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Abstract We consider the parabolic Anderson model ∂u/∂ t = κ∆u + γξ u with
u : Zd×R+→R+, where κ ∈R+ is the diffusion constant, ∆ is the discrete Lapla-
cian, γ ∈ R+ is the coupling constant, and ξ : Zd×R+→{0,1} is the voter model
starting from Bernoulli product measure νρ with density ρ ∈ (0,1). The solution
of this equation describes the evolution of a “reactant” u under the influence of a
“catalyst” ξ .

In Gärtner, den Hollander and Maillard [6] the behavior of the annealed Lya-
punov exponents, i.e., the exponential growth rates of the successive moments of u
w.r.t. ξ , was investigated. It was shown that these exponents exhibit an interesting
dependence on the dimension and on the diffusion constant.

In the present paper we address some questions left open in [6] by considering
specifically when the Lyapunov exponents are the a priori maximal value in terms
of strong transience of the Markov process underlying the voter model.
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1 Introduction

1.1 Model

The parabolic Anderson model (PAM) is the partial differential equation

∂

∂ t
u(x, t) = κ∆u(x, t)+ γξ (x, t)u(x, t), x ∈ Zd , t ≥ 0, (1)

with u a R+-valued field, κ ∈ R+ a diffusion constant, ∆ the discrete Laplacian,
acting on u as

∆u(x, t) = ∑
y∈Zd
y∼x

[u(y, t)−u(x, t)]

(y∼ x meaning that y is a nearest neighbor of x), γ ∈ R+ a coupling constant and

ξ = (ξt)t≥0 with ξt = {ξt(x) := ξ (x, t) : x ∈ Zd}

the Voter Model (VM) taking values in {0,1}Zd×R+
. As initial condition, we choose

u(x,0) = 1, x ∈ Zd . (2)

One can interpret (1) in terms of population dynamics. Consider a system of two
types of particles, A “catalyst” and B “reactant”, subject to:

• A-particles evolve autonomously according to the voter dynamics;
• B-particles perform independent random walks at rate 2dκ and split into two at a

rate that is equal to γ times the number of A-particles present at the same location;
• the initial configuration of B-particles is one particle everywhere.

Then u(x, t) can be interpreted as the average number of B-particles at site x at time
t conditioned on the evolution of the A-particles.

1.2 Voter Model

The VM is the Markov process on {0,1}Zd
with generator L acting on cylindrical

functions f as
L f (η) = ∑

x∈Zd

p(x,y) ∑
y∈Zd
y∼x

(
f (ηx,y)− f (η)

)
,

where p : Zd ×Zd → [0,1] is the transition kernel of an irreducible random walk
and ηx,y is the configuration
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ηx,y(z) = η(z) ∀z 6= x,
ηx,y(x) = η(y).

In words, ξ (x, t) = 1 and ξ (x, t) = 0 mean the presence and the absence of a particle
at site x at time t, respectively. Under the VM dynamics, the presence and absence
of particles are imposed according to the random walk transition kernel p(·, ·).

The VM was introduced independently by Clifford and Sudbury [3] and by Hol-
ley and Liggett [7], where the basic results concerning equilibria were shown. Let
(St)t≥0 be the Markov semigroup associated with L, p(s)(x,y) = (1/2)[p(x,y) +
p(y,x)], x,y ∈ Zd , be the symmetrized transition kernel associated with p(·, ·), and
µρ the equilibrium measure with density ρ ∈ (0,1). When p(s)(· , ·) is recurrent all
equilibria are trivial, i.e., of the form µρ = (1−ρ)δ0 + ρδ1, while when p(s)(· , ·)
is transient there are also non-trivial equilibria, i.e., ergodic measures µρ , different
from the previous one, which are the unique shift-invariant and ergodic equilibrium
with density ρ ∈ (0,1).

For both cases we have

µSt → µρ weakly as t→ ∞ (3)

for any starting measure µ that is stationary and ergodic with density ρ (see Liggett
[10], Corollary V.1.13). This is in particular the case for our choice µ := νρ , the
Bernoulli product measure with density ρ ∈ (0,1).

1.3 Lyapunov exponents

Our focus of interest will be on the p-th annealed Lyapunov exponent, defined by

λp = lim
t→∞

1
t

logEνρ

(
[u(0, t)]p)1/p

, p ∈ N, (4)

which represents the exponential growth rate of the p-th moment of the solution of
the PAM (1), where Eνρ

denotes the expectation w.r.t. the ξ -process starting from
Bernoulli product measure νρ with density ρ ∈ (0,1). Note that λp depends on the
parameters κ , d, γ and ρ with the two latter being fixed from now. If the above limit
exists, then, by Hölder’s inequality, κ 7→ λp(κ) satisfies

λp(κ) ∈ [ργ,γ] ∀κ ∈ [0,∞).

The behavior of the annealed Lyapunov exponents with VM catalysts has already
been investigated by Gärtner, den Hollander and Maillard [6], where it was shown
that:

• the Lyapunov exponents defined in (4) exist and do not depend on the choice of
the starting measure νρ ST , T ∈ [0,∞], where νρ S∞ := µρ denotes the equilibrium
measure of density ρ (recall (3));
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• the function κ 7→ λp(κ) is globally Lipschitz outside any neighborhood of 0 and
satisfies λp(κ) > ργ for all κ ∈ [0,∞);

• the Lyapunov exponents satisfy the following dichotomy (see Figure 1):

– when 1 ≤ d ≤ 4, if p(·, ·) has zero mean and finite variance, then λp(κ) = γ

for all κ ∈ [0,∞);
– when d ≥ 5,
· limκ→0 λp(κ) = λp(0);
· limκ→∞ λp(κ) = ργ;
· if p(·, ·) has zero mean and finite variance, then p 7→ λp(κ) is strictly in-

creasing for κ � 1.

The following questions were left open (see [6], Section 1.8):

(Q1) Does λp < γ when d ≥ 5 if p(·, ·) has zero mean and finite variance?
(Q2) Is there a full dichotomy in the behavior of the Lyapunov exponents?

Namely, λp < γ if and only if p(s)(·, ·) is strongly transient, i.e.,∫
∞

0
t p(s)

t (0,0)dt < ∞ .

Since any transition kernel p(·, ·) in d ≥ 5 satisfies
∫

∞

0 t pt(0,0)dt < ∞, a positive
answer to (Q2) will also ensure a positive one to (Q1) in the particular case when
p(·, ·) is symmetric. Theorems 1.2–1.4 in Section 1.4 give answers to question (Q2),
depending on the symmetry of p(·, ·). A positive answer to (Q1), given in Theorem
1.1, can also be deduced from our proof of Theorem 1.2.

-

6
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1≤ d ≤ 4

r
λp(κ)
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γ

ργ

κ

λp(κ)

d ≥ 5

rrrp = 1
p = 2
p = 3

Fig. 1 Dichotomy of the behavior of κ 7→ λp(κ) when p(· , ·) has zero mean and finite variance.

By the Feynman-Kac formula, the solution of (1–2) reads

u(x, t) = Ex

(
exp
[

γ

∫ t

0
ξ (Xκ(s), t− s) ds

])
,
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where Xκ = (Xκ(t))t≥0 is a simple random walk on Zd with step rate 2dκ and
Ex denotes the expectation with respect to Xκ given Xκ(0) = x. This leads to the
following representation of the Lyapunov exponents

λp = lim
t→∞

Λp(t)

with

Λp(t) =
1
pt

log
(
Eνρ
⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p

∑
j=1

ξ
(
Xκ

j (s), t− s
)

ds

])
,

where Xκ
j , j = 1, . . . , p, are p independent copies of Xκ . In the above expression,

the ξ and Xκ processes are evolving in time reversed directions. It is nevertheless
possible to let them run in the same time evolution by using the following arguments.
Let Λ̃p(t) denote the ξ -time-reversal analogue of Λp(t) defined by

Λ̃p(t) =
1
pt

log
(
Eνρ
⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p

∑
j=1

ξ
(
Xκ

j (s),s
)

ds

])

and denote Λ p(t) =

1
pt

logmax
x∈Zd

(
Eνρ
⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p

∑
j=1

ξ
(
Xκ

j (s), t− s
)

ds

]
p

∏
j=1

δx
(
Xκ

j (t)
))

=
1
pt

logmax
x∈Zd

(
Eνρ
⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p

∑
j=1

ξ
(
Xκ

j (s),s
)

ds

]
p

∏
j=1

δx
(
Xκ

j (t)
))

,

where in the last line we reverse the time of the ξ -process by using that νρ is shift-
invariant and Xκ

j , j = 1, . . . , p, are time-reversible. As noted in [4], Section 2.1,

limt→∞[Λp(t)−Λ p(t)] = 0 and, using the same argument, limt→∞[Λ̃p(t)−Λ p(t)] =
0, after which we can conclude that

λp(κ) = lim
t→∞

1
pt

log
(
Eνρ
⊗E⊗p

0

)(
exp

[
γ

∫ t

0

p

∑
j=1

ξ
(
Xκ

j (s),s
)

ds

])
.

