) == K(n)dpg(zi)duo(xe) x -+ x dpg(xn), neN, z,22,...,2, € E.
(1.18)
Further, let Qg := q?N € PinV(EN). Then Qg is the probability measure under which the words
are i.i.d., with length drawn from K and i.i.d. letters drawn from p, while Qg differs from Qg
in that the first letter of each word is drawn from the tilted probability distribution ug. We will
see that Qg is the unique maximizer of the supremum in (1.16) (note that Qg € C because of
(1.3)). This leads to the following necessary and sufficient criterion for disorder relevance.

Theorem 1.5. Fix g and K. For all 8 € [0, 00),
hE*(B) < he™(B) <= I9°(Qp) > I"™(Qp)- (1.19)

What is appealing about (1.19) is that the gap between [9"¢ and I*"™ needs to be established
only for the measure (Qg, which has a simple and explicit form. We will see that the supremum
in (1.15) is attained, which is to be interpreted as saying that there is a localization strategy at
the quenched critical line.

Disorder relevance is monotone in /3 (see Fig. 3).

Theorem 1.6. For all g and K there exists a 5. = Be(po, K) € [0,00] such that

weros [ =B if B e 0,8,
K ){ <hEm(B) i B (Boroo). (1.20)

III. Corollaries. From Theorems 1.4-1.6 we draw four corollaries. Abbreviate

xi= Y [P(S. = 0),  w:=suplsupp(yo))- (1.21)
neN

Corollary 1.7. If a =0, then S, = oo for all ug.



h ham ()
h(c]ue (18)

D

Figure 3: Uniqueness of the critical inverse temperature f,.

Corollary 1.8. If a € (0,00), then the following bounds hold:
(i) Be > BE with B = B (o, K) € [0,00] given by

Br:=0vVsup{B: M(28)/M(B)* <1+x '} (1.22)
(i) Be < B with 5 = B2 (po, K) € (0,00] given by
Bt =inf {B: h(ug|po) > h(K)}, (1.23)

where h(pg | po) = [5log(dug/duo) dug is the relative entropy of pg w.r.t. po, and h(K) =
— > nen K (n)log K(n) is the entropy of K.

Corollary 1.9. If a € (0,00) and x < oo, then . > 0 for all py.

Corollary 1.10. If a € (0,00), then B, < oo for all pg with po({w}) = 0 (which includes
w=00).

We close with a conjecture stating that the condition x < oo in Corollary 1.9 is not only
sufficient for 5. > 0 but also necessary. This conjecture will be addressed in a forthcoming

paper.
Conjecture 1.11. If a € (0,00) and x = oo, then B. =0 for all py.

1.3 Discussion

I. What is known from the literature? Before discussing the results in Section 1.2, we give a
summary of what is known about the issue of relevant vs. irrelevant disorder from the literature.
This summary is drawn from the papers by Alexander [1], Toninelli [21], [22], Giacomin and
Toninelli [14], Derrida, Giacomin, Lacoin and Toninelli [8], Alexander and Zygouras [3, 4],
Giacomin, Lacoin and Toninelli [12, 13], and Lacoin [19].

Theorem 1.12. Suppose that condition (1.2) is strengthened to

K(n) = n~ Y9 L(n) with o € [0,00) and L strictly positive and slowy varying at infinity.
(1.24)

1) B. =0 when a € (3, 00).
) Be =0 when a = 3 and lim,_,o[logn]*1L%(n) = 0 for some § > 0.
) Be >0 when a =3 and Y., cyn '[L(n)] 7% < cc.

4) B. >0 whenaE(O ).

) Be = 0o when a = 0.



The results in Theorem 1.12 hold irrespective of the choice of o (see Remark 1.13 below).
Toninelli [22] proves that if log M (\) ~ CA7 as A — oo for some C € (0,00) and v € (1,00),
then (. < oo irrespective of o € (0,00) and L. Note that there is a small gap between cases (2)

and (3) at the critical threshold o = 1.

For the cases of relevant disorder, bounds on the gap between h2"(3) and he"“(3) have been
derived in the above cited papers subject to (1.24). As 3 | 0, this gap decays like

32, if a € (1,00),
he™(B) — R (B) = § B2(1/B), ifa=1, (1.25)
5204/(20471)7 ifa e (%’ 1)’

for all choices of L, with 1 slowly varying and vanishing at infinity when L(co) € (0, 00).

Partial results are known for a = % For instance, it is shown in Giacomin, Lacoin and

Toninelli [13] that, under the condition in Theorem 1.12(2), the gap decays faster than any
polynomial, namely, roughly like exp[—3~%/%], 8 | 0, when L?(n) =< [logn]'®, n — oo. This
implies that the disorder can at most be marginally relevant, a situation where standard per-
turbative arguments do not work.

Remark 1.13. Some of the above mentioned results are proved for Gaussian disorder only, and
are claimed to be true for arbitrary disorder subject to (1.3). Full proofs for arbitrary disorder
are in [8, 13, 19, 22].

Remark 1.14. The fact that o = % is critical for relevant vs. irrelevant disorder is in accordance
with the so-called Harris criterion for disordered systems (see Harris [17]): “Arbitrary weak
disorder modifies the nature of a phase transition when the order of the phase transition in the
non-disordered system is < 2”. The order of the phase transition for the homopolymer, which is
briefly described in Appendix A, is < 2 precisely when a € (%, o0) (see Giacomin [11], Chapter
2). This link is emphasized in Toninelli [21].

II. What is new in the present paper? The main importance of our results in Section 1.2
is that they open up a new window on the random pinning problem. Whereas the results cited
in Theorem 1.12 are derived with the help of a variety of estimation techniques, like fractional
moment estimates and trial choices of localization strategies, Theorem 1.4 gives a wvariational
characterization of the critical curves that is new. (It is very rare indeed that critical curves for
disordered systems allow for a direct variational representation.) Theorem 1.5 gives a necessary
and sufficient criterion for disorder relevance that, although not easy to handle, at least is
explicit and offers a different handle. Theorem 1.6 shows that uniqueness of the inverse critical
temperature is a direct consequence of this criterion, while Corollaries 1.7-1.10 show that the
criterion can be used to obtain important information on the inverse critical temperature.

Remark 1.15. Theorem 1.6 was proved in Giacomin, Lacoin and Toninelli [13] with the help
of the FKG-inequality.

Remark 1.16. Corollary 1.7 is the main result in Alexander and Zygouras [4].

Remark 1.17. Since (see Section 8)

Lm M(28)/M(B)* =1, lim h(us| o) = log [L/no({w})], (1.26)

with the understanding that the second limit is co when po({w}) = 0, Corollary 1.8 implies
Corollaries 1.9-1.10. Corollary 1.10 was noted also in Alexander and Zygouras [4].
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Remark 1.18. Note that x = E(|I; N I1|) with I, > two independent copies of the set of
return times of S (recall (1.1)). Thus, according to Corollary 1.9 and Conjecture 1.11, 5. > 0 is
expected to be equivalent to the renewal process of joint return times to be recurrent. Note that
1/P(I1NI5 # 0) = 1+x~! (see Spitzer [20], Section 1), the quantity appearing in Corollary 1.8(i).

Remark 1.19. If y9 is Bernoulli(1/2) on {—1,1}, (1.26) gives that limg_,o h(pg | po) = log 2.
For any a > 0, we can find a distribution K that satisfies (1.2) and H(K) < log2, and thus
(1.23) implies that 8. = Bc(po, K) < oo. This shows that for o > 0, the condition po({w}) =0
is not (!) necessary for 3, < oo.

Remark 1.20. As shown in Doney [9], subject to the condition of regular variation in (1.24),

Ca

P(S, =0) ~ nTaL(n)

as n — oo with C, = (a/7) sin(ar) when a € (0,1). (1.27)

Hence the condition y < oo in Corollary 1.9 is satisfied exactly for a € (0, %) and L arbitrary,
and for o = § and Y, yn '[L(n)]7? < oco. This fits precisely with cases (3) and (4) in
Theorem 1.12.

Remark 1.21. Corollary 1.8(ii) is essentially Corollary 3.2 in Toninelli [22], where the condition
for relevance, h(ug | po) > h(K), is given in an equivalent form (see Equation (3.6) in [22]). Note
that, by (1.2), h(K) < co when a € (0, 00).

