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Abstract We consider the parabolic Anderson model (PAM) which is given by the
equation ∂u/∂ t = κ∆u + ξ u with u : Zd × [0,∞)→ R, where κ ∈ [0,∞) is the dif-
fusion constant, ∆ is the discrete Laplacian, and ξ : Zd× [0,∞)→R is a space-time
random environment that drives the equation. The solution of this equation describes
the evolution of a “reactant” u under the influence of a “catalyst” ξ .

In the present paper we focus on the case where ξ is a system of n indepen-
dent simple random walks each with step rate 2dρ and starting from the origin. We
study the annealed Lyapunov exponents, i.e., the exponential growth rates of the
successive moments of u w.r.t. ξ and show that these exponents, as a function of
the diffusion constant κ and the rate constant ρ , behave differently depending on
the dimension d. In particular, we give a description of the intermittent behavior of
the system in terms of the annealed Lyapunov exponents, depicting how the total
mass of u concentrates as t → ∞. Our results are both a generalization and an ex-
tension of the work of Gärtner and Heydenreich [2], where only the case n = 1 was
investigated.
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1 Introduction

1.1 Model

The parabolic Anderson model (PAM) is the partial differential equation
∂

∂ t
u(x, t) = κ∆u(x, t)+ξ (x, t)u(x, t),

u(x,0) = 1,
x ∈ Zd , t ≥ 0 . (1)

Here, the u-field is R-valued, κ ∈ [0,∞) is the diffusion constant, ∆ is the discrete
Laplacian, acting on u as

∆u(x, t) = ∑
y∈Zd
y∼x

[u(y, t)−u(x, t)]

(y∼ x meaning that y is nearest neighbor of x), and

ξ = (ξt)t≥0 with ξt = {ξ (x, t) : x ∈ Zd}

is an R-valued random field that evolves with time and that drives the equation.
One interpretation of (1) comes from population dynamics by considering a sys-

tem of two types of particles A and B. A particles represent “catalysts”, B particles
represent “reactants” and the dynamics is subject to the following rules:

• A-particles evolve independently of B-particles according to a prescribed dynam-
ics with ξ (x, t) denoting the number of A-particles at site x at time t;

• B-particles perform independent simple random walks at rate 2dκ and split into
two at a rate that is equal to the number of A-particles present at the same loca-
tion;

• the initial configuration of B-particles is that there is exactly one particle at each
lattice site.

Then, under the above rules, u(x, t) represents the average number of B-particles at
site x at time t conditioned on the evolution of the A-particles.

It is possible to add that B-particles die at rate δ ∈ [0,∞). This leads to the trivial
transformation u(x, t)→ u(x, t)e−δ t . We will therefore always assume that δ = 0. It
is also possible to add a coupling constant γ ∈ (0,∞) in front of the ξ -term in (1),
but this can be reduced to γ = 1 by a scaling argument.

In what follows, we focus on the case where

ξ (x, t) =
n

∑
k=1

δx
(
Y ρ

k (t)
)

(2)

with {Y ρ

k : 1 ≤ k ≤ n} a family of n independent simple random walks (ISRW),
where for each k ∈ {1, . . . ,n}, Y ρ

k = (Y ρ

k (t))t≥0 is a simple random walk with step
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rate 2dρ starting from Y ρ

k (0) = 0. We write P⊗n
0 and E⊗n

0 to denote respectively the
law and the expectation of the family of n ISRW {Y ρ

k : 1 ≤ k ≤ n} where initially
all of the walkers are located at 0.

Under this choice of catalysts, we will prove existence and derive both qualitative
and quantitative properties of the annealed Lyapunov exponents (defined in Section
1.2). After that, we will discuss the intermittent behavior of the solution u of the
PAM in terms of the Lyapunov exponents.

1.2 Lyapunov exponents and intermittency

Our focus will be on the annealed Lyapunov exponents that describes the exponen-
tial growth rate of the successive moments of the solution of (1).

By the Feynman-Kac formula, the solution of (1) reads

u(x, t) = Ex

(
exp
[∫ t

0
ξ (Xκ(s), t− s) ds

])
, (3)

where Xκ = (Xκ(t))t≥0 is the simple random walk on Zd with step rate 2dκ and Ex
denotes expectation with respect to Xκ given Xκ(0) = x. Taking into account our
choice of catalytic medium in (2) we define Λp(t) as

Λp(t) =
1
t

logE⊗n
0
(
[u(x, t)]p)1/p

=
1
pt

log
(
E⊗n

0 ⊗E⊗p
x
)(

exp

[
p

∑
j=1

n

∑
k=1

∫ t

0
δ0
(
Xκ

j (s)−Y ρ

k (t− s)
)

ds

])
, (4)

where {Xκ
j , j = 1, . . . , p} is a family of p independent copies of Xκ and E⊗p

x stands
for the expectation of this family with Xκ

j (0) = x for all j.
If the last quantity admits a limit as t→ ∞ we define

λp := lim
t→∞

Λp(t). (5)

λp is called the p-th (annealed) Lyapunov exponent of the solution u of the parabolic
Anderson problem (1).

We will see in Theorem 1.1 that the limit in (5) exists and is independent of x.
Hence, we suppress x in the notation. However, clearly, λp is a function of n, d, κ

and ρ . In what follows, our main focus will be to analyze the dependence of λp on
the parameters n, p, κ and ρ , therefore we will often write λ

(n)
p (κ,ρ).

