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Abstract

We consider a stochastic fluid EOQ-type model with demand rates that operate in a two-state random
environment. This environment alternates between exponentially distributed periods of high demand and
generally distributed periods of low demand. The inventory level starts at some level q, and decreases
linearly at rate a during the periods of high demand, and at rate b < a at periods of low demand. The
inventory level is refilled to level q when level 0 is hit or when an expiration date is reached, whichever
comes first.

We determine the steady-state distribution of the inventory level, as well as other quantities of interest
like the distribution of the time between successive refills. Finally, for a given cost/revenue structure, we
determine the long-run average profit, and we consider the problem of choosing q such that the profit is
optimized.

1 Introduction

We consider a stochastic fluid EOQ-type model with demand rates that operate in a two-state

random environment. This environment alternates between a good state (a period of high

demand rate) and a bad state (a period of low demand rate) according to a continuous-time

semi-Markov chain. We assume that the net demand rate equals a during the good state and

b during the bad state. We assume that a > b, since the sales during good periods are higher

than those during bad ones (but the latter assumption is not necessary for the analysis).

The high demand and the low demand periods follow each other according to an alternating

renewal process as follows: the good periods are independent and exponentially distributed

random variables with parameter λ and the bad periods are i.i.d. random variables with

distribution G, mean 1/µ.
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In the present paper we discuss a fluid inventory model with perishable items which have

a fixed expiration date. A plant that produces icecream may serve as a motivating example.

When the weather is good, then the demand for icecream is high; otherwise it is considerably

lower. As a first approximation, one might represent the weather condition as a two-state

random environment. More generally, the demand rates for many goods go up and down

between different levels due to fashion or other recurring external effects. Models including

a multistate Markovian or semi-Markovian environment can be suitable for such situations,

with the two-state case presented in this paper serving as a first approximation.

We denote by X = {X(t) : t ≥ 0} the content level process of the inventory where

X is a regenerative process that operates under the alternating good and bad states. A

regeneration cycle is the time interval between two successive epochs in which the process

switches to a good state while the inventory is refilled to level q. At the beginning of the cycle

X decreases linearly at rate a and during the cycle it decreases linearly either at rate a or at

rate b, depending on the state of the environment. By shifting the origin to the beginning

of the cycle we have X(0) = q, where level q is the decision variable of the problem.

The dynamics of the model is such that at the origin the content level is refilled with

fresh perishable items up to level q (the items of the same batch have common shelf life).

We define the stopping times τ = inf{t > 0 : X(t) = 0} and τ ∗ = min{τ, t0}, where t0

indicates the expiration date of the items. As time progresses the stored items age together

and perish together (if they perish).

There are four possible cases for the termination of a cycle; two cases may occur under

the event {X(τ ∗) = 0} and two cases may occur under the event {X(τ ∗) > 0}.

Case 1 : {X(τ ∗) = 0} (which means that τ ∗ < t0) and the state of the environment at τ ∗ is

good (high demand period). In this case the cycle length is τ ∗, and an order of size q fresh

items is placed (in this study we assume that the lead time is negligible).

Case 2 : {X(τ ∗) = 0} and the state of the environment at τ ∗ is bad (low demand period).

The controller will wait until the end of the low demand period and only then an order for
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Figure 1: The four possible cases for the termination of a cycle

q fresh items is placed. In the latter case the cycle length is τ ∗+R where R is the residual time

to the end of the last low demand period (note that τ ∗ and R are not necessarily independent;

however, they are independent in case that the low demand periods are exponential).

Case 3 : {X(τ ∗) > 0} (which means that τ ∗ = t0) and the state of the environment at τ ∗ is

good (high demand period).

The amount X(τ ∗) is discarded (due to perishability) at a loss, and an order of size q

fresh items is placed. Again, in this case the cycle length is τ ∗.

Case 4 : {X(τ ∗) > 0} and the state of the environment at τ ∗ is bad (low demand period).

The controller will wait until the end of the bad period and only then an order for q fresh

items is placed. In the latter case, the cycle length is τ ∗ + R. Note that the above control
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policy guarantees that the cycle always starts with high demand rate, namely, whenever the

environment is good.