1.4 Outline

In Section 2 we formulate the annealed and the quenched large deviation principles (LDP)
that are in Birkner, Greven and den Hollander [6], which are the key tools in the present
paper. In Section 3 we use these LDP’s to prove Theorem 1.4. In Section 4 we compare the
variational formulas for the two critical curves and prove the criterion for disorder relevance
stated in Theorem 1.5. In Section 5 we reformulate this criterion to put it into a form that is
more convenient for computations. In Section 6 we use the latter to prove Theorem 1.6. In
Sections 7-8 we prove Corollaries 1.7-1.10. Appendix A collects a few standard facts about the
homopolymer, while Appendix B provides the details of the proof of a key lemma in Section 3
based on an approximation argument in [6].

2 Annealed and quenched LDP

In this section we recall the main results from Birkner, Greven and den Hollander [6] that are
needed in the present paper. Section 2.1 introduces the relevant notation, while Sections 2.2
and 2.3 state the relevant annealed and quenched LDP’s.
1 T4
73
T2 s

vy v (@) vy (3) y(4) y (5)
T T T3 Ty T5

X

\ 4

Figure 4: Cutting words out from a sequence of letters according to renewal times.



2.1 Notation

Let E be a Polish space, playing the role of an alphabet, i.e., a set of letters. Let E = UgenEF
be the set of finite words drawn from FE, which can be metrized to become a Polish space.

Fix pp € P(E), and K € P(N) satisfying (1.2). Let X = (Xj)ken, be i.i.d. E-valued random
variables with marginal law pg, and 7 = (7;);en i.i.d. N-valued random variables with marginal
law K. Assume that X and 7 are independent, and write P* to denote their joint law. Cut
words out of the letter sequence X according to 7 (see Fig. 4), i.e., put

To:=0 and T;:=T, 1+7, 1€N, (21)

and let '
YO = (X1, X1, 14150, X1m1), i€N. (2.2)

Under the law P* Y = (Y(i))ieN is an i.i.d. sequence of words with marginal distribution gg on
FE given by

dgo(z1,...,x,) = P* (Y(l) € (day,...,dzy,)) 23)
= K(n)duo(zy) x -+ x dpo(xy), neN, zy,...,x, € E. .

The reverse operation of cutting words out of a sequence of letters is glueing words together
into a sequence of letters. Formally, this is done by defining a concatenation map x from EN to
EMNo. This map induces in a natural way a map from P(EN) to P(EMN0), the sets of probability
measures on EN and ENo (endowed with the topology of weak convergence). The concatenation
ngN ok~ L of q6®N equals MISIO, as is evident from (2.3)

2.2 Annealed LDP

Let PinV(EN ) be the set of probability measures on EN that are invariant under the left-shift
6 acting on EV. For N € N, let (Y(l), e ,Y(N))per be the periodic extension of the N-tuple
(YW . YN)) e EN to an element of EN, and define

1 N—-1

RN = N Z 5~7"(Y(1),...,Y(N))Per € PinV(EN). (24)
=0

This is the empirical process of N-tuples of words. The following annealed LDP is standard
(see e.g. Dembo and Zeitouni [7], Section 6.5). For Q € P (EN), let H(Q | ¢5") be the specific
relative entropy of Q w.r.t. qu)N defined by

. 1
H(Q‘QSQN) = ]\}I_IPOON}L(WNQ’WN(]?N)’ (2.5)

where 7y Q € P(EYN) denotes the projection of Q onto the first N words, h(-|-) denotes relative
entropy, and the limit is non-decreasing.

Theorem 2.1. The family P*(Ry € -), N € N, satisfies the LDP on P™ (EN) with rate N
and with rate function I*™™ given by

Q) = H(Qlg™),  QeP™(EY). (2.6)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at qg@N)
and is affine.



2.3 Quenched LDP

To formulate the quenched analogue of Theorem 2.1, we need some more notation. Let P (EN0)
be the set of probability measures on EN0 that are invariant under the left-shift @ acting on ENo.
For Q € P™(EN) such that mq = Eg(m1) < oo (where Eg denotes expectation under the law
@ and 7 is the length of the first word), define

71—1
Vg = —EQ <Z Sren( ) e PV (ENo), (2.7)

Think of W¢) as the shift-invariant version of Q o k! obtained after randomizing the location of
the origin. This randomization is necessary because a shift-invariant () in general does not give
rise to a shift-invariant Q o k1.

For tr € N, let [Jyr: E — [E]yy = U_ E™ denote the truncation map on words defined by

y=(z1,...,2n) = [Yltr := (T1, -+, Tnptr)s neN, xy,...,z, € E, (2.8)

i.e., [yer is the word of length < tr obtained from the word y by dropping all the letters with
label > tr. This map induces in a natural way a map from EN to [E]Y, and from P (EN) to
Pv([E]N). Note that if Q € P (EN), then [Qly, is an element of the set

pvin(EN) = {Q € P™(EN): mq < oo}, (2.9)
Theorem 2.2. (Birkner, Greven and den Hollander [6]) Assume (1.2). Then, for ,u®N° ~a.s. all
X, the family of (regular) conditional probability distributions P*(Ry € -| X), N € N, satisfies
the LDP on P™ (EN) with rate N and with deterministic rate function 19 given by

e - Iﬁn(Q), if Q€ rpinv,ﬁn(EN)’
Q) = { limy oo Iﬁn([Q]tr), otherwise, (2.10)

where
N
Iﬁn(Q) = H(Q|q )—|—amQH(\IfQ|,u® 0). (2.11)
This rate function is lower semi-continuous, has compact level sets, has a unique zero at qu’N,

and is affine.

There is no closed form expression for 79"¢(Q)) when mg = oco. For later reference we remark
that, for all Q € PV (EN),
I"(Q) = lim I*"([Qlir) = sup I*"([Q]ir),

tr—o0 treN

Q) = lim I9([Qfir) = sup I([Qls),

tr—o0 treN

(2.12)

as shown in [6], Lemma A.1. A remarkable aspect of (2.11) in relation to (2.6) is that it quantifies
the difference between 19" and I*™. Note the explicit appearance of the tail exponent a. Also
note that 79 = I*"™ when o = 0.

3 Variational formulas: Proof of Theorem 1.4

In Section 3.1 we prove (1.16), the variational formula for the annealed critical curve. The proof
of (1.15) in Sections 3.2-3.4, the variational formula for the quenched critical curve, is longer.
In Section 3.2 we first give the proof for pg with finite support. In Section 3.3 we extend the
proof to pg satisfying (1.3). In Section 3.4 we prove three technical lemmas that are needed in
Section 3.3.
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3.1 Proof of (1.16)

Proof. Recall from (1.17-1.18) that Qg = qu, and from (1.11) that A2 (5) = log M (/). Below
we show that for every Q € P (EY),

pO(Q) — I"™(Q) = log M(p) — H(Q | Qp)- (3.1)

Taking the supremum over @, we arrive at (1.16). Note that the unique probability measure
that achieves the supremum in (3.1) is g, which is an element of the set C defined in (1.13)
because of (1.3).

To get (3.1), note that H(Q |Qp) is the limit as N — oo of (recall (1.17-1.18))

%/EN log [% (yl,...,yN)] d(mn Q) (1, - yw)
1

d(mnQ) M(B)N
=N en log [m (y1,---,yn) eﬁ[c(y1)+...+c(yN)]] d(mN@) (Y1, -- - yN)

1 1
=log M(f) + h(nnQ |7 Qo) — B+ /EN [e(yr) + -+ + clyn)] d(Tn Q) (Y1, - - - yn),
(3.2)
where, ¢(y) denotes the first letter of the word y. In the last line of (3.2), the limit as N — oo of
the second quantity is H(Q | Qo) = I*"(Q), while the integral equals N®(Q) by shift-invariance
of Q. Thus, (3.1) follows. n

3.2 Proof of (1.15) for py with finite support
Proof. The proof comes in three steps.

Step 1: An alternative way to compute the quenched free energy f4"¢(3, h) from (1.5) is through
the radius of convergence z4"¢(3, h) of the power series

> ez, (3.3)
neN
because
29 (B, h) = MR, (3.4)
Write
N
Zhe = Z Z HK(k?z — ko) i TN (3.5)
NeN 0=ko<ki<---<ky=n =1
so that, for z € (0, 0),
S oanzlhe = N (), (3.6)
neN NeN
where we abbreviate
N
FRhe) = Y [T 5 Kty — kimy) a0 (3.7)

O=ko<-<kny<oo t=1
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Step 2: We return to the setting of Section 2. The letter space is F, the word space is E =
UrenE¥, the sequence of letters is w = (wy,)ren,, while the sequence of renewal times is (7})ien, =

(ki)ien,. Each interval I; := [k;_1, k;) of integers cuts out a word wy, := (wg, ;,...,wk,—1). Let
| Nl
N . _
(]UV - RTV((]{:Z)ZZO) T N Z; 56i(wll7...7wIN)per (38)
1=

denote the empirical process of N-tuples of words in w cut out by the first N renewals. Then
we can rewrite F2"(2) as

P =B (xp [ [ {rto =+ (3cts) - )} (m ) )| )

(3.9)
_ o Nh E(exp [NmRTV log z + Nﬁ@(R‘K,)]),

where 7(y) and c(y) are the length, respectively, the first letter of the word y, m R, is the

projection of Rf onto the first word, while mpy and ®(Rf;) are the average word length,

respectively, the average first letter of the first word under R%.

