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Abstract: We propose a novel statistical hypothesis testing method for
detection of objects in noisy images. The method uses results from per-
colation theory and random graph theory. We present an algorithm that
allows to detect objects of unknown shapes in the presence of nonpara-
metric noise of unknown level and of unknown distribution. No boundary
shape constraints are imposed on the object, only a weak bulk condition
for the object’s interior is required. The algorithm has linear complexity
and exponential accuracy and is appropriate for real-time systems.

In this paper, we develop further the mathematical formalism of our
method and explore important connections to the mathematical theory of
percolation and statistical physics. We prove results on consistency and
algorithmic complexity of our testing procedure. In addition, we address
not only an asymptotic behavior of the method, but also a finite sample
performance of our test.
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1. Introduction

Assume we observe a noisy digital image on a screen of N × N pixels. Object
detection and image reconstruction for noisy images are two of the cornerstone
problems in image analysis. In this paper, we propose a new efficient technique
for quick detection of objects in noisy images. Our approach uses mathematical
percolation theory.

Detection of objects in noisy images is the most basic problem of image analy-
sis. Indeed, when one looks at a noisy image, the first question to ask is whether
there is any object at all. This is also a primary question of interest in such
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diverse fields as, for example, cancer detection (Ricci-Vitiani et al. (2007)), au-
tomated urban analysis (Negri et al. (2006)), detection of cracks in buried pipes
(Sinha and Fieguth (2006)), and other possible applications in astronomy, elec-
tron microscopy and neurology. Moreover, if there is just a random noise in the
picture, it doesn’t make sense to run computationally intensive procedures for
image reconstruction for this particular picture. Surprisingly, the vast majority
of image analysis methods, both in statistics and in engineering, skip this stage
and start immediately with image reconstruction.

The crucial difference of our method is that we do not impose any shape
or smoothness assumptions on the boundary of the object. This permits the
detection of nonsmooth, irregular or disconnected objects in noisy images, under
very mild assumptions on the object’s interior. This is especially suitable, for
example, if one has to detect a highly irregular non-convex object in a noisy
image. This is usually the case, for example, in the aforementioned fields of
automated urban analysis, cancer detection and detection of cracks in materials.
Although our detection procedure works for regular images as well, it is precisely
the class of irregular images with unknown shape where our method can be very
advantageous.

Many modern methods of object detection, especially the ones that are used
by practitioners in medical image analysis require to perform at least a prelim-
inary reconstruction of the image in order for an object to be detected. This
usually makes such methods difficult for a rigorous analysis of performance and
for error control. Our approach is free from this drawback. Even though some
papers work with a similar setup (see Arias-Castro et al. (2005)), both our ap-
proach and our results differ substantially from this and other studies of the
subject. We also do not use any wavelet-based techniques in the present paper.

We view the object detection problem as a nonparametric hypothesis testing
problem within the class of discrete statistical inverse problems. We assume that
the noise density is completely unknown, and that it is not necessarily smooth
or even continuous. It is even possible that the noise distribution doesn’t have
a density.

In this paper, we propose an algorithmic solution for this nonparametric hy-
pothesis testing problem. We prove that our algorithm has linear complexity
in terms of the number of pixels on the screen, and this procedure is not only
asymptotically consistent, but on top of that has accuracy that grows exponen-
tially with the ”number of pixels” in the object of detection. The algorithm has
a built-in data-driven stopping rule, so there is no need in human assistance to
stop the algorithm at an appropriate step.

In this paper, we assume that the original image is black-and-white and that
the noisy image is grayscale. While our focusing on grayscale images could have
been a serious limitation in case of image reconstruction, it essentially does not
affect the scope of applications in the case of object detection. Indeed, in the
vast majority of problems, an object that has to be detected either has (on the
picture under analysis) a color that differs from the background colours (for
example, in roads detection), or has the same colour but of a very different
intensity, or at least an object has a relatively thick boundary that differs in
colour from the background. Moreover, in practical applications one often has
some prior information about colours of both the object of interest and of the
background. When this is the case, the method of the present paper is applicable
after simple rescaling of colour values.
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The paper is organized as follows. Section 2 describes in details our statistical
model, and gives a necessary mathematical introduction into the percolation
theory. In Section 3, the new statistical test is introduced and its consistency is
proved. This section contains the main statistical result of this paper. The power
of the test and the probability of false detection for the case of small images
are studied in Section 4. In addition, in Subsections 4.1 and 4.5 we describe
how to select a critical cluster size for any given finite screen size. Our approach
uses the fast Newman - Ziff algorithm and is completely automatic. Our main
algorithm for object detection is presented in Section 5. An example illustrating
the connection between the asymptotic case and the small sample case is given
in Section 6. Appendix is devoted to the proof of two auxiliary estimates.