1.4 Main results

In what follows we give answers to questions (Q1) and (Q2) addressed in [6] con-
cerning when the Lyapunov exponents are trivial, i.e., equal to their a priori maximal
value γ .

Our first theorem gives a positive answer to (Q1). It will be proved in Section 2
as a consequence of the proof of Theorem 1.2.
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Theorem 1.1. If d ≥ 5 and p(·, ·) has zero mean and finite variance, then λp(κ) < γ

for all p≥ 1 and κ ∈ [0,∞).

Our two next theorems state that the full dichotomy in (Q2) holds in the case
when p(·, ·) is symmetric (see Fig. 2). They will be proved in Section 2 and 3,
respectively.

Theorem 1.2. If p(·, ·) is symmetric and strongly transient, then λp(κ) < γ for all
p≥ 1 and κ ∈ [0,∞).

Theorem 1.3. If p(·, ·) is symmetric and not strongly transient, then λp(κ) = γ for
all p≥ 1 and κ ∈ [0,∞).

-

6

0

γ

κ

λp(κ)

not strongly transient

-

6

r

0

γ

ργ

κ

λp(κ)

strongly transientr

Fig. 2 Full dichotomy of the behavior of κ 7→ λp(κ) when p(·, ·) is symmetric.

A similar full dichotomy also holds for the case where ξ is symmetric exclusion
process in equilibrium, between recurrent and transient p(·, ·) (see [5]).

Our fourth theorem shows that this full dichotomy only holds for symmetric
transition kernels p(·, ·), ensuring that the assertion in (Q2) is not true in its full
generality.

Theorem 1.4. There exists p(·, ·) not symmetric with p(s)(·, ·) not strongly transient
such that λp(κ) < γ for all p≥ 1 and κ ∈ [0,∞).

In the strongly transient regime, the following problems remain open:

(a) limκ→0 λp(κ) = λp(0);
(b) limκ→∞ λp(κ) = ργ;
(c) p 7→ λp(κ) is strictly increasing for κ � 1;
(d) κ 7→ λp(κ) is convex on [0,∞).
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In [6], (a) and (b) were established when d ≥ 5, and (c) when d ≥ 5 and p(·, ·) has
zero mean and finite variance. Their extension to the case when p(·, ·) is strongly
transient remains open.

In what follows, we use generic notation P and E for probability and expectation
whatever the corresponding process is (even for joint processes) and denote ξs(x) :=
ξ (s,x).

2 Proof of Theorems 1.1 and 1.2

We first give the proof of Theorem 1.2. In this section, the random walk X on ξ

is symmetric. At the end of the section we will explain how to derive the proof of
Theorem 1.1. Recall that in this part we suppose that the coalescing random walks
X of the Voter Model ξ are symmetric.

We have to show that λp(κ) < γ for all κ ∈ [0,∞). In what follows we assume
without loss of generality that p = 1, the extension to arbitrary p≥ 1 being straight-
forward. Our approach is to pick a bad environment set BE associated to the ξ -
process and a bad random walk set BW associated to the random walk Xκ so that,
for all n ∈ N,

E
(

exp
[
γ

∫ n

0
ξs(Xκ(s))ds

])
(5)

≤
(
P(BE)+P(BW )

)
eγn +E

(
11Bc

E∩Bc
W

exp
[
γ

∫ n

0
ξs(Xκ(s))ds

])
with, for some 0 < δ < 1,

P(BE)≤ e−δn, P(BW )≤ e−δn, (6)

and, ∫ n

0
ξs(Xκ(s))ds≤ n(1−δ ) on Bc

E ∩Bc
W . (7)

Since, combining (5–7), we obtain

lim
n→∞

1
n

logE
(

exp
[
γ

∫ n

0
ξs(Xκ(s))ds

])
< γ ,

it is enough to prove (6) and (7).
The proof of (6) is given in Sections 2.1–2.3 below, and (7) will be obvious from

our definitions of BE and BW .
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2.1 Coarse-graining and skeletons

Write Zd
e = 2Zd and Zd

o = 2Zd +1, where 1 = (1, . . . ,1) ∈ Zd . We are going to use
a coarse-graining representation defined by a space-time block partition B j

y and a
random walk skeleton (yi)i≥0. To that aim, for a fixed M, consider

B j
y =

d

∏
k=1

[
(yk−1)M,(yk +1)M

)
×
[

jM,( j +1)M
)
⊂ Zd×R+ ,

where j ∈ N0 := N∪{0} and

y ∈
{

Zd
e when j is even,

Zd
o when j is odd.

Without loss of generality we can consider random walks trajectories on interval
[0,n] with n ∈ N multiple of M. Define the M-skeleton set set by

Ξ =
{(

y0, . . . ,y n
M

)
∈ (Zd)

n
M +1 : y2k ∈ Zd

e , y2k+1 ∈ Zd
o ∀k ∈ N0

}
and the M-skeleton set associated to a random walk X by

Ξ(X) =
{(

y0, . . . ,y n
M

)
∈ Ξ : X(kM) ∈ Bk

yk
∀k ∈ {0, . . . ,n/M}

}
.

In what follows, we will consider the M-skeleton Ξ(Xκ), but, as Xκ starts from
0 ∈ Zd , the first point of our M-skeleton will always be y0 := 0 ∈ Zd (see Fig. 3).

-

6

B j
y

yM

jM

0

y0

y1

y2

R+

Zd

Fig. 3 Illustration of a M-skeleton (y0,y1,y2, . . .) ∈ Ξ and coarse-grained B j
y blocks.

In the next lemma we prove that the number of M-skeletons not oscillating too
much is at most exponential in n/M. For that, define
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ΞA =

{(
y0, . . . ,y n

M

)
∈ Ξ :

n/M

∑
j=1

(‖y j− y j−1‖∞−1)≤ n
Md

}
, (8)

where ‖ · ‖∞ is the standard l∞ norm, the set of all M-skeletons that are appropriate.

Lemma 2.1. There exists some universal constant K ∈ (1,∞) such that, for any
n,M ∈ N,

|ΞA| ≤ Kn/M .

Proof. For any fixed y1 ∈ Zd and N ∈ N0, let

I(N) =
∣∣{y2 ∈ Zd : ‖y1− y2‖∞−1 = N

}∣∣
be the number of elements of Zd on the boundary of the cube of size 2N +3 centered
at y1. For any N ∈ N, we have I(N) = (2N + 3)d − (2N + 1)d and I(0) = 3d − 1,
therefore, for any N ∈ N0,

I(N)≤ 3d(N +1)d . (9)

Define, for any N,k ∈ N,

I(N,k) =

∣∣∣∣∣
{

(y j)0≤ j≤k ∈ (Zd)k+1 :
k

∑
j=1

(‖y j− y j−1‖∞−1) = N

}∣∣∣∣∣ (10)

the number of sequences in (Zd)k+1 having size N. By (9) and (10), we have

I(N,k) = ∑
(N1 ,...,Nk) :

∑
k
i=1 Ni=N

(
k

∏
i=1

I(Ni)

)

≤ 3dk
∑

(N1 ,...,Nk) :

∑
k
i=1 Ni=N

(
k

∏
i=1

(Ni +1)

)d

≤ 3dk
(

k +N +1
N

)
2dN , (11)

where, in the last line, we used that

max
(N1 ,...,Nk) :

∑
k
i=1 Ni=N

k

∏
i=1

(Ni +1) = 2N .

Using (11) and the fact that Ξ ⊂ Zd , we obtain
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|ΞA| ≤
b n

Md c
∑

N=0
I
(

N,
n
M

)
≤ 3

n
M

b n
Md c
∑

N=0

( n
M +N +1

N

)
2dN

≤ 3
n
M

b n
Md c
∑

N=0

( 2n
M
N

)
2dN ≤ 3

n
M

2n
M

∑
N=0

( 2n
M
N

)
2dN

= 3
n
M (2d +1)

2n
M ,

which ends the proof of the lemma. ut

2.2 The bad environment set BE

This section is devoted to the proof of the leftmost part of (6) for suitable set BE
defined below.