To identify the radius of convergence of the series in the Lh.s. of (3.6), we apply the root
test for the series in the r.h.s. of (3.6) using the expression in (3.9). To that end, let

. 1
SI€(B; z) := limsup N logE<exp [NmR% log z + Nﬂfb(RfV)]). (3.10)
N—o0
Then 1
lim sup — log Fﬁ,’h’w(z) = —h+ S1(B; 2). (3.11)
N—o00 N

We know from (3.4) and the nonnegativity of f4%¢(3, h) that z9"¢(8, h) < 1, and we are interested
in knowing when it is < 1, respectively, = 1 (recall (1.6)). Hence, the sign of the r.h.s. of (3.11)
for z 1 1 will be important as the next lemma shows.

Lemma 3.1. For all 8 € [0,00) and h € R,

SM(;1-) < h = f(B,h) =0,

Se(Bi1—) > h = f(B,h) > 0. (3.12)

Proof. The first line holds because, by (3.11), —h + S¢(3;1—) < 0 implies that the sums in
(3.6) converge for |z| < 1, so that z9"¢(5,h) > 1, which gives f9"°(8,h) < 0. The second line
holds because if —h+59¢(8;1—) > 0, then there exists a zp < 1 such that —h+.59¢(3; zp) > 0,
which implies that the sums in (3.6) diverge for z = zp, so that z9"¢(3, h) < zy < 1, which gives
Fme(B,h) > 0. N

Lemma 3.1 implies that
he™(B) = S™(B;1-). (3.13)
The rest of the proof is devoted to computing S¢(3;1—).

12



Figure 5: Qualitative plot of z — S¢(3; 2).

Step 3: Since pp has finite support, @ — ®(Q) is continuous. Therefore we can apply Varad-
han’s lemma to the expression in (3.10) for z = 1 using the LDP of Theorem 2.2. This gives

SMB;1) = sup [BR(Q) — [T(Q)]. (3.14)

Qefpinv(EN)
We would like to do the same for (3.10) with z < 1, and subsequently take the limit z 1 1, to

get (see Fig. 5))
ST(B1-) = sup  [BB(Q) — T(Q)] (3.15)

erinv(EN)
However, even though @ +— ®(Q) is continuous (because p has finite support), @ — mg is

only lower semicontinuous. Therefore we proceed by first showing that the term Nmpgy log 2 in
(3.10) is harmless in the limit as z 1 1.

Lemma 3.2. S9¢(§;1—) = S9(B; 1) for all B € [0, 00).

Proof. Since S9¢(3;1—) < S9¢(3;1), we need only prove the reverse inequality. The idea is to
show that, for any Q € P"™(EY) and in the limit as N — oo, R%; can be arbitrarily close to @
with probability ~ exp[—NT19¢(Q)] while mpy remains bounded by a large constant. Therefore,

letting ' — oo followed by z 1 1, we can remove the term Nmpgy log z in (3.10). The details
are given in Appendix B. |

Combining Lemma 3.2 with (3.13) and (3.14), we obtain (1.15). n

3.3 Proof of (1.15) for yu, satisfying (1.3)

The proof stays the same up to (3.13). Henceforth write C = C(10) to exhibit the fact that the
set C in (1.13) depends on g via its support E in (1.12), and define

A(B) == sup [BR(Q) — IT(Q)], (3.16)

QEC(no)
which replaces the right-hand side of (3.15). We will show the following.
Lemma 3.3. S1¢(3;1—) = A(pB) for all 5 € (0,00).

Proof. The proof of the lemma is accomplished in four steps. Along the way we use three
technical lemmas, the proof of which is deferred to Section 3.4. Our starting point is the validity
of the claim for yg with finite support obtained in Lemma 3.2. (Note that |E| < oo implies
€ = C(uo) = P ().

Step 1: S1¢(B;1—) < A(S) for all 5 € (0,00) when 1 satisfies (1.3).

13



Proof. We have S1¢(5;1—) < S9¢(5;1). We will show that S9"¢(3;1) < A(pB)/p for all p > 1.

Taking p | 1 and using the continuity of A, proven in Lemma 3.4 below, we get the claim.
For M > 0, let

M (Q) = / (x AM)d(m1Q)(x). (3.17)
E
Then, for any p,q > 1 such that p~! + ¢~ = 1, we have

E (eNﬁ¢(Rfv)) - B <eB S (i) ey <} B SN eyi) l{c(yi)>M})
< |:E (epﬁ Zi\;l c(yi) 1{C(yi)§M}>] 1/p [E <e‘I5 vaz1 c(yi) 1{c(yi)>1\/l})i| 1 (3.18)

< [E (eNW‘PM(RTV))} 1/p [E (eqﬁ S elyi) 1{c(yi)>lw}):| 1/a :

where y1,...,yn are the N words determining R%, and c(y;) is the first letter of the i-th word.
Hence

1 w 11 w 11 ,
N log E (eNBq)(RN)) < ON log E (eNpﬁéM(RN)) +§ N log E (eqﬁzyﬁc(yl) 1{C(yi)>M}) . (3.19)

Since Q + ®M(Q) is upper semicontinuous, Varadhan’s lemma gives

1 w
lim sup N logE <eNpB<DM(RN)> < sup [pROM(Q) — I17°(Q)]. (3.20)
N—ro0 erinv(EN)

Clearly, @’s with [, (z A 0)d(71,1Q)(x) = —oco do not contribute to the supremum. Also, Q’s
with [(zV0)d(m1,1Q)(x) = oo do not contribute, because for such @ we have I9¢(Q) = oo, by
Lemma 3.5 below, and ®M(Q) < cc. Since ® < ®, we therefore have

sup  [ppeM(Q) — I1(Q)] < sup  [pBR(Q) — [1(Q)] = A(pB). (3.21)

QePinv(EN) QEC(po)

Next, we use the following observation. For any sequence © = (O ) yen of positive random
variables on a space with probability measure P, we have

1 1
limsup — log O < limsup — log E(Ox) P—a.s., (3.22)
Nooo IV Nooo IV

by the first Borel-Cantelli lemma. Applying this to
N N
@N P— ) (GQ5Z¢:1 c(yq) 1{c(yi)>kf}) with E(@N) — (/ eqﬁx Lie>ny dMo(x)) —. (CM)N,
E
we get, after letting N — oo in (3.19),
e 1 1
Se(B;1) < EA(pﬁ) +3 log ¢y (3.24)

By (1.3), we have cjr < oo for all M > 0 and limps_o cpr = 1. Hence S9"¢(8;1) < A(pB)/p. 1

Step 2: S9¢(5;1—) > A(B) for all 5 € (0,00) when pp has bounded support.

14



Proof. In the estimates below, we abbreviate
N = Nmpg, (3.25)

the sum of the lengths of the first N words. The proof is based on a discretization argument
similar to the one used in [6], Section 8. For ¢ > 0 and x € E, let (x)5 := sup{kd: k € Z,kd < x}.
The operation (-) extends to measures on E, E and EN in the obvious way. Now, (R%,)s satisfies
the quenched LDP with rate function Igue, the quenched rate function corresponding to the
measure (g)s. Clearly,

B (o5 etV > <6L7V 1ogz+Nﬁ<1>(<R7V>a)> , (3.26)

and so, by the results in Section 3.2, we have

SU(p;1-) = sup  [BR(Q) — [ (Q)]- (3.27)
QeC((ro)s)

For every @ € C(0), we have
Q) =lm®((Q)s),  I™(Q) = lim IF*((Q)s,), (3.28)

60 n—00

where §,, = 27". The first relation holds because ®((Q)s) < ®(Q) < ®((Q)s) + 0, the second
relation uses Lemma 3.6(i) below. Hence the claim follows by picking § = 4, in (3.27) and
letting n — oo. [ |

Step 3: S1¢(B;1—) > A(B) for all B € (0,00) when pug satisfies (1.3) with support bounded
from below.