In particular, our main subject of interest will be to draw the qualitative picture of
intermittency for these systems. First, note that by the moment inequality we have

λ
(n)
p ≥ λ

(n)
p−1, (6)
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for all p ∈ N \ {1}. The solution u of the system (1) is said to be p-intermittent if
the above inequality is strict, namely,

λ
(n)
p > λ

(n)
p−1. (7)

The solution u is fully intermittent if (7) holds for all p ∈ N\{1}.
Also note that, using Hölder’s inequality, p-intermittency implies q-intermittency

for all q ≥ p (see e.g. [2], Lemma 3.1). Thus, for any fixed n ∈ N, p-intermittency
in fact implies that

λ
(n)
q > λ

(n)
q−1 ∀q≥ p ,

and 2-intermittency means full intermittency.
Geometrically, intermittency corresponds to the solution being asymptotically

concentrated on a thin set, which is expected to consist of “islands” located far
from each other (see [8], Section 1 and references therein for more details).

1.3 Main results

Our first theorem states that the Lyapunov exponents exist and behave nicely as a
function of κ and ρ . It will be proved in Section 2.

Theorem 1.1. Let d ≥ 1 and n, p ∈ N.
(i) For all κ,ρ ∈ [0,∞), the limit in (5) exists, is finite, and is independent of x if
(κ,ρ) 6= (0,0).
(ii) On [0,∞)2, (κ,ρ) 7→ λ

(n)
p (κ,ρ) is continuous, convex and non-increasing in

both κ and ρ .

Let Gd(x) be the Green function at lattice site x of simple random walk stepping at
rate 2d and

µ(κ) = supSp(κ∆ +δ0) (8)

be the supremum of the spectrum of the operator κ∆ +δ0 in l2(Zd). It is well-known
that (see e.g. [3], Lemma 1.3) Sp(κ∆ +δ0) = [−4dκ,0]∪{µ(κ)} with

µ(κ)
{

= 0 if κ ≥ Gd(0),
> 0 if κ < Gd(0). (9)

Furthermore, κ 7→ µ(κ) is continuous, non-increasing and convex on [0,∞), and
strictly decreasing on [0,Gd(0)]. Our next two theorems, Theorem 1.2 and 1.3, give
the limiting behavior of λ

(n)
p as κ ↓ 0, κ→∞ and p→∞, n→∞, respectively. They

will be proved in Section 3.

Theorem 1.2. Let n, p ∈ N and ρ ∈ [0,∞).
(i) For all d ≥ 1, limκ↓0 λ

(n)
p (κ,ρ) = λ

(n)
p (0,ρ) = nµ(ρ/p).

(ii) If 1≤ d ≤ 2, then λ
(n)
p (κ,ρ) > 0 for all κ ∈ [0,∞). Moreover, κ 7→ λ

(n)
p (κ,ρ) is
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strictly decreasing with limκ→∞ λ
(n)
p (κ,ρ) = 0 (see Fig. 1).

(iii) If d ≥ 3, then λ
(n)
p (κ,ρ) = 0 for κ ∈ [nGd(0),∞) or ρ ∈ [pGd(0),∞) (see Fig.

2).

Theorem 1.3. Let d ≥ 1 and κ,ρ ∈ [0,∞).
(i) For all n ∈ N, limp→∞ λ

(n)
p (κ,ρ) = nµ(κ/n) (see Fig. 1–2);

(ii) For all p > ρ/Gd(0), limn→∞ λ
(n)
p (κ,ρ) = +∞;

(iii) For all p≤ ρ/Gd(0) and n ∈ N, λ
(n)
p (κ,ρ) = 0.

Note that since Gd(0) = ∞ for dimensions 1 and 2 part (iii) of Theorem 1.3 is
contained in part (iii) of Theorem 1.2.

By part (ii) of Theorem 1.1, λ
(n)
p (κ,ρ) is non-increasing in κ . Hence, we can

define
{

κ
(n)
p (ρ) : p ∈ N

}
as the non-decreasing sequence of critical κ’s for which

λ
(n)
p (κ,ρ)

{
> 0, for κ ∈

[
0,κ

(n)
p (ρ)

)
,

= 0, for κ ∈
[
κ

(n)
p (ρ),∞

)
,

p ∈ N . (10)

As a consequence of Theorems 1.1 and 1.2 we have,

κ
(n)
p (ρ) = ∞ if 1≤ d ≤ 2,

0 < κ
(n)
p (ρ) < ∞ if d ≥ 3 and p > ρ/Gd(0),

κ
(n)
p (ρ) = 0 if d ≥ 3 and p≤ ρ/Gd(0).

(11)

Our fourth theorem gives bounds on κ
(n)
p (ρ) which will be proved in Section 4. For

this theorem we need to define the inverse of the function µ(κ). Note that by (8)
and (9) we have µ(0) = 1 and µ(Gd(0)) = 0. It is easy to see that µ(κ) restricted to
the domain [0,Gd(0)] is invertible with an inverse function µ−1 : [0,1]→ [0,Gd(0)].
We extend µ−1 to [0,∞) by declaring µ−1(t) = 0 for t > 1.

Theorem 1.4. Let n, p ∈ N.
(i) If d ≥ 3, ρ ∈ [0,∞) 7→ κ

(n)
p (ρ) is a continuous, non-increasing and convex func-

tion such that

max
( n

4d
µ(ρ/p),nµ

−1(4dρ/p)
)
≤ κ

(n)
p (ρ)≤ nGd(0)

(
1− ρ

pGd(0)

)
+

. (12)

(ii) Assume that d ≥ 5 and let αd := Gd(0)
2d‖Gd‖22

∈ (0,∞). Then

κ
(n)
p (ρ)≥

(
nGd(0)−ρ

n
pαd

)
+

. (13)

(iii) Assume that d ≥ 5 and p ∈ N\{1} is such that αd > p−1
p . Then

κ
(n)
p−1(ρ) < κ

(n)
p (ρ) ∀ρ ∈ (0, pGd(0)) . (14)
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Note that the condition αd > p−1
p is always true if d is large enough by the

following lemma whose proof is given in the appendix.

