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Abstract

In this paper we introduce the concept of implied (il)liquidity of vanilla options. Implied
liquidity is based on the fundamental theory of conic finance, in which the one-price model is
abandoned and replaced by a two-price model giving bid and ask prices for traded assets. The
pricing is done by making use of non-linear distorted expectations. We first recall a two parameter
distortion function representing the notions of risk aversion and absence of gain enticement. After
reviewing under the Black-Scholes setting the theory and numerics of the calculation of bid-ask
prices under conic finance theory, we introduce the concept of implied liquidity. In a fixed market
with no movement in the cone of acceptable risks and hence no change in liquidity as the market is
then fixed, the bid ask spread moves around nonlinearly with maturity and/or volatility. Because
the spread can move in a constant market with no change in liquidity, spread itself is not a perfect
measure of liquidity. Implied liquidity can overcome this criticism. We illustrate the theory on
SP500 and Dow Jones Index data. We show that for vanilla options we typically have for higher
strikes (OTM) more implied illiquidity. We typically see not much term structure. Also, we
perform a historical study, in which we clearly see a serious drying up of liquidity in the weeks
post the Lehman bankruptcy. Next, we elaborate on stochastic liquidity behavior and potential
liquidity contracts and modeling. Seen the evidence of changing liquidity in the recent past with
a potentially very disruptive drying up of liquidity, these contracts could provide extra hedges for
such circumstances. The above notion of implied liquidity leads toward a mean-reverting modeling
of liquidity similar to stochastic volatility. We believe such stochastic liquidity modeling could be
very useful in structured product pricing, delta-gamma-vega hedging studies and risk-management
in general.



1 Introduction

In business, economics or investment, market liquidity is an important quantity. It reflects the
asset’s ability to be sold without causing a significant movement in the price and with minimum
loss of value. Liquidity goes hand in hand with bid and ask spreads; high liquid products have a
small spread; illiquid assets have a high spread. The essential characteristic of a liquid market is
that there are ready and willing buyers and sellers at all times. Some products are more liquid
than other investments. Dow Jones index components are obviously much more liquid than real
estate.

In transactions, investors sometimes apply liquidity discount and take in that way into account
a reduced promised yield or expected return for such assets. Buyers know that other investors are
not willing to buy back that easily an illiquid product. Hence to be prudent it has been argued
that if one buys an asset at its ask price, it should be booked on the basis of its bid prices [3] (and
hence a transaction immediately accounts for a loss, this bid ask spread).

Portfolio managers that oversee huge investment portfolios are subject to systematic and struc-
tural liquidity risk. In times of crisis, liquidity dries up and one can not easily unwind positions
near theoretical prices. Fire-sale transactions are typically at much lower prices, due to huge
bid-ask spread at such moments.

In this paper, we initiate stochastic liquidity models and introduce related liquidity derivatives
providing hedges against liquidity changes. First, we will, by making use of conic finance theory,
introduce the concept of implied risk-aversion and implied gain-enticement; these quantities imme-
diately lead to bid-ask prices (and corresponding spreads) and hence reflect the liquidity situation
of a certain asset at a certain point in time. We elaborate on the calculation of these numbers in
the Black-Scholes world. Besides the implied volatility, which reflects the mid price of a vanilla,
we now have hence at hand one more implied parameter giving us a fundamental understanding of
the implied liquidity situation. The implied liquidity parameter is a unitless quantity that, as the
implied volatility, makes comparison of liquidity over different assets and markets straightforward.
We calculate these implied liquidity parameters over different strikes and maturities and hence
come to implied liquidity parameter surfaces. We typically see an upsloping skew over strike;
there is hardly any term structure. Next, we study the behavior of these quantities over time.
More precisely we calculate these for the ATM levels over time. We clearly see the effect during
the credit crisis; implied liquidity parameter spiked up during the weeks after Lehman collapsed,
indicating a clear drying up of liquidity in major vanilla markets.

Finally, we are tempted to introduce some liquidity derivative contracts that could serve as
potential hedge instruments against the drying up of liquidity. We come to the concept of realized
liquidity and propose risk liquidity based swaps and options as new liquidity derivatives.

2 Conic Finance Bid and Ask Pricing

In this section, we summarize the basic conic finance techniques used. For more background see
[1], [2] and [3]. We will discuss non-linear distorted expectation, acceptability and bid-ask pricing.

In this paper, we will make use of a distortion function from the minmaxvar family parame-
terized as given in Equation 1 by two parameters lambda A and gamma ~.

DA ) =1- (1~ uﬁ)lH (1)

Lambda determines the rate of loss aversion of the investor; gamma determines the absence of
gain enticement. Securities are traded in their own markets and we model different markets using
different levels of lambda and gamma to reflect the different preferences of investors in these
markets. We actually assume that each asset has its one market and hence its very specific loss
aversion and absence of gain enticement.