2. Detection and percolation

2.1. Percolation theory

The key observation to understand our approach to signal detection is the fol-
lowing central result from percolation theory Kesten (1982):

Let G be an infinite graph consisting of sites s ∈ G and bonds between sites.
The bonds determine the topology of the graph in the following sense: We say
that two sites s, s′ ∈ G are neighbors if there is a bond connecting them. We say
that a subset C ⊂ G of sites is connected if for any two sites s, s′ ∈ C there are
sites s1, ..., sn such that s and s1, sn and s′, and sk and sk+1 are neighbors for
all k = 1, ..., n − 1. Considering site percolation on the graph G means that we
consider random configurations ω ∈ {0, 1}G where the probabilites are Bernoulli

P (ω(s) = 1) = p, P (ω(s) = 0) = 1− p

independently for each s ∈ G where 0 ≤ p ≤ 1 is a fixed probability. If ω(s) = 1,
we say that the site s is occupied.

Then, under mild assumptions on the graph, there is a phase transition in the
qualitative behaviour of cluster sizes. To be precise, there is a critical percolation
probability pc such that for p < pc there is no infinite connected cluster and for
p > pc there is one.

This statement and the very definition pc being the location of this phase tran-
sition are only valid for infinite graphs. We can not even speak of an infinite
connected cluster for finite graphs. However, a qualitative difference of sizes of
connected clusters of occupied sites can already be seen for finite graphs, say
with |G| = N sites. In a sense that will be made precise below, the sizes of
connected clusters are typically of order logN for small p and of order N for
values of p close to one. This will yield a criterion to infer whether p is close
to zero or close to one from observed site configurations. Intuitively, for large
enough values of N the distinction between the two regimes is quite sharp and
located very near to the critical percolation probability of an associated infinite
lattice.
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2.2. The general detection problem

Even though this paper deals mostly with a discussion of the problem for tri-
angular lattices, we first want to sketch the problem in full generality, in order
to emphasize that also other choices of the underlying lattice are possible in
our processing of discretized pictures, and to make more transparent why we
decided to work with six-neighborhoods in the present paper.

Let thus G denote a planar graph. We think of the sites s ∈ G as the pixels of
a discretized image and of the graph topology as indicating neighboring pixels.
We consider noisy signals of the form

Y (s) = 1G0(s) + σε(s) (1)

where 1G0 denotes the indicator function of a subset G0 ⊆ G, the noise is given by
independent, identically distributed random variables {ε(s), s ∈ G} with Eε = 0
and V ε = 1, and σ > 0 is the noise variance. Thus, σ−1 is a measure for the
signal to noise ratio.

Definition 1. (The detection problem) For signals of the form (1), we con-
sider the detection problem meaning that we construct a test for the following
hypothesis and alternative:

H0: G0 = ∅, i.e. there is no signal.
H1: G0 6= ∅, i.e. there is a signal.

Remark. (i) We usually think of these signals as being weak in the sense that
the signal-to-noise ratio is small, i.e. σ−1 << 1. (ii) Later in this paper we will
specialize on the consideration of symmetric noise.

Our approach to the detection problem consists of translating the statements of
hypothesis and alternative to statements from percolation theory. First of all,
we choose a threshold τ ∈ R and produce from Y a thresholded signal

Yτ (s) =

{
1 , Y (s) > τ
0 , Y (s) ≤ τ . (2)

To adapt the terminology to percolation theory, we call a site s ∈ G occupied, if
Yτ (s) = 1. Under H0, the probability that a site is occupied is given by

q = P (Yτ (s) = 1) = P
(
ε(s) >

τ

σ

)
independently for all sites s ∈ G. That means, under H0, the thresholded sig-
nal can be equivalently described by the occupied sites in a configuration of a
Bernoulli site percolation on G with percolation probability q.

Under H1, the occupation probabilities are different for the support G0 of the
signal and its complement G1 := G − G0. Namely,

P (Yτ (s) = 1) =

{
p0 := P

(
ε > τ−1

σ

)
, s ∈ G0

p1 := P
(
ε > τ

σ

)
, s ∈ G1

. (3)

The basic idea is now to choose a threshold τ such that

p0 > pc > p1 (4)
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where pc is a suitably chosen critical probability for the lattice G. That means
the occupation probability is supercritical on the support of the signal and sub-
critical outside.

Remark. Note that p0 and p1 in the present paper denote exactly the oppo-
site to their meaning in Langovoy and Wittich (2009). We hope this causes no
inconvenience for the reader, since this does not affect the main statements of
this paper.

Remark. According to the intuitive picture described above, we believe that for
reasonably large graphs, the critical probability pc can be chosen close or equal
to the critical percolation probability of a corresponding infinite graph. See for
this also the example of the triangular lattice at the end of the subsequent
section.

Under mild conditions on the noise distribution which will be specified below,
this can always be arranged. This is the basic observation and the starting point
for our approach to the problem stated above. The idea is now to make use of
the fact that the global behavior of percolation clusters is qualitatively different
depending on whether the percolation probabilities are sub- or supercritical
meaning that there is a detectable difference in cluster formation of occupied
sites according to whether G0 = ∅, or not.

2.3. The triangular lattice and the significance of pc = 1/2

From the general description of the problem formulated, some immediate ques-
tions arise:

1. How do we have to choose the threshold ?
2. How does the test performance depend on the choice of the underlying

lattice structure for the discretized picture, i.e. the choice of G ?
3. What can we say about the behavior of clusters of non-occupied sites in

and outside of G0 ?