The controller’s objective is to maximize the long-run average profit by considering the

following optimization problem. He wishes to select the optimal q := q∗ so as to properly

balance revenues and costs. Revenues are earned by selling units; π is the net profit of selling

one unit (sale minus purchase price). The costs concern setup cost K, which is incurred each

time an order is placed (so it the setup cost per cycle), the proportional holding cost ch per

unit time and per unit of stored items, the cost cd for one discarded unit (outdating) and the

cost cs for one unit of unsatisfied demand. The long-run average holding cost is chEX(∞),

where X(∞) is a random variable having the steady-state distribution of X. It should be

noted that X(t) → X(∞) in distribution. Thus, by the limit theorem for regenerative

processes (see [1] p. 170) and the fact that 0 ≤ X(t) ≤ q it follows that EX(t)→ EX(∞).

Accordingly, with C denoting the length of a regenerative cycle, the profit objective function

is:

P (q) =
πq −K
EC

− cd
EX(τ ∗)1{τ∗=t0}

EC
− cs

ER

EC
− chEX(∞), (1)

where the functionals in (1) are all functions of q, and where R has an atom at zero.

Literature review

The literature about Perishable Inventory Systems (PIS) is quite rich. Over the last three

decades, five comprehensive reviews ([6, 8, 12, 13, 17]) have been published. They reveal

a strong emphasis on the design of algorithms for optimization and/or control (when to

place an order and how much to order). Only a small minority of the papers focuses on

the stochastic analysis of PIS that operate under certain heuristic control policies; see [8].

Our study belongs to the latter category. First, we introduce the performance analysis of

a certain stochastic fluid EOQ model (the case of compound Poisson demand is introduced

in [2], but without the randomness of the environment). Then, a specific objective func-

tion is introduced and the functionals obtained lay the groundwork for some numerical and
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sensitivity analysis.

The survey [8] classifies continuous review models into three categories: without fixed

ordering cost or lead times, without fixed ordering cost having positive lead time, and with

fixed ordering cost (typically with zero lead time). The first category was originated by

Graves [7] who assumed that items are continuously produced and perish after a deterministic

time, and that demand follows a compound Poisson process with either a single-unit or an

exponential demand at each arrival. The second category was originated by Pal [14] who

investigated the performance of an (S − 1, S) control policy. The third category, originated

by Weiss [20], is of relevance to our model; [9], [10], [11], [5] and [16] made significant

contributions to models in this category. Lian, Liu and Neuts [10] consider discrete demand

for items and time to perishability that is either fixed-and-known or that follows a Phase-

Type distribution.

There are two types of perishable inventory models. The first family of models assumes

that the quality of the items is slowly decreasing over time. For an early review of work

of this family of models see Nahmias [12] and [13]. A generic work by Rajan and Steinberg

[18] considers perishable items with order set-up cost. They assume that the quantity of

good items deteriorates at an exponential rate, and solve the problem of finding the joint

optimal ordering and pricing strategy. The second family is of models with obsolescences

([19]). Here, the items might perish at each period with some probability which is typically

increasing over time ([15], [3]).

A large variety of inventory models is presented in detail in the monograph [22]. The

stochastic models are based on point processes for the demand arrivals in random environ-

ments (in the book called “world-driven”). The fluid systems in [22] are deterministic EOQ

models with the classical extensions such as planned backorders, limited capacity, quantity

discounts, and imperfect quality. In the deterministic setting, time-varying demands are

considered also, but without multiple order quantities.

To the best of the authors’ knowledge, the stochastic EOQ model with the added features

5



of perishability and a non-Markovian environment expounded in this article is new. The work

that is most closely related to this study is [4]. In fact, the present study is a generalization

of [4] with two important added features: (i) The items stored are subject to perishability

with a pre-determined expiration date, viz., the constant t0 (not a decision variable). (ii)

The lengths of the bad periods of the random environment are not necessarily exponential.

In the next section we model the length of the intermittent high and low demand periods

as an alternating renewal process. Such a model can be described as a generalized integrated

telegrapher process (see Zacks [21]), with a particle moving with velocities a and b intermit-

tently. The distribution of X(t) can be derived as in Zacks [21] (see the appendix).