Lemma 1.1. For all d ≥ 3, αd ≤ 1, and limd→∞ αd = 1 .

Our next theorem states some general intermittency results for all dimensions
which will be proved in Section 5.

Theorem 1.5. d ≥ 1 and n ∈ N.
(i) If κ ∈ [0,nGd(0)), then there exists p≥ 2 such that the system is p-intermittent.
(ii) If κ ∈ [nGd(0),∞), then the system is not intermittent.

Note that since Gd(0) = ∞ for d = 1,2 the above Theorem implies that for dimen-
sions 1 and 2 the system is always p-intermittent for some p.

Our last theorem describes several regimes in the intermittent behavior of the
solution of the system (1). It will be proved in Section 5.

Theorem 1.6. For all n ∈ N, for any p ∈ N\{1} given and for d large enough (s.t.
αd > (p−1)/p ), the system is

- 2-intermittent for ρ ∈ (0,2Gd(0)), and κ ∈ [κ(n)
1 (ρ),κ(n)

2 (ρ));
- 3-intermittent for ρ ∈ [0,3Gd(0)), and κ ∈ (κ(n)

2 (ρ),κ(n)
3 (ρ));

- · · ·
- p-intermittent for ρ ∈ [0, pGd(0)), and κ ∈ (κ(n)

p−1(ρ),κ(n)
p (ρ))

(see Fig. 3).

The intermittent behavior of the system is expected to be as follows.

Conjecture 1.1. In dimension 1 ≤ d ≤ 2, the solution u is fully intermittent (see
Fig. 1).

Conjecture 1.2. In dimension d ≥ 3 the intermittency vanishes as κ increases (see
Fig. 2). More precisely, if d ≥ 3 there are three different regimes:

Regime A: for all κ ∈ [0,κ
(n)
2 ), the solution is full intermittent;

Regime B: for all κ ∈ [κ(n)
2 ,nGd(0)), there exists p = p(κ) ≥ 3 such that the

solution is q-intermittent for all q≥ p;
Regime C: for all κ ∈ [nGd(0),∞), the solution is not p-intermittent for any p≥ 2

(see Fig. 2).

Conjecture 1.3. For all fixed n ≥ 1 and d large enough the κ
(n)
p ’s are distinct (see

Fig. 2).
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0
κ

λ
(n)
p (κ,ρ)

p = 1

p = 2

p = 3

p = ∞

qq
q
q

Fig. 1 Full intermittency when 1≤ d ≤ 2. (Conjecture.)

-

6

0
κ

λ
(n)
p (κ)

p = 1

p = 2

p = 3

p = ∞

qq
q
q

q q q q
κ

(n)
1 κ

(n)
2 κ

(n)
3 nGd(0)

| ←− A −→ | ←− B −→ | ←− C −→

Fig. 2 Three intermittent regimes when d ≥ 3 and ρ < Gd(0). (Conjecture.)

1.4 Discussion

The behavior of the annealed Lyapunov exponents and more particularly the prob-
lem of intermittency for the PAM in a space-time random environment was subject
to various studies. Carmona and Molchanov [1] obtained an essentially complete
qualitative description of the annealed Lyapunov exponents and intermittency when
ξ is white noise, i.e.,

ξ (x, t) =
∂

∂ t
W (x, t) ,
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6

0
ρ

κ

nGd(0) q

q q q q
Gd(0) 2Gd(0) · · · (p−1)Gd(0) pGd(0)

? 2-int. · · · p-int. · · ·

no intermittency

Fig. 3 Phase diagram of intermittency when d is large enough. The bold curves represent ρ ∈
[0,∞) 7→ κ

(n)
q (ρ), q = 1, · · · , p.

where W = (Wt)t≥0 with Wt = {W (x, t) : x ∈ Zd} is a white noise field. Further
refinements on the behavior of the Lyapunov exponents were obtained in Greven
and den Hollander [9]. In particular, it was shown that λ1 = 1/2 for all d ≥ 1 and
λp > 1/2 for p ∈ N\{1} in d = 1,2, while for d ≥ 3 there exist 0 < κ2 ≤ κ3 ≤ . . .
satisfying

λp(κ)− 1
2

{
> 0, for κ ∈

[
0,κp

)
,

= 0, for κ ∈
[
κp,∞

)
,

p ∈ N\{1} .

Upper and lower bounds on κp were derived, and the asymptotics of κp as p→ ∞

was computed. In addition, it was proved that for d large enough the κp’s are distinct.
More recently various models where ξ is non-Gaussian were investigated. Kesten

and Sidoravicius [10] and Gärtner and den Hollander [3], have considered the case
where ξ is given by a Poisson field of independent simple random walks. In [10],
the survival versus extinction of the system and in [3], the moment asymptotics
were studied, in particular, their dependence on d, κ and the parameters control-
ling ξ . A partial picture of intermittency, depending on the parameters d and κ was
obtained. The case where ξ is a single random walk –corresponding to our set-
ting with n = 1– was studied by Gärtner and Heydenreich [2]. Analogous results
to those contained in Theorems 1.1, 1.2 and 1.6 were obtained. In their situation
λ

(1)
1 = µ(κ +ρ) (recall (9)) and therefore κ

(1)
1 = Gd(0)−ρ corresponds to the crit-

ical value κ
(1)
1 = inf{κ ∈ [0,∞) : λ

(1)
1 (κ) = 0}. Because of this simplicity, a more

complete picture of intermittency was obtained.
The investigation of annealed Lyapunov behavior and intermittency was extented

to non-Gaussian and space correlated potentials first in Gärtner, den Hollander and
Maillard, in [4] and [6], for the case where ξ is an exclusion process with symmetric
random walk transition kernel, starting form a Bernoulli product measure and later
in Gärtner, den Hollander and Maillard [7] for the case where ξ is a voter model
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starting either from Bernoulli product measure or from equilibrium (see Gärtner,
den Hollander and Maillard [5], for an overview).