In particular, the first question is crucial. If we do not know how to properly
choose the threshold to achieve super- and subcritical occupation probabilities
in- and outside G0, we have to consider scales of thresholds to determine a proper
one. This would at least slow down the detection. However, the second ques-
tion also indicates that we have some freedom to choose a suitable structure
for the underlying lattice. It will turn out that just by choosing G properly, i.e.
as a triangular lattice, we obtain a universal answer to question (i) and a quite
satisfying result concerning question (iii), too. But let’s start from the beginning.

First of all, we will summarize the conditions on the noise distribution which
will be valid throughout the entire remainder of the paper.

Noise Properties. For a given graph G, the noise is given by random variables
{ε(s) : s ∈ G} such that

1. the variables ε(s) are independent, identically distributed with Eε = 0
and V ε = 1,
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2. the noise distribution is symmetric,
3. the distribution of the noise is non-degenerate with respect to a critical

probability pc meaning that if F denotes the cumulative distribution func-
tion of the noise and we define

m+
c = inf{x ∈ R : F (x) ≥ 1− pc}, m−c = sup{x ∈ R : F (x) ≤ 1− pc}

then we have m+
c = m−c where we denote the common value by m, and

either

F (m) > lim
h→0,h>0

F (m− h), (5)

or

F ′(m) > 0. (6)

The reason to assume symmetry will become clear below. The reason to assume
non-degeneracy is the following simple observation.

Lemma 1. Under the non-degeneracy condition, we can always find a threshold
τ such that we have

p0 > pc > p1

for the probabilities p0, p1 defined in (3). This holds independently of the value
σ > 0 of the signal to noise level.

Proof: By (3), we have p0 = 1 − F
(
τ−1
σ

)
and p1 = 1 − F

(
τ
σ

)
. Choosing now

τ = σm+ 1/2, we obtain
τ − 1

σ
< m <

τ

σ
.

Under the conditions (5) and (6) above, that implies

F
( τ
σ

)
> 1− pc > F

(
τ − 1

σ

)
.

Secondly, we change the terminology one last time. In the sequel, we call occu-
pied sites black and non-occupied sites white for obvious reasons. The probability
that a pixel (site) is white (not occupied) is given by

P (Yτ (s) = 0) =

{
1− p0 = P

(
ε ≤ τ−1

σ

)
, s ∈ G0

1− p1 = P
(
ε ≤ τ

σ

)
, s ∈ G1

.

To address question (iii) above, it would be favorable that the white pixels
enjoy the same property as the black ones, just the other way round, namely
that their probabilities are supercritical outside the support of the signal and
subcritical inside. This will be the case if we can choose τ such that p0 >
max{pc, 1− pc} ≥ min{pc, 1− pc} > p1. A situation where this can be done and
where, furthermore, we get a value for τ for free is provided by the following
simple but crucial observation.

Proposition 1. Let G be a lattice such that pc = 1/2 and choose τ = 1/2. If
the distribution of the noise is symmetric, we have for the threshold signal Yτ :
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1. The probability that a given pixel s is black is subcritical for s ∈ G1 and
supercritical for s ∈ G0.

2. The probability that a given pixel s is white is subcritical for s ∈ G0 and
supercritical for s ∈ G1.

Proof: Note first that due to the symmetry of the noise distribution, the non-
degeneracy conditions (5) and (6) reduce to

F ′(0) > 0, limh→0,h>0 F (−h) < F (0).

Thus, if pc = 1/2 and the noise is symmetric we have

p0 = P

(
ε >

τ − 1

σ

)
= P (ε > −1/2σ) = P (ε < 1/2σ) > P (ε ≤ 0) ≥ 1/2 = pc.

Hence we also have p1 = P
(
ε > τ

σ

)
= P (ε > 1/2σ) ≤ 1 − P (ε < 1/2σ) =

1− p0 < 1− pc = 1/2 and thus

p0 > max{pc, 1− pc} = pc = min{pc, 1− pc} > p1.

That proves the statement.

Remark. Note that, so far, the considerations are completely non-parametric
with respect to the noise. Apart from the condition for expectation and variance,
we do not assume anything else about the cumulative distribution function F
of the noise except the non-degeneracy condition and symmetry.

We round up the discussion in this section by the statement that there actually
is an example for a lattice with pc = 1/2.

Definition 2. The (infinitely elongated) planar triangular lattice is the infinite
graph T ⊂ C in the complex plane with edges (sites) given by the elements of
the additive subgroup (S,+) ⊂ (C,+) generated by the sixth roots of unity

U := {ρ ∈ C : ρ6 = 1}.

Two sites s, s′ ∈ S are connected by a bond, thus they are neighbors, if and only
if their Euclidean distance in the plane is d(s, s′) = 1.

Proposition 2. The critical percolation probability for the planar triangular
lattice is given by pc = 1/2.

Proof: See Kesten (1982), p. 52 f.

Remark. Please note that this theorem holds exclusively for the infinite tri-
angular lattice but that we rely on the assumption that for finite triangular
lattices of a reasonable size, the regime of logarithmic and linear cluster sizes
will be separated quite clearly and the region of probabilities 0 < p < 1 where
the regimes change will be quite sharply located around the critical percolation
probability pc = 1/2 of the infinite triangular lattice.