We use a non-linear expectation to calculate (bid and ask) prices. The prices arise form the
theory of acceptability. We say that a risk X is acceptable (X € A) if

Eg[X] > 0 for all measures @ in a convex set M.

The convex set is called a cone of measures; operational cones were defined by Cherney and Madan
[1] and depend solely on the distribution function G(x) of X and a distortion function ®. X € A
if the distorted expectation is non-negative. More precisely, the distorted expectation of a random
variable X with distribution function G(z) relative to the distortion function ® (we use the one
given in Equation (1), but other distortion functions are also possible), is defined as

+oo
de(Xih ) =EM(X) = [ add(Gl)iA). (2)
Note that if A = v = 0, ®(u;0,0) = u and hence de(X;0,0) = E[X] is the ordinary linear
expectation.
The ask price of payoff X is determined as

ask(X) = —exp(—rT)EM7[-X].

This formula is derived by noting that the cash-flow of selling X at its ask price is acceptable in
the relevant market: ask(X) — X € A
Similarly, the bid price of payoff X is determined as

bid(X) = exp(—rT)EM[X].

Here the cash-flow of buying X at its bid price is acceptable in the relevant market : X —bid(X) €
A.

One can prove that the bid and ask prices of a positive contingent claim X with distribution
function G(z) can be calculated as:

—+oo

bid(X) = exp(—rT)/O zd®(G(z); N\, 7), (3)
+oo

ask(X) = exp(—rT)/0 zd®(1 — G(—z); A, 7). (4)

Suppose like in an usual market situation we have a bid and ask price for a European call.
We then can calculate the mid price of that call option, as the average of the bid and ask prices.
Out of this mid price we calculate the implied Black-Scholes volatility. Next, we can calculate an
implied (), ), pair such that conic bid and ask prices (using the implied vol as parameter) are
perfectly matched with market prices.

Under the Black-Scholes framework, this comes down to the following calculations for a Euro-
pean call option with strike K and maturity 7.

Because P((St — K)* > x) = P(Sr > K + ) for z > 0, the distribution function value in
point x of the call payoff, is nothing else than one minus the probability of finishing above K + x.
Using the usual interpretation of the so-called N(d2)-term of the Black-Scholes formula, we have

log(So/(K 4+ )+ (r—q— 02/2)T)
oVT ’

where N is the cumulative distribution function of the standard normal law, o is the implied vol
determined on the basis of the mid price. For z < 0, G(z) = 0, since the payoff is a positive
random variable. The above close-form solution for G(z) in combination with Equation 3 and 4
give rise to very fast and accurate calculations of the bid and ask pricing.

x>0

G(x):l—N(
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Figure 1: Bid-Ask Pricing - European Call - A =~

In Figure 1, one sees the bid, mid and ask prices for a range of distortions for which A = ~.
Values are graphed for a lyear ATM call option under a 20 % volatility.

In Figure 2, one sees the bid and ask prices around a market quote for the situation where
A # v (actually v = 57v). Values are graphed again for a lyear ATM call option under a 20 %
volatility. Here one sees clearly that the theoretical Black-Scholes price is no longer the mid price.

Since in the sequel, we will investigate the bid-ask spread around the mid price, we will work
from now on under the situation A = . The theory can readily be extended to the more general
case A\ # 7.

3 Implied Liquidity

We will call the parameter, fitting the bid-ask spread (under a symmetric distortion) around the
mid price, the implied liquidity parameter. Hence for the European Call option (strike K and
maturity 7') with given market bid (b) and ask (a) prices, the implied liquidity parameter is the
specific A > 0, such that:

a = —exp(—rT)EM—(Sr — K)"] and b = exp(—rT)E* (St — K) ],

where we have written E* as short notation of the above EM* operator, because we work in a
symmetric case.

As it can be seen from Figure 1, the smaller the implied liquidity parameter the more liquid
the underlying and the smaller the bid-ask price. In the extremal case where the implied liquidity
parameter equals 0, the bid price coincides with the ask price, and we do work again under the
one-price framework.

In a fixed market with no movement in the cone of acceptable risks and hence no change in
liquidity as the market is then fixed, the bid ask spread moves around nonlinearly with maturity
and or volatility. So the spread can move in a constant market with no change in liquidity.
Therefore spread itself is not a perfect measure of liquidity. Implied liquidity can overcome this
criticism.



Bid-ask pricing — European Call —asymmetric distortion
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Figure 2: Bid-Ask Pricing - Furopean Call - X # ~

A new parameter, calls for also a new greek. We call the sensitivity of the bid and ask price
with respect to a change in the liquidity parameter X, the lidip':
dask(X)

ox

Abid(X)

and lidip,,;, =
Lidip is negative for the bid and positive for the ask.