We say that an environment ξ is good w.r.t. an M-skeleton (y0, · · · ,y n
M

) if we
have ∣∣∣{0≤ j <

n
M

: ∃(x, jM) ∈ B j
y j

s.t. ξs(x) = 0 ∀s ∈ [ jM, jM +1]
}∣∣∣≥ n

4M
.

Since we want the environment to be good w.r.t. all appropriate M-skeleton, we
define the bad environment set as

BE = {∃ an M-skeleton ∈ ΞA s.t. ξ is not good w.r.t. it}.

In the next lemma we prove that for any fixed M-skeleton, the probability that ξ is
not good w.r.t. it is at most exponentially small in n/M.

Lemma 2.2. Take (yi)0≤i≤ n
M
∈ Ξ an M-skeleton. For M big enough, we have

P
(

ξ is not good w.r.t. (yi)0≤i≤ n
M

)
≤ (4K)−n/M ,

where K is the universal constant defined in Lemma 2.1.

Therefore, combining Lemmas 2.1 and 2.2, we get

P(BE)≤ 4−n/M

for M big enough, from which we obtain the leftmost part of (6).
Before proving Lemma 2.2, we first give an auxiliary lemma. In order to study the

evolution of the VM, we consider, as usual, the dual process, namely, a coalescing
random system that evolves backward in time. To that aim, define (Xx,t(s))0≤s≤t to
be the random walk starting from 0 at time t, (i.e., Xx,t(0) = 0). From the graphical
representation of the VM, we can write ξt(x) = ξ0(Xx,t(t)), x∈Zd , and therefore the
the VM process can be expressed in terms of its initial configuration and a system
of coalescing random walks. Two random walks Xx,s and Xx′,s′ with s′ < s meet if
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there exists u ≤ s′ such that Xx′,s′(s′− u) = Xx,s(s− u). It is therefore the same to
say that Xx,s and Xx′,s′ with s′ < s meet (in some appropriate time interval) if there
exists t ≥ 0 in this interval (by letting t = s′−u) such that

Xx′,s′(t) = Xx,s(t + s− s′) .

For convenience we will adopt this notation in the rest of the section.

Lemma 2.3. Take two independent random walks Xx,s and Xx′,s′ with s′ < s. Then
the probability they ever meet is bounded above by∫

∞

s−s′
pt(0,0)dt .

Proof. Consider the random variable

W =
∫

∞

0
1
{

Xx,s(t) = Xx′,s′(t +(s− s′))
}

dt .

By symmetry, its expectation satisfies

E(W ) =
∫

∞

0
P
(
X0,0(2t + s− s′) = x− x′

)
dt

≤
∫

∞

0
P
(
X0,0(2t + s− s′) = 0

)
dt

=
1
2

∫
∞

s−s′
pt(0,0)dt .

Moreover, we have

E(W |W > 0) =
∫

∞

0
p2t(0,0)dt ≥ 1

2

and then, since E(W ) = E(W |W > 0)P(W > 0), it follows that

P(W > 0)≤ 2E(W ) =
∫

∞

s−s′
pt(0,0)dt .

ut

We are now ready to prove the Lemma 2.2.

Proof. Recall that ξs(x)= ξ0(Xx,s(s)), where ξ0 is distributed by a product Bernoulli
law with density ρ ∈ (0,1). We first consider any M-skeleton (y0, . . . ,yn/M) ∈ Ξ

(even not appropriate). For each 0 ≤ j < n/M, we choose R sites (x j
1, jM), . . . ,

(x j
R, jM) ∈ B j

y j such that

P
(
∃0≤ k,k′ ≤ R, k 6= k′ : Xx j

k, jM(s) = Xx j
k′ , jM(s) for some s ∈ [0, jM]

)
≤ ε (12)
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for ε� 1 to be specified later (see Fig. 4). Remark that we first fix ε and R and then
we choose M large enough so we can find these R sites. As we are in the strongly
transient regime, we know that these points exist. If two such random walks hit each
other, then we freeze all the random walks issuing from the corresponding block j.

-

6

B j
y

yM

jM

n

0
0

R+

Zd

-

jM
jM +1

( j +1)M

`x j
1 ` ` `x j

k ` `x j
R

Fig. 4 Illustration of sites (x j
k, jM), k ∈ {1, . . . ,R}, for a fixed M-skeleton.

For any 1≤ j < n
M , 1≤ k ≤ R for some R > 0, we have

E

( n
M−1

∑
j′= j+1

R

∑
k′=1

1
{

Xx j′
k′ , j′M(s+( j′− j)M) = Xx j

k, jM(s) for some s ∈ [0, jM]
})

≤ R

n
M−1

∑
j′= j+1

∫
∞

( j′− j)M
pt(0,0)dt

≤ R
∫

∞

M

t
M

pt(0,0)dt ,

and therefore, summing over 1≤ k ≤ R, we get

E

( n
M−1

∑
j′= j+1

R

∑
k,k′=1

1
{

Xx j′
k′ , j′M(s+( j′− j)M) = Xx j

k, jM(s) for some s ∈ [0, jM]
})

≤ R2

M

∫
∞

M
t pt(0,0)dt ≤ ε

2, (13)

for M sufficiently large. Again, remark that we first fix ε and R, then we choose M
large enough. For each j, we now define the filtration

F j
t = σ

(
Xx j

k, jM(s) : 0≤ s≤ t, 1≤ k ≤ R
}

and the sub-martingale Z j(t) :=
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E

( n
M−1

∑
j′= j+1

R

∑
k,k′=1

1
{

Xx j′
k′ , j′M(s+( j′− j)) = Xx j

k, jM(s) for some s ∈ [0, t]
} ∣∣∣∣ F j

t

)
,

with the stopping time

τ
j = inf

{
t ≥ 0: Z j(t) > ε

}
.

We freeze every random walk issuing from block j at time jM∧ τ j. Using (13) and
the Doob’s inequality, we can see that

P(τ j < ∞)≤ R2

Mε

∫
∞

M
t pt(0,0)dt ≤ ε . (14)

Since, Z j is a continuous sub-martingale except at jump times of one of the random
walks Xx j

k, jM and when a jump occurs, the increment is at most

R

n
M−1

∑
j′= j+1

p( j′− j)M(0,0)≤ ε
2

if M is big enough. Therefore, for all 0≤ t ≤ τ j, we get

Z j(t) < ε + ε
2 ≤ 2ε P-a.s. . (15)

Now we say that j is good if

• τ j > jM;
• the R random walks Xx j

1, jM, · · · ,Xx j
R, jM do not meet;

• the random walks Xx j
k, jM do not hit any point x j′

k′ during interval [( j− j′)M−
1,( j− j′)M] for j′ < j;

• the random walks Xx j
k, jM do not meet Xx j′

k′ , j′M for j′ < j.

By (14), we know that the probability that the first condition does not occur is
smaller than ε . By definition of the sites x j

1, . . . ,x
j
R, we know that the probability that

random walks issuing from the same block j at sites x j
k, k = 1, . . . ,R, hit each other

is smaller than ε (recall (12)). Moreover, the probability that the third condition does
not occur is bounded from above by

R
j−1

∑
j′=1

∫ ( j− j′)M

( j− j′)M−1
pt(0,0)dt

which is as small as we want for M large because we are in a transient case. We
still have to compute the probability that the fourth condition does not occur. Fur-
thermore, we can see that two random walks issuing from the same block evolve
independently until they meet, provided they do not meet a previous random walk.
from the above consideration, we get
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P
(

j is not good
∣∣ G j−1) ≤ 3ε +

j−1

∑
j′=1

R

∑
k,k′=1

P
(

Xx j
k, jM meets Xx j′

k′ , j′M ∣∣ G j′
)

,

where

G j = σ

(
Xx j′

k , j′M(s) : 1≤ k ≤ R, 1≤ j′ ≤ j, 0≤ s≤ j′M∧ τ
j′
)

.

Here, we recall that Xx j
k, jM meets Xx j′

k′ , j′M (with j′ < j) if we have

Xx j
k, jM(s+( j− j′)M) = Xx j′

k , j′M(s) for some s ∈
[
0,τ j′ ∧ j′M

]
.