One particularly remarkable fact is that the basic receptor units (ommatidia) of
an insect’s eye are located at the sites of a triangular lattice. This may be caused
by the requirement to have a densest possible packing of the units. However,
once this discretization for visual perception is chosen, one may ask whether the
analysis of the signals thus obtained use in some way or another the properties
of the triangular lattice described above.
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3. The Maximum Cluster Test and consistency

In this section, we will construct a test for the detection problem given in Def-
inition 1 above and compute explicit upper bounds for the type I and type II
errors under some mild condition on the shape of G0, called the bulk condition.
We will not focus on completeness of the proofs for which we refer to Langovoy
and Wittich (2009) but we attempt to make transparent the basic idea of the
proof: We use known statements for the infinite triangular lattice T and transfer
them to a finite lattice by arguments using a certain kind of monotonicity. The
error bounds tend to zero as the lattice size aprroaches infinity. That actually
provides us with a consistency result: If the image can be recorded with an un-
boundedly increasing resolution, the test will almost surely produce the right
decision. The precise statement is given in Theorem 1 below which is the main
result of this section.

Remark. Please note that consistency here only means that we asymptotically
make the right decision. The support of the signal is not necessarily consistently
reconstructed by the largest cluster. This is especially apparent when the object
of interest consists of several connected components.

The setup is as follows: T (N) ⊂ T denotes the finite triangular lattice consisting
of the N2 sites s ∈ T and bonds which are contained in the subset

{z ∈ C : <(z) ≤ N +
1

2
,=(z) ≤

√
3

2
N}.

By consistency we mean that the test will deliver the correct decision, if the
signal can be detected with an arbitrarily high resolution. To be precise, we
think of the signal as a subset G0 ⊂ [0, 1]2 and write

G
(N)
0 := {(N + 1/2)x+ iN

√
3y/2 : (x, y) ∈ G0} ⊂ C.

The model from equation (1) is now depending on N , and given by

Y (N)(s) = 1G(N)
0

(s) + σ ε(s) (7)

where the sites of the subgraph are given by G(N)
0 = {s ∈ T : s ∈ G(N)

0 } and

the bonds of the subgraph are all bonds in T that connect two points in G(N)
0 .

We apply now the threshold as described above, i.e. we let τ = 1/2 and

Y (N)
τ (s) =

{
1 , Y (N)(s) > 1/2
0 , Y (N)(s) ≤ 1/2

.

We consider the following collection of black pixels

Ĝ(N)
0 := {s ∈ T (N) : Y (N)

τ (s) = 1}. (8)

As a side remark, note that one can view Ĝ(N)
0 as an (inconsistent) pre-estimator

of G(N)
0 . Now recall that we want to construct a test on the basis of this estimator

for the hypotheses H
(N)
0 : G(N)

0 = ∅ against the alternative H
(N)
1 : G(N)

0 6= ∅.
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Definition 3. (The Maximum-Cluster Test) Let φ(N) be a suitably chosen
threshold depending on N . Let the test statistic T be the size of the largest

connected black cluster C ⊂ Ĝ(N)
0 . We reject H

(N)
0 if and only if T ≥ φ(N).

For this test, we have the following consistency result under the assumption
that the support of the indicator function satisfies the following very weak type
of a shape constraint.

Definition 4. (The Bulk Condition) We say that the support G(N)
0 of the

signal contains a square of side length ρ(N) ≤ N if there is a site s ∈ G(N)
0 such

that s+ T (ρ(N)) ⊂ G(N)
0 .

Remark. If the subset G0 ⊂ [0, 1]2 contains a square of side length a > 0, the

respective support G(N)
0 contains squares of side lengths approximately ρ(N) ≈

aN .

Theorem 1. For the maximum cluster test, we have

1. There is some constant K0 > 0 such that for φ(N) = K0 logN , we have
for the type I error

lim
N→∞

α(N) = 0.

2. Let φ(N) be as above. Let the support G(N)
0 of the signal contain squares

of side length ρ(N). If ρ(N) ≥ K0 logN , we have for the type II error

lim
N→∞

β(N) = 0.

In particular, in the limit of arbitrary large precision of sampling, the test will
always produce the right detection result.

Remark. Please note that the estimator Ĝ0 itself is not a consistent estimator
for the support of the signal. In the best case, it is an estimator for its largest
component. But we will not pursue reconstruction issues at the moment.

By the previous result, we can detect a signal correctly for virtually every noise
level if we can choose an arbitrary high resolution. To prove this result, we will
have to collect some facts from percolation theory to make precise the intuitive
idea explained in the preceding section: cluster sizes are significantly larger in
the supercritical regime.

We begin with the classical Aizenman-Newman theorem and transfer it step by
step to finite lattices.

Proposition 3. (Aizenman-Newman Theorem) Consider percolation with
subcritical probability p < pc = 1/2 on the infinite triangular lattice T . Then
there is a constant λ(p) > 0 depending on p such that

P (|C| ≥ n) ≤ e−nλ(p) (9)

for all n ≥ 1 where C denotes the black cluster containing the origin.
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Proof:See Kesten (1982).

