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Abstract We continue our study of the parabolic Anderson equation ∂u/∂ t =
κ∆u + γξ u for the space-time field u : Zd × [0,∞)→ R, where κ ∈ [0,∞) is the
diffusion constant, ∆ is the discrete Laplacian, γ ∈ (0,∞) is the coupling constant,
and ξ : Zd × [0,∞)→ R is a space-time random environment that drives the equa-
tion. The solution of this equation describes the evolution of a “reactant” u under
the influence of a “catalyst” ξ , both living on Zd .

In earlier work we considered three choices for ξ : independent simple random
walks, the symmetric exclusion process, and the symmetric voter model, all in equi-
librium at a given density. We analyzed the annealed Lyapunov exponents, i.e., the
exponential growth rates of the successive moments of u w.r.t. ξ , and showed that
these exponents display an interesting dependence on the diffusion constant κ , with
qualitatively different behavior in different dimensions d. In the present paper we
focus on the quenched Lyapunov exponent, i.e., the exponential growth rate of u
conditional on ξ .

We first prove existence and derive qualitative properties of the quenched Lya-
punov exponent for a general ξ that is stationary and ergodic under translations in
space and time and satisfies certain noisiness conditions. After that we focus on the
three particular choices for ξ mentioned above and derive some further properties.
We close by formulating open problems.
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1 Introduction

Section 1.1 defines the parabolic Anderson model, Section 1.2 introduces the
quenched Lyapunov exponent, Section 1.3 summarizes what is known in the litera-
ture, Section 1.4 contains our main results, while Section 1.5 provides a discussion
of these results and lists open problems.

1.1 Parabolic Anderson model

The parabolic Anderson model (PAM) is the partial differential equation

∂

∂ t
u(x, t) = κ∆u(x, t)+ [γξ (x, t)−δ ]u(x, t), x ∈ Zd , t ≥ 0. (1)

Here, the u-field is R-valued, κ ∈ [0,∞) is the diffusion constant, ∆ is the discrete
Laplacian acting on u as

∆u(x, t) = ∑
y∈Zd
‖y−x‖=1

[u(y, t)−u(x, t)] (2)

(‖ · ‖ is the Euclidian norm), γ ∈ [0,∞) is the coupling constant, δ ∈ [0,∞) is the
killing constant, while

ξ = (ξt)t≥0 with ξt = {ξ (x, t) : x ∈ Zd} (3)

is an R-valued random field that evolves with time and that drives the equation.
The ξ -field provides a dynamic random environment defined on a probability space
(Ω ,F ,P). As initial condition for (1) we take

u(x,0) = δ0(x), x ∈ Zd . (4)

One interpretation of (1) and (4) comes from population dynamics. Consider a
system of two types of particles, A (catalyst) and B (reactant), subject to:

• A-particles evolve autonomously according to a prescribed dynamics with ξ (x, t)
denoting the number of A-particles at site x at time t;

• B-particles perform independent random walks at rate 2dκ and split into two at a
rate that is equal to γ times the number of A-particles present at the same location;

• B-particles die at rate δ ;
• the initial configuration of B-particles is one particle at site 0 and no particle

elsewhere.

Then
u(x, t) = the average number of B-particles at site x at time t

conditioned on the evolution of the A-particles. (5)
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It is possible to remove δ via the trivial transformation u(x, t)→ u(x, t)e−δ t . In what
follows we will therefore put δ = 0.

Throughout the paper, P denotes the law of ξ and we assume that

• ξ is stationary and ergodic under translations in space and time,
ξ is not constant and ρ = E(ξ (0,0)) ∈ R,

(6)

and
• ∀κ,γ ∈ [0,∞) ∃c = c(κ,γ) < ∞ : E(logu(0, t))≤ ct ∀ t ≥ 0. (7)

Three choices of ξ will receive special attention:

(1) Independent Simple Random Walks (ISRW) [Kipnis and Landim [22], Chapter
1]. Here, ξt ∈Ω = (N∪{0})Zd

and ξ (x, t) represents the number of particles
at site x at time t. Under the ISRW-dynamics particles move around indepen-
dently as simple random walks stepping at rate 1. We draw ξ0 according to the
equilibrium νρ with density ρ ∈ (0,∞), which is a Poisson product measure.

(2) Symmetric Exclusion Process (SEP) [Liggett [23], Chapter VIII]. Here, ξt ∈
Ω = {0,1}Zd

and ξ (x, t) represents the presence (ξ (x, t) = 1) or absence
(ξ (x, t) = 0) of a particle at site x at time t. Under the SEP-dynamics particles
move around independently according to an irreducible symmetric random
walk transition kernel at rate 1, but subject to the restriction that no two par-
ticles can occupy the same site. We draw ξ0 according to the equilibrium νρ

with density ρ ∈ (0,1), which is a Bernoulli product measure.
(3) Symmetric Voter Model (SVM) [Liggett [23], Chapter V]. Here, ξt ∈ Ω =

{0,1}Zd
and ξ (x, t) represents the opinion of a voter at site x at time t. Under

the SVM-dynamics each voter imposes its opinion on another voter according
to an irreducible symmetric random walk transition kernel at rate 1. We draw
ξ0 according to the equilibrium distribution νρ with density ρ ∈ (0,1), which
is not a product measure.

Note: While ISRW and SEP are conservative and reversible in time, SVM is not. The
equilibrium properties of SVM are qualitatively different for recurrent and transient
random walk. For recurrent random walk all equilibria with ρ ∈ (0,1) are non-
ergodic, namely, νρ = (1−ρ)δ{η≡0}+ρδ{η≡1}, and therefore are precluded by (6).
For transient random walk, on the other hand, there are ergodic equilibria.

1.2 Lyapunov exponents

Our focus will be on the quenched Lyapunov exponent, defined by

λ0 = lim
t→∞

1
t

logu(0, t) ξ -a.s. (8)
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We will be interested in comparing λ0 with the annealed Lyapunov exponents, de-
fined by

λp = lim
t→∞

1
t

logE
(
[u(0, t)]p)1/p

, p ∈ N, (9)

which were analyzed in detail in our earlier work (see Section 1.3). In (8–9) we pick
x = 0 as the reference site to monitor the growth of u. However, it is easy to show
that the Lyapunov exponents are the same at other sites.

By the Feynman-Kac formula, the solution of (1) reads

u(x, t) = Ex

(
exp
[

γ

∫ t

0
ξ (Xκ(s), t− s) ds

]
u
(
Xκ(t),0

))
, (10)

where Xκ = (Xκ(t))t≥0 is simple random walk on Zd stepping at rate 2dκ and Ex
denotes expectation with respect to Xκ given Xκ(0) = x. In particular, for our choice
in (4), for any t > 0 we have

u(0, t) = E0

(
exp
[

γ

∫ t

0
ξ
(
Xκ(s), t− s

)
ds
]

δ0
(
Xκ(t)

))
= E0

(
exp
[

γ

∫ t

0
ξ
(
Xκ(s),s

)
ds
]

δ0
(
Xκ(t)

))
, (11)

where in the last line we reverse time and use that Xκ is a reversible dynamics.
Therefore, we can define

Λ0(t) =
1
t

logu(0, t) =
1
t

logE0

(
exp
[

γ

∫ t

0
ξ
(
Xκ(s),s

)
ds
]

u
(
Xκ(t),0

))
. (12)

If the last quantity ξ -a.s. admits a limit as t→ ∞, then

λ0 = lim
t→∞

Λ0(t) ξ -a.s., (13)

where the limit is expected to be ξ -a.s. constant.
Clearly, λ0 is a function of d, κ , γ and the parameters controlling ξ . In what

follows, our main focus will be on the dependence on κ , and therefore we will often
write λ0(κ). Note that p 7→ λp(κ) is non-decreasing for p ∈ N∪{0}.

Note: Conditions (6–7) imply that the expectations in (10–12) are strictly positive
and finite for all x∈Zd and t ≥ 0, and that λ0 < ∞. Moreover, by Jensen’s inequality
applied to (12) with u(·,0) given by (4), we have E(Λ0(t))≥ ργ + 1

t logP0(Xκ(t) =
0) and, since the last term tends to zero as t→ ∞, we find that λ0 ≥ ργ >−∞.
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1.3 Literature

The behavior of the Lyapunov exponents for the PAM in a time-dependent random
environment has been the subject of several papers.

