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Abstract

We consider a memoryless loss system with servers S = {1, . . . , J}, and with customer
types C = {1, . . . , I}. Servers are multi-type, so that server j can serve a subset of customer
types C(j). We show that the probabilities of assigning arriving customers to idle servers
can be chosen in such a way that the Markov process describing the system is reversible,
with a simple product form stationary distribution. Furthermore, the system is insensitive,
these properties are preserved for general service time distributions.

Keywords: Service system; loss system; multi type customers; multi type servers; product
form solution; reversible Markov chain, insensitivity.

1 Model

We consider a loss system with servers S = {1, . . . , J}, and with customer types C = {1, . . . , I}.
Arrivals are Poisson. Customers of type i arrive at rate λi. The service requirements of all
customers are i.i.d. exponentially distributed with rate 1. Servers are multi-type, so that server
j can serve a subset of customer types C(j). Server j works at rate µj .

The system is a loss system: Customers that arrive, and do not find an idle server which can
serve them, are lost. We define the state of the system at time t as X(t) = S, where S ⊆ S is
the set of idle servers which are available to receive customers at time t.

To complete the description of the system we need to specify how arriving customers are
assigned to servers: An arriving customer of type i which arrives when the system is in state S
will choose server j ∈ S (where i ∈ C(j)) with probability P (i, j|S). With this assignment X(t)
is a continuous time finite state Markov chain (CTMC).

Loss systems with multi-type servers and multi-type customers are motivated by applications
such as, e.g., call centers with skill based routing [6, 10], redundant data storage for video on
demand [5] or bed capacity planning of hospital wards [7, 12].
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Our result in this paper is to show that one can choose P (i, j|S) in such a way that the Markov
process X(t) is reversible, and as a result, one can then write down the stationary distribution of
the process explicitly. This stationary distribution is unique, even though P (i, j|S) which lead
to it may not be unique. It is furthermore also true that for this reversible case, the system is
insensitive — the stationary distribution remains the same, and the process remains reversible,
even when the processing times at each server have arbitrary distributions.

Example 1:

Let S = {1, 2}, C = {1, 2} and C(1) = {1, 2}, C(2) = {1}. If a type 1 customer arrives
in an empty system, then this customer is sent to server 1 or to server 2 with corresponding
probabilities P (1, 1|{1, 2}), P (1, 2|{1, 2}). If we choose

P (1, 1|{1, 2}) =
λ1

2λ1 + λ2
, P (1, 2|{1, 2}) =

λ1 + λ2

2λ1 + λ2
, (1)

then the stationary distribution is (as we shall show):

π({1}) = π(∅) µ1

λ1 + λ2
, π({2}) = π(∅)µ2

λ1
, π({1, 2}) = π(∅)µ1µ2(2λ1 + λ2)

λ1(λ1 + λ2)2
, (2)

where π(∅) normalizes the sum to 1.

Notation:

To facilitate reading we will use index i for customer types, and indexes j, k for servers, and we will
use S for subsets of servers, C for subsets of customer types. We will denote by C(S) =

⋃
j∈S C(j)

the set of customer types which can be served by at least one server in S. We will also denote
by S(i) the set of servers that can serve customers of type i.

2 Reversibility and product form

We now show that the assumption of reversibility uniquely determines the transition rates of
the CTMC, and induces a simple product form stationary distribution. The process X(t) is
reversible if and only if the CTMC X(t) satisfies the detailed balance equations (see Theorem
1.2 in [11]).

We denote by ηj(S) the rate at which server j ∈ S becomes busy, when the system is in state
S. Detailed balance equations for the stationary probabilities π(S) hold if:

π(S) ηj(S) = π(S\{j})µj , for all subsets S and j ∈ S (3)

If detailed balance (3) holds, we get for S = {j1, . . . , jm}:

π(S) = π(∅) µj1
ηj1({j1})

µj2
ηj2({j1, j2})

µj3
ηj3({j1, j2, j3})

· · · µjm
ηjm(S)

. (4)

This of course only makes sense if it is independent of the order in which we put the servers in
S, so it has to hold equally for all permutations of j1, . . . , jm. In particular, for every S and
j, k ∈ S we obtain the recursion:

ηj(S)
ηk(S)

=
ηj(S\{k})
ηk(S\{j})

. (5)
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When the system is in state S we denote by η(S) the rate at which one of the idle servers
will become busy. We get two expressions for η(S): it is the sum of the ηj(S), and it is the sum
of the arrival rates of all the customer types which can be served by the servers in S:

η(S) =
∑
j∈S

ηj(S) =
∑

i∈C(S)

λi (6)

Proposition 1 The equations (5), (6) uniquely determine the values of ηj(S) for all S and
j ∈ S.