2 Proof of Theorem 1.1

Step 1: We first prove that if the limit in (5) exists, it does not depend on x as soon
as (κ,ρ) 6= (0,0). To this end, let us introduce some notations. For any t > 0, we
denote

Yt
.= (Y ρ

1 (t), · · · ,Y ρ
n (t)) ∈ Zdn , Xt

.= (Xκ
1 (t), · · · ,Xκ

p (t)) ∈ Zd p .

For (x,y) ∈ Zd p ×Zdn, EX ,Y
x,y denote the expectation under the law of (Xt ,Yt)t≥0

starting from (x,y). The same notation is used for x ∈ Zd and y ∈ Zd . In that case,
it means that X0 = (x, · · · ,x), Y0 = (y, · · · ,y) and EX ,Y

x,y = E⊗n
y ⊗E⊗p

x . Finally, for
x = (x1, · · · ,xp) ∈ Zd p and y = (y1, · · · ,yn) ∈ Zdn, set

I(x,y) =
p

∑
j=1

n

∑
k=1

δ0(x j− yk) .

Then, by time reversal for Y in (4), for all x ∈ Zd and t > 0,

E⊗n
0 [u(x, t)p] = ∑

z∈Zdn

EX ,Y
x,z

[
exp
(∫ t

0
I(Xs,Ys)ds

)
δ0(Yt)

]
. (15)

Using the Markov property at time 1 and the fact that 1≤ exp
(∫ 1

0 I(Xs,Ys)ds
)

, we

get for x1 and x2 any fixed points in Zd ,

E⊗n
0 [u(x1, t)p] ≥ ∑

z∈Zdn

EX ,Y
x1,z

[
δ(x2,··· ,x2)(X1)δz(Y1)exp

(∫ t

1
I(Xs,Ys)ds

)
δ0(Yt)

]
= (pκ

1 (x1,x2))p(pρ

1 (0,0))nE⊗n
0 ([u(x2, t−1)]p) ,

where pν
t is the transition kernel of a simple random walk on Zd with step rate 2dν .

This proves the independence of λp w.r.t. x as soon as κ > 0, since in this case for
all x1,x2 ∈ Zd , pκ

1 (x1,x2) > 0.
For κ = 0, since the X-particles do not move, we have

E⊗n
0 [u(x1, t)p] = E0

[
exp
(

p
∫ t

0
δx1(Y

ρ

1 (s))ds
)]n

. (16)

The same reasoning leads now to

E⊗n
0 [u(x1, t)p]≥ pρ

1 (0,x1− x2)nE⊗n
0 ([u(x2, t−1)]p) .
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Step 2: Variational representation. From now on, we restrict our attention to the
case x = 0. The aim of this step is to give a variational representation of λ

(n)
p (κ,ρ).

To this end, we introduce further notations. Let (e1, · · · ,ed) be the canonical basis
of Rd . For x = (x1, · · · ,xp) ∈ Zd p, and f : (x,y) ∈ Zd p×Zdn 7→ R, we set

∇x f (x,y) =
(
∇x1 f (x,y), · · · ,∇xp f (x,y)

)
∈ Rd p ,

where for j ∈ {1, · · · , p}, and i ∈ {1, · · · ,d},〈
∇x j f (x,y),ei

〉
= f (x1, · · · ,x j + ei, · · · ,xp,y)− f (x,y) .

The same notation is used for the y-coordinates, so that ∇y f (x,y) ∈ Rdn. We also
define

∆x f (x,y) =
p

∑
j=1

∆x j f (x,y)

=
p

∑
j=1

∑
z j∈Zd
z j∼x j

[
f (x1, · · · ,z j, · · · ,xp,y)− f (x1, · · · ,x j, · · · ,xp,y)

]
.

Proposition 2.1. Let d ≥ 1 and n, p ∈ N. For all κ,ρ ∈ [0,∞),

λ
(n)
p (κ,ρ) = lim

t→∞

1
pt

logE⊗n
0 [u(0, t)p]

=
1
p

sup
f∈l2(Zd p×Zdn)
‖ f‖2=1

{
−κ ‖∇x f‖2

2−ρ
∥∥∇y f

∥∥2
2 + ∑

(x,y)
I(x,y) f 2(x,y)

}
. (17)

Proof. Upper bound. Let Bn
R be the ball in Zdn of radius R = t log(t) centered at 0.

Note that

∑
z/∈Bn

R

EX ,Y
0,z

[
exp
(∫ t

0
I(Xs,Ys)ds

)
δ0(Yt)

]
≤ exp(tnp)PY

0 (Yt /∈ Bn
R)

≤ exp(tnp)exp
(
−C(n,d,ρ)

R2

t

)
,

for some constant C(n,d,ρ) ∈ (0,∞], and therefore

lim
t→∞

1
t

log ∑
z/∈Bn

R

EX ,Y
0,z

[
exp
(∫ t

0
I(Xs,Ys)ds

)
δ0(Yt)

]
=−∞ .