1.3.1 White noise

Carmona and Molchanov [6] obtained a qualitative description of both the quenched
and the annealed Lyapunov exponents when ξ is white noise, i.e.,

ξ (x, t) =
∂

∂ t
W (x, t), (14)

where W = (Wt)t≥0 with Wt = {W (x, t) : x ∈ Zd} is a space-time field of indepen-
dent Brownian motions. This choice is special because the increments of ξ are
independent in space and time. They showed that if u(·,0) has compact support
(e.g. u(·,0) = δ0(·) as in (4)), then the quenched Lyapunov exponent λ0(κ) defined
in (8) exists and is constant ξ -a.s., and is independent of u(·,0). Moreover, they
found that the asymptotics of λ0(κ) as κ ↓ 0 is singular, namely, there are constants
C1,C2 ∈ (0,∞) and κ0 ∈ (0,∞) such that

C1
1

log(1/κ)
≤ λ0(κ)≤C2

log log(1/κ)
log(1/κ)

∀0 < κ ≤ κ0. (15)

Subsequently, Carmona, Molchanov and Viens [7], Carmona, Koralov and Molcha-
nov [5], and Cranston, Mountford and Shiga [9], proved the existence of λ0 when
u(·,0) has non-compact support (e.g. u(·,0) ≡ 1), showed that there is a constant
C ∈ (0,∞) such that

lim
κ↓0

log(1/κ)λ0(κ) = C, (16)

and proved that
lim
p↓0

λp(κ) = λ0(κ) ∀κ ∈ [0,∞). (17)

(These results were later extended to Lévy white noise by Cranston, Mountford and
Shiga [10], and to colored noise by Kim, Viens and Vizcarra [20].) Further refine-
ments on the behavior of the Lyapunov exponents were conjectured in Carmona and
Molchanov [6] and proved in Greven and den Hollander [18]. In particular, it was
shown that λ1(κ) = 1

2 for all κ ∈ [0,∞), while for the other Lyapunov exponents the
following dichotomy holds (see Figs. 1–2):

• d = 1,2: λ0(κ) < 1
2 , λp(κ) > 1

2 for p ∈ N\{1}, for κ ∈ [0,∞);
• d ≥ 3: there exist 0 < κ0 ≤ κ2 ≤ κ3 ≤ . . . < ∞ such that

λ0(κ)− 1
2

{
< 0, for κ ∈ [0,κ0),
= 0, for κ ∈ [κ0,∞), (18)
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and

λp(κ)− 1
2

{
> 0, for κ ∈ [0,κp),
= 0, for κ ∈ [κp,∞), p ∈ N\{1}. (19)

Moreover, variational formulas for κp were derived, which in turn led to upper and
lower bounds on κp, and to the identification of the asymptotics of κp for p→ ∞

(κp grows linearly with p). In addition, it was shown that for every p ∈ N\{1}
there exists a d(p) < ∞ such that κp < κp+1 for d ≥ d(p). Moreover, it was shown
that κ0 < κ2 in Birkner, Greven and den Hollander [2] (d ≥ 5), Birkner and Sun [3]
(d = 4), Berger and Toninelli [1], Birkner and Sun [4] (d = 3). Note that, by Hölder’s
inequality, all curves in Figs. 1–2 are distinct whenever they are different from 1

2 .

0
κ

1
2

λp(κ)

p = 0

p = 1

p = 2
p = 3
·
··

p = k

q
q
qq
q

d = 1,2

Fig. 1 Quenched and annealed Lyapunov exponents when d = 1,2 for white noise.

0
κ

1
2

λp(κ)

p = 0

p = 1

p = 2
p = 3
·
··

p = k

q
q
qq
q

q q q q
κ0 κ2 κ3 · · · κk

d ≥ 3

Fig. 2 Quenched and annealed Lyapunov exponents when d ≥ 3 for white noise.
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1.3.2 Interacting particle systems

Various models where ξ is dependent in space and time were looked at subse-
quently. Kesten and Sidoravicius [19], and Gärtner and den Hollander [13], con-
sidered the case where ξ is a field of independent simple random walks in Poisson
equilibrium (ISRW). The survival versus extinction pattern [19] and the annealed
Lyapunov exponents [13] were analyzed, in particular, their dependence on d, κ , γ

and ρ . The case where ξ is a single random walk was studied by Gärtner and Hey-
denreich [12]. Gärtner, den Hollander and Maillard [14], [16], [17] subsequently
considered the cases where ξ is an exclusion process with an irreducible symmet-
ric random walk transition kernel starting from a Bernoulli product measure (SEP),
respectively, a voter model with an irreducible symmetric transient random walk
transition kernel starting either from a Bernoulli product measure or from equilib-
rium (SVM). In each of these cases, a fairly complete picture of the behavior of
the annealed Lyapunov exponents was obtained, including the presence or absence
of intermittency, i.e., λp(κ) > λp−1(κ) for some or all values of p ∈ N\{1} and
κ ∈ [0,∞). Several conjectures were formulated as well. In what follows we describe
these results in some more detail. We refer the reader to Gärtner, den Hollander and
Maillard [15] for an overview.

It was shown in Gärtner and den Hollander [13], and Gärtner, den Hollander and
Maillard [14], [16], [17] that for ISRW, SEP and SVM in equilibrium the function
κ 7→ λp(κ) satisfies:

• If d ≥ 1 and p ∈ N, then the limit in (9) exists for all κ ∈ [0,∞). Moreover, if
λp(0) < ∞, then κ 7→ λp(κ) is finite, continuous, strictly decreasing and convex
on [0,∞).

• There are two regimes (we summarize results only for the case where the random
walk transition kernel has finite second moment):

– Strongly catalytic regime (see Fig. 3):
· ISRW: d = 1,2, p ∈ N or d ≥ 3, p≥ 1/γGd : λp ≡ ∞ on [0,∞).

(Gd is the Green function at the origin of simple random walk.)
· SEP: d = 1,2, p ∈ N : λp ≡ γ on [0,∞).
· SVM: d = 1,2,3,4, p ∈ N : λp ≡ γ on [0,∞).

– Weakly catalytic regime (see Fig. 4–5):
· ISRW: d ≥ 3, p < 1/γGd : ργ < λp < ∞ on [0,∞).
· SEP: d ≥ 3, p ∈ N : ργ < λp < γ on [0,∞).
· SVM: d ≥ 5, p ∈ N : ργ < λp < γ on [0,∞).

• For all three dynamics, in the weakly catalytic regime limκ→∞ κ[λp(κ)−ργ] =
C1 +C2 p21{d=dc} with C1,C2 ∈ (0,∞) and dc a critical dimension: dc = 3 for
ISRW, SEP and dc = 5 for SVM.

• Intermittent behavior:

– In the strongly catalytic regime, there is no intermittency for all three dynam-
ics.

– In the weakly catalytic regime, there is full intermittency for:
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· all three dynamics when 0≤ κ � 1.
· ISRW and SEP in d = 3 when κ � 1.
· SVM in d = 5 when κ � 1.

0

ργ

γ

∞

q
q

SEP, SVM

ISRW

κ

λp(κ)

Fig. 3 Triviality of the annealed Lyapunov exponents for ISRW, SEP, SVM in the strongly catalytic
regime.

ργ

0

qqqp = 1

p = 2

p = 3

?

κ

λp(κ)

d = 3 ISRW, SEP
d = 5 SVM

Fig. 4 Non-triviality of the annealed Lyapunov exponents for ISRW, SEP and SVM in the weakly
catalytic regime at the critical dimension.

ργ

0

qqqp = 1

p = 2

p = 3

?

κ

λp(κ)

d ≥ 4 ISRW, SEP
d ≥ 6 SVM

Fig. 5 Non-triviality of the annealed Lyapunov exponents for ISRW, SEP and SVM in the weakly
catalytic regime above the critical dimension.
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Note: For SVM the convexity of κ 7→ λp(κ) and its scaling behavior for κ→∞ have
not actually been proved, but have been argued on heuristic grounds.

Recently, there has been further progress for the case where ξ consists of 1 ran-
dom walk (Schnitzler and Wolff [25]) or n independent random walks (Castell, Gün
and Maillard [8]), ξ is the SVM (Maillard, Mountford and Schöpfer [24]), and for
the trapping version of the PAM with γ ∈ (−∞,0) (Drewitz, Gärtner, Ramı́rez and
Sun [11]). All these papers appear elsewhere in the present volume.

1.4 Main results

We have six theorems, all relating to the quenched Lyapunov exponent and extend-
ing the results on the annealed Lyapunov exponents listed in Section 1.3.