Proof. For M >0 and = € E, let ™ = 2 A M. This truncation operation acts on jo by moving
the mass in (M, 00) to M, resulting in a measure ué” with bounded support and with associated
quenched rate function 79"M Let RTV’M be the empirical process of N-tuples of words obtained
from R%, defined in (2.4) after replacing each letter z € E by M. We have

E (eLj"V logz+N5<I>(R‘fV)> SE (eL“fv 10gZ+N5<1>(R§Jv’M)> . (3.29)

Combined with the result in Step 2, this bound implies that

S(B:1-) > sup  [BR(Q) — [N (Q")). (3.30)

Q'eC(udh)

For every @ € C(0), we have

Q) = lim @)= lim [ (@AM)d(m1Q)(),
17(Q) = lim 1M (QY),

The first relation holds by dominated convergence, the second relation uses Lemma 3.6(ii) below.
It follows from (3.31) that

limsup sup [BO(Q) — IMM(Q)] 2 B(Q) — I™(Q)  VQeC(m),  (3:32)

M—=o0 Qrec(ud?)
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which combined with (3.30) yields

S(B;1-) =2 p2(Q) = I*™(Q)  VQ € C(po)- (3.33)

Take the supremum over @ € C(up) to get the claim. |

Step 4: S1¢(p;1—) > A(B) for all 5 € (0,00) when 1 satisfies (1.3).

Proof. For M > 0 and x € E, let 2= = 2 (—=M). This truncation operation acts on s by
moving the mass in (—oo, —M) to —M, resulting in a measure /i, M with support bounded from
below and with associated quenched rate function 79"¢~M_ Let R‘]‘}V’_M be the empirical process

of N-tuples of words obtained from RY, defined in (2.4) after replacing each letter z € E by
-M
x M.

As in Step 1, for any p,q > 1 such that p~' 4+ ¢~ = 1, we have

E <eL“](, logz—l—Nﬁ@(R}u\,’_kf)) < E <eLTV log z4+NBP(RY,) e_ﬁ ZiV:I (i) 1{c(yi)<—lvl}>

< [E (epL“;V 10gz+NpB<I>(R“;V)>]1/p {E <e—q6 Zlec(ym{c(yik_m)} 1/‘17
(3.34)
and hence
1 log <eL7v 1ogz+NB<I>(R7V"M)>
N (3.35)
11 L% log 2+ NpB®(R%,) 11 —gBY N c(yi)1 .
< - N log E <ep N 08 2T APPEEN ) + - N log E (e P 2i=1 i {C(yi)<_1w}) .
p q

Let N — oo followed by z 1 1. For the L.h.s. we have the lower bound in Step 3, while the second
term in the r.h.s. can be handled as in (3.22-3.24). Therefore, recalling (3.10) and writing
plog z = log zP, we get

sup  [B9(Q) — I M(Q)] < S (pB;1-) + ~ log Oy
QeC(uy™) P 4 (3.36)

with C_jps = / e~ BT Lz <nry dpg ().
E
Letting M — oo and using that limps oo C_pr = 1 by (1.3), we arrive at

L (pB,1-) > limsup  sup [BO(Q) — 1M (Q)] = A(B), (3.37)
p M=o Qec(uy™)

where the last inequality is obtained via arguments similar to those following (3.30), which
require the use of Lemma 3.6(iii) below. Finally, let p | 1 and use the continuity of § — S(5;1—),
proven in Lemma 3.4 below. |

This completes the proof of Lemma 3.3, and hence of Theorem 1.4. |
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3.4 Technical lemmas

In the proof of Lemma 3.3 we used three technical lemmas, which we prove in this section.

Lemma 3.4. 5 +— A(f) and B — S1"¢(3;1—) are finite and convex on [0,00) and, consequently,
are continuous on (0, 00).

Proof. For the first function, note that A(8) < supgec(,,)[BP(Q) — I*"(Q)] < log M(B) < oo
by (1.3) and (3.1), and convexity follows from the fact that A is a supremum of linear functions.
For the second function, note that S1¢(5;1—) < S9¢(8;1) = A(S), and convexity follows from
Hoélder’s inequality. |

Lemma 3.5. If p,v € P(R) satisfy h(p|v) < oo and [, e’ dv(z) < oo for some A > 0, then
Jp(@V0)du(z) < oco.

Proof. The claim follows from the inequality

/ fdp < h(,u|u)—|—10g/ el du, (3.38)
E E

which is valid for all bounded and measurable f (see Dembo and Zeitouni [7], Lemma 6.2.13)
and, by monotone convergence, extends to measurable f > 0. Pick f(z) = A(zV0),z € E. 1

Lemma 3.6. For every Q € P™(EY),

(i) imy, o0 I3 ((Q)5,) = 11(Q) with 6, := 27"
(it) limpgyoo M (QY) = T9%°(Q).

(17) lim o0 TS~ M(Q=M) = [2ue(Q).

Proof. (i) The proof proceeds by choosing an appropriate function 7: [0,1] — R and proving
that

(a) I(O) = hm(;u) I((S), (3 39)
(b) I(0) > I(6y) > I(d2) whenever 6 = kd; € (0,1) for some k € N. .
Recalling (2.10-2.11), we see that we need the following choices for I:
_f NTR((an@)s | (mvag™)s), 6> 0,
(1) 1(0) = { Nﬁlh(T['NQ’T['ngi)N)7 5=0.
H SNV 5> 0,
2) 1(06) = { ((Q>5g§qo )s) >
H(Qlgy"), §=0, 0,
@) 16) = { VA Ee)s| (mypg)s), 8> 0, :
N7 h(rn¥q | mvps™), 5=0,
H((®q)s | {u5")s), >0,
4) I(6) =
W {H(‘I’Q\M?NO), 5 =0,

with V € N. It is clear from the definition of specific relative entropy (recall 2.5)) that if (a) and
(b) hold for the choices (1) and (3), then they also hold for the choices (2) and (4), respectively.
We will not actually prove (a) and (b) for the choices (1) and (3), but for the simpler choice

o= G 320 oy
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The proof will make it evident how to properly deal with (1) and (3).

Let B(R) be the set of real-valued, bounded and Borel measurable functions on R and, for
¢ € B(R) and § > 0, let ¢5 be the function defined by ¢s(z) := ¢({z)s). As shown in Dembo
and Zeitouni [7], Lemma 6.2.13, we have

B((hs | (uo)s) = sup { /R bd{u)s — log /R e¢d<uo>5}

p€B(R)

= sup {/ (b(;d,u—log/e%duo}.
¢eB(R) R R

From this representation, property (b) follows for the choice in (3.41). Next, fix any € > 0 and
take a ¢ such that [, ¢dpu—log [ e® dpuo > h(p | juo) — . Then, since ¢5 converges pointwise to
¢ as 0 | 0, the bounded convergence theorem together with (3.42) give

(3.42)

lirg nf h((m)s | (to)s) > h(p| o) — €. (3.43)

Hence liminfs)o 1(0) > I(0) — €. Since I(0) > I(6), property (a) follows after letting ¢ | 0.

Having thus convinced ourselves that (3.39-3.40) are true, we now know that for any @ €
PV (EN) the sequences

H((@)s, [(a5")s.).  H({¥Q)s, [(15"")s,),  neN, (3.44)

are increasing and converge to H(Q | q?N), respectively, H(¥g ],u?NO). This implies the claim

for @ with mg < oo (recall (2.11)). For @ with mg = oo we use that 19°(Q) = sup,en L ([Qltr)
(recall (2.12)), to conclude that I§"((Q)s,) is increasing and converges to 19"°(Q).

4 Characterization of disorder relevance: Proof of Theorem 1.5

Proof. We will need the following lemma, the proof of which is postponed.
Lemma 4.1. The supremum supgec|[BP(Q) — [1°(Q)] is attained for all 5 € (0, 00).