Organization of the paper

Section 2 contains a detailed model description. Section 3 presents a compound Poisson

representation of the problem. Section 4 presents the distributions of related stopping times.

In Section 5 we consider cycle lengths and related quantities, which are necessary for the

optimization problem. Combining the various results from that section allows us to determine

the expected profit per time unit. In Section 6 we present explicit formulae of cost functionals

for the case of exponential length of low demand period. Numerical examples are given, in

which we explore the effect of several parameters on the cost function.

2 Formulation of the Model

We consider an inventory system of perishable items, whose shelf life is t0 time units. At

the beginning of a cycle, a quantity q is placed in stock. All items left in stock after t0

are discarded (at cost of cd per unit). The demand for items follows alternating periods of

high demand (HD) and low demand (LD). The lengths of successive HD periods are i.i.d.

(independent, identically distributed) random variables H1, H2, . . . with common distribution

F . The lengths of successive LD periods are i.i.d. random variables L1, L2, . . . with common

distribution G. Furthermore, these two sequences are also independent.
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As in a fluid model, demand is assumed to be continuous. The quantity demanded in

an LD period during one time unit is βL, and that during an HD period is βH , where

0 < βL < βH <∞. We assume that βLt0 < q < βHt0.

A cycle starts during an HD period. If a cycle ends during an LD period, we extend it until

an HD period starts. More precisely, let Q(t) be the total amount demanded up to time t in

a given cycle, where Q(0) = 0. Since a cycle starts during an HD period, βLt0 < Q(t0) ≤ q.

All sample paths of Q(t) satisfy βLt < Q(t) ≤ βHt for all t in a cycle. Define the stopping

times (which were already informally defined in Section 1)

τ = inf{t > 0 : Q(t) = q}, (2)

and

τ ∗ = min{t0, τ}. (3)

Notice that
q

βH
≤ τ ∗ ≤ t0. In Figure 1 we present four possible sample paths of the demand

process. These four sample paths correspond respectively to the case that the cycle ends at

t0 in an HD period, ends at t0 in an LD period, ends at τ when q is reached in an HD period,

and ends at τ when q is reached in an LD period.

Notice that when τ ∗ = t0, then generally Q(t0) < q, and q −Q(t0) items are discarded.

The cycle length is

C = τ ∗, if τ ∗ ∈ an HD period

= τ ∗ +R, else.

(4)

Here R is the length of the residual LD period following τ ∗. If C > τ ∗ then there is a penalty

csR for shortage of items.

If the distribution of the HD-periods is exponential, i.e., F (u) = 1 − e−λu, then the first

HD-period of a cycle is exp(λ) distributed not only when it is following an LD-period but

also when it is the continuation of the HD-period which ended at τ ∗. Hence the inventory

cycles are renewal cycles in this case. In the remainder of the paper we indeed assume that

F is exp(λ), whereas the distribution G of the LD-periods is general.
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3 A compound Poisson representation

Let {N(t), t ≥ 0} be an ordinary Poisson process with intensity λ. It represents the renewal

process of HD-periods. Let Xi = βLLi represent the quantities demanded during LD-periods.

Notice that X1, X2, . . . are i.i.d. with c.d.f. GX(x) = G(x/βL) and p.d.f. gX(x) =
1

βL
g(x/βL),

where g is the density of G. Consider the compound Poisson process

Y (t) =

N(t)∑
n=0

Xn, t ≥ 0, (5)

where X0 = 0. N(t) is the number of completed HD-periods during the time interval (0, t).

If N(t) = 0, the first HD-period is still on at time t. For N(t) ≥ 1, Y (t) is the total demand

during the LD-periods following the HD-periods in (0, t).

During t time units of HD-periods the quantity demanded is βHt. The quantity left for

demands during LD-periods is q − βHt. Also, with t time units on HD-periods, all the

remaining t0− t time periods are for LD-periods, so the maximum possible LD-demand then

is βL(t0 − t). Accordingly, let

B(t) = min(q − βHt, βL(t0 − t)), (6)

and define the stopping time

τ̃ = inf(t > 0 : Y (t) ≥ B(t)). (7)

Below we shall see that τ̃ is linearly related to τ ∗; obtaining the distribution of τ̃ will

immediately give us the distribution of τ ∗.