Let e be any nearest-neighbor site of 0, and abbreviate

Iξ (x, t) =
∫ t

0
[ξ (x,s)−ρ]ds, x ∈ Zd , t ≥ 0. (20)

Our first three theorems deal with general ξ and employ four successively stronger
noisiness conditions:

lim
t→∞

1
log t

E
(
|Iξ (0, t)− Iξ (e, t)|

)
= ∞, (21)

liminf
t→∞

1
t

E
(
|Iξ (0, t)− Iξ (e, t)|2

)
> 0, limsup

t→∞

1
t2 E

(
|Iξ (0, t)|4

)
< ∞, (22)

limsup
t→∞

1
t2/3 log

[
sup
η∈Ω

Pη

(
Iξ (0, t) > t5/6)]< 0, (23)

∃c < ∞ : sup
η∈Ω

Eη

(
exp
[
µIξ (0, t)

])
≤ exp[cµ

2t] ∀µ, t > 0, (24)

where Pη denotes the law of ξ starting from ξ0 = η .

Theorem 1.1. Fix d ≥ 1, κ ∈ [0,∞) and γ ∈ (0,∞). The limit in (8) exists P-a.s. and
in P-mean, and is finite.

Theorem 1.2. Fix d ≥ 1 and γ ∈ (0,∞).
(i) λ0(0) = ργ and ργ < λ0(κ) < ∞ for all κ ∈ (0,∞) with ρ = E(ξ (0,0)) ∈ R.
(ii) κ 7→ λ0(κ) is globally Lipschitz outside any neighborhood of 0. Moreover, if ξ

is bounded from above, then the Lipschitz constant at κ tends to zero as κ → ∞.
(iii) If ξ satisfies condition (21) and is bounded from below, then κ 7→ λ0(κ) is not
Lipschitz at 0.

Theorem 1.3. (i) If ξ satisfies condition (22) and is bounded from below, then

liminf
κ↓0

log(1/κ) [λ0(κ)−ργ] > 0. (25)
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(ii) If ξ is a Markov process that satisfies condition (23) and is bounded from above,
then

limsup
κ↓0

[log(1/κ)]1/6 [λ0(κ)−ργ] < ∞. (26)

(iii) If ξ is a Markov process that satisfies condition (24) and is bounded from above,
then

limsup
κ↓0

log(1/κ)
log log(1/κ)

[λ0(κ)−ργ] < ∞. (27)

Our last three theorems deal with ISRW, SEP and SVM.

Theorem 1.4. For ISRW, SEP and SVM in the weakly catalytic regime, limκ→∞

λ0(κ) = ργ .

Theorem 1.5. ISRW and SEP satisfy conditions (21) and (22).

Theorem 1.6. For ISRW in the strongly catalytic regime, λ0(κ) < λ1(κ) for all κ ∈
[0,∞).

Theorems 1.1–1.3 wil be proved in Section 2, Theorems 1.4–1.6 in Section 3.
Note: Theorem 1.4 extends to voter models that are non necessarily symmetric (see
Section 3.1).

1.5 Discussion and open problems

1. Fig. 6 graphically summarizes the results in Theorems 1.1–1.3 and what we ex-
pect to be provable with al little more effort. The main message of this figure is that
the qualitative behavior of κ 7→ λ0(κ) is well understood, including the logarithmic
singularity at κ = 0. Note that Theorems 1.2 and 1.3(i) do not imply continuity at
κ = 0, while Theorems 1.3(ii–iii) do.

0
ργ p

κ

λ0(κ)

Fig. 6 Conjectured behavior of the quenched Lyapunov exponent.

2. Figs. 7–9 summarize how we expect κ 7→ λ0(κ) to compare with κ 7→ λ1(κ) for
the three dynamics.
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0
p = 0

p = 1

p
κ

λ0(κ)

Fig. 7 Conjectured behavior for ISRW, SEP and SVM below the critical dimension.

0
p = 0

p = 1

p

p

κ

λp(κ)
d = 3 ISRW, SEP
d = 5 SVM

Fig. 8 Conjectured behavior for ISRW, SEP and SVM at the critical dimension.

0
p = 0

p = 1

κ0

p

p

κ

λp(κ)
d ≥ 4 ISRW, SEP
d ≥ 6 SVM

Fig. 9 Conjectured behavior for ISRW, SEP and SVM above the critical dimension.

3. Conditions (6–7) are trivially satisfied for SEP and SVM, because ξ is bounded.
For ISRW they follow from Kesten and Sidoravicius [19], Theorem 2.

4. Conditions (21–22) are weak while conditions (23–24) are strong. Theorem 1.5
states that conditions (21–22) are satisfied for ISRW and SEP. We will see in Sec-
tion 3.2 that, most likely, they are satisfied for SVM as well. Conditions (23–24) fail
for the three dynamics, but are satisfied e.g. for spin-flip dynamics in the so-called
“M < ε regime” (see Liggett [23], Section I.3). [The verification of this statement is
left to the reader.]

5. The following problems remain open:

• Extend Theorem 1.1 to the initial condition u(·,0) ≡ 1, and show that λ0 is the
same as for the initial condition u(·,0) = δ0(·) assumed in (4). [The proof of
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Theorem 1.1 in Section 2.1 shows that it is straightforward to do this extension
for u(·,0) symmetric with bounded support. Recall the remark made prior to
(12).]

• Prove that limκ↓0 λ0(κ) = ργ and limκ→∞ λ0(κ) = ργ under conditions (6–7)
alone. [These limits correspond to time ergodicity, respectively, space ergodicity
of ξ , but are non-trivial because they require some control on the fluctuations of
ξ .]

• Prove Theorems 1.2(ii–iii) without the boundedness assumptions on ξ . Prove
Theorem 1.3(i) under condition (21) alone. [The proof of Theorem 1.2(iii) in
Section 2.4 shows that λ0(κ)−ργ stays above any positive power of κ as κ ↓ 0.]
Improve Theorems 1.3(ii–iii) by establishing under what conditions the upper
bounds in (26–27) can be made to match the lower bound in (25).

• Extend Theorems 1.4–1.6 by proving the qualitative behavior for the three dy-
namics conjectured in Figs. 7–9. [For white noise dynamics the curves succes-
sively merge for all d ≥ 3 (see Figs. 1–2).]

• For the three dynamics in the weakly catalytic regime, find the asymptotics of
λ0(κ) as κ → ∞ and compare this with the asymptotics of λp(κ), p ∈ N, as
κ → ∞ (see Figs. 4–5).

• Extend the existence of λp to all (non-integer) p > 0, and prove that λp ↓ λ0 as
p ↓ 0. [For white noise dynamics this extension is achieved in (17).]

2 Proof of Theorems 1.1–1.3

The proofs of Theorems 1.1–1.3 are given in Sections 2.1, 2.2–2.4 and 2.5–2.7,
respectively. W.l.o.g. we may assume that ρ = E(ξ (0,0)) = 0, by the remark made
prior to conditions (6–7).

2.1 Proof of Theorem 1.1

Proof. Recall (4) and (12–13), abbreviate

χ(s, t) = E0

(
exp
[

γ

∫ t−s

0
ξ
(
Xκ(v),s+ v

)
dv
]

δ0(Xκ(t− s))
)

, 0≤ s≤ t < ∞,

(28)
and note that χ(0, t) P= u(0, t). Picking u ∈ [s, t], inserting δ0(Xκ(u− s)) under the
expectation and using the Markov property of Xκ at time u− s, we obtain

χ(s, t)≥ χ(s,u)χ(u, t), 0≤ s≤ u≤ t < ∞. (29)

Thus, (s, t) 7→ log χ(s, t) is superadditive. By condition (6), the law of {χ(u+ s,u+
t) : 0 ≤ s ≤ t < ∞} is the same for all u ≥ 0. Therefore the superadditive ergodic
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theorem (see Kingman [21]) implies that

λ0 = lim
t→∞

1
t

log χ(0, t) exists P-a.s. and in P-mean. (30)

We saw at the end of Section 1.2 that λ0 ∈ [0,∞) (because ρ = 0). ut

2.2 Proof of Theorem 1.2(i)

Proof. The fact that λ0(0) = 0 is immediate from (12–13) because P0(X0(t) = 0) =
1 for all t ≥ 0 and

∫ t
0 ξ (0,s)ds = o(t) ξ -a.s. as t→∞ by the ergodic theorem (recall

condition (6)). We already know that λ0(κ) ∈ [0,∞) for all κ ∈ [0,∞). The proof of
the strict lower bound λ0(κ) > 0 for κ ∈ (0,∞) comes in 2 steps.

