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Abstract

By proving an L2-gradient estimate for the corresponding Galerkin approxima-
tions, the log-Harnack inequality is established for the semigroup associated to a
class of stochastic Burgers equations. As applications, we derive the strong Feller
property of the semigroup, the irreducibility of the solution, the entropy-cost in-
equality for the adjoint semigroup, and entropy upper bounds of the transition
density.
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1 Introduction

Let T = R/(2πZ) be equipped with the usual Riemannian metric, and let dθ denote the
Lebesgue measure on T. Then

H :=

{
x ∈ L2(dθ) : ‖x‖2 :=

∫

T
x(θ)dθ = 0

}

is a separable real Hilbert space with inner product

∗Supported in part by WIMCS and NNSFC(10721091).
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〈x, y〉 :=

∫

T
x(θ)y(θ)dθ.

For x ∈ C2(T), the Laplacian operator ∆ is given by ∆x = x′′. Let (A, D(A)) be the
closure of (−∆, C2(T)∩H) in H, which is a positively definite self-adjoint operator on H.
Then

V := D(A1/2), 〈x, y〉V := 〈A1/2x,A1/2y〉
gives rise to a Hilbert space, which is densely and compactly embedded in H. By the
integration by parts formula, for any x ∈ C2(T) we have

‖x‖2
V =

∫

T
(xAx)(θ)dθ =

∫

T
|x′(θ)|2dθ.

Moreover, for x, y ∈ C1(T) ∩H, set B(x, y) := xy′. Then B extends to a unique bounded
bilinear operator B : V × V → H with (see Proposition 2.1 below)

(1.1) ‖B‖V→H := sup
‖x‖V ,‖y‖V ≤1

‖B(x, y)‖ ≤ √
π.

Consider the following stochastic Burgers equation

(1.2) dXt = −{
νAXt + B(Xt)}dt + QdWt,

where ν > 0 is a constant, B(x) := B(x, x) for x ∈ V , Q is a Hilbert-Schmidt operator
on H, and Wt is the cylindrical Brownian motion on H. According to to [4, Chapter 5]
(see also [6, Theorem 14.2.4]), for any x ∈ H, this equation has a unique solution with the
initial X0 = x, which is a continuous Markov process on H and is denoted by Xx

t from
now on. If moreover x ∈ V , then Xx

t is a continuous process on V (see Proposition 2.3
below). We are concerned with the associated Markov semigroup Pt given by

Ptf(x) := Ef(Xx
t ), x ∈ H, t ≥ 0

for f ∈ Bb(H), the set of all bounded measurable functions on H.
The purpose of this paper is to investigate regularity properties of Pt, such as strong

Feller property, heat kernel upper bounds, contractivity properties, and entropy-cost in-
equalities. To do this, a powerful tool is the dimension-free Harnack inequality introduced
in [14] for diffuions on Riemannian manifolds (see also [1, 2] for further development). In
recent years, this inequality has been established and applied intensively in the study
of SPDEs (see e.g. [10, 15, 9, 7, 8, 17] and references within). In general, this type of
Harnack inequality can be formulated as

(1.3) (Ptf)α(x) ≤ (Ptf
α)(y) exp[Cα(t, x, y)], f ≥ 0,
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where α > 1 is a constant, Cα is a positive function on (0,∞)×H2 with Cα(t, x, x) = 0,
which is determined by the underlying stochastic equation.

On the other hand, in some cases this kind of Harnack inequality is not available, so
that the following weaker version (i.e. the log-Harnack inequality)

(1.4) Pt log f(x) ≤ log Ptf(y) + Cα(t, x, y), f ≥ 1

becomes an alternative tool in the study. In general, according to [16, Section 2], (1.4) is
the limit version of (1.3) as α →∞. This inequality has been established in [11] and [16],
respectively, for semi-linear SPDEs with multiplicative noise and the Neumann semigroup
on non-convex manifolds.