In Figure 2 we show a possible realization of τ̃ . The time at which the two lines y = q−βHt

and y = βL(t0− t) intersect is denoted by t∗ =
q − βLt0
βH − βL

. Notice that τ̃ ≤ q

βH
. Also, if τ̃ < t∗

then Y (τ̃) ≥ βL(t0 − τ̃). The total time required to attain this value is τ̃ + Y (τ̃)/βL = t0.

Thus, all values of τ̃ < t∗ correspond to τ ∗ = t0 (Cases 3 and 4), whereas all values of τ̃ in

(t∗, q/βH ] correspond to
q

βH
≤ τ ∗ < t0. Furthermore, the total number of units demanded

at τ̃ , when 0 < τ̃ ≤ t∗, is

Q(τ̃) = βLt0 + (βH − βL)τ̃ , τ̃ ≤ t∗. (8)
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Notice that Q(τ̃) ≤ q. Thus, if τ̃ ≤ t∗ the number of discarded units is

D(τ̃) = (βH − βL)(t∗ − τ̃), τ̃ ≤ t∗. (9)

If τ̃ > t∗ then D(τ̃) = 0. The relationship between τ̃ and τ ∗ is given by

τ ∗ =
q

βL
−
(
βH
βL
− 1

)
τ̃ . (10)

4 The distribution of τ̃ and τ ∗

In this section we successively determine the distribution of τ̃ , the distribution of τ ∗ (using

(10)), and the joint density of τ̃ and R. Let p(n;µ) and P (n;µ) denote the p.d.f. and c.d.f.

of the Poisson distribution with mean µ. The c.d.f. of Y (t) is

H(y; t) =
∞∑
n=0

p(n;λt)G(n)

(
y

βL

)
, (11)

where G(n)(·) is the n-fold convolution of G(·), and G(0)(·) ≡ 1. H(y; t) has an atom e−λt at

y = 0. On (0,∞) it is absolutely continuous, with density

h(y; t) =
1

βL

∞∑
n=1

p(n;λt)g(n)

(
y

βL

)
. (12)
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It follows from the definition of τ̃ (see (7)) that P (τ̃ > t) = H(B(t); t). Since B(t) is a

decreasing function,

P (τ̃ > t) = H(βL(t0 − t); t) if 0 < t < t∗,

= H(q − βHt; t) if t∗ ≤ t ≤ q

βH
.

(13)

Recall that {τ ∗ = t0} = {0 < τ̃ ≤ t∗}. Thus

P{τ ∗ = t0} = 1−H(B(t∗); t∗) = 1−
∞∑
n=0

p(n;λt∗)G(n)(t0 − t∗). (14)

The density of τ̃ over

(
0,

q

βH

)
is ψτ̃ (t) = − d

dt
P (τ̃ > t). The density ψτ̃ (t) can be written

as ψ
(1)
τ̃ (t)+ψ

(2)
τ̃ (t), where

ψ
(1)
τ̃ (t) = λe−λt + λ

∞∑
n=1

(p(n;λt)− p(n− 1;λt))G(n)(
B(t)

βL
), (15)

ψ
(2)
τ̃ (t) = βLh(B(t); t) if 0 ≤ t ≤ t∗, (16)

ψ
(2)
τ̃ (t) = βHh(B(t); t) if t∗ ≤ t ≤ q

βH
. (17)

ψ
(1)
τ̃ (t) corresponds to the case that τ̃ ∈ LD, and ψ

(2)
τ̃ (t) to the case that τ̃ ∈ HD. Thus,

P (τ̃ ∈ LD) =

∫ q/βH
0

ψ
(1)
τ̃ (t)dt∫ q/βH

0
ψτ̃ (t)dt

. (18)

From (10) the c.d.f. of τ ∗ now follows. Recall that all values of τ̃ < t∗ correspond to

τ ∗ = t0, whereas all values of τ̃ in (t∗, q/βH ] correspond to
q

βH
≤ τ ∗ < t0. For

q

βH
< t < t0,

with Ψτ∗(·) denoting the distribution of τ ∗:

Ψτ∗(t) = P

(
q

βL
−
(
βH
βL
− 1

)
τ̃ ≤ t

)
= P

{
τ̃ ≥ q − βLt

βH − βL

)
= H

(
βL(βHt− q)
βH − βL

;
q − βLt
βH − βL

)
.