By (15), we have, for all j′ fixed,

n
M−1

∑
j= j′+1

R

∑
k,k′=1

P
(

Xx j
k, jM meets Xx j′

k′ , j′M
∣∣∣∣ G j′

)
≤ 2ε .

Summing over all 1≤ j′ ≤ n/M−2, we get

n
M−2

∑
j′=1

n
M−1

∑
j= j′+1

R

∑
k,k′=1

P
(

Xx j
k, jM meets Xx j′

k′ , j′M
∣∣∣∣ G j′

)
≤ n

M
2ε ,

and then, interchanging the sums, we arrive at

n
M−1

∑
j=2

j−1

∑
j′=1

R

∑
k,k′=1

P
(

Xx j
k, jM meets Xx j′

k′ , j′M
∣∣∣∣ G j′

)
≤ n

M
2ε .

Thus, there are at most
⌊ n

2M

⌋
random positions j with the property

j−1

∑
j′=1

R

∑
k,k′=1

P
(

Xx j
k, jM meets Xx j′

k′ , j′M
∣∣∣∣ G j′

)
≥ 4ε ,

and so at least
⌈ n

2M

⌉
−2 random positions j have the property

j−1

∑
j′=1

R

∑
k,k′=1

P
(

Xx j
k, jM meets Xx j′

k′ , j′M
∣∣∣∣ G j′

)
< 4ε .

For these random positions j, we then have

P
(

j is good | G j−1)≥ 1−7ε.

Using an elementary coupling, we have at least n
3M positions that are good with

probability bounded by
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P
(

Y ≥ n
3M

)
≥ 1− e−c(ε)n/M

for
Y ∼ B

(⌈ n
2M

⌉
−2,1−7ε

)
and c(ε)→ ∞ as ε → 0. Therefore, outside of a small probability e−c(ε)n/M , for at

least n
3M positions j, we have that the random walks Xx j

k, jM are disjoint and so the

values ξ0(Xx j
k, jM(s)) are independent until time s ≤ jM. Then, using the fact that

(ξ0(x))x∈Zd are i.i.d. Bernoulli product with parameter ρ , we have that the number
of positions j so that there exists (x, jM) ∈ B j

y j with ξs(x) = 0 and s ∈ [ jM, jM +1]
is at least n

4M outside the probability

P
(

Y ′ ≥ n
12M

)
≤
(

1
4K

)n/M

with Y ′ ∼ B
( n

3M ,
(
(1− e−1(1−ρ))R

))
, where ε and R are chosen small and large

enough, respectively. ut

The proof of the leftmost part of (6) is now completed.

2.3 The bad random walk set BW

This section is devoted to the proof of the rightmost part of (6).
We are now interested in the random walk Xκ . We are going to prove that

(Xκ(s))0≤s≤n has an appropriate M-skeleton and touches enough zeros outside a
probability event exponentially small in n (see Lemmas 2.4 and 2.5 below, respec-
tively). To define the bad random set BW announced in (3.4), we are going to define
BW = BW1 ∪BW2 , where the bad sets BW1 and BW2 correspond, respectively, to ran-
dom walks trajectories Xκ which do not have appropriate M-skeleton and do not
touch enough sites occupied by a zero configuration of the VM. To be more precise,
define

BW1 =
{
(Ξ(Xκ) /∈ ΞA

}
.

In the next lemma, we prove that the probability of BW1 is exponentially small in n.

Lemma 2.4. Take (Xκ(s))0≤s≤n and Ξ(Xκ) = (y0, · · · ,yn/M) the associated M-
skeleton. Then, there exists a constant K′ not depending on n such that

P(BW1)≤ e−K′n .

Proof. In order to have the random walk moving from one block of the skeleton
to a nonadjacent one, the random walk has to make at least M steps in the same
direction. Keeping that in mind, define
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Yj(s) = Xκ( jM + s)−Xκ( jM)

and let

τ
j

1 = inf{s : ‖Yj(s)‖∞ ≥M}, τ
j

i = inf
{

s > τ
j

i−1 : ‖Yj(s)−Yj(τ
j

i−1)‖∞ ≥M
}
.

Next, define
W j

i = 1{τ i
j<M}

and use an elementary coupling to have

P(W j
1 = 1)≤ e−c/M and P(W j

i = 1|W j
i−1 = 1)≤ e−c(i)/M ≤ e−c/M

for some constants c and c(i) which verify c(i) ≥ c. Therefore, we have that the
number of jumps for the jth block is bounded above by the number of W j

i equals
to 1. Using a coupling we can see that this is bounded above by a geometric law
with parameter e−c/M . Now if we consider all the blocks, by elementary properties
of geometric random variables, we have

P(BW1)≤ P
(

Y ≥ n
Md

)
≤ e−c′n

for Y ∼ B
( n

M

(
1+ 1

d

)
,e−c/M

)
, some constant c′ > 0, M being large and the proof is

done. ut

Lemma 2.4 proves the first part of the rightmost part of (6), namely the part
concerned with bad set BW1 . Now we look at the number of times Xκ stays on a site
where the VM has zero value. For that, define

τi+1 = inf
{

t > τi +1: ∃x ∈ Zd s.t. ‖x−Xκ(t)‖∞ ≤ 2M, ξs(x) = 0 ∀s ∈ [t, t +1]
}

with τ0 = 0 and

k(M) = e−1/2 inf
‖x‖∞≤2M

P
(
Xκ(1/2) = x | Xκ(0) = 0

)
(remark that k(M) does not depend on n and is strictly positive). Finally, we define

BW2 =
{

(Xκ ,ξ ) : τb n
2M c ≤ n−1 and

∫ n

0
ξs(Xκ(s))ds≥ n

(
1− k(M)

8M

)}
as being the bad set corresponding to random walks trajectories Xκ which do not
touch enough sites occupied by a zero configuration of the VM. In the next lemma,
we prove that such a set has an exponentially small probability in n.

Lemma 2.5. There exists a constant δ > 0 not depending on n, such that, for M big
enough we have

P(BW2)≤ e−nδ .
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Proof. Take any realization of ξ and for each time τi, define a random variable Yi
which take value 1 if Xκ reaches a site with value zero at time τi + 1

2 and stays at
that point until time τi + 1, and takes value 0 otherwise. Remark that after having
fixed n, we can choose the state of ξt , t > n, as we want, for example, full of zeros.
Continue until τbn/(2M)c which is finite if ξ is well chosen after time n. Using the
strong Markov property, for every ki ∈ {0,1}, we see that

P(Yi = 1|Yj = k j, j < i) = P(Yi = 1|Yi−1 = ki−1)≥ k(M) .

Then, it follows that Y := ∑
bn/(2M)c
i=1 Yi is stochastically greater than Y ′ the binomial

random variable B
( n

2M ,k(M)
)
. Moreover, if τbn/(2M)c ≤ n−1, we have∫ n

0
ξs(X(s))ds≤ n− 1

2
Y .

Hence, we get

P(BW2) ≤ P
(

τb n
2M c ≤ n−1 and n− 1

2
Y ≥ n− nk(M)

8M

)
≤ P

(
n− Y

2
≥ n− nk(M)

8M

)
= P

(
Y ≤ nk(M)

4M

)
≤ e−cn

for n sufficiently large and c, a positive constant not depending on n. This result
being shown for any realization of ξ (up to time n), this ends the proof. ut

Lemma 2.5 proves the second part of the rightmost part of (6), namely the part
concerned with bat set BW2 . To complete the proof of (7), it suffices to use the def-
inition of BE and BW = BW1 ∪BW2 , and to remark that if BE and BW1 do not occur,
then the first condition of BW2 , namely τbn/2Mc ≤ n−1, is satisfied and therefore the
second must be violated.

2.4 Proof of Theorem 1.1

The proof of Theorem 1.1 can be deduced from the proof of Theorem 1.2. Without
assuming that p(·, ·) is symmetric, it is enough to see that

•
∫

∞

0
t pt(0,0)dt < ∞, by local CLT, and

• there is enough symmetry because there exists some C > 0 such that pt(x,0) ≤
Cpt(0,0) for all x ∈ Zd and t ∈ [0,∞). Therefore, Lemma 2.2 can still be applied.
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¿From these two observations, the proof of Theorem 1.1 goes through the same lines
as the one of Theorem 1.2.

3 Proof of Theorem 1.3

In this section we consider the Lyapunov exponents when the random walk kernel
associated to the voter model noise is symmetric and also not strongly transient, that
is ∫

∞

0
t pt(0,0)dt = ∞ .