As for the stochastic Burgers equation (1.2), by using A1+σ for σ > 1
2

to replace A
(i.e. the hyperdissipative equation is concerned), the first and the third named authors
established an explicit Harnack inequality of type (1.3) in [18], where a more general
framework, which includes also the stochastic hyperdissipative Navier-Stokes equations,
was considered. But, when σ ≤ 1

2
, the known arguments (i.e. the coupling argument and

gradient estimate) to prove (1.3) are no longer valid. Therefore, in this paper we turn to
investigate the log-Harnack inequality for Pt associated to (1.2), which also provides some
important regularity properties of the semigroup (see Corollary 1.2 below). Note that
the stochastic Burgers equation does not satisfy the Lipschitz and monotone conditions
required in [11], the present study can not be covered there.

To state our main result, we introduce the intrinsic norm induced by the diffusion part
of the solution. For any x ∈ H, let

‖x‖Q := inf
{‖z‖H : z ∈ H, Q∗z = x

}
,

where Q∗ is the adjoint operator of Q, and we take ‖x‖Q = ∞ if the set in the right
hand side is empty. Moreover, let ‖ · ‖ and ‖ · ‖HS denote the operator norm and the
Hilbert-Schmidt norm respectively for bounded linear operators on H.

Theorem 1.1. Assume that ν3 ≥ 4π‖A−1/2Q‖2. Then for any f ∈ Bb(H) with f ≥ 1,

(1.5) Pt log f(x) ≤ log Ptf(y) +
2π‖Q‖2

HS‖x− y‖2
Q

1− exp[−4π
ν2 ‖Q‖2

HSt]
exp

[4π

ν2
(‖x‖2 ∨ ‖y‖2)

]

holds for t > 0 and x, y ∈ H.

Before introducing consequences of Theorem 1.1, let us recalled that the invariant
probability measure of Pt exists, and any invariant probability measure µ satisfies µ(V ) =
1. These follows immediately since V is compactly embedded in H and due to the Itô
formula one has

E‖X0
t ‖2

H + 2ν

∫ t

0

E‖X0
s‖2

V ds ≤ ‖Q‖2
HSt.
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Next, for any two probability measures µ1, µ2 on H, let Wc(µ1, µ2) be the transportation-
cost between them with cost function

(x, y) 7→ c(x, y) := ‖x− y‖2
Q exp

[4π

ν2
(‖x‖2 ∨ ‖y‖2)

]
.

That is,

Wc(µ1, µ2) = inf
µ∈C (µ1,µ2)

∫

H×H
c(x, y)µ(dx, dy),

where C (µ1, µ2) is the set of all couplings of µ1 and µ2. Finally, let

BV (x, r) =
{
z ∈ V : ‖z − x‖V < r

}
, x ∈ V, r > 0.

Corollary 1.2. Assume that ν3 ≥ 4π‖A−1/2Q‖2.

(1) For any t > 0, Pt is intrinsic strong Feller, i.e.

lim
‖x−y‖Q→0

Ptf(y) = Ptf(x), x ∈ H, f ∈ Bb(H).

(2) Let µ be an invariant probability measure of Pt and let P ∗
t be the adjoint operator

of Pt w.r.t. µ. Then the entropy-cost inequality

µ((P ∗
t f) log P ∗

t f) ≤ 2π‖Q‖2
HS

1− exp[−4π
ν2 ‖Q‖2

HSt]
Wc(fµ, µ), f ≥ 0, µ(f) = 1

holds for all t > 0.

(3) Let ‖ · ‖Q ≤ C‖ · ‖V hold for some constant C > 0. Then

(1.6) P(Xy
t ∈ BV (x, r)) > 0, x, y ∈ V, t, r > 0.

Consequently, Pt has a unique invariant probability measure µ, which is fully sup-
ported on V , i.e. µ(V ) = 1 and µ(G) > 0 for any non-empty open set G ⊂ V .
Furthermore, µ is strong mixing, i.e. for any f ∈ Bb(H),

lim
t→∞

Ptf(x) = µ(f), ∀ x ∈ V.