Note that this result holds for the infinite triangular lattice and that we have
to investigate its consequences for the finite lattices T (N). We do this by means
of a classical monotonicity result known as the FKG inequality. To state this
inequality, we first have to define what we mean by increasing events.

Definition 5. We can introduce a partial ordering on the set Ω = {0, 1}T of
all percolation configurations by

ω1 � ω2 :⇐⇒ ω1(s) ≤ ω2(s) for all s ∈ T .

Now we say that an event A ⊂ Ω is increasing if we have for the corresponding
indicator variable the inequality

1A(ω1) ≤ 1A(ω2)

whenever ω1 � ω2. The term decreasing event is defined analogously.

Now, the FKG inequality reads as follows.

Proposition 4. (FKG inequality) If A and B are both increasing (or both
decreasing) events, then we have

P (A ∩B) ≥ P (A)P (B).

Proof:Fortuin et al. (1971)

We will now apply this result to compute an estimate of the amount of wrong

classifications of points caused by the noise for detection of G(N)
0 ⊂ T (N) in a

finite lattice. To be precise, we consider the event F (N)(n) that among the sites
of a configuration ω ∈ Ω that are erroneously marked black on T (N), i.e.

E(N)(ω) := {s ∈ T (N) − G(N)
0 : Yτ (s) = 1}

and C(N)(ω) ⊂ E(N)(ω) the largest connected cluster, then

F (N)(n) := {ω ∈ Ω : |C(N)| ≥ n}. (10)

Denote now by pE the error probability

pE := P (Yτ (s) = 1 | s /∈ G(N)
0 ) (11)

which only depends on the noise distribution and not on N or the particularly

chosen site s /∈ G(N)
0 . The consequence of the Proposition above for the finite

lattice reads now as follows

Proposition 5. Suppose that 0 < pE < 1/2 is subcritical. Let N ≥ φ(N) be a
threshold value with

φ(N) = C logN2 (12)

and Cλ(pE) > 1 where λ(pE) > 0 is the value for the infinite lattice from (9).
Then we have

P (F (N)(φ(N))) = N−2(Cλ(pE)−1) +O(N−4(Cλ(pE)−1))

as N tends to infinity.
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Proof: Let s ∈ T (N) and C(s) the (possibly empty) largest connected cluster
of occupied sites in T that contains s. The event {|C(s)| < n} is obviously
decreasing for all s ∈ T (N). That implies by FKG inequality

P

(
max
s∈T (N)

|C(s)| < n

)
= P (∩s∈T (N){|C(s)| < n})

≥
∏

s∈T (N)

P (|C(s)| < n) .

By (9) and translation invariance on the infinite lattice, we thus obtain

P

(
max
s∈T (N)

|C(s)| < n

)
≥
(

1− e−λ(pE)n
)N2

.

Hence

P (F (N)(n)) ≤ 1−
(

1− e−λ(pE)n
)N2

Let now n = 2C logN = φ(N) with Cλ(pE) > 1. Then, by (14), we obtain

P (F (N)(φ(N))) = N−2(Cλ(pE)−1) +O(N−4(Cλ(pE)−1)).

Definition 6. Let T (N) ⊂ T be as above. A subset π = {s1, ..., sn} of black
sites sk ∈ T (N) with

1. sk and sk+1 are neighboring sites for all k = 1, ..., n− 1,
2. 0 ≤ <(s1) ≤ 1/2,
3. N ≤ <(sn) ≤ N + 1/2,

is called a left-right crossing.

Proposition 6. Consider site percolation on T (N) ⊂ T with supercritical per-
colation probability p > 1/2. Denote by AN the event that there is some left-right
crossing in T (N). Then there is a constant D(p) > 0 such that

P (AN ) ≥ 1−Ne−D(p)N .

Proof: The proof is analogous to the one of the corresponding statement for
bond percolation in Grimmett (1999). See Langovoy and Wittich (2009) for
more information.

Proof:(of Theorem 1) (i) By Proposition 1, the probability p = pE for a pixel
to be black is subcritical under the null hypothesis. Let λ(p) be the exponential
factor for the infinite lattice in equation (9). Choosing now K0 = 2C with
Cλ(pE) > 1 means that by Proposition 5 the type I error probability tends to
zero as N tends to infinity.

(ii) Let the alternative be true and G(N)
0 6= ∅ contain a square of side length

ρ(N). Again by Proposition 1, the probability pB > 1/2 that a site is (cor-
rectly) marked black is supercritical for sites inside the square. Therefore, the
probability to find a left-right crossing π is given by Proposition 6 to be

P (Aρ(N)) ≥ 1− ρ(N)e−D(pB)ρ(N).
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But every left-right crossing is a connected cluster of size at least ρ(N). Hence

P (T ≥ ρ(N)) ≥ 1− ρ(N)e−D(pB)ρ(N),

and together with ρ(N) ≥ K0 logN this implies that

lim
N→∞

P (T ≥ K0 logN) ≥ lim
N→∞

P (T ≥ ρ(N)) = 1

and thus limN→∞ β(N) = 0.

Finally, as an addition to Proposition 5, we prove that under the same condi-
tions, a slightly changed arguments yields an exponential estimate for the tail
probabilities of the cluster size distribution.