We want to show that when p(·, ·) is symmetric and not strongly transient, then have
that

λp(κ)≡ γ ∀κ ∈ (0,∞), ∀p≥ 1 .

Since the result is easily seen for recurrent random walks, we can and will assume
in the following that ∫

∞

0
pt(0,0)dt < ∞ .

Given the reasoning of [5], Section 3.1 and [6], Section 5.1 this result will follow
from Proposition 3.1, below. Consider, in the graphical representation associated to
the VM ξ ,

χ(t) := number of distinct coalescing random walks produced on {0}× [0, t]

(This quantity is discussed in Bramson, Cox and Griffeath [1]).

Proposition 3.1. Assume that p(·, ·), is symmetric and not strongly transient, then
for any ε > 0, we have that

lim
t→∞

P
(
χ(t)≤ εt

)
= 1 .

Before proving Proposition 3.1, we will first give the proof of Theorem 1.3.

Proof. It is immediate from the graphical representation of the VM and Proposition
3.1 that for all δ > 0 and M < ∞,

P
(

ξ (x,s) = 1 ∀‖x‖∞ ≤M, ∀s ∈ [0, t]
)
≥ e−δ t

for all t sufficiently large. Thus, just as in [6], Section 5.1, we have for all p≥ 1,

E([u(0, t)]p)

≥ eγ ptP
(
‖Xκ(s)‖∞ < M ∀s ∈ [0, t]

)p
P
(

ξ (x,s) = 1 ∀‖x‖∞ < M, ∀s ∈ [0, t]
)

≥ et(γ p−δ−c(M)p)
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for c(M)→ 0 as M→ ∞. From this, it is immediate that

lim
t→∞

1
t

logE([u(0, t)]p)1/p = γ.

ut

To prove Proposition 3.1, we consider the following system of coalescing random
walks

I = {X t : t ∈P}

for P a two sided, rate one Poisson process and X t a random walk defined on
s ∈ [t,∞), starting at 0 at time t (we could equally well consider a system of random
walks indexed by hZ for some constant h). The coalescence is such that for t < t ′ ∈
P , X t , X t ′ evolve independently until T t,t ′ = inf{s > t ′ : X t(s) = X t ′(s)}, and then,
for s≥ T t,t ′ , X t(s) = X t ′(s).

We will be interested in the density or number of distinct random walks at certain
times. To aid this line we will adopt via a labelling procedure for the random walks,
whereby effectively when two random walks meet for the first time, one of them
(chosen at random) dies; in this optic the number of distinct random walks will
be the number still alive. Our labeling scheme involves defining for each t ∈P,
the label process lt

s for s≥ t− (it will be helpful to be able to define lt
t− = t, though

since at time t there may well be other random walks present at the origin, it will not
necessarily be the case that lt

t = t). These processes will be defined by the following
properties:

• if for t 6= t ′ ∈P,X t(s) 6= X t ′(s), then lt
s 6= lt ′

s ;
• if t1, t2, . . . , tr are elements of P , then at s≥max{t1, . . . , tr}, if X t1(s) = X t2(s) =
· · ·= X tr(s), then lt1

s = lt2
s = · · ·= ltr

s = u for some u ∈P with X t1(s) = Xu(s);
• if for t 6= t ′ ∈P , X t meets X t ′ for the first time at s, then independently of past

and future random walks or labeling decisions lt
s = lt ′

s = lt ′
s− with probability 1

2
and with equal probability lt

s = lt ′
s = lt

s−;
• the process lt

s can only change at moments where X t meets a distinct random
walk for the first time.

For t ∈P , s > t, we say that t is alive at time s, if lt
s = t; it dies at time s if

lt
s− = t, lt

s 6= t. We say X t , Xu coalesce at time s if this is the first time at which the
two labels are equal. The following are easily seen:

• the events At
s = {lt

s = t} for t ∈P are decreasing in s;
• At

s depends only on the random motions of the coalescing random walks and on
the labeling choices involving X t ;

• for s > 0, the number of independent random walks X t(s), t ∈P ∩ [−n,0] is
simply equal to the number of distinct labels lt

s, t ∈P ∩ [−n,0].

Let
c0 = lim

s→∞
Pt(At

s) ∈ [0,1], (16)

according to palm measure, Pt , for t ∈P . We obtain easily:
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Proposition 3.2.

lim
s→∞

1
s

∣∣{distinct random walks X t(0) : t ∈P ∩ [−s,0)
}∣∣= c0 a.s.

Proof. Using the definition of c0 in (16) and ergodicity of the system we see that
the limit is greater than c0. Then, Lemma 3.1 gives the result.

Lemma 3.1. For c0 as defined in (16), for each ε > 0, there exists R < ∞ so that if
we consider the finite system of coalescing random walks (X t)t∈(−R,0]∩P , then with
probability at least 1− ε at time R there are less than (c0 + ε)R distinct random
walks labels.

Proof. By definition of c0, for all ε > 0 there exists a T0 so that

P0( label 0 is alive at time s
)

< c0 +
ε

100
∀s≥ T0.

Now pick R1 so that

P
(
‖X0(s)‖∞ ≤ R1 ∀s ∈ (0,T0)

)
≥ 1− ε

100
.

Therefore,

P0( label 0 is not alive at time s≥ T0 and ‖X0(s)‖∞ ≤ R1 ∀s ∈ (0,T0)
)

≥ 1− c0−
2ε

100
.

We then pick T1 so that

P
(
∃t ∈P ∩ [−T1,T1]

c :
∥∥X t(s)

∥∥
∞
≤ R1 for some s ∈ (0,T0)

)
<

ε

100
.

Thus
P0(∃t ∈P ∩ [−T1,T1]\{0} : l0

R1
= t
)
≥ 1− c0−

ε

30
.

¿From the translation invariant property of the system and ergodicity if

λs :=
∣∣∣{t ∈ [−s,s]∩P : X t loses its label to a random walk X t ′ with |t− t ′| ≤ T1

}∣∣∣,
then

liminf
s→∞

λs

2s
≥ 1− c0−

ε

30
a.s.

The result now follows easily. ut

Proposition 3.1 will be proven by showing:

Proposition 3.3. If p(·, ·) is symmetric and not strongly transient, then c0 = 0.
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To show Proposition 3.1, this is sufficient to note that by changing time scale
we have that Proposition 3.3 implies that the limiting density for a Poisson system
of random walks of any rate must be zero. But it is elementary that if we consider
the number of distinct random walks contributing to χ(t), that are not part of the
collection of random walks generated by the same Harris system but starting at
points of an independent Poisson process of rate M for large M, we see that it is
small compared to t with high probability as M becomes large.

The argument for Proposition 3.3 is low level and intuitive. We argue by contra-
diction and suppose that c0 > 0. From this we can deduce, loosely speaking, that
after a certain time either a random walk has lost its original label, or it will keep
it forever. We then introduce coupling on these random walks so that we may re-
gard these random walks as essentially independent random walks starting at 0 (at
different times). We then introduce convenient comparison systems so that we can
analyze subsequent coalescences. We will use automatically, without reference, the
following “obvious” result:

Lemma 3.2. Consider two collections of coalescing random walks {Y i} and {(Y ′)i}
for i in some index set. If the coalescence rule is weaker for the {(Y ′)i} system, in
that if two walks (Y ′)i and (Y ′) j are permitted to coalesce at time t, then so are Y i

and Y j, then there is a coupling of the two systems so that the weaker contains the
stronger.

We now fix ε > 0 so that ε� c0 (by hypothesis c0 > 0). We choose R according
to Lemma 3.1 and divide up time into intervals I j = [ jR,( j + 1)R). We consider
the coalescing system where random walks X t , X t ′ , t, t ′ ∈P , can only “coalesce”
(or destroy a label t or t ′) if t, t ′ are in the same I j interval. Thus we have a system
of random walks that is invariant to time shifts by integer multiples of R. We now
introduce a system of random walks Y t , t ∈ V := ∪ j{[ jR,( j + 1)R)∩ jR + 1

c0
Z}.

The random walks Y t , t ∈
[

jR,( j +1)R
)

are not permitted to coalesce up until time
( j + 1)R (at least) and will evolve independently of the system (X t)t∈P until time
( j+1)R. We will match up the points in V ∩I j, with those in P∩I j∩K in a maximal
measurable way for K = {t ∈P : label t survives to time ( j +1)R}.