(19)

The joint density fτ̃ ,R(t, r) of τ̃ and R, the residual LD-period length after stopping.

Distinguishing the two cases where shortages occur, we have, for t∗ < t <
q

βH
, r > 0:

fτ̃ ,R(t, r) =
1

βL
λe−λtg

(
q − βHt+ βLr

βL

)
+

λ

βL

∫ q−βH t

0

h(y; t)g

(
q − βHt− y + βLr

βL

)
dy,

(20)
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and for 0 < t < t∗,

fτ̃ ,R(t, r) =
1

βL
λe−λtg

(
βL(t0 − t) + βLr

βL

)
+

λ

βL

∫ βL(t0−t)

0

h(y; t)g

(
βL(t0 − t)− y + βLr

βL

)
dy.

(21)

From (21) we get ∫ ∞
0

fτ̃ ,R(t, r)dr = ψ
(1)
τ̃ (t). (22)

Indeed, for y ≥ 0, ∫ ∞
0

g(
B(t)− y

βL
+ r)dr = 1−G(

B(t)− y
βL

). (23)

Moreover,

λ

βL

∫ B(t)

0

h(y; t)(1−G(
B(t)− y

βL
))dy

=
λ

βL

∫ B(t)

0

∞∑
n=1

p(n;λt)g(n)(
y

βL
)(1−G(

B(t)− y
βL

))dy

= λ
∞∑
n=1

p(n;λt)

∫ B(t)/βL

0

g(n)(x)(1−G(
B(t)

βL
− x))dx

= λ
∞∑
n=1

p(n;λt)(G(n)(
B(t)

βL
)−G(n+1)(

B(t)

βL
)). (24)

Thus,

ψ
(1)
τ̃ (t) =

∫ ∞
0

fτ̃ ,R(t, r)dr = λe−λt + λ
∞∑
n=1

(p(n;λt)− p(n− 1;λt))G(n)(
B(t)

βL
). (25)

Finally,

ER =

∫ q/βH

0

∫ ∞
0

rfτ̃ ,R(t, r)drdt

= λ

∫ q/βH

0

e−λt
∫ ∞
B(t)/βL

Ḡ(x)dxdt

+ λ

∫ q/βH

0

∫ B(t)/βL

0

h(y; t)

∫ ∞
B(t)
βL
−y
Ḡ(x)dxdydt, (26)

where Ḡ(x) = 1−G(x).
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5 The expected profit per cycle

Assume that the net profit of selling one item (the difference of sale and purchase price) is

π, and that the set-up costs per cycle are K. Then the total net profit P (q) per cycle, as a

function of q, is the difference of the net profit of selling all items that were produced in a

cycle, and the various costs: set-up costs K per cycle, costs for shortage (cs per time unit),

costs for discarding material (cd per unit of material), and holding cost (ch per unit material

per time unit):

P (q) =
πq −K
EC

− cd
EX(τ ∗)1{τ∗=t0}

EC
− cs

ER

EC
− chEX(∞). (27)

We wish to choose q such that this profit is maximized. We now show how the terms in (27)

can be obtained from the results of Section 4.

1. Determination of EC. In view of (4), we have to determine Eτ ∗ and ER. Eτ ∗ im-

mediately follows from (14) and (19). We further have, with fτ̃ ,R(t, r) being given by

(19):

ER = E[R1R>0] =

∫ q/βH

t=0

∫ ∞
r=0

rfτ̃ ,R(t, r)dtdr. (28)

2. Determination of E[X(τ ∗)1{τ∗=t0}]. Recall that {τ ∗ = t0} = {0 < τ̃ ≤ t∗}. For such

values of τ̃ = t, Y (t) = βL(t0 − t). Hence, when τ̃ = t and τ ∗ = t0, the inventory

level decreases in [0, t0] at rate βH during a total period of length t and at rate βL

during a total period of length t0 − t. Consequently, when τ̃ = t and τ ∗ = t0, we have