Proposition 7. Suppose that 0 < pE < 1/2 is subcritical. Let N ≥ φ(N) be a
threshold value with

φ(N) = C logN2

and Cλ(pE) > 1 where λ(pE) > 0 is the value for the infinite lattice from (9).
Then there exists a constant K(N) > 0 such that

P (F (N)(n)) ≤ e−K
(N)n

for all n ≥ φ(N).

Proof: Let s ∈ T (N) and C(s) the (possibly empty) largest connected cluster
of occupied sites in T that contains s. The event {|C(s)| < n} is obviously
decreasing for all s ∈ T (N). That implies by FKG inequality

P

(
max
s∈T (N)

|C(s)| < n

)
= P (∩s∈T (N){|C(s)| < n})

≥
∏

s∈T (N)

P (|C(s)| < n) .

By (9) and translation invariance on the infinite lattice, we thus obtain

P

(
max
s∈T (N)

|C(s)| < n

)
≥
(

1− e−λ(pE)n
)N2

.

Hence

P (F (N)(n)) ≤ 1−
(

1− e−λ(pE)n
)N2

Let now n ≥ 2C logN with Cλ(pE) > 1. Then, by essentially the same calcula-
tion as for (13), we obtain

P (F (N)(n)) ≤ N2e−λ(pE)n
(

1 + e−λ(pE)n
)N2−1

≤ N2
(

1 +N−2Cλ(pE)
)N2−1

e−λ(pE)n.

Now, n ≥ C logN2 and thus logN2 ≤ n/C. That implies by Cλ > 1 and

lim
N→∞

(
1 +N−2Cλ(pE)

)N2−1
= 1
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that for N large enough, we have(
1 +N−2Cλ(pE)

)N2−1
≤ eκn

and therefore

logN2 + κ− λ(pE)n ≤
(

1

C
− λ(pE)

)
n = −K(N)n

with K(N) := λ(pE)− κ− C−1 > 0.

This proposition helps to strengthen Theorem 1 and to derive the actual rates
of convergence for both types of testing errors. It is a remarkable fact that both
types of errors in our method tend to zero exponentially fast in terms of the
size of the object of interest.

Theorem 2. Suppose assumptions of Theorem 1 are satisfied. Then there are
constants C1 > 0, C2 > 0 such that

1. The type I error of the maximum cluster test does not exceed

α(N) ≤ exp(−C2φ(N))

for all N > φ(N).

2. The type II error of the maximum cluster test does not exceed

β(N) ≤ exp(−C1ρ(N))) .

for all N > ρ(N).

Proof: Analogously to the proof of Theorem 1, only replacing Proposition 5 by
Proposition 7 and using the inequality from Proposition 6 in a slightly modified
fashion, just as was done in the proof of Theorem 1 in Langovoy and Wittich
(2009).

In other words, the maximum cluster test has power that goes to one exponen-
tially, and the false detection rate that goes to zero exponentially, comparatively
with the size of the object of interest.

4. Power, significance level and critical size of clusters

4.1. Type I error and the critical size of clusters

By the consistency result obtained above, we see that the maximum cluster test
leads almost surely to the right test decision if we can sample the incoming sig-
nal with arbitrary precision. However, as frequently, the asymptotic result will
not determine the exact threshold φ(N) for a given finite value of N when we
assume some level of significance α > 0. Since the significance level is based on
the determination of the type one error, we can use the fact the under the null
hypothesis H0 : f = 0, the black clusters on the graph are distributed according
to a plain percolation with probability of a site to be black equal to pE . In that
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case, we can use the Newman - Ziff algorithm which is described in Wittich
and Langovoy (2010b) to effectively simulate the distribution of the size of the
largest cluster.

In the sequel, we present the results of these simulations for the corresponding
critical regions of the maximum cluster size statistic T for a triangular lattice
with 55 × 55 = 3025 sites. We consider significance levels of α = 0.05 and
α = 0.01 and different possible values for pE . We obtain the following tables for
the lower bounds of the critical regions {T ≥ c0} depending on values for pE .

pE 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5
c0 7 19 49 186 262 395 597 891 1184

Boundary of critical regions for α = 0.05

pE 0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5
c0 9 23 62 247 352 524 765 1058 1302

Boundary of critical regions for α = 0.01

These values are obtained from the quantiles of the simulated cluster size dis-
tributions according to the description given in Wittich and Langovoy (2010b).
The site probabilities for which the simulations are run, are pE = 0.1, 0.2, 0.3,
0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.7, 0.8, and 0.9. They
are displayed in the following graphics.

Fig 1. 0.95- and 0.99-quantiles of maximum cluster size as function of pE

4.2. Type II error – monotonicity

To compute upper and lower estimates of the type II probability, we will use
the bulk condition together with the simple fact that the error probability of
the test is monotonous in the support of the signal. To be precise, we have the
following statement.
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Lemma 2. Let G0 ⊂ G′0 ⊂ G be two different supports for signals Y, Y ′ according
to equation (1). Then, for any given level of significance, the type II error for
signal Y is larger than for Y ′.