Proof. For singletons S = {j},
ηj({j}) =

∑
i∈C(j)

λi

We proceed by induction, assuming we have determined the unique values for all states S of size
m−1. Consider then the state S = {j1, . . . , jm}, and a server k ∈ S. From (5) and the induction
hypothesis we obtain:

η(S)
ηk(S)

=
ηj1(S) + · · ·+ ηjm(S)

ηk(S)
= 1 +

∑
j∈S\{k}

ηj(S\{k})
ηk(S\{j})

,

where η(S) is also known, from (6). Hence:

ηk(S) = η(S)
/(

1 +
∑

j∈S\{k}

ηj(S\{k})
ηk(S\{j})

)
. (7)

�

Example 1, continued:

We calculate the ηj(S), from the values of λ1, λ2:

η({1}) = η1({1}) = λ1 + λ2, η({2}) = η2({2}) = λ1, η({1, 2}) = λ1 + λ2,

and using the recursion step:

η1({1, 2}) = η({1, 2})
/(

1 +
η2({2})
η1({1})

)
= (λ1 + λ2)

/(
1 +

λ1

λ1 + λ2

)
=

(λ1 + λ2)2

2λ1 + λ2
,

η2({1, 2}) = η({1, 2})
/(

1 +
η1({1})
η2({2})

)
= (λ1 + λ2)

/(
1 +

λ1 + λ2

λ1

)
=
λ1(λ1 + λ2)

2λ1 + λ2
.

The stationary probabilities (2) follow now from (4).

3 Assigning customers to servers

In this section we show that it is possible to choose the assigning probabilities P (i, j|S) so that the
resulting X(t) will be reversible, with transition rates and stationary distribution as determined
in Section 2.

Having calculated the values ηj(S) we now look for the assignment probabilities P (i, j|S) so
that

ηj(S) =
∑
i∈C(j)

λiP (i, j|S). (8)

3



Proposition 2 There exist assignment probabilities P (i, j|S), for all S, j ∈ S, and i ∈ C(j),
which satisfy (8).

We prove Proposition 2 in four steps. The first one is the translation to a maximal flow
problem [9].

Proposition 3 To satisfy (8) for S we need to solve a maximal flow problem.

Proof. Summing over all the servers in S,

η(S) =
∑
j∈S

ηj(S) =
∑
j∈S

∑
i∈C(j)

λiP (i, j|S) =
∑

i∈C(S)

λi.

We formulate a maximal flow problem with nodes a, b and nodes j ∈ S, i ∈ C(S), where there is
an arc with infinite capacity from i to j if i ∈ C(j), and there are arcs from a to i with capacity
λi and arcs from j to b with capacity ηj(S) (see Fig 1).

a b

i

 j

SC(S)

λi
η j (S)

∞

qi, j

Figure 1: A maximal flow problem for finding P (i, j|S)

If the maximal flow in this network is η(S), and qi,j is the flow on the arc from i to j, then
P (i, j|S) = qi,j/λi solve (8). �

Example 1, concluded:

We calculate the assignment probabilities by solving:

η2({1, 2}) = λ1P (1, 2|{1, 2}), η1({1, 2}) = λ2 + λ1P (1, 1|{1, 2}),

to obtain the values (1).

Proposition 4 A necessary and sufficient condition for the existence of a flow of η(S) in the
network is: for every R ⊆ S ∑

i∈C(R)

λi ≥
∑
j∈R

ηj(S). (9)
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Proof. See the proof of Proposition 4 in [8]. �

Proposition 5 A sufficient condition for (9) is that η satisfy the following monotonicity condi-
tion: for all j ∈ R ⊆ S

ηj(R) ≥ ηj(S). (10)

Proof. Note that (9) actually says:∑
j∈R

ηj(R) = η(R) =
∑

i∈C(R)

λi ≥
∑
j∈R

ηj(S).

which is clearly implied by (10). �

Proposition 6 The monotonicity condition (10) always holds.