(4) Under the same assumption as in (3), Pt has a transition density pt(x, y) w.r.t. µ
on V such that the entropy inequalities

(1.7)

∫

V

pt(x, z) log
pt(x, z)

pt(y, z)
µ(dz) ≤ 2π‖Q‖2

HSc(x, y)

1− exp[−4π
ν2 ‖Q‖2

HSt]

and

(1.8)

∫

V

pt(x, y) log pt(x, y)µ(dy) ≤ − log

∫

V

exp

[
− 2π‖Q‖2

HSc(x, y)

1− exp[−4π
ν2 ‖Q‖2

HSt]

]
µ(dy)

hold for all t > 0 and x, y ∈ V .
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To prove the above results, we present in Section 2 some preparations including a brief
proof of (1.1), a convergence theorem for the Galerkin approximation of (1.2), and the
continuity of the solution in V . Finally, complete proofs of Theorem 1.1 and Corollary
1.2 are addressed in Section 3.

2 Some preparations

Obviously, (1.1) is equivalent to the following result.

Proposition 2.1. ‖B(x, y)‖2 ≤ π‖x‖2
V ‖y‖2

V holds for any x, y ∈ V .

Proof. Since
∫
T x(θ)dθ = 0, there exists θ0 ∈ T such that x(θ0) = 0. For any θ ∈ T,

let γ : [0, d(θ0, θ)] → T be the minimal geodesic from θ0 to θ, where d(θ0, θ)(≤ π) is the
Riemannian distance between these two points. By the Schwartz inequality we have

|x(θ)|2 =

∣∣∣∣
∫ d(θ0,θ)

0

d

ds
x(γs)ds

∣∣∣∣
2

≤ d(θ0, θ)

∫

T
|x′(ξ)|2dξ ≤ π‖x‖2

V .

Therefore,

‖B(x, y)‖2 =

∫

T
|(xy′)(θ)|2dθ ≤ π‖x‖2

V ‖y‖2
V .

Remark. From the proof we see that (1.1) is a property in one-dimension, since for
d ≥ 2 there is no any constant C ∈ (0,∞) such that

‖x‖2
∞ ≤ C

∫

Td

|∇x|2(θ)dθ, x ∈ C1(Td)

holds. The invalidity of (1.1) in high dimensions is the main reason why we only consider
here the stochastic Burgers equation rather than the stochastic Navier-Stokes equation.

Next, due to that fact that to prove the log-Harnack inequality we have to apply the
Itô formula for a reasonable class of reference functions which is, however, not available
in infinite-dimensions, we need to make use of the finite-dimensional approximations. To
introduce the Galerkin approximation of (1.2), let us formulate H by using the standard
ONB {ek : k ∈ Z} for the complex Hilbert space L2(T→ C; dθ), where

ek(θ) :=
1√
2π

eikθ, θ ∈ T.

Obviously, ∆ek = −k2ek holds for all k ∈ Z, and an element

x :=
∑

k∈Z
xkek, xk ∈ C
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belongs to H if and only if x0 = 0, x̄k = x−k for all k ∈ Ẑ := Z\{0}, and
∑

k∈Ẑ |xk|2 < ∞.
Therefore,

H =

{ ∑

k∈Ẑ
xkek : x̄k = x−k,

∑

k∈Ẑ
|xk|2 < ∞

}
.

For any m ∈ N, let

Hm =
{
x ∈ H : 〈x, ek〉 = 0 for |k| > m

}
,

which is a finite-dimensional Euclidean space. Let πm : H → Hm be the orthogonal
projection. Let Bm = πmB and Qm = πmQ. Consider the following stochastic differential
equation on Hm:

(2.1) dX
(m)
t = −{

νAX
(m)
t + Bm(X

(m)
t )

}
dt + QmdWt.