Proof: For every configuration ω ∈ {0, 1}G after thresholding, we have using
the probabilities p1 > p0 from (4) and the notation G0, G1 from(3)

P (ω) = p
|ω−1(1)∩G0|
0 (1− p0)|ω

−1(0)∩G0|p
|ω−1(1)∩G1|
1 (1− p1)|ω

−1(0)∩G1|

=
p
|ω−1(1)∩G1|−|ω−1(1)∩G′1|
1 (1− p0)|ω

−1(0)∩G0|−|ω−1(0)∩G′0|

p
|ω−1(1)∩G′0|−|ω−1(1)∩G0|
0 (1− p1)|ω

−1(0)∩G′1|−|ω−1(0)∩G0|
×

×p|ω
−1(1)∩G′0|

0 (1− p0)|ω
−1(0)∩G′0|p

|ω−1(1)∩G′1|
1 (1− p1)|ω

−1(0)∩G′1|

≤ p
|ω−1(1)∩G′0|
0 (1− p0)|ω

−1(0)∩G′0|p
|ω−1(1)∩G′1|
1 (1− p1)|ω

−1(0)∩G′1|

=: P ′(ω)

by p0 > p1 and

|ω−1(1) ∩ G1| − |ω−1(1) ∩ G′1| = |ω−1(1) ∩ G′0| − |ω−1(1) ∩ G0|

and where P denotes the the probability of the configuration associated to Y
and P ′ the probability associated to Y ′. That implies for the probability that
the that the signal is not detected P (T < n0) ≥ P ′(T < n0) where n0 is a
cluster size that is determined on the basis of the null hypothesis and the level
of significance alone and does therefore not depend on the signal. That implies
the statement.

Thus, under the bulk condition, we obtain a conservative upper estimate for
the type II error, if we simulate the type II error for the square contained in
the support of the signal and a lower estimate if we compute it for a square
containing the support. In the latter case, we will consider here the best case
scenario of a signal that is supported by all of G.

4.3. Type II error – lower bound for small images

In this paragraph we study numerical performance of our procedure in the case
of small images. For illustrative purposes, we concentrate on the case N = 55,
which is important for applications of our method in insect vision (see Wittich
and Langovoy (2010a)). To estimate the type II error in this case, we compute
the probability that a constant signal of the form f(s) = a > 0 (which is there-
fore positive on the whole graph) is not detected. So we actually consider the
alternative H1 : f = a > 0. The probability that a given pixel is marked black
is therefore supercritical given by pB > 1/2. From the simulated distribution of
the maximum cluster sizes, we thus obtain for the type II error the subsequent
tables by just taking the value of the cumulative distribution function at the
boundaries of the respective critical regions.
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pE →
pB ↓

0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0.52 10−6 0.0005 0.01 0.09 0.31 0.66
0.54 5 10−9 10−5 0.0007 0.01 0.08 0.23
0.56 2 10−9 6 10−7 0.0006 0.01 0.05
0.58 7 10−6 0.0009 0.006
0.6 8 10−9 4 10−5 0.0005
0.7
0.8
0.9

Type II error for α = 0.05, all omitted values are less than 10−9

pE →
pB ↓

0.1 0.2 0.3 0.4 0.42 0.44 0.46 0.48 0.5

0.52 0.0003 0.006 0.05 0.21 0.49 0.83
0.54 10−5 0.0003 0.005 0.04 0.15 0.39
0.56 2 10−7 0.0002 0.004 0.03 0.09
0.58 2 10−6 0.0002 0.003 0.01
0.6 10−5 0.0003 0.0009
0.7
0.8
0.9

Type II error for α = 0.01, all omitted values are less than 10−9

Of course, we would ideally prefer to simulate the type II error for signals
containing certain squares such as used for the consistency result. To be precise,
we would like to consider the case where the real signal is of the form a1Q where
Q ⊂ T (N) is a given square and a > 0. However, we can not use the Newman
- Ziff algorithm directly for that since the site probabilities are inhomogeneous.
To find an efficient simulation algorithm for the type II error in this case is
therefore work in progress.

On the other hand, the above two tables show that our testing procedure
can have very good power already for rather small images. Since it follows from
Theorem 2 that both error probabilities tend to zero exponentially as the screen
resolution increases, both the power and the level of the Maximum Cluster Test
will improve rapidly even with a small growth of the image resolution.

4.4. Type II error – upper bound for small images

To simulate the type II error for a signal supported on a square sublattice, we
use the modified version of the Newman - Ziff algorithm described in Wittich
and Langovoy (2010b). The simulations are done for a 15 × 15 square lattice
that is basically situated in the center of a 55× 55 lattice. We expect that the
simulated probabilities do depend on the location of the support but for us the
simulated type II errors in this section only serve as a proof of principle. To
further explore the type II error will take extensive simulations for different
shapes and locations of the support, but we will not pursue that here.
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4.5. Simulation of the maximum cluster size distribution

All the experiments described so far concerned the maximum cluster size dis-
tribution of a triangular lattice T (55) with 55 × 55 = 3025 sites for different
site probabilities of pE = 0.1, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54,
0.56, 0.58, 0.6, 0.7, 0.8, and 0.9. The results of these simulations are presented
in Figures 2 and 3 below. We used the R-implementation simulation of the
Newman - Ziff algorithm described in Wittich and Langovoy (2010b).