1. Fix T > 0 and consider the expression

λ0 = lim
n→∞

1
nT

E
(

logu(0,nT )
)

ξ -a.s. (31)

Partition the time interval [0,nT ) into n pieces of length T ,

I j = [( j−1)T, jT ), j = 1, . . . ,n. (32)

Use the Markov property of Xκ at the beginning of each piece, to obtain

u(0,nT )

= E0

(
exp
[

γ

n

∑
j=1

∫
I j

ξ
(
Xκ(s),s

)
ds
]

δ0(Xκ(nT ))
)

= ∑
x1,...,xn−1∈Zd

n

∏
j=1

Ex j−1

(
exp
[

γ

∫ T

0
ξ
(
Xκ(s),( j−1)T + s

)
ds
]

δx j(X
κ(T ))

)
(33)

with x0 = xn = 0. Next, for x,y ∈ Zd , let E(T )
x,y denote the conditional expectation

over Xκ given that Xκ(0) = x and Xκ(T ) = y, and abbreviate, for 1≤ j ≤ n,

E(T )
x,y ( j) = E(T )

x,y

(
exp
[

γ

∫ T

0
ξ
(
Xκ(s),( j−1)T + s

)
ds
])

. (34)

Then we can write

Ex j−1

(
exp
[

γ

∫ T

0
ξ
(
Xκ(s),( j−1)T + s

)
ds
]

δx j(X
κ(T ))

)
= pκ

T (x j− x j−1)E(T )
x j−1,x j( j),

(35)
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where we abbreviate pκ
T (x) = P0(Xκ(T ) = x), x ∈ Zd . Combined with (33), this

gives

u(0,nT ) = ∑
x1,··· ,xn−1∈Zd

(
n

∏
j=1

pκ
T (x j− x j−1)

)(
n

∏
j=1

E(T )
x j−1,x j( j)

)

= pκ
nT (0)E(nT )

0,0

(
n

∏
j=1

E(T )
Xκ (( j−1)T ),Xκ ( jT )( j)

)
.

(36)

2. To estimate the last expectation in (36), abbreviate ξI = (ξt)t∈I , I ⊂ [0,∞), and
apply Jensen’s inequality to (34), to obtain

E(T )
x,y ( j) = exp

[
γ

∫ T

0
E(T )

x,y

(
ξ
(
Xκ(s),( j−1)T +s

))
ds+Cx,y

(
ξ[( j−1)T, jT ],T

)]
(37)

for some Cx,y(ξ[( j−1)T, jT ],T ) that satisfies

Cx,y
(
ξ[( j−1)T, jT ],T

)
> 0 ξ -a.s. ∀x,y ∈ Zd , 1≤ j ≤ n. (38)

Here, the strict positivity is an immediate consequence of the fact that ξ is not
constant (recall condition (6)) and u 7→ eu is strictly convex. Combining (36–37)
and using Jensen’s inequality again, this time w.r.t. E(nT )

0,0 , we obtain

E
(

logu(0,nT )
)

≥ log pκ
nT (0)

+E

(
E(nT )

0,0

(
n

∑
j=1

E(T )
Xκ (( j−1)T ),Xκ ( jT )

(
γ

∫ T

0
ξ
(
Xκ(s),( j−1)T + s

)
ds

+CXκ (( j−1)T ),Xκ ( jT )
(
ξ[( j−1)T, jT ],T

))))
= log pκ

nT (0)

+E

(
E(nT )

0,0

(
n

∑
j=1

E(T )
Xκ (( j−1)T ),Xκ ( jT )

(
CXκ (( j−1)T ),Xκ ( jT )

(
ξ[( j−1)T, jT ],T

))))
,

(39)
where the middle term in the second line vanishes because of condition (6) and our
assumption that E(ξ (0,0)) = 0. After inserting the indicator of the event {Xκ(( j−
1)T ) = Xκ( jT )} for 1≤ j ≤ n in the last expectation in (39), we get
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E

(
E(nT )

0,0

(
n

∑
j=1

E(T )
Xκ (( j−1)T ),Xκ ( jT )

(
CXκ (( j−1)T ),Xκ ( jT )

(
ξ[( j−1)T, jT ],T

))))

≥
n

∑
j=1

∑
z∈Zd

pκ

( j−1)T (z) pκ
T (0) pκ

(n− j)T (z)

pκ
nT (0)

E
(

Cz,z
(
ξ[( j−1)T, jT ],T

))
≥ nCT pκ

T (0), (40)

where we abbreviate

CT = E
(

Cz,z
(
ξ[( j−1)T, jT ],T

))
> 0, (41)

note that the latter does not depend on j or z, and use that ∑z∈Zd pκ

( j−1)T (z)pκ

(n− j)T (z)
= pκ

(n−1)T (0)≥ pκ
nT (0). Therefore, combining (31) and (39–41), and using that

lim
n→∞

1
nT

log pκ
nT (0) = 0, (42)

we arrive at λ0 ≥ (CT /T )pκ
T (0) > 0. ut

2.3 Proof of Theorem 1.2(ii)

Proof. In Step 1 we prove the Lischitz continuity outside any neighborhood of 0
under the restriction that ξ ≤ 1. This proof is essentially a copy of the proof in
Gärtner, den Hollander and Maillard [17] of the Lipschitz continuity of the annealed
Lyapunov exponents when ξ is SVM. In Step 2 we explain how to remove the
restriction ξ ≤ 1. In Step 3 we show that the Lipschitz constant tends to zero as
κ → ∞ when ξ ≤ 1.

1. Pick κ1,κ2 ∈ (0,∞) with κ1 < κ2 arbitrarily. By Girsanov’s formula,

E0

(
exp
[

γ

∫ t

0
ξ (Xκ2(s),s)ds

]
δ0(Xκ2(t))

)
= E0

(
exp
[

γ

∫ t

0
ξ (Xκ1(s),s)ds

]
δ0(Xκ1(t))

×exp
[
J(Xκ1 ; t) log(κ2/κ1)−2d(κ2−κ1)t

])
= I + II, (43)

where J(Xκ1 ; t) is the number of jumps of Xκ1 up to time t, I and II are the con-
tributions coming from the events {J(Xκ1 ; t)≤M2dκ2t}, respectively, {J(Xκ1 ; t) >
M2dκ2t}, with M > 1 to be chosen. Clearly,
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I ≤ exp
[(

M2dκ2 log(κ2/κ1)−2d(κ2−κ1)
)

t
]

×E0

(
exp
[

γ

∫ t

0
ξ (Xκ1(s),s)ds

]
δ0(Xκ1(t))

)
,

(44)

while
II ≤ eγt P0

(
J(Xκ2 ; t) > M2dκ2t

)
(45)

because we may estimate ∫ t

0
ξ (Xκ1(s),s)ds≤ t (46)

and afterwards use Girsanov’s formula in the reverse direction. Since J(Xκ2 ; t) =
J∗(2dκ2t) with (J∗(t))t≥0 a rate-1 Poisson process, we have

lim
t→∞

1
t

logP0

(
J(Xκ2 ; t) > M2dκ2t

)
=−2dκ2I (M) (47)

with
I (M) = sup

u∈R

[
Mu−

(
eu−1

)]
= M logM−M +1. (48)

Recalling (12–13), we get from (43–47) the upper bound

λ0(κ2)≤
[
M2dκ2 log(κ2/κ1)−2d(κ2−κ1)+λ0(κ1)

]
∨
[
γ−2dκ2I (M)

]
. (49)

On the other hand, estimating J(Xκ1 ; t)≥ 0 in (43), we have

E0

(
exp
[

γ

∫ t

0
ξ (Xκ2(s),s)ds

]
δ0(Xκ2(t))

)
≥ exp[−2d(κ2−κ1)t] E0

(
exp
[

γ

∫ t

0
ξ (Xκ1(s),s)ds

]
δ0(Xκ1(t))

)
, (50)

which gives the lower bound

λ0(κ2)≥−2d(κ2−κ1)+λ0(κ1). (51)

Next, for κ ∈ (0,∞), define

D+
λ0(κ) = limsup

ε→0
ε
−1[λ0(κ + ε)−λ0(κ)],

D−λ0(κ) = liminf
ε→0

ε
−1[λ0(κ + ε)−λ0(κ)], (52)

where ε→ 0 from both sides. Then, in (49) and (51), picking κ1 = κ and κ2 = κ +δ ,
respectively, κ1 = κ−δ and κ2 = κ with δ > 0 and letting δ ↓ 0, we get

D+
λ0(κ)≤ (M−1)2d ∀M > 1: 2dκI (M)− γ ≥ 0,

D−λ0(κ)≥−2d.
(53)
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(The condition in the first line of (53) guarantees that the first term in the right-
hand side of (49) is the maximum because λ0(κ) ≥ 0.) Since limM→∞ I (M) = ∞,
it follows from (53) that D+λ0 and D−λ0 are bounded outside any neighborhood of
κ = 0.