Since coefficients in this equation are smooth and

d‖X(m)
t ‖2 ≤ 2‖Qm‖2

HSdt + 2〈X(m)
t , QmdWt〉,

we conclude that for any x ∈ Hm this equation has a unique solution Xm.x
t which is

non-explosive. Let

P
(m)
t f(x) = Ef(Xm,x

t ), t ≥ 0, x ∈ Hm, f ∈ Bb(Hm).

In the spirit of [4, Theorem 5.7], the next result implies

(2.2) Ptf(x) = lim
m→∞

P
(m)
t f(xm), x ∈ H, f ∈ Cb(H)

for {xm ∈ Hm}m≥1 such that xm → x in H.

Proposition 2.2. For any {xm ∈ Hm}m≥1 such that ‖x − xm‖H → 0, we have ‖Xx
t −

Xm,xm
t ‖ → 0 in probability as m →∞. Consequently, (2.2) holds.

Proof. Simply denote Xt(m) = Xm,xm
t and Xt = Xx

t . It is easy to see that

(2.3) E
∫ t

0

(‖Xs‖2
V + ‖Xs(m)‖2

V )ds ≤ C(1 + t)

holds for some constant C > 0. By the Itô formula we have

‖Xt −Xt(m)‖2

= −2

∫ t

0

{
ν‖Xs −Xs(m)‖2

V + 〈B(Xs)−B(Xs(m)), Xs −Xs(m)〉}ds + ηt(m),
(2.4)
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where

ηt(m) := ‖Q−Qm‖2
HSt + ‖x− xm‖2 + 2 sup

r∈[0,t]

∣∣∣∣
∫ r

0

〈Xs −Xs(m), (Q−Qm)dWs〉
∣∣∣∣,

which goes to 0 as m →∞. Since by (1.1)

|〈B(x)−B(y), x− y〉| = |〈B(x, x− y) + B(x− y, y), x− y〉|
≤ π‖x− y‖(‖x‖V + ‖y‖V )‖x− y‖V ,

it follows from (2.4) that

‖Xr −Xr(m)‖2 ≤ π

ν

∫ r

0

‖Xs −Xs(m)‖2(‖Xs‖2
V + ‖Xs(m)‖2

V )ds + ηt(m), r ∈ [0, t].

Therefore,

‖Xt −Xt(m)‖2 ≤ ηt(m) exp

[
π

ν

∫ t

0

(‖Xs‖2
V + ‖Xs(m)‖2

V )ds

]
.

Combining this with (2.3) we obtain that for any N > 0,

P
(‖Xt −Xt(m)‖2 ≥ ηt(m)eNπ/ν

) ≤ P
( ∫ t

0

(‖Xs‖2
V + ‖Xs(m)‖2

V )ds ≥ N

)
≤ C(1 + t)

N

which goes to 0 as N →∞. Since ηt(m) → 0 as m →∞, this implies that ‖Xt−Xt(m)‖ →
0 in probability as m →∞.

Finally, we have the following result for the continuity of the solution in V .

Proposition 2.3. For any x ∈ V , Xx
t is a continuous process in V .

Proof. For fixed x ∈ V and T > 0, we introduce the map

Y : C([0, T ]; V ) → C([0, T ]; V ),

such that for any u ∈ C([0, T ]; V ), {Yt(u)}t∈[0,T ] solves the deterministic equation

(2.5) Ẏt(u) = −{
νAYt(u) + B(Yt(u) + ut)

}
, Y0(u) = x.

Then Y (u) ∈ C([0, T ]; V ), see e.g. [13, Theorem 3.2] (the theorem is for 2D Navier-Stokes
equation, so it is of course true for our case).

Next, let

Zt =

∫ t

0

e−ν(t−s)AQdWs.