Since in the same way,
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∑
z∈Bn

R

EX ,Y
0,z

[
exp
(∫ t

0
I(Xs,Ys)ds

)
δ0(Yt) 1I(Bp

R)c(Xt)
]

≤ exp(npt)PY
0 (Yt ∈ Bn

R)PX
0
(
Xt /∈ Bp

R

)
≤ exp(tnp) exp

(
−C(p,d,κ)

R2

t

)
,

we are thus led to study the existence of

lim
t→∞

1
t

log ∑
z∈Bn

R

EX ,Y
0,z

[
exp
(∫ t

0
I(Xs,Ys)ds

)
δ0(Yt) 1IBp

R
(Xt)

]
= lim

t→∞

1
t

log
〈

f1,e tL f2

〉
,

where f1 : (x,y)∈Zd p×Zdn 7→ δ0(x) 1IBn
R
(y), f2 : (x,y)∈Zd p×Zdn 7→ 1IBp

R
(x)δ0(y),

and L is the bounded self-adjoint operator in l2(Zd p×Zdn) defined by

L f (x,y) = κ∆x f (x,y)+ρ∆y f (x,y)+ I(x,y) f (x,y) ∀(x,y) ∈ Zd p×Zdn .

Note that
〈

f1,etL f2
〉
≤ ‖ f1‖2

∥∥etL
∥∥

2,2 ‖ f2‖2 = C(d,n, p)Rd(n+p)/2
∥∥etL

∥∥
2,2. Thus,

lim
t→∞

1
t

log
〈

f1,e tL f2

〉
≤ ‖L ‖2,2 = sup

f∈l2(Zd p×Zdn)
‖ f‖2=1

〈 f ,L f 〉 ,

which is the upper bound in (17).

Lower bound. By (15) with x = 0, it follows that

E⊗n
0 [u(0, t)p] ≥ EX ,Y

0,0

[
exp
(∫ t

0
I(Xs,Ys)ds

)
δ0(Xt)δ0(Yt)

]
=
〈

δ0⊗δ0,etL (δ0⊗δ0)
〉

=
∥∥∥e

t
2 L (δ0⊗δ0)

∥∥∥2

2

= ∑
x∈Zd p

∑
y∈Zdn

(
e

t
2 L (δ0⊗δ0)(x,y)

)2
.

Restricting the sum over Bp
R×Bn

R, and applying Jensen’s inequality, we get
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E⊗n
0 [u(0, t)p]

≥ ∑
x∈Bp

R

∑
y∈Bn

R

(
e

t
2 L (δ0⊗δ0)(x,y)

)2

≥ 1
|Bn

R|
1
|Bp

R|

 ∑
x∈Bp

R

∑
y∈Bn

R

e
t
2 L (δ0⊗δ0)(x,y)

2

=
C(d,n, p)
Rd(n+p)

 ∑
x∈Bp

R

∑
y∈Bn

R

EX ,Y
x,y

[
exp
(∫ t

2

0
I(Xs,Ys)ds

)
δ0(X t

2
)δ0(Y t

2
)
]2

=
C(d,n, p)
Rd(n+p)

(
EX ,Y

0,0

[
exp
(∫ t

2

0
I(Xs,Ys)ds

)
1IBp

R
(X t

2
) 1IBn

R
(Y t

2
)
])2

.

Taking R = t log(t), we obtain that

liminf
t→∞

1
t

logE⊗n
0 [u(0, t)p]

≥ liminf
t→∞

2
t

logEX ,Y
0,0

[
exp
(∫ t/2

0
I(Xs,Ys)ds

)
1IBp

R
(Xt/2) 1IBn

R
(Yt/2)

]
.

As already noted, for R = t log(t),

EX ,Y
0,0

[
exp
(∫ t/2

0
I(Xs,Ys)ds

)
1I(Bp

R×Bn
R)c(Xt/2,Yt/2)

]
≤ exp(tnp/2)exp(−Ct log(t)2) ,

and therefore, we get

liminf
t→∞

1
t

logE⊗n
0 [u(0, t)p]≥ liminf

t→∞

2
t

logEX ,Y
0,0

[
exp
(∫ t/2

0
I(Xs,Ys)ds

)]
.

Now, the occupation measure 1
t
∫ t

0 δ(Xs,Ys) ds satisfies a weak large deviations prin-
ciple (LDP) in the space M1(Zd p ×Zdn) of probability measures on Zd p ×Zdn,
endowed with the weak topology. The speed of this LDP is t and the rate function
is given for all ν ∈M1(Zd p×Zdn) by

J(ν) = κ
∥∥∇x
√

ν
∥∥2

2 +ρ
∥∥∇y
√

ν
∥∥2

2 .

Since I is bounded, the lower bound in Varadhan’s integral lemma yields

liminf
t→∞

1
t

logE⊗n
0 [u(0, t)p]≥ sup

ν∈M1(Zd p×Zdn)

{
∑
(x,y)

I(x,y)ν(x,y)− J(ν)

}
.

Setting f (x,y) =
√

ν(x,y) gives then the lower bound in (17). ut
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Step 3: Properties of λ
(n)
p . Since 0 ≤ I(x,y) ≤ np, we clearly have 0 ≤ λ

(n)
p ≤ n.

Using representation (17), the function (κ,ρ) 7→ λ
(n)
p (κ,ρ) is nonincreasing in κ

and ρ , convex, and l.s.c. as a supremum of functions that are linear in κ and ρ .
Since every finite convex function is also u.s.c., λ

(n)
p is continuous.