As a first illustration we have calculated the implied liquidity parameter for European Calls on
the SP500 with a 1y maturity on the 1st of October 2009. In Figure 3, we observe an upsloping
curve for increasing strike.

Secondly, we have calculated the implied liquidity parameter for ATM European Calls on the
SP500 over maturity on the 1st of October 2009. In Figure 4, we observe a slightly upsloping
curve on average for increasing maturities; some maturities are clearly more liquid than others. In
the example T' = 0.043, 0.293, 0.96 and 2.21 years are the most liquid ones.

In Figure 5 we graph, the implied liquidity parameter for ATM European calls with maturity
(the closed to) 1 year over time for the SP500. We clearly see that liquidity is non constant
over time and exhibits a mean-reverting behavior. The period ranges from the 3rd of January
2007 until the 30th of October 2009. We have estimated the (long run) average of the implied
liquidity of the data set and over the period of the investigation this equals 67.11 bp. The highest
value for the implied liquidity parameter was 283.1 bp on the 20th of October 2008. Around that
day (and the week-end before) several European banks were rescued by government interventions.
The graph indicates that implied liquidity behaves in a stochastic manner and apparently has a
mean-reverting nature.

A similar graph can be found in Figure 6 for the 3 months to maturity ATM European Call
on the SP500.

In Figure 7 we graph, the implied liquidity parameter for the ATM European call with maturity
(the closed to) 1 year over time for the Dow Jones Index. The (long run) average of the implied
liquidity of the data set over the period of the investigation equals 95.90 bp. The implied liquidity

IThe reader can see the reference to liquidity dip in this word; an educated reader can see it as an anagram.



Implied liquidity skew - 1y European Call - SP500 - 01/10/2009
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Figure 3: Implied Liquidity Smile SP500 - 01/10/2009

parameter spikes in October 2008 to around 350 bp. Liquidity is hence on average and as well in
distress situations lower than on the SP500.

A similar graph can be found in Figure 8 for the 3 months to maturity ATM European Call
on the Dow Jones.

4 Liquidity Derivatives

Seen the utmost importance and the extreme dependence on liquidity of financial institutions,
hedge funds and other financial players, claims contingent on liquidity may serve as potential
hedges against drying up liquidity in critical times. In the subsections below we propose a few of
liquidity derivatives, many other variations are possible.

4.1 Vanilla Liquidity Derivatives

We propose a contract that pays out a certain notional multiplied with the positive part of the
difference of the implied liquidity on a certain day and a fixed strike liquidity. The fixing day can
either be a fixed day, the maturity of the contract , in which case we deal with a European type
of contract or a day during the lifetime of the contract (American Style). The European contract
pays out at maturity :

payoffrc = N x (Ar — K)7,

where N is notional, K is the strike liquidity and Ar is the implied ATM liquidity at maturity 7.
This contract can be useful for financial players who know that on a certain date a certain position
needs to be liquidated and hence face liquidity risk at that date. The American style version is of
interest for players where a liquidation will take place within a certain time window but the exact
time is unsure when for the moment. Hedge fund facing redemption risk in periods of financial
distress, which often comes along with less liquidity, could be potentially interested parties.



Term Strcuture of Implied liquidity for ATM Eurpean Calls - SP500 - 01/10/2009
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Figure 4: Implied Liquidity Term SP500 - 01/10/2009

4.2 Average or Realized Liquidity Derivatives

A financial player who is exposed to liquidity risk all the time, because of the periodically adjust-
ment of hedges or certain dynamics trading strategies (e.g. CPPIs), could be interested in a macro
hedge against liquidity over the time-period of interest. Denoting the implied liquidity at time ¢
with A¢, an Asian type or realized liquidity swap could be of interest. More precisely, we propose
a liquidity swap where "realized” liquidity (measured as average realized liquidity) is exchanged
for a fixed strike liquidity. If liquidity dried up on average over the time period the swap will have
a positive payoff; in a more liquid market than anticipated the swap will give a negative payoft:

S hdt
payoffrealizedliquidity =N x T —K|.

4.3 Exotic Liquidity Derivatives

Finally, we mention examples of exotic liquidity products which could be used as extra underlying
clauses for structured products derivatives. The variations are endless. Imagine a principal pro-
tected note paying out either the initial investment or a certain percentage (participation rate) of
the gain over a fixed time period of a certain underlier. Due to high volatility and low interest
rates in the current times, the participation rate offered nowadays is quite low; this participation
rate could be raised by making the payoff contingent on the behavior of liquidity. For example,
one can have the regular payoff only if liquidity has never fallen/risen below/above a certain level.
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10