Lemma 3.3. Unmatched points in ∪ jP ∩ I j ∩K and in V have density less than 2ε

for R fixed sufficiently large.

Remark: the system is not translation invariant with respect to all shifts but it
possesses enough invariance for us to speak of densities.

We similarly have

Lemma 3.4. Unmatched Y particles have density less than 2ε for R fixed sufficiently
large.

It is elementary that two random walks X , Z can be coupled so that for t suffi-
ciently large X(t) = Z(t). For given ε > 0 we choose M0 and then M1 so that

P
(

sup
t≤R
‖X(t)‖∞ ≥M0

)
<

ε

10
(17)
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and
sup
|z|≤2M0

P
(

X0,Zz not coupled by time M1

)
<

ε

10
, (18)

where X0 and Zz denote that the random walks X and Z start at point 0 and point z
respectively.

We then on interval I j couple systems Y and X by letting married pairs Y t , X t ′ ,
t ∈ V , t ′ ∈P ∩K, evolve independently of other Y , X random walks so that they
couple by time M1 +( j +1)R with probability at least 1− 3ε

10 .
Thus we have two types of random walk labels, lt , for the X system which are

equal to t at time t + R + M1: those for which the associated random walk was
paired with a Y random walk and such that the random walks have coupled by time
t + R + M1 said to be coupled and the others, said to be decoupled. Similarly for
the points in V associated to Y random walks. We note that the foregoing implies
that the density of uncoupled labels is bounded by 2ε + 3ε

10 ≤ 3ε . The point is that
modulo this small density, we have an identification of the coalescing X random
walks and the Y random walks.

We now try to show that enough Y particles will coalesce in a subsequent time
interval to imply that there will be a significant decrease in surviving labels for the
X system. To do this we must bear in mind that, essentially, it will be sufficient
to show a decrease in the density of Y random walk labels definitely greater than
ε . Secondly, as already noted, we will adopt a coalescence scheme that is a little
complicated namely Y i,Y i′ in V can only “coalesce” at time t ≥max{i, i′} if

• (t− i′, t− i) are in some time set to be specified;
• for i < i′, t−i′

i′−i ∈
( 9

10 , 11
10

)
.

We now begin to specify our coalescence rules for the random walk system {Y i}i∈V .
The objective here will be to facilitate the necessary calculations. A first objective is
to have coalescence of Y i,Y i′ at times t > max{i, i′} so that pt(0,0) is well behaved
around t− i, t− i′. It follows from symmetry of the random walk that t 7→ pt(0,0)
is decreasing. The problem we address is that it is not immediate how to achieve
bounds in the opposite direction. This is the purpose of the next result.

Lemma 3.5. Consider positive {an}n≥0 so that ∑
∞
n=0 an = ∞. For all r ∈ Z+, there

exists a subsequence {ani}i≥0 so that
(i) ∑ani = ∞;
(ii) ani > 1

2 ani−r, ∀i≥ 0.

Proof. If r > 1 we may consider the r subsequences {ari+ j}i≥0 for j ∈ {0,1, · · · ,r−
1}. At least one of these must satisfy ∑ari+ j = ∞ so, without loss of generality, we
take r = 1.

Now we classify i as good or bad according to whether ai > ai−1/2 or not. This
decomposes Z into intervals of bad sites, alternating with intervals of good sites. By
geometric bounds, the sum of bad sites is bounded by the sum of the good ai for
which i is the right end point of a good interval. Thus we have

∑
i good

ai = ∞,
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from which the result is immediate. ut

Corollary 3.1. For our symmetric kernel pt(0,0) we can find ni ↑ ∞ so that

(i) ∑
i

∫ 2ni+1

2ni
t pt(0,0)dt = ∞;

(ii) p2ni−1(0,0)≤ 212 p2ni+3(0,0).

Proof. In Lemma 3.5 take

an =
∫ 2n+4

2n+3
t pt(0,0)dt

and take r = 5. Then by the monotonicity of t→ pt(0,0), we have

22ni+7 p2ni+3(0,0)≥ ani ≥
1
2

ani−5 ≥
1
2

22ni−4 p2ni−1(0,0).

ut

We fix such a sequence {n j} j≥1 once and for all.
We assume, as we may, that n j < n j+1− 4 for all j ≥ 1 and also assume again,

as we may, that ∫ 2n j+1

2n j
t pt(0,0)dt <

ε

100
for all j ≥ 1. We are now ready to consider our coalescence rules. We choose ε �
α � 1 (we will fully specify α later on but we feel it more natural to defer the
technical relations). We then choose k0 so that 2nk0 > R + M1 with R as in Lemma
3.1 and Lemma 3.3 and M1 as in (18), and

k1 := inf
{

k > k0 :
k

∑
j=k0

∫ 2n j+1

2n j
t pt(0,0)dt > α

}
. (19)

We have coalescence between Y i and Y i′ , for i < i′ only at t ∈ [i′+ 2n j , i′+ 2n j+1],
j ∈ [k0,k1] if

(a) t−i′
i′−i ∈ (9/10,11/10);

(b) the interval of t ∈ [i′+2n j , i′+2n j+1] satisfying (a) is of length at least 2.

We say (i, i′) and (i′, i) are in j and write (i, i′) ∈ j if the above relations hold. To
show that sufficient coalescence occurs, we essentially use Bonferroni inequalities.

To aid our argument we introduce a family of independent (non coalescing) ran-
dom walks {(Zi(s))s≥i}i∈V such that for each i ∈ V , Y i(s) = Zi(s) for s ≥ i such
that li

s = i. In the following we will deal with random walks Y 0,Z0, but lack of total
translation invariance notwithstanding, it will be easy to see that all bounds obtained
for these random walks remain valid for more general random walks Y i,Zi. For a
given random walk Y 0, say, the probability that Y 0 is killed by Y i (with i possible
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in the sense of the above rules) is in principle a complicated event given the whole
system of coalescing random walks. Certainly the event{

Z0 meets Zi in appropriate time interval after first having met Zk}
is easier to deal with than the corresponding Y event. ¿From this point on we will
shorten our phraseology by taking “Zi hits Zk” to mean that Zi meets Zk at a time t
satisfying the conditions (a) and (b) above with respect to i, k.

For (Z0(s))s≥0 and (Zi(s))s≥i independent random walks each beginning at 0, we
first estimate

∑
i

P
(
Z0 hits Zi).

This of course decomposes as

∑
j

∑
(0,i)∈ j

P
(
Z0 hits Zi).

We fix j and consider i > 0 so that (0, i) ∈ j (the case i < 0 is similar). That is the
interval of times s with

(s− i)/i ∈ (9/10,11/10), s ∈ [i+2n j , i+2n j+1]

is at least 2 in length: we note that for each i ∈
( 5

4 2n j , 7
4 2n j

)
the relevant interval,

19
10 i≤ s≤ 21

10 i is an interval of length greater than 5
4 2n j 1

5 = 2n j

4 .

Lemma 3.6. There exists c2 ∈ (0,∞) so that for any interval I of length at least 1
contained in (1,∞),

1
c2

∫
I

pt(0,0)dt ≤ P
(
X0(t) = 0 for some t ∈ I

)
≤ c2

∫
I

pt(0,0)dt

Proof. Consider random variable W =
∫ b+1

a 1{X(s)=0} ds for I = [a,b]. Then

E(W ) =
∫ b+1

a
P(X(s) = 0)ds =

∫ b+1

a
ps(0,0)ds≤ 2

∫
I

ps(0,0)ds ,

by monotonicity of ps(0,0) and the fact that b−a≥ 1. But for τ := inf{s∈ I : X(s) =
0} we have E(W |Fτ)≥ e−1 on {τ < ∞} so

P(τ < ∞) = P
(
X0(t) = 0 for some t ∈ I

)
≤ E(W )e≤ 2e

∫
I

ps(0,0)ds .

Equally for W ′ =
∫ b

a 1{X(s)=0} ds, we have

E(W ′ |Fτ)≤ γ =
∫

∞

0
ps(0,0)ds on {τ < ∞}

and so
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P(τ < ∞)≥ E(W ′)
γ

=
1
γ

∫ b

a
ps(0,0)ds .

ut

Proposition 3.4. For some universal c3 ∈ (0,∞),

c−1
3 22n j p2n j (0,0)≤ ∑

(0,i)∈ j
P
(
Z0 hits Zi)≤ c322n j p2n j (0,0) .