2. It remains to explain how to remove the restriction ξ ≤ 1. Without this restriction
(46) is no longer true, but by the Cauchy-Schwarz inequality we have

II ≤ III× IV (54)

with

III =
{

E0

(
exp
[

2γ

∫ t

0
ξ (Xκ1(s),s)ds

]
δ0(Xκ1(t))

)}1/2

(55)

and

IV =
{

E0

(
exp
[
2J(Xκ1 ; t) log(κ2/κ1)−4d(κ2−κ1)t

]
×11{J(Xκ1 ; t) > M2dκ2t}

)}1/2

= exp
[(

dκ1−2dκ2 +d(κ2
2 /κ1)

)
t
]

×
{

E0

(
exp
[

J(Xκ1 ; t) log
(

κ2
2 /κ1

κ1

)
−2d

(
κ

2
2 /κ1−κ1

)
t
]

×11{J(Xκ1 ; t) > M2dκ2t}
)}1/2

= exp
[(

dκ1−2dκ2 +d(κ2
2 /κ1)

)
t
] {

P0

(
J
(

Xκ2
2 /κ1 ; t

)
> M2dκ2t

)}1/2

,

(56)

where in the last line we use Girsanov’s formula in the reverse direction (without ξ ).
By (12–13) and condition (7), we have III ≤ ec0t ξ -a.s. for t ≥ 0 and some c0 < ∞.
Therefore, combining (54–56), we get

II ≤ exp
[(

c0 +dκ1−2dκ2 +d(κ2
2 /κ1)

)
t
] {

P0

(
J
(

Xκ2
2 /κ1 ; t

)
> M2dκ2t

)}1/2

(57)
instead of (45). The rest of the proof goes along the same lines as in (47–53).

3. Since I (M) > 0 for all M > 1, it follows from (53) that limsupκ→∞ D+λ0(κ)≤ 0.
To prove that liminfκ→∞ D−λ0(κ) ≥ 0, we argue as follows. From (43) with κ1 =
κ−δ and κ2 = κ , we get
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E0

(
exp
[

γ

∫ t

0
ξ (Xκ(s),s)ds

]
δ0(Xκ(t))

)
= E0

(
exp
[

γ

∫ t

0
ξ (Xκ−δ (s),s)ds

]
δ0(Xκ−δ (t))

× exp
[
J(Xκ−δ ; t) log

(
κ

κ−δ

)
−2dδ t

])
≥ e−2dδ t

[
E0

(
exp
[

pγ

∫ t

0
ξ (Xκ−δ (s),s)ds

]
δ0(Xκ−δ (t))

)]1/p

×
[

E0

(
exp
[
qJ(Xκ−δ ; t) log

(
κ

κ−δ

)])]1/q

= e−2dδ t × I× II,

(58)

where we use the reverse Hölder inequality with (1/p)+(1/q) = 1 and −∞ < q <
0 < p < 1. By direct computation, we have

E0

(
exp
[
qJ(Xκ−δ ; t) log

(
κ

κ−δ

)])
= exp

[
−2d(κ−δ )

[
1− ( κ

κ−δ
)q]t
]

(59)

and hence

1
δ t

log
(

e−2dδ t × II
)

=−2d− 2d
δq

(κ−δ )
[
1−
(

κ

κ−δ

)q]
. (60)

Moreover, with the help of the additional assumption that ξ ≤ 1, we can estimate

I ≥ exp
[
−
( 1−p

p

)
γt
] [

E0

(
exp
[

γ

∫ t

0
ξ (Xκ−δ (s),s)ds

]
δ0(Xκ−δ (t))

)]1/p

. (61)

Combining (58) and (60–61), we arrive at (insert (1− p)/p =−1/q)

1
δ t

[
logE0

(
exp
[

γ

∫ t

0
ξ (Xκ(s),s)ds

]
δ0(Xκ(t))

)
− logE0

(
exp
[

γ

∫ t

0
ξ (Xκ−δ (s),s)ds

]
δ0(Xκ−δ (t))

)]
≥−2d− 2d

δq
(κ−δ )

[
1−
(

κ

κ−δ

)q]+ γ

δq

− 1
δqt

logE0

(
exp
[

γ

∫ t

0
ξ (Xκ−δ (s),s)ds

]
δ0(Xκ−δ (t))

)
.

(62)

Let t→ ∞ to obtain

1
δ

[λ0(κ)−λ0(κ−δ )]≥−2d− 2d
δq

(κ−δ )
[
1−
(

κ

κ−δ

)q]+ 1
δq

[γ−λ0(κ−δ )].

(63)
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Pick q =−C/δ with C ∈ (0,∞) and let δ ↓ 0, to obtain

D−λ0(κ)≥−2d +
2dκ

C

(
1− e−C/κ

)
− 1

C
[γ−λ0(κ)]. (64)

Let κ → ∞ and use that λ0(κ)≥ 0, to obtain

liminf
κ→∞

D−λ0(κ)≥− γ

C
. (65)

Finally, let C→ ∞ to arrive at the claim. ut

2.4 Proof of Theorem 1.2(iii)

Proof. Since ξ is assumed to be bounded from below, we may take ξ ≥−1 w.l.o.g.,
because we can scale γ . The proof of Theorem 1.2(iii) is based on the following
lemma providing a lower bound for λ0(κ) when κ is small enough. Recall (20), and
abbreviate

E1(T ) = E
(
|Iξ (0,T )− Iξ (e,T )|

)
, T > 0. (66)

Lemma 2.1. For T ≥ 1 and κ ↓ 0,

λ0(κ)≥−γ
1
T −2dκ

T−1
T +[1+oκ(1)] 1

T

[
γ

2 E1(T −1)− log(1/κ)
]
. (67)

Proof. The proof comes in 2 steps. Recall (4) and (12–13), and write

λ0(κ)

= lim
n→∞

1
nT +1

logE0

(
exp
[

γ

∫ nT+1

0
ξ (Xκ(s),s)ds

]
δ0
(
Xκ(nT +1)

))
.

(68)

1. Partition the time interval [0,nT +1) as [∪n+1
j=1B j]∪ [∪n

j=1C j] with

B j =
[
( j−1)T,( j−1)T +1

)
, 1≤ j ≤ n+1,

C j =
[
( j−1)T +1, jT

)
, 1≤ j ≤ n.

(69)

Let
Iξ

j (x) =
∫

C j

ξ (x,s)ds (70)

and
Zξ

j = argmaxx∈{0,e} Iξ

j (x), (71)

and define the event

Aξ =

[
n⋂

j=1

{
Xκ(t) = Zξ

j ∀ t ∈ C j

}]
∩{Xκ(nT +1) = 0}. (72)
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We may estimate

E0

(
exp
[

γ

∫ nT+1

0
ξ (Xκ(s),s)ds

]
δ0
(
Xκ(nT +1)

))
≥ E0

(
exp
[

γ

∫ nT+1

0
ξ (Xκ(s),s)ds

]
11Aξ

)
≥ e−γ(n+1) exp

(
γ

n

∑
j=1

max
{

Iξ

j (0), Iξ

j (e)
})

P0
(
Aξ
)
.

(73)

By the ergodic theorem (recall condition (6)), we have

n

∑
j=1

max
{

Iξ

j (0), Iξ

j (e)
}

= [1+on(1)]nE
(

max
{

Iξ

1 (0), Iξ

1 (e)
})

ξ -a.s. as n→ ∞.

(74)

Moreover, we have

P0
(
Aξ
)
≥
(

min
{

pκ
1 (0), pκ

1 (e)
})n+1

e−2dκn(T−1) =
(

pκ
1 (e)

)n+1 e−2dκn(T−1), (75)

where in the right-hand side the first term is a lower bound for the probability that
Xκ moves from 0 to e or vice-versa in time 1 in each of the time intervals B j,
while the second term is the probability that Xκ makes no jumps in each of the time
intervals C j.

2. Combining (68) and (73–75), and using that pκ
1 (e) = κ[1 + oκ(1)] as κ ↓ 0, we

obtain that

λ0(κ)≥−γ
1
T −2dκ

T−1
T

+[1+oκ(1)]
1
T

[
γ E
(

max
{

Iξ

1 (0), Iξ

1 (e)
})
− log(1/κ)

]
.