Proof. The proof is by induction on the size of S, the case R = S (in particular R = S = {j})
is trivial. It is enough to verify the condition for R and S differing by only one element, say
S = R ∪ {q}. Suppose S has two or more elements and monotonicity has been established for
smaller sets.

Then, for k ∈ R (k 6= q), by (7),

ηk(R) = η(R)
/(

1 +
∑

j∈R\{k}

ηj(R\{k})
ηk(R\{j})

)
,

ηk(S) = η(S)
/(

1 +
∑

j∈R\{k}

ηj(S\{k})
ηk(S\{j})

+
ηq(S\{k})
ηk(S\{q})

)
.

The monotonicity property ηk(R) ≥ ηk(S) can be rewritten as

η(S)

1 +
∑

j∈R\{k}

ηj(R\{k})
ηk(R\{j})

 ≤ η(R)

1 +
∑

j∈R\{k}

ηj(S\{k})
ηk(S\{j})

+
ηq(S\{k})
ηk(S\{q})

 .
We can rearrange the left hand side:

η(S)

1 +
∑

j∈R\{k}

ηj(R\{k})
ηk(R\{j})

 = η(R)

1 +
∑

j∈R\{k}

ηj(R\{k})
ηk(R\{j})

+
(
η(S)− η(R)

) η(R)
ηk(R)

.

Hence we need to verify that1 +
∑

j∈R\{k}

ηj(R\{k})
ηk(R\{j})

+

(
η(S)− η(R)

)
ηk(R)

≤

1 +
∑

j∈R\{k}

ηj(S\{k})
ηk(S\{j})

+
ηq(S\{k})
ηk(S\{q})

 . (11)

Note that for j ∈ R\{k}:

ηj(R\{k})
ηk(R\{j})

=
ηj(R\{k})− ηj(S\{k})

ηk(R\{j})
+
ηj(S\{k})
ηk(R\{j})

≤ ηj(R\{k})− ηj(S\{k})
ηk(R)

+
ηj(S\{k})
ηk(S\{j})

,
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where the inequality follows by applying the induction hypothesis three times, yielding ηj(R\{k})−
ηj(S\{k}) ≥ 0, ηk(R\{j}) ≥ ηk(R), and ηk(R\{j}) ≥ ηk(S\{j}). Taking the sum over j ∈ R\{k}
yields ∑

j∈R\{k}

ηj(R\{k})
ηk(R\{j})

≤
∑

j∈R\{k}

ηj(R\{k})− ηj(S\{k})
ηk(R)

+
∑

j∈R\{k}

ηj(S\{k})
ηk(S\{j})

=
η(R\{k})− η(S\{k}) + ηq(S\{k})

ηk(R)
+

∑
j∈R\{k}

ηj(S\{k})
ηk(S\{j})

. (12)

Finally we note that
η(S)− η(R) ≤ η(S\{k})− η(R\{k}), (13)

since the left hand side is the sum of arrival rates over C(q) ∩ (C\C(R)), while the right hand
side is the sum of arrival rates of the larger or equal set C(q) ∩ (C\C(R\{k})).

Combining (12) and (13) proves (11). �

Example 2:

There are three customer types and three servers, with C(1) = {2, 3}, C(2) = {1, 3}, C(3) =
{1, 2}. Let λ = λ1 + λ2 + λ3. For i 6= j 6= k (note the symmetry) we have:

ηi({i}) = λj + λk, ηi({i, j}) =
λ(λj + λk)
λi + λj + 2λk

,

ηi({i, j, k}) =
λ(λ2 − λ2

i )
3λ2 − λ2

1 − λ2
2 − λ2

3

,

and hence:

π({i}) = π(∅) µi
λj + λk

, π({i, j}) = π(∅)µiµj(λi + λj + 2λk)
λ(λi + λk)(λj + λk)

,

π({i, j, k}) = π(∅) µiµjµk(3λ2 − λ2
1 − λ2

2 − λ2
3)

λ2(λi + λj)(λi + λk)(λj + λk)
.

We now look for the assignment probabilities. We get immediately for S of one or two servers:

P (j, i|{i}) = P (k, i|{i}) = 1, P (i, j|{i, j} = P (j, i|{i, j} = 1,

P (k, i|{i, j}) =
λi + λk

λi + λj + 2λk
, P (k, j|{i, j}) =

λj + λk
λi + λj + 2λk

.