Proof. We consider first the upper bound. There are less than 2n j relevant i. For such
an i,

P
(
Z0 hits Zi)≤ P

(
X0(t) hits 0 for some t ∈

[
a+2n j ,a+3 ·2n j

])
for some a ≥ 0 and, by monotonicity of t → pt(0,0) and using Lemma 3.6, this is
bounded by

c2

∫ 3·2n j

2n j
ps(0,0)ds≤ c32n j p2n j (0,0)

for some c3 > 0. On the other side the number of i ∈
( 5

4 2n j , 7
4 2n j

)
is greater than

c1
1
3 2n j if R was fixed sufficiently large and for each such i, ( 9

10 i, 11
10 i)⊂ [2n j ,2n j+1].

Moreover, we have

P
(
Z0 hits Zi) ≥ 1

c2

∫ 32
10 i

28
10 i

ps(0,0)ds≥ 1
c2

4
10

ip2n j+3(0,0)≥ 1
c2

2n j−1 p2n j+3(0,0)

≥ 2−13

c2
2n j p2n j−1(0,0)≥ c−1

3 2n j p2n j (0,0),

because of Lemma 3.6, Corollary 3.1 (by our choice of j), monotonicity of t →
pt(0,0) and possibly after increasing c3. ut

Thus, using that j ∈ [k0,k1] (recall 19), we have a universal c4 such that

c4α ≥∑
j

∑
(0,i)∈ j

P
(
Z0 hits Zi)≥ α

c4
.

There are two issues to address

(a) to show that
P
(
∃ j,∃i so that (0, i) ∈ j, Z0 hits Zi)

is of the order α;
(b) to show that (a) holds with Z0, Zi replaced by our coalescing random walks

Y 0, Y i.

In fact both parts are resolved by the same calculation.
We consider the probability that random walk Z0 is involved in a “3-way” colli-

sion with Zi and Zi′ either due to Z0 hitting Zi in the appropriate time interval and
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then hitting Zi′ , or Z0 hitting Zi and, subsequently Zi hitting Zi′ . The first case is im-
portant to bound so that one can use simple Bonferroni bounds to get a lower bound
on P(∃i so that Zi hits Z0). The second is to take account of the fact that we are
interested in the future coalescence of a given random walk Y 0. As already noted,
we can couple the systems in the usual way so that for all t, {∪iY i

t } ⊆ {∪iZi
t}. The

problem is that if for some i, Zi hits Z0 due to coalescence this need not imply that
Y i hits Y 0: if the Y i particles coalesced with a Y i′ before Zi hits Z0. Fortunately this
event is contained in the union of events above over i, i′.

Proposition 3.5. There exists universal constant K so that for all i and i′ with
(0, i′) ∈ j′

P
(
Z0 hits Zi and then Zi′)≤ K2n j′ p2

n j′ (0,0)P
(
Z0 hits Zi) .

Proof. There are several cases to consider: i < 0 < i′, i < i′ < 0, i′ < i < 0, i′ < 0 < i,
0 < i < i′ and 0 < i′ < i. All are essentially the same so we consider explicitly
0 < i < i′. We leave the reader to verify that the other cases are analogous. We
choose j, j′ so that (0, i) ∈ j and (0, i′) ∈ j′ (so necessarilly j′ ≥ j). We condition
on Tj, Zi(Tj)(= Z0(Tj)), for

Tj := inf
{

s ∈
(

19i
10

,
21i
10

)
∩
[
i+2n j , i+2n j+1

]
: Zi(s) = Z0(s)

}
< ∞.

With x = Z0(Tj) we have

P
(
∃s′ ≥ Tj ∈

(
19i′

10
,

21i′

10

)
∩
[
i′+2n j′ , i′+2n j′+1

]
: Zi′(s′) = Z0(s′)

∣∣∣ G0,i
)

= P
(
Z0(t) = x for some t ∈ I j

)
,

where I j is the image of the interval[
(i′+2n j′ )∨Tj ∨

19i′

10
, i′+2n j′+1∧ 21i′

10

])
,

by the function t 7→ 2t−Tj− i′, for G0,i = σ(Z0(s),Zi(s) : s ≤ Tj). By elementary
algebra this is less than

P
(

Z0(t) = x for t ∈
(

9i′

10
,

16i′

5

))
,

but by arguing as in Lemma 3.6, this is bounded by

c2

∫ 16i′
5

9i′
10

ps(0,x)ds ≤ c2

∫ 16
5 i′

9
10 i′

ps(0,0)ds≤ c2
23
10

i′p
2

n j′ −1(0,0)

≤ c2
23
9

2132n j′ p
2

n j′+3(0,0)≤ c′2n j′ p2
n j′ (0,0)
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for some universal constant c′, where we use symmetry and monotonicity of ps(·, ·)
and Corollary 3.1, by the choice of our n j′ . So given that

P(Ti < ∞) = P
(
Z0 hits Zi),

the desired bound is achieved. ut

Corollary 3.2. For α sufficiently small

P
(
∃i : Z0 hits Zi)≥ α

2
.

Proof. By Bonferroni, the desired probability is superior to

∑
i

P
(
Z0 hits Zi)−∑

i,i′
P
(
Z0 hits Zi and then Zi′)≥ α−Kc2

3α
2 ≥ α

2

if α ≤ 1/(2Kc2
3). ut

We similarly show

Proposition 3.6. There exists universal constant K so that for all i′ and i with (0, i)∈
j,

P
(
Z0 hits Zi after Zi hits Zi′)≤ K2n j p2n j (0,0)P

(
Zi hits Zi′) .

This gives as a corollary

Corollary 3.3. For the coalescing system {Y i}i∈V provided α is sufficiently small,

P
(
Y i dies after time R

)
≥ α

5
.

Proof. We have of course from the labeling scheme

P
(
Y i dies after time R

)
≥ 1

2
P
(
Y i hits Y i′ in appropriate time interval for some i′

)
≥ 1

2
P
(
Zi hits Zi′ in appropriate time interval for some i′

)
−1

2
P
(
Zi hits Zi′ in appropriate time interval for some i′ so that

Zi′ hits some Zi′′ previously
)

≥ α

4
−Kc2

3α
2 ≥ α

5

for α ≤ 1/(20Kc2
3). ut

We can now complete the proof of Proposition 3.3 and hence that of Proposition
3.1. If we have c0 > 0, then we can find 0 < ε < α/200 and α so small that the
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relevant results above hold, in particular Corollary 3.3. Thus the density of Y’s is
reduced by at least α/5. But by our choice of ε and Lemma 3.3, the density of X’s is
reduced by at least α/5−6ε ≥ α/6≥ 3ε which is a contradiction with Proposition
3.2, because it would entail the density falling strictly below c0.

4 Proof of Theorem 1.4

In what follows we assume, as in Section 2, that p = 1, the extension to arbitrary
p≥ 1 being straightforward.

We begin by specifying the random walk (X(t))t≥0 on Z4 defined by

X(t) = S(t)+ e1N(t)

with (S(t))t≥0 denoting a simple random walk on Z4, (N(t))t≥0 a rate 1 Poisson
process and e1 = (1,0,0,0) the first unit vector in Z4.

Thus our random walk (X(t))t≥0 is highly transient but its symmetrization is a
mean zero random walk and by the local central limit theorem, we have∫

∞

0
t p(s)

t (0,0)dt = ∞,

where pt(·, ·) is the semigroup associated to (X(t))t≥0.
It remains to show that λp(κ) < γ for all κ ∈ [0,∞). Our approach is modeled on

the proof of the first part of Theorem 1.2. We wish again to pick bad environment
set BE associated to the ξ -process and bad random walk set BW associated to the
random walk Xκ so that

E
(

exp
[
γ

∫ n

0
ξs(Xκ(s))ds

])
(20)

≤
(
P(BE)+P(BW )

)
eγn +E

(
11Bc

E∩Bc
W

exp
[
γ

∫ n

0
ξs(Xκ(s))ds

])
(21)

with, for some 0 < δ < 1,

P(BE)≤ e−δn, P(BW )≤ e−δn, (22)

and, automatically from the definition of BE and BW ,∫ n

0
ξs(Xκ(s))ds≤ n(1−δ ) on Bc

E ∩Bc
W (23)

(as in the proof of Theorem 1.2). Since, combining (20–23), we obtain

lim
n→∞

1
n

logE
(

exp
[
γ

∫ n

0
ξs(Xκ(s))ds

])
< γ ,
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it is enough to prove (22). All of this has been done in the proof of Theorem 1.2 in
a different situation. The major difference is that we need to modify the collection
of skeletons used.