3 Proof of Theorems 1.2–1.3

By symmetry, note that ∀n, p ∈ N, ∀κ,ρ ∈ [0,∞),

λ
(n)
p (κ,ρ) =

n
p

λ
(p)
n (ρ,κ) . (18)

3.1 Proof of Theorem 1.2

Proof of (i): We have already seen that limκ→0 λ
(n)
p (κ,ρ) = λ

(n)
p (0,ρ) and that for

κ = 0, the X particles do not move so that E⊗n
0 [u(0, t)p] = E0

(
exp
(

pLY
t (0)

))n (see
(16)), where LY

t (0) is the local time at 0 of a simple random walk in Zd with rate
2dρ . Using the LDP for LY

t (0), we obtain

λ
(n)
p (0,ρ) =

n
p

sup
f∈l2(Zd )
‖ f‖2=1

〈 f ,(ρ∆ + pδ0) f 〉= nµ(ρ/p) .

Proof of (ii): ∀n, p ∈ N, ∀κ,ρ ∈ [0,∞),

λ
(n)
p (κ,ρ)≥ λ

(n)
1 (κ,ρ) = nλ

(1)
n (ρ,κ)≥ nλ

(1)
1 (ρ,κ) = nµ(κ +ρ) ,

where the last equality is proved in [2] and comes from the fact that X1
t −Y 1

t is a
simple random walk in Zd with jump rate 2d(κ +ρ). Since Gd(0) = ∞ for d = 1,2,
it follows from (9) that λ

(n)
p (κ,ρ) > 0 for d = 1,2.

Let us prove that limκ→∞ λ
(n)
p (κ,ρ) = 0. By monotonicity in ρ ,

λ
(n)
p (κ,ρ)≤ λ

(n)
p (κ,0) = nµ(κ/n) , (19)

so that the only thing to prove is that limκ→∞ µ(κ) = 0. To this end, one can use the
discrete Gagliardo-Nirenberg inequality: there exists a constant C such that for all
f : Zd 7→ R,

for d = 1 , ‖ f‖2
∞
≤C‖ f‖2 ‖∇ f‖2 ;

for d = 2 , ‖ f‖2
4 ≤C‖ f‖2 ‖∇ f‖2 .
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From this, we get that for all f ∈ l2(Zd) with ‖ f‖2 = 1,

−κ ‖∇ f‖2
2 + f (0)2 ≤

{
−κ ‖∇ f‖2

2 +‖ f‖2
∞

for d = 1
−κ ‖∇ f‖2

2 +‖ f‖2
4 for d = 2

≤ −κ ‖∇ f‖2
2 +C‖∇ f‖2 .

Taking the supremum over f yields

µ(κ)≤ sup
x≥0

(
−κx2 +Cx

)
=

C2

4κ
.

The strict monotonicity is now an easy consequence of the fact that κ 7→ λ
(n)
p (κ,ρ)

is convex, positive, non increasing, and tends to 0 as κ → ∞.

Proof of (iii): By (18) and (19), we get

λ
(n)
p (κ,ρ)≤ nmin(µ(κ/n),µ(ρ/p)) , (20)

from which the claim follows.

3.2 Proof of Theorem 1.3

Proof of (i): Fix ε > 0. Let f approaching the supremum in the variational repre-
sentation (17) of λ

(n)
p (κ,0), so that

pλ
(n)
p (κ,0)− ε ≤ −κ ‖∇x f‖2

2 + ∑
x∈Zd p

∑
y∈Zdn

I(x,y) f 2(x,y)

≤ pλ
(n)
p (κ,ρ)+ρ sup

f∈l2(Zd p×Zdn)
‖ f‖2=1

∥∥∇y f
∥∥2

2 .

For x ∈ Zd p, set fx : y ∈ Zdn 7→ f (x,y). Since the bottom of the spectrum of ∆ in
l2(Zdn) is −4dn,

∑
y∈Zdn

∥∥∇y fx(y)
∥∥2

2 ≤ 4dn ∑
y∈Zdn

f 2
x (y) ,

for all x ∈ Zd p. Hence,

∑
x∈Zd p

∑
y∈Zdn

∥∥∇y fx(y)
∥∥2

2 ≤ 4dn ∑
x∈Zd p

∑
y∈Zdn

f 2
x (y) = 4dn ,

so that for all ε > 0,
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pλ
(n)
p (κ,0)− ε ≤ pλ

(n)
p (κ,ρ)+4dnρ .

Letting ε → 0 yields,

λ
(n)
p (κ,0)− 4dnρ

p
≤ λ

(n)
p (κ,ρ)≤ λ

(n)
p (κ,0) , (21)

which, after letting p→ ∞, gives the claim.

Proof of (ii): By (18), limn→∞ λ
(n)
p (κ,ρ) = limn→∞

n
p λ

(p)
n (ρ,κ) and by (i),

lim
n→∞

λ
(p)
n (ρ,κ) = λ

(p)
n (ρ,0) = pµ(ρ/p) > 0 , for p > ρ/Gd(0) .

Hence, for p > ρ/Gd(0), limn→∞ λ
(n)
p (κ,ρ) = +∞.

Proof of (iii): This is a direct consequence of Theorem 1.2(iii).

4 Proof of Theorem 1.4

Proof of (i): We first prove that

κ
(n)
p (ρ) = sup

f∈l2(Zd p×Zdn)
‖ f‖2=1

∑x,y I(x,y) f 2(x,y)−ρ
∥∥∇y f

∥∥2
2

‖∇x f‖2
2

. (22)

Indeed, let us denote by S the supremum in the right-hand side of (22).
If κ ≥ κ

(n)
p (ρ), then λ

(n)
p (κ,ρ) = 0. Therefore, using (17), for all f ∈ l2(Zd p×

Zdn) such that ‖ f‖2 = 1,

∑
x∈Zd p

∑
y∈Zdn

I(x,y) f 2(x,y)−ρ
∥∥∇y f

∥∥2
2 ≤ κ ‖∇x f‖2

2 ,

so that κ ≥ S. Hence κ
(n)
p (ρ) ≥ S. On the opposite direction, we can assume that

S < ∞. Then, by definition of S, for all f ∈ l2(Zd p×Zdn) such that ‖ f‖2 = 1,

∑
x∈Zd p

∑
y∈Zdn

I(x,y) f 2(x,y)−ρ
∥∥∇y f

∥∥2
2 ≤ S‖∇x f‖2

2 .