Since Q is Hilbert-Schmidt on H, Zt is a continuous process on V (see e.g. [5, Theorem
5.9]). Therefore, Xx

t = Yt(Z) + Zt is also continuous in V .
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3 Proofs of Theorem 1.1 and Corollary 1.2

According to [11], the key step to prove the log-Harnack inequality for P
(m)
t is the gradient

of type

|QmDP
(m)
t f |2(x) ≤ (P

(m)
t |QmDf |2)(x)C(t, x), f ∈ C1

b (Hm)

for some continuous function C on (0,∞)×Hm, where D is the gradient operator on Hm,
i.e. for any f ∈ C1(Hm), the element Df(x) ∈ Hm is determined by

〈Df(x), h〉 = Dhf(x) := lim
ε→0

f(x + εh)− f(x)

ε
, h ∈ Hm.

To derive the desired gradient estimate, we need the following exponential estimate for
Xm

t .

Lemma 3.1. For any x ∈ Hm and t ≥ 0,

E exp

[
ν

2‖A−1/2Qm‖2

(
‖Xm,x

t ‖2 + ν

∫ t

0

‖Xm,x
s ‖2

V ds

)]
≤ exp

[
ν(‖x‖2 + ‖Qm‖2

HSt)

2‖A−1/2Qm‖2

]
.

Proof. By the Itô formula, we have

(3.1) d‖Xm,x
t ‖2 + 2ν‖Xm,x

t ‖2
V dt = ‖Qm‖2

HSdt + 2〈Xm,x
t , QmdWt〉.

Let

τn = inf
{
t ≥ 0 : ‖Xm,x

t ‖ ≥ n}, n ∈ N.

We have τn →∞ as n →∞. Let

M
(n)
t =

∫ t∧τn

0

〈Xm,x
s , QmdWs〉.

Then for any λ > 0

t 7→ exp
[
2λM

(n)
t − 2λ2〈M (n)〉t

]

is a martingale. Therefore, it follows from (3.1) that

E exp

[
λ‖Xm,x

t∧τn
‖2 + 2νλ

∫ t∧τn

0

‖Xm,x
s ‖2

V ds− 2λ2

∫ t∧τn

0

‖Q∗
mXm,x

s ‖2ds

]

≤ E exp

[
λ
(‖x‖2 + t‖Qm‖2

HS

)
+ 2λM

(n)
t − 2λ2〈M (n)〉t

]

= exp
[
λ(‖x‖2 + t‖Qm‖2

HS)
]
.

(3.2)

Noting that
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‖Q∗
mx‖ = ‖Q∗

mA−1/2A1/2x‖ ≤ ‖Q∗
mA−1/2‖‖x‖V = ‖A−1/2Qm‖2‖x‖V , x ∈ Hm,

by letting n ↑ ∞ in (3.2) and taking

λ =
ν

2‖A−1/2Qm‖2
,

we complete the proof.

Lemma 3.2. Let ν3 ≥ 4π‖A−1/2Qm‖2. Then for any f ∈ C1
b (Hm),

‖QmDP
(m)
t f‖2(x) ≤ (

P
(m)
t ‖QmDf‖2

)
(x) exp

[
2π

ν2

(‖x‖2 + t‖Qm‖2
HS

)]

holds for all t ≥ 0 and x ∈ Hm.

Proof. Let h ∈ Hm. According to e.g. [4, Section 5.4],

DhX
m,x
t := lim

ε→0

Xm,x+εh
t −Xm,x

t

ε
, t ≥ 0

exists and solves the ordinary differential equation

d

dt
DhX

m,x
t = −{

νADhX
m,x
t + B̃m(Xm,x

t , DhX
m,x
t )

}
,

where B̃m(x, y) := B(x, y) + B(y, x) for x, y ∈ Hm. By (1.1), this implies that

d

dt
‖DhX

m,x
t ‖2

V = −2ν‖ADhX
m,x
t ‖2 − 2〈ADhX

m,x
t , B̃m(Xm,x

t , DhX
m,x
t )〉

≤ 1

2ν
‖B̃m(Xm,x

t , DhX
m,x
t )‖2 ≤ 2π

ν
‖Xm,x

t ‖2
V ‖DhX

m,x
t ‖2

V .