Let Q* be a measure achieving the supremum in Lemma 4.1. Suppose that hd'®(3) = h2™(3).

Then
< BO(Qp) — I*™(Qp) = he™ (B) = h™(B),
where the second equality uses that Qg achieves the supremum in (1.16) (with I*"(Qg) < 00),

as shown by (3.1). It follows that both inequalities in (4.1) are equalities. However, since Qg
uniquely achieves the supremum in (1.16), we must have Q* = Qg and therefore 19"°(Qg) =

Iann(Qﬁ).
Conversely, suppose that 19"°(Qg) = I*""(Q3). Then

he™(B) = [82(Qp) — I1(Qp)] = [B2(Qp) — I"™(Qp)] = k™ (B)- (4.2)

Since hd"(8) < h2"™(B3), this proves that he (8) = 2™ (3). |

(4.1)
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We now give the proof of Lemma 4.1.

Proof. The proof is accomplished in three steps. The claims in Steps 1 and 2 are obvious when
the support of ug is bounded from above, because then ® is bounded from above and upper
semicontinuous. Thus, for these steps we may assume that the support of g is unbounded from
above.

Step 1: The supremum can be restricted to the set CN{Q € P™(EN): I9¢(Q) < ~} for some
v < 0.

Proof. We first prove that

i sup [82(Q) — I""(Q)] = —oc. (4.3)
(Q)=a

To that end we estimate, for a € (0, 00),

sup [B0(Q) — I"(Q)] < sup [Ba —h(m1Q|p)] = sup [Ba = h(p | po)l,
Qec Qec HwEP(E)
(Q)=a (Q)=a JE |zl dp(z)<oo, [z du(z)=a
(4.4)

achieved by a measure uy of the form duy(z) = M(A)"teMdug(z), x € E, with A such that
[ xdpa(x) = a (recall (1.17)). To see why, first note that such a A = A(a) exists because (A —
[z ®dpa(x)) is continuous with value 0 at A = 0 and limy_, [, 2 dpa(z) = suplsupp(uo)] = w,
where w = oo by assumption. Next note that, for any other measure p with fE xdu(z) = a, we
have

where we use that I9¢(Q) > I*"™(Q) = H(Q|Qo) > h(m1,1Q|po). The last supremum is

h(p | pa) = h(p | po) — Aa+log M(A) = h(p| po) — h(px | 1o), (4.5)
which shows that h(p | po) > h(pa | po) with equality if and only if 4 = py. Consequently,

swp (o= bl o)) = 8 [ 2dua(e) bl lpo) = g0, (00)
neEP(E) FE
Jp lel du(@)<oo, g @ du(a)=a
Clearly, a — oo implies A = A(a) — oo, and so to prove (4.3) we must show that limy . g(A) =
—00.
To achieve the latter, note that a lower bound on h(u | o) is obtained by applying (3.38)
to f(x):= B (x Vv O0) for some > (. This yields

o) < (B - ) /E 2 dpir(x) + log [M(B) + 1]. (4.7)

The integral in the right-hand side tends to infinity as A — oo, and so (4.3) indeed follows.

Finally, recall the definition of A(/) in (3.16), which is finite because of Lemma 3.4. Then,
by (4.3), there is an ap < oo such that

sup [BR(Q) — I1(Q)] < A(B) -1 Va = ao, (4.8)

QecC
(Q)=a

and so all @ € C with ®(Q) — I1¢(Q) > A(S) — 1 must satisfy ®(Q) < ag and 19¢(Q) <
BP(Q)+1— A(B) < Bag+1— A(B) =: . Consequently, the supremum can be restricted to the
set CN{Q € P (EN): [1e(Q) < ). N
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Step 2: ® is upper semicontinuous on {Q € P (EN): 199¢(Q) < v} for every v > 0.

Proof. From the definition of ® and the inequality h(m1Q | o) < 19°(Q) < 7, it follows that
it is enough to show that the map p — ¥(u) := [ (5.16), (x vV 0) du(x) is upper semicontinuous
on K, :={u € P(E): h(u|po) <~} To do so, let (u™)pen be a sequence in K., converging
to u weakly as M — oo. Then

W) = [ (v o) Al (@) + [ 21 i (a), (4.9)
and so
lij\r/r{ljip (M) < /E[(:c V0)An|du(x) + J?/[uell)\I/Ex Lizsny dp () VneN. (4.10)

By the inequality in (3.38), we have

)\/ T 1lipony dpM(z) < h(u™ | po) + log/ e La>ny dpg(z) VM,neN, A>0, (4.11)
E E

and so

1
VN / @ 1ymny du (2) < 5 + T log / M dpg (). (4.12)
MeNJE E

By (1.3), the limit as n — oo of the r.h.s. is v/A. Since A > 0 is arbitrary, we conclude that
the limit as n — oo of the left-hand side is zero. Letting n — oo in (4.10) and using monotone
convergence, we therefore get limsup,,_,., ¥(uM) < ¥(u), as required. |

Step 3: Let I'(Q) := BP(Q) — I1"¢(Q). Then, by Step 1, we have that for some v > 0,

supI'(Q) = sup I'(Q)< sup T(Q). (4.13)
QEC QeC erinv(EN)
raue(@)<y Tque (Q)<~

By Theorem 2.2, I"¢ is lower semicontinuous. Hence, by Step 2, f® — I9"¢ is upper semicon-
tinuous on the compact set {Q € P"V(EYN): 19%¢(Q) < ~}, achieving its supremum at some Q*.
Let p* := m1Q*. Then, by (1.3), the inequality in (3.38) gives

/ (xV0)du*(z) <~v+ log/ e dpp(x) < 0o (4.14)
E E

and, since ®(Q*) > —o0, we also have [,(x A0)du*(x) > —oo, so that Q* € C. Hence

sup'(Q) = sup T(Q)=T(Q"), (4.15)
QGC erinv(EN)
1me(Q)<~
which concludes the proof. [ |
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5 Reformulation of the criterion for disorder relevance

Note that, by (2.10-2.12), for @ > 0, the necessary and sufficient condition for relevance,
I19¢(Qp) > I*(Qp), in Theorem 1.5 translates into

: QN
Jim miqu, H (Yigg, 1o °) > 0. (5.1)
In Lemma 5.3 below, we give two alternative expressions for the specific relative entropy ap-
pearing in (5.1). These expressions will be needed in Sections 6 and 7.

I. Asymptotic mean stationarity. In what follows we will make use of the notion of asymp-
totic mean stationarity (see Gray [16], Section 1.7). Let A be a topological space and equip AN
with the product topology. A measure P on AN is called asymptotically mean stationary if for
every Borel measurable G ¢ ANo,

n—1

P(G) —111130105273 el exists. (5.2)

As in Section 2, 6 denotes the left-shift acting on ANo. If P is asymptotically mean stationary,
then P is a stationary measure, called the stationary mean of P.

For Q € P™(EY), recall from Section 2.1 that x(Q) € P(EN0) is the probability measure
induced by the concatenation map «: EN — ENo that glues a sequence of words into a sequence
of letters, i.e., kK(Q) = Qor~1. Our aim is to replace ¥¢) in (5.1) by x(Q), which is not stationary
but more convenient to work with. These two probability measures are related in the following
way.

Lemma 5.1. If mg < oo, then k(Q) is asymptotically mean stationary with stationary mean

K(Q) = Vq.

Proof. Let X := k(Y) € ENo_ where Y is distributed according to Q). Let I denote the set of
indices @ € Ny where a new word starts (0 € ). For ¢ € Ny, let r; := inf{j € N: i — j € I},
i.e., the distance from i to the beginning of the word it belongs to. For j € I, let L7 denote the
length of the word that starts at j. Then, for any G C EN° Borel measurable, we have

n—1 3 —1n—1
K(Q)(0'X € G) ZZQ (0'X €G,ri=k) = ZZQ(eiXeG,ri:k). (5.3)
i=0 i=0 k=0 k=0 i=k

Next, note that
QU'XeG ri=k=Q0XeG, i—kel L' >k)
=Q'XeG L F>kli-kel)Qi—kel) (5.4)
=Q("X €G, L"> k) Qi — k € I).
Hence, dividing the sum in (5.3) by n, we get

n—1 n—1

%Z KQ)(O'X €G) =) Q"X € G, L > k) fun, (5.5)

=0 k=0
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where we abbreviate f, = nt Zn k= 1 Q(j € I). By the renewal theorem, lim, o frn =
1/mg for k fixed. Since

iQ(LO > k) =mg < oo, (5.6)

we can apply the bounded convergence theorem, and conclude that

1 o
K(Q)(G):m—ZQ HkXeG L0>/<: —Z Z GkXEG,LO:j)
@ k=0 MQ 120 j okt
1 oo j—1 (57)
=—> > Q"X G, L°=j) = ¥o(G).
MQ {31 k=0
The last equality is simply the definition of W in (2.7). B

To complement Lemma 5.1, we need the following fact stated in Birkner [5], Remark 5, where
ergodicity refers to the left-shifts acting on EN and EN.