(76)

Because Iξ

1 (0) and Iξ

1 (e) have zero mean, we have

E
(

max
{

Iξ

1 (0), Iξ

1 (e)
})

= 1
2 E
(∣∣Iξ

1 (0)− Iξ

1 (e)
∣∣). (77)

The expectation in the right-hand side equals E1(T−1) because |C1|= T−1 (recall
(66)), and so we get the claim. ut

Using Lemma 2.1, we can now complete the proof of Theorem 1.2(iii). By con-
dition (21), for every c ∈ (0,∞) we have E1(T ) ≥ c logT for T large enough (de-
pending on c). Pick χ ∈ (0,1) and T = T (κ) = κ−χ in (67) and let κ ↓ 0. Then we
obtain

λ0(κ)≥ [1+oκ(1)]
{
−γκ

χ −2dκ +[ 1
2 cγχ−1]κχ log(1/κ)

}
. (78)
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Finally, pick c large enough so that 1
2 cγχ > 1. Then, because λ0(0) = 0, (78) implies

that, for κ ↓ 0,

λ0(κ)−λ0(0)≥ [1+oκ(1)] [ 1
2 cγχ−1]κχ log(1/κ), (79)

which shows that κ 7→ λ0(κ) is not Lipschitz at 0. ut

2.5 Proof of Theorem 1.3(i)

Proof. Recall (20) and define

Ek(T ) = E
(
|Iξ (0,T )− Iξ (e,T )|k

)
,

Ēk(T ) = E
(
|Iξ (0,T )|k

)
,

T > 0, k ∈ N. (80)

Estimate, for N > 0,

E1(T ) = E
(
|Iξ (0,T )− Iξ (e,T )|

)
≥ 1

2N E
(
|Iξ (0,T )− Iξ (e,T )|2 11{|Iξ (0,T )|≤N and |Iξ (e,T )|≤N}

)
= 1

2N

[
E2(T )−E

(
|Iξ (0,T )− Iξ (e,T )|2 11{|Iξ (0,T )|>N or |Iξ (e,T )|>N}

)]
.

(81)
By Cauchy-Schwarz,

E
(
|Iξ (0,T )− Iξ (e,T )|2 11{|Iξ (0,T )|>N or |Iξ (e,T )|>N}

)
≤ [E4(T )]1/2

[
P
(
|Iξ (0,T )|> N or |Iξ (e,T )|> N

)]1/2
.

(82)

Moreover, by condition (6), E4(T )≤ 16Ē4(T ) and

P
(
|Iξ (0,T )|> N or |Iξ (e,T )|> N

)
≤ 2

N2 Ē2(T )≤ 2
N2 [Ē4(T )]1/2. (83)

By condition (22), there exist an a > 0 such that E2(T ) ≥ aT and a b < ∞ such
that Ē4(T ) ≤ bT 2 for T large enough. Therefore, combining (81–83) and picking
N = cT 1/2 with c > 0, we obtain

E1(T )≥ AT 1/2 with A = 1
2c

(
a−25/2b3/4 1

c

)
, (84)

where we note that A > 0 for c large enough. Inserting this bound into Lemma 2.1
and picking T = T (κ) = B[log(1/κ)]2 with B > 0, we find that, for κ ↓ 0,

λ0(κ)≥C [log(1/κ)]−1 [1+oκ(1)] with C = 1
B

(
1
2 γAB1/2−1

)
. (85)

Since C > 0 for A > 0 and B large enough, this proves the claim in (25). ut
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2.6 Proof of Theorem 1.3(iii)

The proof borrows from Carmona and Molchanov [6], Section IV.3.

Proof. Recall (4) and (12–13), estimate

λ0(κ)≤ limsup
n→∞

1
nT

logE0

(
exp
[

γ

∫ nT

0
ξ (Xκ(s),s)ds

])
, (86)

and pick
T = T (κ) = K log(1/κ), K ∈ (0,∞), (87)

where K is to be chosen later. Partition the time interval [0,nT ) into n disjoint time
intervals I j, 1≤ j≤ n, defined in (32). Let N j, 1≤ j≤ n, be the number of jumps of
Xκ in the time interval I j, and call I j black when N j > 0 and white when N j = 0.
Using Cauchy-Schwarz, we can split λ0(κ) into a black part and a white part, and
estimate

λ0(κ)≤ µ
(b)
0 (κ)+ µ

(w)
0 (κ), (88)

where

µ
(b)
0 (κ) = limsup

n→∞

1
2nT

logE0

(
exp

[
2γ

n

∑
j=1

N j>0

∫
I j

ξ (Xκ(s),s)ds

])
, (89)

µ
(w)
0 (κ) = limsup

n→∞

1
2nT

logE0

(
exp

[
2γ

n

∑
j=1

Nj=0

∫
I j

ξ (Xκ(s),s)ds

])
. (90)

Lemma 2.2. If ξ is bounded from above, then there exists a δ > 0 such that

limsup
κ↓0

(1/κ)δ
µ

(b)
0 (κ)≤ 0. (91)

Lemma 2.3. If ξ satisfies condition (24), then

limsup
κ↓0

log(1/κ)
log log(1/κ)

µ
(w)
0 (κ) < ∞. (92)

Theorem 1.3(ii) follows from (88) and Lemmas 2.2–2.3. ut

We first give the proof of Lemma 2.2.

Proof. Let N(b) = |{1 ≤ j ≤ n : N j > 0}| be the number of black time intervals.
Since ξ is bounded from above (w.l.o.g. we may take ξ ≤ 1, because we can scale
γ), we have
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1
2nT

logE0

(
exp

[
2γ

n

∑
j=1

Nj>0

∫
I j

ξ (Xκ(s),s)ds

])

≤ 1
2nT

logE0

(
exp
[
2γT N(b)])

=
1

2T
log
[(

1− e−2dκT
)

e2γT + e−2dκT
]

≤ 1
2T

log
[
2dκTe2γT +1

]
≤ 1

2T
2dκTe2γT

= dκ
1−2γK ,

(93)

where the first equality uses that the distribution of N(b) is BIN(n,1− e−2dκT ), and
the second equality uses (87). It follows from (89) and (93) that µ

(b)
0 (κ)≤ dκ1−2γK .

The claim in (91) therefore follows by picking 0 < K < 1/2γ and letting κ ↓ 0. ut

We next give the proof of Lemma 2.3.

Proof. The proof comes in 5 steps.

1. We begin with some definitions. Define Γ = (Γ1, . . . ,Γn) with

Γj =

{
{∆1, . . . ,∆N j} if I j is black,

/0 if I j is white,
(94)

where ∆1, . . . ,∆N j are the jumps of Xκ in the time interval I j (which take values in
the unit vectors of Zd). Next, let

Ψ = {χ : Γ = χ}, χ = (χ1, . . . ,χn), (95)

denote the set of possible outcomes of Γ . Since Xκ is stepping at rate 2dκ , the
random variable Γ has distribution

P0(Γ = χ) = e−2dκnT
n

∏
j=1

(2dκT )n j(χ)

n j(χ)!
, χ ∈Ψ , (96)

with n j(χ) = |χ j|= |{χ j,1, . . . ,χ j,n j(χ)}| the number of jumps in χ j. For χ ∈Ψ , we
define the event

A(n)(χ;λ ) =

{
n

∑
j=1

n j(χ)=0

∫
I j

ξ (x j(χ),s)ds≥ λ

}
, χ ∈Ψ , λ > 0, (97)

where x j(χ) = ∑
j−1
i=1 ∑

ni(χ)
k=1 χi,k is the location of χ at the start of χ j, and λ is to be

chosen later. We further define
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kl(χ) = |{1≤ j ≤ n : n j(χ) = l}|, l ≥ 0, (98)

which counts the time intervals in which χ makes l jumps, and we note that

∞

∑
l=0

kl(χ) = n. (99)

2. With the above definitions, we can now start our proof. Fix χ ∈Ψ . By (97) and
the exponential Chebychev inequality, we have

P
(
A(n)(χ;λ )

)
= P

 n

∑
j=1

n j(χ)=0

∫
I j

ξ (x j(χ),s)ds≥ λ



≤ inf
µ>0

e−µλ E

 n

∏
j=1

n j(χ)=0

exp
[

µ

∫
I j

ξ (x j(χ),s)ds
]

≤ inf
µ>0

e−µλ

[
sup
η∈Ω

Eη

(
eµIξ (0,T )

)]k0(χ)

,

(100)

where in the second inequality we use the Markov property of ξ at the beginning
of the white time intervals, and take the supremum over the starting configuration
at the beginning of each of these intervals in order to remove the dependence on
ξ( j−1)T , 1≤ j ≤ n with n j(χ) = 0, after which we can use (6) and (20). Next, using
condition (24) and choosing µ = bλ/k0(χ)T , we obtain from (100) that

P
(
A(n)(χ;λ )

)
≤ exp

[
− bλ 2

k0(χ)T

]{
exp
[

c
(

bλ

k0(χ)T

)2

T
]}k0(χ)

, (101)

where c is the constant in condition (24). (Note that A(n)(χ;λ ) = /0 when k0(χ) = 0,
which is a trivial case that can be taken care of afterwards.) By picking b = 1/2c,
we obtain

P
(
A(n)(χ;λ )

)
≤ exp

[
− 1

4c
λ 2

k0(χ)T

]
. (102)

3. Our next step is to choose λ , namely,

λ = λ (χ) =
∞

∑
l=0

alkl(χ) (103)

with
a0 = K′ log log(1/κ), K′ ∈ (0,∞),
al = lK log(1/κ), l ≥ 1,

(104)
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where K is the constant in (87). It follows from (102) after substitution of (103–104)
that (recall (87))

P
(

A(n)(χ;λ )
)
≤

∞

∏
l=0

eulkl(χ) ∀χ ∈Ψ , (105)

where we abbreviate

u0 =− 1
4cT

a2
0, ul =− 1

2cT
a0al =− 1

2c
a0l, l ≥ 1. (106)

Summing over χ , we obtain

∑
χ∈Ψ

P
(

A(n)(χ;λ )
)
≤ ∑

χ∈Ψ

(
∞

∏
l=0

eulkl(χ)

)

= ∑
(kl )

∞
l=0

∑
∞
l=0 kl=n

(
n!