Therefore,

‖DhX
m,x
t ‖2

V ≤ ‖h‖2
V exp

[
2π

ν

∫ t

0

‖Xm,x
s ‖2

V ds

]
.

Since ν3 ≥ 4π‖A−1/2Qm‖2 implies that

ν2

2‖A−1/2Qm‖2
≥ 2π

ν
,

by Lemma 3.1 and using the Jensen inequality we arrive at

(3.3) E‖DhX
m,x
t ‖2

V ≤ ‖h‖2
V exp

[
2π

ν

(‖x‖2 + t‖Qm‖2
HS

)]
.
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Consequently, by the dominated convergence theorem we obtain

(3.4) DhP
(m)
t f(x) = E〈Df(Xm,x

t ), DhX
m,x
t 〉, f ∈ C1

b (Hm), x ∈ Hm, t ≥ 0.

On the other hand, we have

‖QmDP
(m)
t f‖2 = sup

‖h̃‖≤1

〈QmDP
(m)
t f, h̃〉2 = sup

‖h̃‖≤1

〈DP
(m)
t f, Q∗

mh̃〉2

= sup
‖h‖Qm≤1

|DhP
(m)
t f |2,

(3.5)

where

‖h‖Qm := inf{‖z‖ : z ∈ Hm, Q∗
mz = h}

and ‖h‖Qm = ∞ if the set on the right hand side is empty. Now, for any h ∈ Hm with
‖h‖Qm ≤ 1, let {zn}n≥1 ⊂ H be such that Q∗

mzn = h and ‖zn‖ ≤ 1 + 1
n
. By (3.4) we have

|DhP
(m)
t |2(x) =

(
E〈Df(Xm,x

t ), DhX
m,x
t 〉)2

=
(
E〈QmDf(Xm,x

t ), DznXm,x
t 〉)2

≤ (
E‖QmDf(Xm,x

t )‖2
)
E‖DznXm,x

t ‖2 =
(
E‖QmDf(Xm,x

t )‖2
)
E‖A−1/2DznXm,x

t ‖2
V .

Combining this with (3.3) and (3.5) and letting n ↑ ∞, we complete the proof.

According to the L2-gradient estimate in Lemma 3.2, we are able to prove the log-
Harnack inequality for P

(m)
t as in [11].

Proposition 3.3. Let ν3 ≥ 4π‖A−1/2Qm‖2. For any f ∈ Bb(Hm) with f ≥ 1,

P
(m)
t log f(x) ≤ log P

(m)
t f(y) +

π‖Qm‖2
HS‖x− y‖2

Qm
exp[2π

ν2 (‖x‖2 ∨ ‖y‖2)]

1− exp[−2π
ν2 ‖Qm‖2

HSt]

holds for all t > 0 and x, y ∈ Hm.

Proof. It suffices to prove for ‖x−y‖Qm < ∞. Let {zn} ⊂ Hm be such that Q∗
mzn = x−y

and ‖zn‖2 ≤ ‖x− y‖2
Qm

+ 1
n
. Let γ ∈ C1([0, t];R) such that γ(0) = 0, γ(t) = 1. Finally, let

xs = (x− y)γ(s) + y, s ∈ [0, t]. Then, by Lemma 3.2 we have (see [11, Proof of Theorem
2.1] for explanation of the second equality)
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P
(m)
t log f(x)− log P

(m)
t f(y) =

∫ t

0

d

ds

{
P (m)

s log P
(m)
t−s f

}
(xs)ds

=

∫ t

0

{
− 1

2
P (m)

s ‖QmD log P
(m)
t−s f‖2 + γ′(s)〈x− y, DP (m)

s log P
(m)
t−s f〉

}
(xs)ds

≤
∫ t

0

P (m)
s

{
− 1

2
‖QmD log P

(m)
t−s f‖2

+ |γ′(s)| · ‖zn‖e2π(‖xs‖2+‖Qm‖2HSs)/ν2‖QmD log P
(m)
t−s f‖

}
(xs)ds

≤ ‖zn‖2

2

∫ t

0

|γ′(s)|2e4π(‖xs‖2+‖Qm‖2HSs)/ν2

ds.