Thus, for all f ∈ l2(Zd p×Zdn) such that ‖ f‖2 = 1, and all κ ≥ S,

∑
x∈Zd p

∑
y∈Zdn

I(x,y) f 2(x,y)−ρ
∥∥∇y f

∥∥2
2−κ ‖∇x f‖2

2 ≤ (S−κ)‖∇x f‖2
2 ≤ 0 .
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Hence, for all κ ≥ S, λ
(n)
p (κ,ρ) = 0, i.e., κ ≥ κ

(n)
p (ρ). Hence, S ≥ κ

(n)
p (ρ). This

proves (22).
Since ρ 7→ κ

(n)
p (ρ) is a supremum of functions that are linear in ρ , it is l.s.c.

and convex. It is also easily seen that ρ 7→ κ
(n)
p (ρ) is non increasing. The continuity

follows then from the finiteness of κ
(n)
p (ρ).

The lower bound in (12) is a direct consequence of (21). Indeed, since λ
(n)
p (κ,0)

= nµ(κ/n), it follows from (21) that if µ(κ/n) > 4dρ/p, then κ < κ
(n)
p (ρ). This

yields the bound:
κ

(n)
p (ρ)≥ nµ

−1(4dρ/p) .

Using the symmetry relation (18), we also get from (21) that

λ
(n)
p (κ,ρ)≥ nµ(ρ/p)−4dκ .

This leads to κ
(n)
p (ρ)≥ n

4d µ(ρ/p). Hence, if ρ/p < Gd(0), κ
(n)
p (ρ) > 0. We have al-

ready seen that κ
(n)
p (ρ) = 0 if ρ/p≥Gd(0). Since λ

(n)
p (κ,0) = nµ(κ/n), it follows

that κ
(n)
p (0) = nGd(0). Using convexity, we have, for all ρ ∈ [0, pGd(0)],

κ
(n)
p (ρ)≤ κ

(n)
p (pGd(0))−κ

(n)
p (0)

pGd(0)
ρ +κ

(n)
p (0) = n(Gd(0)−ρ/p) .

Since κ
(n)
p (ρ) = 0 if ρ/p≥ Gd(0), then the upper bound in (12) is proved.

Proof of (ii): To prove (13), let f0 be the function

f0(x,y) =
p

∏
i=1

Gd(xi)
‖Gd‖2

n

∏
j=1

δ0(y j) .

Note that for d ≥ 5, ‖Gd‖2 < ∞, so that f0 is well-defined, and has l2-norm equal to
1. From (22), we get

κ
(n)
p (ρ)≥

∑x,y I(x,y) f 2
0 (x,y)−ρ

∥∥∇y f0
∥∥2

2

‖∇x f0‖2
2

.

An easy computation then gives

∑
x,y

I(x,y) f 2
0 (x,y) = np

G2
d(0)

‖Gd‖2
2

,

∥∥∇y f0
∥∥2

2 = n
∥∥∇y1δ0

∥∥2
2 = 2dn ,

and

‖∇x f0‖2
2 = p

‖∇x1Gd‖2
2

‖Gd‖2
2

= p
Gd(0)
‖Gd‖2

2

,
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since ‖∇x1Gd‖2
2 = 〈Gd ,−∆Gd〉= 〈Gd ,δ0〉= Gd(0). This gives (13).

Proof of (iii): The inequality (14) is clear if ρ ∈ [(p− 1)Gd(0), pGd(0)), since in
this case, κ

(n)
p−1(ρ) = 0 < κ

(n)
p (ρ). We assume therefore that ρ ∈ (0,(p−1)Gd(0)).

From (12), we have κ
(n)
p−1(ρ)≤ nGd(0)−ρn/(p−1), whereas, from (13), κ

(n)
p (ρ)≥

nGd(0)−ρn/(pαd). Hence κ
(n)
p−1(ρ) < κ

(n)
p (ρ) as soon as αd > p−1

p . This gives the
claim.

5 Proof of Theorems 1.5 and 1.6

Proof of Theorem 1.5(i): The function p 7→ λ
(n)
p (κ,ρ) increases from λ

(n)
1 (κ,ρ)

to nµ(κ/n). Hence, there exists p such that λ
(n)
p (κ,ρ) < λ

(n)
p+1(κ,ρ) as soon as

λ
(n)
1 (κ,ρ) < nµ(κ/n). But nµ(κ/n) = λ

(n)
1 (κ,0). Hence, if λ

(n)
1 (κ,ρ) = nµ(κ/n),

the convex decreasing function ρ 7→ λ
(n)
1 (κ,ρ) is constant. Being equal to 0 for

ρ ≥ Gd(0), we get that nµ(κ/n) = 0, which is not the case if κ < nGd(0).

Proof of Theorem 1.5(ii): if κ ≥ nGd(0), then λ
(n)
p (κ,ρ) = 0, for all p≥ 1, and the

system is not intermittent.