∏
∞
l=0 kl!

)(
∞

∏
l=0

(2d)lkl

)(
∞

∏
l=0

eulkl

)

=
( ∞

∑
l=0

(2d)leul
)n

,

(107)

where we use that for any sequence (kl)∞
l=0 such that ∑

∞
l=0 kl = n (recall (99)) the

number of χ ∈Ψ such that kl(χ) = kl , l ≥ 0, equals (n!/∏
∞
l=0 kl!)∏

∞
l=0(2d)lkl (note

that there are (2d)l different χ j with |χ j|= l for each 1≤ j ≤ n).

4. By (87) and (104), T → ∞, a0→ ∞ and a2
0/T ↓ 0 as κ ↓ 0. Hence, for κ ↓ 0,

∞

∑
l=0

(2d)leul = exp
[
− 1

4cT
a2

0

]
+

2d exp
[
− 1

2c a0
]

1−2d exp
[
− 1

2c a0
]

= 1− [1+oκ(1)]
[K′ log log(1/κ)]2

8cK log(1/κ)
+ [1+oκ(1)]2d[log(1/κ)]−K′/2c

= 1− [1+oκ(1)]
[K′ log log(1/κ)]2

8cK log(1/κ)
< 1,

(108)
where the last equality holds provided we pick K′ > 2c. It follows from (107–108)
that, for κ ↓ 0,

∞

∑
n=1

P

⋃
χ∈Ψ

A(n)(χ;λ )

< ∞. (109)

Hence, recalling (97), we conclude that, by the Borel-Cantelli lemma, ξ -a.s. there
exists an n0(ξ ) ∈ N such that, for all n≥ n0(ξ ),
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n

∑
j=1

n j=0

∫
I j

ξ (x j(χ),s)ds≤ λ =
∞

∑
l=0

alkl(χ) ∀χ ∈Ψ . (110)

5. The estimate in (110) allows us to proceed as follows. Combining (96), (98) and
(110), we obtain, for n≥ n0(ξ ,δ ,κ),

E0

(
exp

[
2γ

n

∑
j=1

Nj=0

∫
I j

ξ (Xκ(s),s)ds

])

≤ e−2dκnT
∑

χ∈Ψ

(
∞

∏
l=0

(
(2dκT )l

l!

)kl(χ))( ∞

∏
l=0

e2γalkl(χ)

)
.

(111)

Via the same type of computation as in (107), this leads to

E0

(
exp

[
2γ

n

∑
j=1

Nj=0

∫
I j

ξ (Xκ(s),s)ds

])

≤ e−2dκnT
∑

(kl )
∞
l=0

∑
∞
l=0 kl=n

(
n!

∏
∞
l=0 kl!

)(
∞

∏
l=0

(2d)lkl

)(
∞

∏
l=0

(
(2dκT )l

l!
e2γal

)kl
)

= e−2dκnT

(
∞

∑
l=0

((2d)2κT )l

l!
e2γal

)n

.

(112)
Hence

1
2nT

logE0

(
exp

[
2γ

n

∑
j=1

Nj=0

∫
I j

ξ (Xκ(s),s)ds

])

≤−dκ +
1

2T
log

(
∞

∑
l=0

((2d)2κT )l

l!
e2γal

)
.

(113)

Note that the r.h.s. of (113) does not depend on n. Therefore, letting n→ ∞ and
recalling (90), we get

µ
(w)
0 (κ)≤−dκ +

1
2T

log

(
∞

∑
l=0

((2d)2κT )l

l!
e2γal

)
. (114)

Finally, by (87) and (104),

∞

∑
l=0

((2d)2κT )l

l!
e2γal = [log(1/κ)]2γK′ +

∞

∑
l=1

(
(2d)2κ1−2γKK log(1/κ)

)l

l!

= [log(1/κ)]2γK′ +oκ(1), κ ↓ 0,

(115)
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where we recall from the proof of Lemma 2.2 that 0 < K < 1/2γ . Hence

µ
(w)
0 (κ)≤ [1+oκ(1)]

γK′ log log(1/κ)
K log(1/κ)

, κ ↓ 0, (116)

which proves the claim in (92). ut

2.7 Proof of Theorem 1.3(ii)

Theorem 1.3(ii) follows from (88), Lemma 2.2 and the following modification of
Lemma 2.3.

Lemma 2.4. If ξ satisfies condition (23) and is bounded from above, then

limsup
κ↓0

[log(1/κ)]1/6
µ

(w)(κ) < ∞. (117)

Proof. Most of Steps 1–5 in the proof of Lemma 2.3 can be retained.

1. Recall (94–99). Let

fε(T ) = sup
η∈Ω

Pη

(∫ T

0
ξ (0,s)ds > εT

)
, T > 0,ε = T−1/6. (118)

Since ξ ≤ 1 w.l.o.g., we may estimate

n

∑
j=1

n j(χ)=0

∫
I j

ξ (x j(χ),s)ds� ZT +(k0(χ)−Z)εT, (119)

where � means “stochastically dominated by”, and Z is the random variable with
distribution P∗ = BIN(k0(χ), fε(T )). With the help of (119), the estimate in (100)
can be replaced by

P
(
A(n)(χ;λ )

)
≤ P∗

(
ZT +(k0(χ)−Z)εT ≥ λ

)
≤ inf

µ>0
e−µλ E∗

(
eµ[ZT+(k0(χ)−Z)εT ]

)
= inf

µ>0
e−µλ

{
fε(T )eµT +[1− fε(T )]eµεT

}k0(χ)
.

(120)

Using condition (24), which implies that there exists a C ∈ (0,∞) such that fε(T )≤
e−Cε2T for T large enough, and choosing µ =Cε2λ/2k0(χ)T , we obtain from (120)
that, for T large enough,
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P
(
A(n)(χ;λ )

)
≤ exp

[
− Cε2λ 2

2k0(χ)T

]{
exp
[

Cε2λ

2k0(χ)
−Cε

2T
]
+ exp

[
Cε3λ

2k0(χ)

]}k0(χ)

.
(121)

2. We choose λ as

λ = λ (χ) =
∞

∑
l=0

blkl(χ) (122)

with
b0 = 2εK log(1/κ) = 2εT,
bl = lK log(1/κ) = lT, l ≥ 1.

(123)

Note that this differs from (104) only for l = 0, and that (99) implies, for T large
enough,

λ ≥ n2εT. (124)

3. Abbreviate the two exponentials between the braces in the right-hand side of
(101) by I and II. Fix A ∈ (1,2). In what follows we distinguish between two cases:
λ > Ak0(χ)T and λ ≤ Ak0(χ)T .

λ > Ak0(χ)T : Abbreviate α1 = 1
4 A > 0. Neglect the term −Cε2T in I, to estimate,

for T large enough,

I + II ≤ exp
[

Cε2λ

2k0(χ)

] (
1+ exp

[
− Cε2λ

4k0(χ)

])
≤ exp

[
Cε2λ

2k0(χ)

] (
1+ e−α1Cε2T

)
.

(125)

This yields

P
(
A(n)(χ;λ )

)
≤ exp

[
− Cε2λ 2

2k0(χ)T
+

Cε2λ

2

]
exp
[
k0(χ)e−α1Cε2T

]
. (126)

λ ≤ Ak0(χ)T : Abbreviate α2 = 1− 1
2 A > 0. Note that I≤ exp[−α2Cε2T ] and II≥ 1,

to estimate
I + II ≤ II

(
1+ e−α2Cε2T ). (127)

This yields

P
(
A(n)(χ;λ )

)
≤ exp

[
− Cε2λ 2

2k0(χ)T
+

Cε3λ

2

]
exp
[
k0(χ)e−α2Cε2T

]
. (128)

We can combine (126) and (128) into the single estimate

P
(
A(n)(χ;λ )

)
≤ exp

[
− C′ε4λ 2

2k0(χ)T

]
exp
[
k0(χ)e−αCT ] (129)
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for some C′ = C′ ∈ (0,∞) with α = α1 ∧α2 > 0. To see why, put x = λ/k0(χ)T ,
and rewrite the exponent of the first exponential in the right-hand side of (126) and
(128) as

1
2Cε

2k0(χ)T (−x2 + x), respectively, 1
2Cε

2k0(χ)T (−x2 + εx). (130)

In the first case, since A > 1, there exists a B > 0 such that −x2 + x ≤ −Bx2 for all
x≥ A. In the second case, there exists a B > 0 such that −x2 + εx≤−Bε2x2 for all
x≥ 2ε . But (124) ensures that x≥ 2εn/k0(χ)≥ 2ε . Thus, we indeed get (129) with
C′ = CB.