Since ‖xs‖ ≤ ‖x‖ ∨ ‖y‖, by taking

γ(s) =
1− exp[−4π

ν2 ‖Qm‖2
HSs]

1− exp[−4π
ν2 ‖Qm‖2

HSt]
, s ∈ [0, t]

we obtain

P
(m)
t log f(x)− log P

(m)
t f(y) +

2π‖Q‖2
HS‖zn‖2

1− exp[−4π
ν2 ‖Q‖2

HSt]
exp

[4π

ν2
(‖x‖2 ∨ ‖y‖2)

]
.

This completes the proof by letting n →∞.

Proof of Theorem 1.1. It suffices to prove for f ∈ Cb(H) with f ≥ 1. Let ‖x− y‖Q < ∞.
For any ε > 0, let z ∈ H such that Q∗z = x− y and ‖z‖2 ≤ ‖x− y‖2

Q + ε. For any m ∈ N,
we have Q∗

mz = πmx − πmy. Let xm = πmx, zm = πmz and ym = πmy + Q∗
m(z − πmz).

Then zm ∈ Hm and Q∗
mzm = xm − ym, so that

‖xm − ym‖2
Qm

≤ ‖zm‖2 ≤ ‖x− y‖2
Q + ε.

Moreover, it is easy to see that xm → x and ym → y hold in H. Combining these with
Proposition 3.3 and (2.2), and letting m →∞ and ε → 0, we complete the proof.

Proof of Corollary 1.2. The intrinsic strong Feller property follows from [16, Proposition
2.3], while the entropy-cost inequality in (2) follow from the proof of Corollary 1.2 in [11].
So, it remains to prove (3).

(a). Applying (1.5) to f := 1 + m1B(x,r) for m ≥ 1, we obtain

(3.6) Pt log(1 + m1BV (x,r))(x) ≤ log
{
1 + mPt1BV (x,r)(y)

}
+ α(t)c(x, y), t > 0,m ≥ 1

for some function α : (0,∞) → (0,∞) independent of x, y and m. By Proposition 2.3 we
have ‖Xx

t − x‖V → 0 as t → 0. Then there exists t0 > 0 depending only on x such that

P(‖Xx
t − x‖V < r) ≥ 1

2
, t ∈ [0, t0].
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Thus, if P(Xy
t ∈ BV (x, r)) = 0 for some t ∈ (0, t0], then (3.6) yields that

1

2
log(1 + m) ≤ Pt log(1 + m1BV (x,r))(x) ≤ α(t)c(x, y), m ≥ 1,

which is impossible since ‖ · ‖Q ≤ C‖x − y‖V implies that c(x, y) < ∞ for x, y ∈ V .
Therefore,

P(Xz
t ∈ BV (x, r)) > 0, t ∈ (0, t0], z ∈ V.

Combining this with the Markov property we see that for t > t0,

P(Xy
t ∈ B(x, r)) =

∫

V

P(Xz
t0
∈ B(x, r))Pt−t0(y, dz) > 0,

where Pt−t0(y, dz) is the distribution of Xy
t−t0 . Therefore, (1.6) holds.

(b). The existence of the invariant measures for Burgers equation is well known ([6,
Section 14.4]). Since (1) and ‖ · ‖Q ≤ C‖ · ‖V imply the strong Feller property of Pt on V ,
by classical Doob’s Theorem, see Theorem 4.2.1 in [6], Eq. (1.2) has a unique invariant
measure µ, which is strong mixing and supported on V . The full support property of µ,
together with the strong Feller of Pt, implies the existence of transition density pt(x, y).
Finally, due to [16, Proposition 2.4(2)], (1.7) is equivalent to the log-Harnack inequality
(1.5), while (1.8) follows from (1.5) according to the proof of [11, Corollary 1.2].
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