Proof of Theorem 1.6: For all p ∈ N \ {1} by Lemma 1.1 for d large enough we
have αd > p−1

p . This implies that αd > q−1
q for all q ∈N\{1} and q≤ p. Hence, by

Theorem 1.4(iii), for all q ∈ N\{1} with q≤ p we have κ
(n)
q−1(ρ) < κ

(n)
q (ρ), for all

ρ ∈ (0, pGd(0)). Hence, in the domain{
(κ,ρ) : ρ ∈ (0,qGd(0)) , κ

(n)
q−1(ρ)≤ κ < κ

(n)
q (ρ)

}
one has

λ
(n)
1 (κ,ρ) = · · ·= λ

(n)
q−1(κ,ρ) = 0 < λ

(n)
q (κ,ρ) ,

which proves the desired result.
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Appendix: Proof of lemma 1.1

For a function f : Zd 7→ R, let f̂ denote the Fourier transform of f :

f̂ (θ) = ∑
x∈Zd

ei〈θ ,x〉 f (x) ∀θ ∈ [0,2π]d .
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Then, the inverse Fourier transform is given by

f (x) =
1

(2π)d

∫
[0,2π]d

e−i〈θ ,x〉 f̂ (θ)dθ ,

and the Plancherel’s formula reads

∑
x∈Zd

f 2(x) =
1

(2π)d

∫
[0,2π]d

| f̂ (θ)|2 dθ .

Using the equation ∆Gd =−δ0 we get that

Ĝd(θ) =
1

2∑
d
i=1(1− cos(θi))

.

Hence,

Gd(0) =
1

(2π)d

∫
[0,2π]d

dθ

2∑
d
i=1(1− cos(θi))

=
1

πd

∫
[0,π]d

dθ

2∑
d
i=1(1− cos(θi))

= E
[

1
2∑

d
i=1(1− cos(Θi))

]
where the random variables (Θi) are i.i.d. with uniform distribution on [0,π]. More-
over, by Plancherel’s formula we have

‖Gd‖2
2 =

1
(2π)d

∫
[0,2π]d

dθ(
2∑

d
i=1(1− cos(θi))

)2 = E

[
1(

2∑
d
i=1(1− cos(Θi))

)2

]
.

Thus,

αd =
Gd(0)

2d ‖Gd‖2
2

=
E
[

1
S̄d

]
E
[

1
S̄2

d

] ,

where S̄d = 1
d ∑

d
i=1(1−cos(Θi)). Applying Hölder’s and Jensen’s inequality, we get

that
αd ≤

1√
E
[

1
S̄2

d

] ≤ E(S̄d) = 1 .

By the law of large numbers, S̄d converges almost surely to E [1− cos(Θ)] = 1 as
d tends to infinity. We are now going to prove that S̄−2

d is uniformly integrable by
showing that ∀p > 2,

sup
d>2p

E
[
S̄−p

d

]
< ∞. (23)
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Indeed, let ε ∈ (0,π) be a small positive number to be fixed later. Let

I = {i ∈ {1, · · · ,d} : 0≤Θi ≤ ε} .

S̄d ≥
1
d ∑

i/∈I
(1− cos(ε))+

cε

d ∑
i∈I

Θ
2
i ,

where cε = inf0≤θ≤ε
1−cos(θ)

θ 2 → 1/2 when ε → 0. Therefore,

E
[
S̄−p

d

]
≤ dp

d

∑
k=0

∑
I⊂{1,··· ,d}
|I|=k

E

[
1II =I(

(1− cos(ε))(d− k)+ cε ∑i∈I Θ 2
i

)p

]
.

Since the last expectation only depends on |I|, we get

E
[
S̄−p

d

]
≤ dp

d

∑
k=0

(
d
k

)
a(k,ε,d) ,

with

a(k,ε,d) :=
1

πd

∫
0≤θ1 ,··· ,θk≤ε

ε≤θk+1 ,··· ,θd≤π

dθ1 · · ·dθd(
(1− cos(ε))(d− k)+ cε(θ 2

1 + · · ·+θ 2
k )
)p .

Let ωd denote the volume of the d-dimensional unit ball. For k = d,

a(d,ε,d) =
1

πd

∫
0≤θ1,··· ,θd≤ε

dθ1 · · ·dθd

cp
ε ‖θ‖2p

≤ 1
cp

ε πd ωd

∫ √dε

0
rd−2p−1dr

=
(

ε

π

)d 1
(cε ε2)p d

d
2−p ωd

d−2p
,

for d > 2p.

Note that for large d, ωd ' (2eπ)d/2
√

πddd/2 . Therefore, as d→ ∞

dp
(

d
d

)
a(d,ε,d) = O

(
d−3/2(ε22e/π)d/2

)
.

If ε is chosen so that ε2 ≤ π/(2e), we obtain that limd→∞ dp
(

d
d

)
a(d,ε,d) = 0.

For k ≤ d−1,

a(k,ε,d)≤ 1
(1− cos(ε))p

1
(d− k)p

(
ε

π

)k(
1− ε

π

)d−k
,
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and dp
(

d
k

)
a(k,ε,d) ≤ 1

(1−cos(ε))p E [ 1IN=k(1−N/d)−p], where N is a Binomial
random variable with parameters d and ε/π . Hence,

E
[

1
S̄p

d

]
≤ 1

(1− cos(ε))p E
[

1IN≤d−1(1−N/d)−p]+O
(

d−3/2
)

≤ dp

(1− cos(ε))p P
[

d
2ε

π
≤ N ≤ d−1

]
+

1
(1− cos(ε))p(1− 2ε

π
)p

+O
(

d−3/2
)

.

Now, by the large deviations principle satisfied by N/d, there is an i(ε) > 0 such
that P [N ≥ d2ε/π]≤ exp(−di(ε)). This ends the proof of (23).

Using the uniform integrability (23), and the fact that S̄d converges a.s. to 1, we

obtain that E
[

1
S̄d

]
and E

[
1

S̄2
d

]
both converge to 1, when d goes to infinity.
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