5. Detection algorithm

Once a threshold τ is fixed, we will base the test decision (i.e. we detect a signal
or not) on the size of the maximal black cluster. It is therefore certainly an
important point that there is a cluster search algorithm, the Depth First Search
algorithm from Tarjan (1972) which is explained in details and implemented
in R in Wittich and Langovoy (2010b), which is quite effective. That means,
it is linear in the number of pixels. This is stated below. Please note that the
R-implementation is rather slow compared to an implementation in C.

We now describe the detection algorithm and state the complexity result. The
algorithm consists of the following steps:

1. Perform a τ -thresholding of the noisy picture Ŷ .
2. Run a depth first search algorithm on the graph of the thresholded signal

until either a black cluster of size |C| ≥ c0 is found, or all black clusters
are found.

3. If a black cluster of size |C| ≥ c0 was found, report that a signal was
detected, otherwise do not reject H0.

The complexity result follows now from the linear complexity of Tarjan’s algo-
rithm (see Tarjan (1972)) and is given by the following statement.

Theorem 3. The algorithm terminates in O(N2) steps, i.e. it is linear in the
number of pixels.

Proof: See Langovoy and Wittich (2009), Theorem 1.

6. Application of asymptotic results to small images

Finally, we want to consider one (hopefully) instructive example. We assume
that ε ∼ N(0, 1) is standard normally distributed and that the true signal is
given by the constant a > 0. We choose for the test the threshold τ > 0 and
obtain

pE(τ) = P (ε > τ/σ) = 1− Φ(τ/σ) < 1/2.

Given the true signal, the correct probability that a site is marked black is given
by

pB(τ, a) = P (ε > (τ − a)/σ) = Φ((a− τ)/σ).

The first observation is that pB is supercritical, only if τ ∈ [0, a). This may help
us to develop an algorithm to find good threshold values in the following way.
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Fig 2. Maximum cluster size distribution for pE = 0.1, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48,
0.5, 0.52
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Fig 3. Maximum cluster size distribution for pE = 0.54, 0.56, 0.58, 0.6, 0.7, 0.8, 0.9

1. Start with some threshold value τ1 > 0 and perform the algorithm de-
scribed above.

2. If H0 is not rejected, proceed with a smaller value τ2.
3. Repeat step 2 until you reject H0 or τn < τ0 where τ0 is some minimal

threshold given in advance.

To use such a minimal threshold makes sense due to the uncertainty relation,
which in the context of a finite lattice with simulated maximum cluster size
distribution corresponds to the fact that the type II error can get large. To be
precise, for a given (small) a > 0 we have, because supercritical behavior can
only be achieved for τ < a, that

1/2 > pE(τ) > 1− Φ(a/σ), 1/2 < pB(τ) < Φ(a/σ).

Remark. From the first sight, it seems obvious that given a signal strength
a > 0, the threshold τ = a/2 is optimal in separating the two probabilities
pE and pB . But due to the asymmetry of the distribution functions around
the critical probability 1/2 visible in Figure 4.1, this may not be the case.
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Moreover, this is only the case for certain symmetric lattices and symmetric
noise distributions.

However, the inequalities above already yield that

1− Φ(a/σ) < pE(τ) < 1/2 < pB(τ) < Φ(a/σ)

and that means for instance if α = 0.01 and the signal to noise ratio is ρ =
a/σ = 0.05, then pB ≈ 0.52, pE ≈ 0.48, we may infer from the second table
about type II errors that β ≈ 0.49. It may therefore not really make sense to
consider threshold values below τ0 = 0.05× σ.
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Appendix.

We will shortly explain how to obtain an asymptotic expression of the bino-
mial sum in the proof of Proposition 5.

Lemma 3. For |x| < 1, 1 ≤ n ∈ N, we have

|(1 + x)n − 1− nx| ≤ n(n− 1)

2
|x|2(1 + |x|)n−2. (13)

Proof: We have

|(1 + x)n − 1− nx| =

n∑
k=2

(
n
k

)
|x|k

=
n(n− 1)

2
|x|2

n∑
k=2

(
n
k

)
(
n
2

) |x|k−2

≤ n(n− 1)

2
|x|2

n−2∑
k=0

(
n− 2
k

)
|x|k

=
n(n− 1)

2
|x|2(1 + |x|)n−2.

Lemma 4. Let zN = e−λf(N) and f(N) = C log(N2) = 2C log(N) where λ > 0
and λC > 1. Then, as N tends to infinity, we have

1− (1− zN )N
2

= N2(1−Cλ) +O
(
N4(1−Cλ)

)
. (14)

Proof: By inequality (13) above

|(1− zN )N
2

− 1 +N2zN | ≤
N2(N2 − 1)

2
z2N (1 + |zN |)N

2−2

By Cλ > 1, we obtain

lim
N→∞

(1 + |zN |)N
2−2 = lim

N→∞

(
1 +

1

N2Cλ

)N2

= 1.

Thus, for N > N0 large enough, there are constants K∗ > K > 1 such that

|(1− zN )N
2

− 1 +N2zN | ≤ K
N2(N2 − 1)

2
z2N ≤ K∗N4(1−Cλ).

Together with
N2zN = N2(1−Cλ),

that proves the assertion.
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