Lemma 5.2. If Q € P (EN) is ergodic and mq < 0o, then Wg € P (EN) is ergodic.

An asymptotic mean stationary measure can be interchanged with its stationary mean in
several situations (see Gray [15], Chapter 6), for example in relative entropy computations, as
in Lemma 5.3 below. Before stating this lemma, we use an extension of the notion of specific
relative entropy to measures that are not necessarily stationary. More precisely, for two measures
P and Q on a product space AN, we define the specific relative entropy of P w.r.t. Q as

H(P|Q) :=limsup — h(ﬂnP]ﬂnQ) (5.8)

n—oo

where m, is the projection onto the first n coordinates. For @) € Pim’(EN), we introduce the
following Radon-Nikodym derivative:

dﬂ'n"i(Q)

<2 (), wxe B (5.9)
dpgy

fnlx) =

With this notation, the main result of this section is the following.

Lemma 5.3. For Q € P™(EN) ergodic with mg < 00,

H(Vq|pu5™) =H(r ( Q)| pu5™), (5.10)
= nlgrolo E log fn(x) for k(Q)-a.s. all x € EMNo, (5.11)

The first equality holds also without the assumption of ergodicity.

Proof. The first equality follows from Gray [16], Corollary 7.5.1, last equality in Eq. (7.32),
which does not need the assumption of ergodicity. For the proof of the other equality, define

- dm, Vg
fnlx) = -
dpgy

(2). (5.12)
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Since ¥ is stationary and ergodic (Lemma 5.2), Gray [16], Theorem 8.2.1, applied to the pair
Vo, M?NO gives that

lim 1 log fn(z) = H(¥q |,u6®N°) (5.13)

n—oo M

for ¥ almost all z. But W is the stationary mean of (@) (Lemma 5.1), so that Gray [16],
Theorem 8.4.1, combined with (5.13) gives

lim ~ log fu() = H(¥g | u&™) (5.14)

n—oo n

for k(@) almost all x. |

II. Alternative formulation. We will apply Lemma 5.3 to the measure [Qgltr, which is
ergodic, being a product measure. The word length distribution of it is

K(n) if1<n<tr-—1,
K%(n) = 3°_ K(m) ifn=tr, (5.15)
0 if n > tr.

For (@3], the function f, in (5.9) becomes

fule) = E <H<B>{}> ) (5.16)
n(T) = Bk = Efo (e5k=0177770 ) 510
k=0 M(IB)

where E gt denotes expectation with respect to law of the Markov chain S with renewal time
distribution K" starting from 0. This follows from the definition of Q4 and (1.17). To emphasize
the fact that in the last expression the sequence z € EN° is picked from x([Qgl), we take two
independent sequences

(Zk)keno» (1 )ken, drawn from p&™ and M?NO, respectively, (5.17)

and an independent copy S’ of S. Let I :={i >0:5; =0},I' := {i > 0: 5] = 0}. Then
. 1 n—1 , - e —1
H(W[Qﬁ]n |M8§No) _ 7}1_{20 E log E gt eZk:O (Bl pgry +B2K1 ey —log M(B)] 1{%1}] ) (5.18)

Note the appearance of two renewal sets I, I’, which are the key to understanding the issue of
relevant vs. irrelevant disorder (recall Remark 1.18).

6 Monotonicity of disorder relevance: Proof of Theorem 1.6

Proof. In view of (5.10) in Lemma 5.3, the condition for relevance in (5.1) becomes

lim g, H (5([Qplu) | 115 °) > 0. (6.1)

tr—o0

We will show that 8 — H(k([Qslu) | u5™°) is non-decreasing for every tr € N, which will imply
the claim because mg doe = M does not depend on B. It will be enough to show that

B+ h(mnk([Qsler) | £§™) is non-decreasing for all tr,n € N.
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Fix tr,n € N. For 8 € [0,00) and Z = (zg,21,...,2n_1) € E™, let

eﬁmk

M) )’

k(B, %) := M(f) =Exu H

n (6.2)
dug keJn

with J, := {0 < k < n: Si = 0} the set of renewal times prior to time n for the chain S that
has renewal time distribution K%, to which we add 0 for convenience. Our goal is to prove that

80 £(8) = [ [k(3.0)og k(3. )] " () = h(mur(Qale) | 5™) (63)

is non-decreasing on [0,00). We will do this by proving a stronger property. Namely, for

B=(Bo,B1,-..,Pn-1) €[0,00)" and T € £, let

Brxy
k(5,7) := Egu © (6.4)
" ke M (Br)
We will show that
B fB) = [ KB 0g k(5 3)] au () (65)

is non-decreasing on [0, 00)" in each of its arguments.

We will prove monotonicity w.r.t. 51 only. The argument is the same for the other variables,
with one simplification for 8y, namely, we may drop the corresponding indicator 1¢pc,} in the
third line of (6.6) and in (6.8). First, using that [ k(3,z)dud"(Z) = 1 for all 3, we compute

03, 1(5) = |05, k(5. ) log k(3. )] dy§" @)
R’Il

_ / 03, [k(B,2)] log k(5, ) dys§" (2)

(6.6)
bz BTk _
= / 851 <7> Epo 1{1€Jn} H log k(/3, .f') du%im(i')
n M(f1) RVE M (Br)
Next, we note that
bz eﬁ1$1$1M(51) —_ eﬁlle/(lgl)
o (3737 wolar) = : dpo(n)
M M,(Zgﬁl)eﬁm (6.7)
= (xl - M(,Bl) > M(ﬁl) d,U/O(xl) = (xl - Eﬁ1) du&(xl)’
where Eg, := M'(B1)/M(B1) = [ @1 dug, (x1). Now, let ! be & without x1, and abbreviate
A ) =B | [ Sty log k(3, 7) (6.9)
T, ) 1= Bigtr Af(ﬁk) {1eJ,} og ,I). .

ke, \{1}

Then, for fixed !, the integral over z1 in (6.6) equals
[ @1~ Ea)AGwriat) dus, o)

! (6.9)

> [ @ = Ba)dns(on) [ Alwriat)ds (@) =0
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where the inequality holds because both z1 — 21 — Eg, and z1 — A(z1; :El) are non-decreasing
(for the latter we need that B; € [0,00)). It therefore follows from (6.6), after integrating over
z! as well, that 93, f(3) > 0. ]

7 Disorder irrelevance: Proof of Corollaries 1.7 and 1.8(i)

7.1 Proof of Corollary 1.7

Proof. This is immediate from Theorem 1.5 and the fact that [9¢ = [*"" when o = 0. The
latter was already noted at the end of Section 2. |

7.2 Proof of Corollary 1.8(i)

Proof. We will show disorder irrelevance for all 8 that satisfy M(23)/M(B)?> < 1+ x~!. To
show that for such § the limit in (5.1) is zero, we use an annealed bound on H(¥q,,, | o)
based on the expression (5.11) for it. We bound the limit in the right-hand side of that formula,
using (3.22) with the role of ©,, played by

_ dmar([Qale)

(), x € ENo, (7.1)
dpgy

This satisfies
E, Qs (fn(@)) = B on (fn(z) fu(2)), (7.2)

because f,(z) depends on the first n coordinates of = only, and the Radon-Nikodym derivative
of muk([Qpler) with respect to ud™ is f,. Using (5.16), we write the last expectation as

n—1 B 1{sy=0y n—1 B 1 57=0
s = (e (T (575) ™ T () )

k=0 =0

n=l o Bry \ Usp=0y =l o Bay N\ Lsi=oy
= tr tr ®n e— ° l (73)
(Exe x Eger) (EMO (go (M(5)> = (M(B)) ))

n—1
= (Ege X Egr) (E(g)zk_o 1{s,c—s;€—0}> ’