When all three servers are idle, the equations to be solved are the three equations of the form:

λjP (j, i|{1, 2, 3}) + λkP (k, i|{1, 2, 3}) =
λ(λ2 − λ2

i )
3λ2 − λ2

1 − λ2
2 − λ2

3

(14)

As we have seen, these equations do have positive solutions, but here there are three unknowns
and only two equations (the three equations are dependent), so the solution is not unique. Using
the abbreviations P (i, j) ≡ P (i, j|{1, 2, 3}) and ηj ≡ ηj({1, 2, 3}), the solutions to (14) can be
parameterized as: P (i, j)

P (j, k)
P (k, i)

 =

 1− P (i, k)
1− P (j, i)
1− P (k, j)

 = (1− θ)


max(0,ηj−λk,λi−ηk)

λi
max(0,ηk−λi,λj−ηi)

λj
max(0,ηi−λj ,λk−ηj)

λk

+ θ


min(λi,ηj ,λi+λj−ηk)

λi
min(λj ,ηk,λj+λk−ηi)

λj
min(λk,ηi,λi+λk−ηj)

λk
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where 0 ≤ θ ≤ 1.

Example 2 illustrates two important points. First, the assignment probabilities need not be
unique. Second, one can ask: Is it true that P (i, j|S1) = P (i, j|S2) if S(i) ∩ S1 = S(i) ∩ S2?
In other words, given the set of idle servers which can serve i, the P (i, j|·) do not depend
on additional available servers which cannot serve i. This is false, as Example 2 shows: If
we take P (i, k|{1, 2, 3}) = P (i, k|{j, k}), P (j, k|{1, 2, 3}) = P (j, k|{i, k}) and P (k, i|{1, 2, 3}) =
P (k, i|{i, j}), this choice will not satisfy the equations (14). So, if we want to have a product
form solution, the routing rates have to change every time the state changes, even if the routing
options for some of the customer types do not change. This shows how fragile the phenomena
of product form is.

4 Insensitivity

In this section we show that, like the Erlang loss system, our reversible multi-type system is
insensitive, in that the stationary distribution depends on the service time distributions only
through their means. Furthermore, we also show that for arbitrary service time distributions
with finite means this system remains reversible, and at stationarity all busy servers have attained
service and remaining service which are distributed according to the equilibrium distribution of
the processing time. We show insensitivity by the supplementary variable method, and our proof
closely follows the 1957 proof of Sevastyanov [13], for the Erlang loss system.

We now assume that service times of server j are i.i.d. with distribution Fj with Fj(0) = 0,
and finite mean 1/µj . We supplement the description of the state of the system at time t by
specifying the attained service times of the busy servers. We let Z(t) be the supplemented
process, with Zj(t) = zj = ∗ if server j is idle at time t, and Zj(t) = zj = xj ≥ 0 if server j is
serving a customer, and the attained service time of that customer is xj . For state z we let S(z)
be the subset of idle servers, i.e. the set of coordinates j with zj = ∗. We will denote by Pt(z)
the distribution of Z(t),

Pt(z) = P(Zj(t) = ∗, j ∈ S(z), Zj(t) ≤ xj , j 6∈ S(z))

and by pt(z) its density (which is shown in the proof to exist). We will denote by P (z), p(z) the
stationary distribution and density.

Proposition 7 The process Z(t) is ergodic with stationary probability density given by:

p(z) = π(S(z))
∏

j 6∈S(z)

µj(1− Fj(xj)) (15)

with π(S) given in (4).

Proof. Let Pt(z) be the distribution of Z(t), with initial distribution P0. It follows exactly as in
Theorem 2 of [13] that for arbitrary P0 and for any state z, Pt has a density at the coordinates
xj , j 6∈ S(z), if t > max{xj : j 6∈ S(z)}.

The process Z(t) is a Markov process with transitions for large t and small ∆ given by:

pt+∆

{
z : S(z) = S, zj = xj , j 6∈ S

}
=

pt

{
z : S(z) = S, zj = xj −∆, j 6∈ S

}
(1− η(S)∆)

∏
j 6∈S

1− Fj(xj)
1− Fj(xj −∆)
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+
∑

k∈S(z)

∫ ∞
0

pt

{
z : S(z) = S\k, sk = y, sj = xj −∆, j 6∈ S

}
∏
j 6∈S

1− Fj(xj)
1− Fj(xj −∆)

Fk(y + ∆)− Fk(y)
1− Fk(y)

dy + o(∆)

and for any k 6∈ S,

pt+∆

{
z : S(z) = S, zj = xj , j 6∈ S ∪ k, xk = 0

}
∆ =

pt

{
z : S(z) = S ∪ k, zj = xj −∆, j 6∈ S

} ∏
j 6∈S∪k

1− Fj(xj)
1− Fj(xj −∆)

ηk(S ∪ k)∆ + o(∆).