4. The same estimates as in (105–107) lead us to

∑
χ∈Ψ

P
(

A(n)(χ;λ )
)
≤
( ∞

∑
l=0

(2d)levl
)n

. (131)

with

v0 =−C′ε4

2T
b2

0 + e−αCε2T , vl =−C′ε4

T
b0bl =−C′ε4b0l, l ≥ 1. (132)

By (87) and (123), we have

∞

∑
l=0

(2d)levl = exp
[
−C′ε4

2T
b2

0 + e−αCε2T
]
+

2d exp
[
−C′ε4b0

]
1−2d exp [−C′ε4b0]

= exp
[
−2C′+ e−αCT 2/3

]
+

2d exp[−2C′T 1/6]
1−2d exp[−2C′T 1/6]

< 1

(133)

for T large enough, i.e., κ small enough. This replaces (108). Therefore the ana-
logues of (109–110) hold, i.e., ξ -a.s. there exists an n0(ξ ) ∈ N such that, for all
n≥ n0(ξ ),

n

∑
j=1

n j=0

∫
I j

ξ (x j(χ),s)ds≤ λ =
∞

∑
l=0

blkl(χ) ∀χ ∈Ψ . (134)

5. The same estimate as in (111–114) now lead us to

µ
(w)
0 (κ)≤−dκ +

1
2T

log

(
∞

∑
l=0

((2d)2κT )l

l!
e2γbl

)
. (135)

Finally, by (87) and (123),
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∞

∑
l=0

((2d)2κT )l

l!
e2γbl = e4γεT +

∞

∑
l=1

(
(2d)2κ1−2γKK log(1/κ)

)l

l!

= e4γεT +oκ(1), κ ↓ 0,

(136)

which replaces (115). Hence

µ
(w)
0 (κ)≤ [1+oκ(1)]2γε, κ ↓ 0, (137)

which proves the claim in (117). ut

3 Proof of Theorems 1.4–1.6

The proofs of Theorems 1.4–1.6 are given in Sections 3.1–3.3, respectively.

3.1 Proof of Theorem 1.4

Proof. For ISRW, SEP and SVM in the weakly catalytic regime, it is known that
limκ→∞ λ1(κ) = ργ (recall Section 1.3.2). The claim therefore follows from the fact
that ργ ≤ λ0(κ)≤ λ1(κ) for all κ ∈ [0,∞).
Note: The claim extends to non-symmetric voter models (see [17], Theorems 1.4–
1.5). ut

3.2 Proof of Theorem 1.5

Proof. It suffices to prove condition (22), because we saw in Section 2.5 that con-
dition (22) implies (84), which is stronger than condition (21). Step 1 deals with
E2(T ), step 2 with Ē4(T ).

1. Let
C(x, t) = E

(
[ξ (0,0)−ρ][ξ (x, t)−ρ]

)
, x ∈ Zd , t ≥ 0, (138)

denote the two-point correlation function of ξ . By condition (6), we have

E2(T ) =
∫ T

0
ds
∫ T

0
dt E

(
[ξ (0,s)−ξ (e,s)][ξ (0, t)−ξ (e, t)]

)
= 4

∫ T

0
ds
∫ T−s

0
dt [C(0, t)−C(e, t)].

(139)

In what follows Gd(x) =
∫

∞

0 pt(x)dt, x ∈ Zd , denotes the Green function of simple
random walk on Zd stepping at rate 1 starting from 0, which is finite if and only if
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d ≥ 3. (Recall from Section 1.3.2 that SVM with a simple random walk transition
kernel is of no interest in d = 1,2.)

Lemma 3.1. For x ∈ Zd and t ≥ 0,

C(x, t) =


ρ pt(x), ISRW,

ρ(1−ρ)pt(x), SEP,

[ρ(1−ρ)/Gd(0)]
∫

∞

0 pt+u(x)du, SVM.

(140)

Proof. For ISRW, we have

ξ (x, t) = ∑
y∈Zd

Ny

∑
j=1

δx
(
Y y

j (t)
)
, x ∈ Zd , t ≥ 0, (141)

where {Ny : y ∈ Zd} are i.i.d. Poisson random variables with mean ρ ∈ (0,∞), and
{Y y

j : y∈Zd ,1≤ j≤Ny}with Y y
j = (Y y

j (t))t≥0 is a collection of independent simple
random walks with jump rate 1 (Y y

j is the j-th random walk starting from y ∈ Zd).
Inserting (141) into (138), we get the first line in (140). For SEP and SVM, the
claim follows via the graphical representation (see Gärtner, den Hollander and Mail-
lard [14], Eq. (1.5.5), and [17], Lemma A.1, respectively). Recall from the remark
made at the end of Section 1.1 that SVM requires the random walk transition kernel
to be transient. ut

For ISRW, (139–140) yield

1
T

E2(T ) = 4ρ

∫ T

0
dt

T − t
T

[pt(0)− pt(e)], (142)

where we note that pt(0)− pt(e)≥ 0 by the symmetry of the random walk transition
kernel. Hence, by monotone convergence,

lim
T→∞

1
T

E2(T ) = 4ρ

∫
∞

0
dt [pt(0)− pt(e)], (143)

which is a number in (0,∞) (see Spitzer [26], Sections 24 and 29). For SEP, the
same computation applies with ρ replaced by ρ(1−ρ). For SVM, (139–140) yield

1
T

E2(T ) = 4
ρ(1−ρ)

Gd(0)

∫
∞

0
du
[

u(2T −u)
2T

11{u≤T}+ 1
2 T 11{u≥T}

]
[pu(0)− pu(e)].

(144)
Hence, by monotone convergence (estimate 1

2 T ≤ 1
2 u in the second term of the

integrand),

lim
T→∞

1
T

E2(T ) = 4
ρ(1−ρ)

Gd(0)

∫
∞

0
du u [pu(0)− pu(e)], (145)

which again is a number in (0,∞) (see Spitzer [26], Section 24).
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2. Let

C(x, t;y,u;z,v) = E
(
[ξ (0,0)−ρ][ξ (x, t)−ρ][ξ (y,u)−ρ][ξ (z,v)−ρ]

)
,

x,y,z ∈ Zd , 0≤ t ≤ u≤ v,
(146)

denote the four-point correlation function of ξ . Then, by condition (6),

Ē4(T ) = 4!
∫ T

0
ds
∫ T−s

0
dt
∫ T−s

t
du
∫ T−s

u
dv C(0, t;0,u;0,v). (147)

To prove the second part of (22), we must estimate C(0, t;0,u;0,v). For ISRW, this
can be done by using (141), for SEP by using the Markov property and the graphical
representation. In both cases the computations are long but straightforward, with
leading terms of the form

Mpa(0,0)pb(0,0) (148)

with a,b linear in t, u or v, and M < ∞. Each of these leading terms, after being
integrated as in (147), can be bounded from above by a term of order T 2, and hence
limsupT→∞ Ē4(T )/T 2 < ∞. The details are left to the reader. ut

Note: We expect the second part of condition (22) to hold also for SVM. However,
the graphical representation, which is based on coalescing random walks, seems too
cumbersome to carry through the computations.

3.3 Proof of Theorem 1.6

Proof. For ISRW in the strongly catalytic regime, we know that λ1(κ) = ∞ for
all κ ∈ [0,∞) (recall Fig. 3), while λ0(κ) < ∞ for all κ ∈ [0,∞) (by Kesten and
Sidoravicius [19], Theorem 2). ut
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24. Maillard G., Mountford T., Schöpfer S.: Parabolic Anderson model with voter catalysts: di-
chotomy in the behavior of Lyapunov exponents. In this volume.

25. Schnitzler A., Wolff T.: Precise asymptotics for the parabolic Anderson model with a moving
catalyst or trap. In this volume.

26. Spitzer F.: Principles of Random Walk, Van Nostrand, Princeton, 1964.


	046-cover
	046-report.pdf