—

where E g X Egor is the expectation with respect to two independent copies S, S’ of the Markov
chain starting from 0 with renewal time distribution K* , and

- M (28)
= = . 7.4
B = 51can (74)
If we now let . B
TN = ILm - log(Egt X Egtr) <e)\z’“—° {Sk—sk—°}> , (7.5)
then (5.11), (3.22), and (7.1-7.5) imply that
H (Y0, \Mg?’NO) < f5"(log E(B)), B € [0,00), tr € N. (7.6)
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Combining this bound with the condition for relevance in (5.1), we see that to prove irrelevance
it suffices to show that

Jim mig,,, £ (log 2(8)) = 0. (7.7)
By (A.2) in Appendix A, we have
o) =0 <= X< ):=—-logP(INI #0), (7.8)

where I, I’ are the sets of renewal times for S, S’ without truncation, and fy(\) as defined in
Appendix A. By Lemma A.1, if A < Ao, then supy, ey tr f37(A) < oo. Since limg—o0 Mg, /tr =
0 always, (7.7) holds as soon as log Z(3) < A, i.e., E(8) < 1/P(INI" # (). Now the claim of
the corollary follows because P(I N I" # () = x/(x + 1) (see Spitzer [20], Section 1), with x as
defined in (1.21), and with the convention that the last ratio is 1 if x = co. |

8 Disorder relevance: Proof of Corollary 1.8(ii)

Proof. We restrict the expectation in (5.18) to the set
Ap = {(Sk)izo: IN{1,...,n} =T'"N{1,...,n}}, (8.1)

i.e., S follows I’ and collects only the tilted charges #j defined in (5.17). This gives for the
expectation the lower bound

n—1
exp Z[ﬁfk —log M(B)] Lykery | P(An)- (8.2)
k=0
Let ky := [IN{1,...,n}|, ) = 0 and 7{ < --- < 75 the elements of I’ N {1,...,n}. By the
renewal theorem, we have k,,/n — 1/my as n — co. Moreover,
kn,
P(A4,) =P(rp >n— T];n) HK”(T{ —7/_1), (8.3)
=1
so that
tr

1
K™ (k)log K" (k
D KR Tog KU (),

k
1 1 kn 1 & )
n log P(A;) = ElOgP(Tl >n—Tg,)+ fa ;1 log K* (1) —7_1) —

k=1
(8.4)
while
14 1
- > {Bix —log M(B)} Ljkery — o (B) (8.5)
k=0 '
with
c(B) := BEy,(d1) —log M(B) = Bllog M (B)]' — log M(B) = h(uz | no)- (8.6)
Hence ¢
mecH (Vigu1, | 16"") = Mg | o) + D K" (k) log K (k). (87)
k=0
and
lim i mig, . H (<(Qshe) |15™) = hlus | o) — H(EK). (33)
Consequently, h(us | o) > H(K) is sufficient for disorder relevance. |
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We close by proving the second part of (1.26):
i b | o) = log 1/ o)) (5.9)

We distinguish three different cases.

(1) w = co. Apply (3.38) with p = pg, v = po and f(z) =z V0, to get

bz o) = [ (@ 0)diap(o) —log (1) + 1) (8.10)

The integral diverges as 5 — oo, and so (8.9) follows.

(2) po({w}) = 0 with w < co. Now g converges weakly as 3 — oo to dy, the point measure
at w. Hence (8.9) follows by using the lower semicontinuity of p — h(u| o) and the fact that
h(6w | o) = 00 because d,, is not absolutely continuous w.r.t. pg.

(3) po({w}) > 0 with w < co. Define

N d,uﬁ eﬁx

fol®) = Gl®) = 3p57

zeE. (8.11)

This function satisfies
lim fz(x) =0 for x < w,
B—00

ﬁlgrgo fa(w) =1/po({w}), (8.12)

fo(x) < 1/po({w}) < oo for z < w.

Since t + tlogt is increasing on [1,00) and on (0,1] takes values in [—e~!,0], we can apply the
bounded convergence theorem to the integral

h(us | o) = /E f(x) og f5(x) dpio(x), (8.13)

to get (8.9).

A Appendix A: Standard facts about the homopolymer

In this appendix we recall a few standard facts about the homopolymer. For proofs we refer to
Giacomin [11], Chapter 2, and den Hollander [18], Chapter 7.

The homopolymer has a path measure as in (1.4), but with exponent )\ZZ;& lis,—0ys A €
[0,00). For a given renewal time distribution K, it is known that the free energy f(\) is the
unique solution of the equation

o — Z K(n)e /O (A1)
neN

whenever a solution exists, otherwise f(\) = 0. Clearly
JA) =0 <<= X< —-logP(I#0), (A.2)

where I = {k € N: S, = 0} is the set of renewal times of S.
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Let S, S’ be two independent copies of the Markov chain starting form 0, with renewal time
distribution K, and with sets of renewal times I,I’. Transience of the joint renewal process
INT is equivalent to P(I NI # () < 1. In that case, let

Ao = —logP(INTI # () >0, (A.3)

and denote by fa(\) and fiT()\) the free energy of the homopolymer whose underlying Markov
chain has renewal set I NI’ when the renewal times of S, S” are drawn from K, respectively, K*
defined in (5.15). Then limgy o0 f37(A) = f2(A). Note that fo(A) = 0 iff A < A\g. This property
does not hold for fi*(\), but the following lemma shows that fi'(\) tends to zero fast as tr — oo
when A < Ag.

Lemma A.1. Suppose that P(I NI # 0) < 1. Then sup,cy tr f47(N) < oo for all X < Xg.

Proof. As in the paragraph preceding the lemma, define I*, I'"", where now the Markov chains
S, S" have renewal time distribution K%. Let Ko, K be the renewal time distributions generat-
ing the sets I NI, I'™ N I"" respectively. Put La(n) := >} _; Ko(k) and LY (n) := > ") _; K§ (k).
Then Lo(00) = e and LY (co) = 1 because the renewal process I'" N I'" is resurrent. Since
K{'(n) = Ka(n) for 1 < n < tr, it follows from (A.1) that

tr—1 00
e = Z Ky(n)e ™30 4 Z K& (n)e 2
n=1 n=tr (A4)
< Lo(tr — 1) + e N[ — Ly(tr — 1)],
where the equality holds because fi*(A\) > 0 for A > 0. Hence
1-— LQ(tI‘ — 1)
tr f5'(\) <1 . A.
) <log | A (A5)

The term between brackets tends to (1 — e 20)/(e™ — e™20) as tr — oo, which is finite for
A< Ao. [ |

The order of the phase transition for the homopolymer depends on the tail of K. If K satisfies
(1.24), then (see [11], Theorem 2.1, [18], Theorem 7.4)

FO) ~ AVON) LX) X Lo, (A.6)

for some L* that is strictly positive and slowly varying at infinity. Hence, the phase transition
is order 1 when a € [1,00) and order m € N\{1} when a € [L, —1-). This shows that the value
o= % is critical in view of the Harris criterion mentioned in Remark 1.14.

B Appendix B: Proof of Lemma 3.2

We borrow ideas from the proof of the lower bound of the LDP in Theorem 2.2 given in Birkner,
Greven and den Hollander [6], Proposition 4.1. What follows is a rewriting of the relevant parts
of that proof, organized as Sections B.1-B.4.