Define now
p∗t (z) = pt(z)

/ ∏
j /∈S(z)

(1− Fj(xj)),

to obtain:

p∗t+∆

{
z : S(z) = S, zj = xj , j 6∈ S

}
= p∗t

{
z : S(z) = S, zj = xj −∆, j 6∈ S

}
(1− η(S)∆)

+
∑

k∈S(z)

∫ ∞
0

p∗t

{
z : S(z) = S\k, sk = y, sj = xj −∆, j 6∈ S

}
(Fk(y + ∆)− Fk(y))dy + o(∆)

and for any k 6∈ S,

p∗t+∆

{
z : S(z) = S, zj = xj , j 6∈ S ∪ k, xk = 0

}
∆ =

p∗t

{
z : S(z) = S ∪ k, zj = xj −∆, j 6∈ S ∪ k

}
ηk(S ∪ k)∆ + o(∆).

From these equations (and assuming that p∗t (z) is differentiable) we get a set of integro-differential
equations:

∂p∗t (z)
∂t

+
∑
j 6∈S(z)

∂p∗t (z)
∂xj

= −η(S)p∗t (z) +
∑

k∈S(z)

∫ ∞
0

p∗t
(
z : zk = y

)
dFk(y)

with boundary conditions:

p∗t
(
z : zk = 0

)
= p∗t

(
z : sk = ∗

)
ηk(S ∪ k), k 6∈ S.

In stationarity the derivatives with respect to t cancel, so that we have:∑
j 6∈S(z)

∂p∗(z)
∂xj

= −η(S)p∗(z) +
∑

k∈S(z)

∫ ∞
0

p∗
(
z : zk = y

)
dFk(y)

with boundary conditions:

p∗
(
z : zk = 0

)
= p∗

(
z : sk = ∗

)
ηk(S ∪ k), k 6∈ S.

We now put in the trial solution

p∗(z) = π(S)
∏

j 6∈S(z)

µj .
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Note that xj do not appear in this trial solution. We obtain in the second equation, for any S
and k 6∈ S:

π(S)µk
∏

j 6∈S∪k

µj = π(S ∪ k)ηk(S ∪ k)
∏

j 6∈S∪k

µj ,

which is exactly the detailed balance equation (3) satisfied by π for each S and k 6∈ S, and in
the first equation we get:

π(S)
∏
j 6∈S

µjη(S) =
∑
k∈S

π(S\k)µk
∏
j 6∈S

µj ,

which is also, according to (3), satisfied by π for any S.
This confirms that (15) is a stationary density for the Markov process Z(t). It can now be

shown exactly as in [13] that Z(t) is ergodic with a unique stationary density. �
We now consider a different way to supplement our process X(t). We specify at time t the set

of idle machines, supplemented by the remaining processing time on the busy machines (rather
than the attained service time). We let Y (t) be the supplemented process, with Yj(t) = yj = ∗ if
server j is idle, and Yj(t) = yj = xj ≥ 0 if server j is serving a customer at time t with remaining
service time xj .

Proposition 8 The process Y (t) is ergodic with the same stationary probability density as Z(t).
Furthermore, if we consider the stationary versions of Z(t) and Y (t) then Z(t) is equal in dis-
tribution (for the whole process) to the reversed process Y (−t).

Proof. Both Z(·) and Y (·) are Markov processes. They both move on the same state space.
Denote by pY (z, t, z′), pZ(z, t, z′) the transition kernels of the two processes, from state z to z′

in time t. Let P be the stationary distribution of Z(·), with density p, as given in Proposition 7.
Assume that Y (t−∆) and Z(t) are both distributed like P . We will show that for small ∆, the
joint probability densities of (Y (t), Y (t−∆)) and (Z(t), Z(t+ ∆)) differ only by a term of order
o(∆). This will show that P is also the stationary probability distribution of Y (·), and that the
forward stationary Markov process Z(t) has the same transition kernel as the reversed Markov
process Y (−t), and thus prove the theorem.