Lemma 4.1. Let Xκ(·) be a speed κ simple random walk in four dimensions. Fix
M ∈ N \ {1}. There exists c > 0 so that for M large and all n, outside of an e−cn

probability event, there exists 0≤ i1 < i2 < · · ·< in/2M ≤ n so that

Xκ

(1)(i jM + kM)−Xκ

(1)(i jM) >−kM
2

, j ∈ {1, · · · ,n/(2M)}, k ≥ 0 , (24)

where (Xκ

(1)(t))t≥0 denotes the first coordinate of (Xκ(t))t≥0.

Proof. Define
σ1 = inf

{
kM > 0: Xκ

(1)(kM)≤−kM/2
}

and recursively

σi+1 = inf
{

kM > σi : Xκ

(1)(kM)−Xκ

(1)(σi)≤−(kM−σi)/2
}

.

Since the event

{rM ≤ σ1 < ∞} ⊂ ∪∞
k=r
{

Xκ

(1)(kM)≤−kM/2
}

,

we have easily that, for all r,

P(rM ≤ σ1 < ∞) ≤ e−rMc

for c > 0 not depending on n or M. If we now define

τ1 = inf
{

kM > 0: Xκ

(1)( jM)−Xκ

(1)(kM) >−( j− k)M/2 ∀ j > k
}

and recursively

τi+1 = inf
{

kM > τi : Xκ

(1)( jM)−Xκ

(1)(kM) >−( j− k)M/2 ∀ j > k
}

,

it is easily seen that

P(τ1 ≥ rM) ≤ P(∃1≤ k ≤ r : rM ≤ σk < ∞)

≤
r−1

∑
k=1

∑
0<x1<···<xk<r

P
(
σi = xiM ∀i≤ k, rM ≤ σk+1 < ∞

)
≤

r−1

∑
k=1

∑
0<x1<···<xk<r

e−rMc ≤ e−rMc2r

which is less than e−rMc/2 if M is fixed sufficiently large. We have

• (τi+1− τi)i≥1 are i.i.d. (this follows from Kuczek’s argument (see [8])).
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• Provided M has been fixed sufficiently large for each integer r ≥ 1, P(τi+1 −
τi ≥ rM)≤ e−rMc/4. This follows from the fact that random variable τi+1− τi is
simply the random variable τ1 conditioned on an event of probability at least 1/2
(provided M was fixed large).

Thus by elementary properties of geometric random variables we have

P(τn/2M > n)≤ P
(

Y ≥ n
2M

)
≤ e−cn

for Y ∼ B
( n

M ,e−cM/4
)
, c > 0 and M large. This completes the proof of the lemma.

ut

Given that the path of the random walk satisfies the condition of this lemma, we
call the (not uniquely defined) points i1, i2, · · · regular points.

Given this result, we consider the M-skeleton induced by the values Xκ( jM),
0 ≤ j ≤ n/M}, discretized via spatial cubes of length M/8 (rather than 2M as in
the proof of Theorem 1.2). It is to be noted that if (Xκ(t))0≤t≤n satisfies the claim
for Lemma 4.1 and y0 := 0,y1,y2, · · · ,yn/M with yk ∈ Z4, 0 ≤ k ≤ n/M, is its M-
skeleton, namely,

Xκ(kM) ∈Cyk :=
4

∏
j=1

[
y( j)

k
M
8

,(y( j)
k +1)

M
8

)
, 0≤ k ≤ n/M, (25)

where y( j)
k denotes the j-th coordinate of yk (we suppose without loss of generality

that M is a multiple of 8). Then, by (24) and (25), we must have

y(1)
i j
−4k ≤ y(1)

i j+k +1.

In particular, we must have

y(1)
i j′
−4(i j− i j′)≤ y(1)

i j
+1 ∀i j′ < i j. (26)

In the following we modify the definition of appropriate skeletons by adding in
the requirement that the skeleton must possess at least n/2M indices i1, i2, . . . , in/2M
with the corresponding yi j satisfying (26). We note that the resizing of the cubes
makes the notion of acceptability a little more stringent but does not change the
essentials.

Remark first that Lemma 2.5 is still valid in our new setting. Lemma 4.1 imme-
diately gives that with this new definition, Lemma 2.4 remains true. Of course since
this definition is more restrictive we have

|ΞA| ≤ Kn/M

for K as in Lemma 2.1.
In fact in our program all that remains to do, that is in any substantive way dif-

ferent from the proof of Theorem 1.2, is to give a bound on the probability of BE for
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appropriate BE . This is the content of the lemma below (analogous to Lemma 2.2).
Given this lemma, we can then proceed exactly as with the proof of Theorem 1.2.

Lemma 4.2. For any skeleton (yk)0≤k≤n/M in ΞA, the probability that ξ is not good
for (yk)0≤k≤n/M , i.e.,

6 ∃ n
4M

indices 1≤ j ≤ n
M

: ξs(z) = 0 ∀s ∈ [ jM, jM +1] for some z ∈Cy j ,

is less than (4K)−n/M .

Proof. We note that proving the analogous result for Theorem 1.2, we did not need
our skeleton to be in ΞA, the proof worked over any skeleton. For us however it is
vital that our skeleton satisfies (26).

We consider a skeleton in ΞA. Let the first n/2M regular points of our skeleton
be i1, i2, · · · in/2M . For each 1≤ i j ≤ n/2M, we choose R points

x
i j
1 , . . . ,x

i j
R ∈Cyi j

so spread out that for random walks (X(t))t≥0 as in (4) beginning at the points x
i j
k ,

k = 1, · · · ,R, the chance that two of them meet is less than 0 < ε � 1.
Now, consider i j′ < i j and the probability that a random walk starting at (xi j

k , i jM)

meets a random walk starting at (x
i j′
k′ , i j′M) satisfies the following lemma.

Lemma 4.3. For i j′ < i j, there exits K > 0 such that

P
(

Xx
i j
k ,i jM meets Xx

i j′
k′ ,i j′M

)
≤ K

M2(i j− i j′)2 .

Proof. The important point is that since our skeleton is in ΞA,(
x

i j′
k′

)(1)
≤
(

x
i j
k

)(1)
+(i j− i j′)

M
2

+
M
4

, (27)

and so we have

P
(

Xx
i j
k ,i jM meets Xx

i j′
k′ ,i j′M

)
≤ P

((
Xx

i j
k ,i jM

)(1) (
(i j− i j′)M

)
≥
(
x

i j
k

)(1) +(i j− i j′)
3M
4

,

Xx
i j
k ,i jM meets Xx

i j′
k′ ,i j′M

)
+P
((

Xx
i j
k ,i jM

)(1) (
(i j− i j′)M

)
≤
(
x

i j
k

)(1) +(i j− i j′)
3M
4

)
.

By standard large deviations bounds,
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P
((

Xx
i j
k ,i jM

)(1) (
(i j− i j′)M

)
≤
(
x

i j
k

)(1) +(i j− i j′)
3M
4

)
≤ e−CM(i j−i j′ ),

for some universal C ∈ (0,∞). For the other term, we have the following lemma.

Lemma 4.4. For 2 independent processes X = (X(t))t≥0 and Y = (Y (t))t≥0 with
X(0) = x ∈ Z4 and Y (0) = y ∈ Z4, the probability that X ever meets Y is bounded
by K/‖x− y‖2

∞.

Proof. X −Y is not exactly a simple random walk, but it is a symmetric random
walk and so local CLT gives appropriate random walks bounds (see, e.g., [9]). ut

From this and inequality (27), we have

P
(

Xx
i j
k ,i jM meets Xx

i j′
k′ ,i j′M

∣∣∣(Xx
i j
k ,i jM

)(1) (
(i j− i j′)M

)
≥
(
x

i j
k

)(1) +(i j− i j′)
3M
4

)
≤ K

M2(i j− i j′)2 .

ut

Thus, for any R large but fixed, we can choose M so that for all skeleton in ΞA and
each i j′ , we have

∑
i j<i j′

∑
k,k′

P
(

Xx
i j
k ,i jM meets Xx

i j′
k′ ,i j′M

)
≤ R2K

M2

+∞

∑
r=1

1
r2

≤ R2K′

M2 < ε
2

with M chosen sufficiently large, which is analogous to (13). ¿From this point on,
the rest follows as for the proof of Lemma 2.2. ut
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