Fix A < §9%(3;1). By (3.14) and (2.12), there is a Q € P (EN) with mg < 0o such that
BP(Q) — I™M¢(Q) > A. Because ¢ and [9"° are affine, we may assume without loss of generality
that @ is ergodic.
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B.1 Step 1: Good sentences

For € > 0, the set o
UAQ) = {Q € P™(E): @(Q) > B(Q) — <) (B.1)

is open because @ is continuous. Hence there is an My € N large enough, a §; > 0, and a finite
set A9 ¢ EMo guch that

Unis, = {Q € P™(EN): |maQ'(s) — fs| < 261 Vs € Ao} C UL(Q), (B.2)
where we set fq := mp,Q(s) for s € Ag. Also, by (1.2), we can assume that
K(n) >n "17¢ Vn > M. (B.3)

By the ergodicity of Q, for every s € Ag we have

lim —‘{O<3<M My: 7, (07Y) —s}‘ fs for @ —a.e. Y. (B.4)

M—oo M
Consequently, there is a large M and a finite set A C EM with
(rmQ)(A) >1—¢ (B.5)

such that

‘%‘{OSJ'SM—M(): WMO(éjZ):S}‘—fS <& VsedyzeA (B.6)

Moreover, we can assume for all z € A the following relations, which are stated in [6], Equation
(3.6), and are consequences of ergodicity too:

k(2)| € [M(mq —¢€), M(mq + )], (B.7)
logQ (1 (Y, @, ,yOD) = k(2)) € [-M(mgH(Vq) + £), ~M(mgH(¥g) &),
(B.8)
log Q ((y<1>,y< )Ly ) z) el Q) +¢), ~M(H(Q) — &), (B.9)
Z log po((K(2)):) — MmgEy, [log po(X1)] € [-Me, Me], (B.10)
M
ng K(]29]) — MEglog K (11)] € [-Me, Me]. (B.11)

In the above relations, |k(z)| denotes the length of the string x(z), (k(2)); is the i-th letter of
that string, () is the i-th word of the sentence z, |2(V)| is its length, while H(Q), H(¥q) are the
specific entropies of the measures @, Wg. In the last relation, 7y is distributed as the length of
the first word of an element of EN drawn from Q. Finally, M can be chosen such that

8My 1

M _
>

a+1+e)log [M(mg +¢e) + M| <e. (B.12)

29



B.2 Step 2: Good trajectories

For given w € ENo| we define a set 7, of trajectories for the renewal sequence T' = (T;);en, on
w

which RY; € Ups5,. In Step 3 we will control the probability that 1" follows a trajectory in 72,

Let B := {k(z) : z € A} be the set of concatenations of the sentences of A. By (B.5) and
(B.5).
IB| > (1 — ) eMmeH(¥q)=e), (B.13)

Divide w into consecutive pieces of length A := [M(mg +¢)] + Moy, and mark with 1 those pieces
that start with an element of B, and mark with 0 the remaining pieces, i.e., for j > 0, let

0j = 1{91Aw starts with an element of B}- (B14)

Let {j(r): » > 1} be the increasing sequence that picks out the j > 1 with o; = 1, and let
j(0) = 0. The increments {j(r + 1) — j(r): r > 0} are i.i.d. geometric random variables with
probability of success pg := P(w starts with an element of B). It follows from (B.10) and (B.13)
that

> (1— g)eM(mQH(‘I’Q)JFmQE\I/Q[loguo(Xﬂ]*?E)’ (B.15)

— (1 — &) e MmaH (¥alus™*)—2eM, (B.16)

The equality in the second line follows from [6], Equation (1.26). In particular, for P-a.e. w we
have o; = 1 for infinitely many j’s, and so the sequence {j(r): = > 1} is well defined.

Pick any N > 16M/01. The set T2, consists of all T' that first jump to j(1)A (ie., 71 =

§(1)A), next make M jumps that cut out of (V4w an element of A (which is possible by the
definitions of j(1) and B), next jump to j(2)A (i.e., Tar42 = j(2)A), next again cut out an
element of A, and continue likewise until they jump to j([N/(M + 1)] + 1)A (no conditions
are imposed afterwards). The words between two consecutive j(r)A’s we call a block. After
the first jump to j(1)A and up to the last jump to j([N/(M + 1)] + 1)A, at least N words
are cut out, because T has created [N/(M + 1)] blocks each containing exactly M + 1 words.
We note that the first M words are important and of typical length, while the last word is of
an untypically large length and its sole purpose is for 7' to move to a good position in w. Call
YW y@ YY) the first N words cut.

Lemma B.1. RY € Uns, for all T in T2,

Proof. By the definition of RY;, we need to show that every element s € Ay occurs in the finite
sequence

(ma, 0 (YWD, Yy @)y (V)yper) (B.17)

0<j<N—1
the right number of times, i.e., a number of times that falls in the interval ((fs — 201)N, (fs +
201)N).

For the lower bound, note that the sequence (Y(l), Y@ . yWw )) contains at least the words
of the first [N/(M + 1)] — 1 blocks out of the [N/(M + 1)] blocks that T created, because the
last word of these blocks has index at most i* =1+ (N/(M +1) —1)(M +1) =N — M < N.
Each such block offers at least M(fs — d1) occurrences of the word s, because of (B.6) and
1" < N — My. Thus, we have at least

N
M+1

fs_51
M+1

M(fs—51)< _2> = N(fs — 61) — N —2M(f,—61) > N(f, —28;)  (B.18)
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occurrences of s in the sequence in (B.17), where the last inequality holds because N > 16M /01
and M > 8M,/01 by (B.12).

For the upper bound, note that, because of (B.6), the ocurrences of s in the sequence in
(B.17) are at most

L+ ((fs+51)M+MojV§w]\j+1 +1> + My B.19)
S N(fs+80) + gy T M(fs +61) + 2Mo + 1 < N(fs +26),
where the last inequality again uses N > 16M /01 and M > 8M/d;. [ |
B.3 Step 3: Probability of good trajectories
For the quenched probability P(T" € 7%,) we have the lower bound
P(T € T2) > K((DA) x (MF@—maHba)=22) MEglos (r)—e)) Y]
[N/(M+1)] (B.20)
< I e KO+ ) =300 )

The last product is a lower bound for the probability of the large jumps that land at the points
Jjir+1)A, 1 <r <[N/(M + N)]. The power preceding this product corresponds to the jumps
inside each of the [N/(M + 1)] blocks, and uses that, by (B.8-B.9), for each element of B there
are at least eMH(@Q)—moH(YQ)=2¢) different words of A having this element as concatenation,
and that, by (B.11), the probability for M jumps to cut out a given word in A is at least
eM(Eqllog K(m1)l=¢) Tt therefore follows that

lim inf % log P(r € Ty) > H(Q) — moH(¥g) + Eqgllog K ()] — 3¢

N—o0

+%E<log[ inf K([j(z)—ju)]A—n)D. 20

[n—Mmg|<Mey

To be more precise, (B.20) gives (B.21) with the right-hand side multiplied by M /(M + 1), but
since the factors in (B.20) are probabilities, replacing M /(M + 1) by 1 still gives us a lower
bound. Now, because of (B.3) and A —n > M, the last expectation is bounded from below by

E[log (([i(2) —j()]A)~*'7%)] = —(a + 1+ &) E[log ([(2) — j(1)]A)]
> —(a+1+¢e)(logA+1logE[j(2) — j(1)]),

where we use the concavity of log. Since E[j(2) — j(1)] = 1/pp, by combining (B.21-B.22) with
the lower bound on pg in (B.16), we get that

liminf N~'log P(T € TXy)

N—oo

> H(Q) —mqH (¥q) + Eq[log K(1)] — 3¢

(B.22)

1
+ o7 [—(a +1+ €)<logA —log(1 — &) + MmoH(Tg|pENo) + 25M>}
= H(Q) — moH(¥q) + Eqllog K (11)] — moH (Volug™®) — amqH (Vo|ug™)
1
— 3¢ — emgH(Tg|u§™0) — la+1+ e)(log A —log(l —¢)) —2(a+ 1+ ¢)e.
(B.23)
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The fourth line equals —I9"¢(Q) because of [6], Equations (1.16), (1.30) and (1.32). The fifth
line is at least —eCg for some positive constant C that depends on @), because of (B.12). Thus,
we end up with

l%ggN‘H%ﬂ%TeTﬁﬂZ—JW%Q)—db. (B.24)

&,

B.4 Step 4: Lower bound

For T € T¥,,, we have

Nmpg < j ({ N J +1> (M(mQ+5)+MO)

) (B.25)
o (|arst | +) = v
Hence
Nmpw log z+NBP(RY,) > Nme log z+NB® (R, )
B )2 (¢ lirers,) (B.26)
> NB@Q)=2) Li([N/MADH)(M(mg+e)+Mo) p(r ¢ T2, ).
Combining (3.10), (B.24) and (B.26), we get
M M,

S(8;2) > 0(Q) — e + LTI LMo 1oy, ane(g) — e, (B2)

(M +1)ps

Now let z 71 and € | 0, to get S¢(B;1—) > SP(Q) — [1"(Q) > A. Since A < SM¢(3;1) was
arbitrary, it follows that S1¢(3;1—) > S9¢(8;1).
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