Consider a fixed general state z with a set S of idle servers, and values xj ≥ 0, j 6∈ S; we will
for convenience denote it by z = (S, xj , j 6∈ S). We will calculate the joint probability density of
(Z(t), Z(t + ∆)) = (z, z′), and of (Y (t), Y (t −∆)) = (z, z′), or equivalently (Y (t −∆), Y (t)) =
(z′, z), for all z′ and small ∆. We wish to show that the order 1 and order ∆ terms of both
densities are the same. Excluding events of probability o(∆) the states z′ that we need to be
consider are:

z′ = (S, xj+∆, j 6∈ S), z′ = (S∪k, xj+∆, j 6∈ S∪k), k 6∈ S, z′ = (S\k, xj+∆, j 6∈ S, xk = 0), k ∈ S.

We now perform the six probability calculations to prove the required equalities. For z′ =
(S, xj + ∆, j 6∈ S) we get:

p(z)pZ(z, t, z′) = π(S)
∏
j 6∈S

µj(1− Fj(xj)) · (1− η(S)∆)
∏
j 6∈S

1− Fj(xj + ∆)
1− Fj(xj)

+ o(∆),

p(z′)pY (z′, t, z) = π(S)
∏
j 6∈S

µj(1− Fj(xj + ∆)) · (1− η(S)∆) + o(∆),

which are obviously equal up to order ∆ terms.
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For k 6∈ S and z′ = (S ∪ k, xj + ∆, j 6∈ S ∪ k) we get:

p(z)pZ(z, t, z′) = π(S)
∏
j 6∈S

µj(1− Fj(xj)) · (1− η(S)∆)
∏

j 6∈S∪k

1− Fj(xj + ∆)
1− Fj(xj)

Fk(xk + ∆)− Fk(xk)
1− Fk(xk)

+ o(∆),

p(z′)pY (z′, t, z) = π(S ∪ k)
∏

j 6∈S∪k

µj(1− Fj(xj + ∆)) · ηk(S)
(
Fk(xk + ∆)− Fk(xk)

)
+ o(∆).

After discarding the order ∆2 term in the first expression and canceling common terms, we get
that these expressions are equal (up to order ∆ terms) by the detailed balance of π, for k 6∈ S:

π(S)µk = π(S ∪ k)ηk(S).

Finally, for k ∈ S and z′ = (S\k, xj + ∆, j 6∈ S, xk = 0) we get:

p(z)pZ(z, t, z′) = π(S)
∏
j 6∈S

µj(1− Fj(xj)) ·
∏
j 6∈S

1− Fj(xj + ∆)
1− Fj(xj)

ηk(S)∆ + o(∆),

p(z′)pY (z′, t, z) = π(S\k)
∏
j 6∈S

µj(1− Fj(xj + ∆))µk(1− Fk(0))∆ · (1− η(S\k)∆) + o(∆),

and again, after discarding the order ∆2 term in the second expression and canceling common
terms and using that Fk(0) = 0, we get that these are equal (up to order ∆ terms) by the detailed
balance of π, for k ∈ S:

π(S\k)µk = π(S)ηk(S).

This completes the proof. �

5 Discussion

In this paper we considered a loss system. It is interesting to also investigate the same system
with no losses: this is a single queueing station, with multi-type customers queueing in I different
queues, and J servers, which are heterogeneous, server j serving the queues of customers of types
C(j), at rate µj .

In that case one needs to specify the service policy. A very common service policy is FCFS:
whenever a server becomes available he will serve the longest waiting customer which is com-
patible with him, or else he will idle. One needs also to specify assignment rules for customers
which arrive and find suitable servers which are idle. It again turns out that the assignment
probabilities can be chosen so that this FCFS system will satisfy partial balance, and have a
product form stationary distribution. This topic was explored in [2, 3, 17, 4], and finally resolved
in [15, 16]. Remarkably, it turns out that the assignment probabilities are exactly those derived
here for the reversible loss system.

This model is also related to the overloaded system with abandonments discussed in [14], and
to the model of FCFS matching of infinite sequences of customers and servers proposed in [8].
Recently [1] showed that the model of FCFS matching of infinite sequences has a product form
solution which is similar to that of [15, 16], for which no assignment condition is necessary.
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