X(t0) = q − βHt− βL(t0 − t). So

E[X(τ ∗)1{τ∗=t0}] =

∫ t∗

t=0

(q − βHt− βL(t0 − t))ψτ̃ (t)dt. (29)

3. Determination of EX(∞). Notice that X(t) = q−Q(t), so EX(∞) = q−EQ(∞). We

make the following observation. Consider the cycle for as long as X(t) > 0. If Y (t) = y,

then there were LD periods during y/βL, as well as HD periods during t− y/βL. Hence

if Y (t) = y then X(t) = q − Q(t) = q − y − βH
(
t− y

βL

)
. Finally, remembering that
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h(y; t) is the density of Y (t):

EX(∞) =

∫ t∗

t=0

ψτ̃ (t)

∫ βL(t0−t)

y=0

(
q − βH

(
t− y

βL

)
− y
)
h(y; t)dydt

+

∫ q/βH

t=t∗
ψt̃(t)

∫ q−βH t

y=0

(
q − βH

(
t− y

βL

)
− y
)
h(y; t)dydt.

(30)

6 Cost functionals for exponential demand

In the present section we develop the formulae for the required cost functionals, in the special

case of G(y) = 1− e−µy.

The c.d.f. and p.d.f. of Y (t) are (cf. (11) and (12))

H(y; t) =
∞∑
j=0

P (j;λt)p

(
j;
µy

βL

)
, (31)

and

h(y; t) =
µ

βL

∞∑
j=0

p(j + 1;λt)p

(
j;
µy

βL

)
. (32)

Moreover, cf. (14),

P (τ ∗ = t0) =
∞∑
n=1

p(n;λt∗)P (n− 1; (t0 − t∗)µ). (33)

The density of τ̃ , viz. ψτ̃ (t), becomes (cf. (15)-(17)): For 0 < t ≤ t∗,

ψτ̃ (t) = λ
∞∑
n=1

(p(n− 1;λt)− p(n;λt))P (n− 1; (t0 − t)µ)

+ µ
∞∑
n=1

p(n;λt)p(n− 1); (t0 − t)µ).

(34)

And for t∗ < t <
q

βH
,

ψτ̃ (t) = λ
∞∑
n=1

(p(n− 1;λt)− p(n;λt))P (n− 1; (q − βHt)µ/βL)

+
βH
βL
µ
∞∑
n=1

p(n;λt)p(n− 1; (q − βHt)µ/βL).

(35)

The density ψτ̃ (t), given in (34) and (35), is composed of two parts. One part corre-

sponding to a jump over the boundary ψ
(1)
τ̃ (t) (LD period) and one part, ψ

(2)
τ̃ (t), where

13



Y (τ̃) = B(τ̃) (HD period). According to (34) and (35),

ψ
(1)
τ̃ (t) = λ

∞∑
n=1

(p(n− 1;λt)− p(n;λt))P (n− 1;µB(t)/βL) (36)

and

ψ
(2)
τ̃ (t) = µ

|B′(t)|
βL

∞∑
n=1

p(n;λt)p(n− 1;µB(t)/βL), (37)

where B′(t) =
d

dt
B(t). When G is exp(µ), R is independent of τ̃ and exponential, and the

joint density becomes:

fτ̃ ,R(t, r) = ψτ̃ (t)µe
−µr, 0 < t ≤ q/βH . (38)

Finally, the c.d.f. of τ ∗ is (cf. (19))

Ψτ∗(t) =
∞∑
j=0

p

(
j;µ

βHt− q
βH − βL

)
P

(
j;λ

q − βLt
βH − βL

)
. (39)

We are now ready to evaluate the cost function (27). Starting with the expected value of τ ∗,

we have

E{τ ∗} =
q

βH
e−λq/βH + t0P{τ ∗ = t0}+

∫ t0

q/βH

tψτ∗(t)dt, (40)

where ψτ∗(t) is the density of the c.d.f. (19), and where the first two terms correspond to

the atoms of τ ∗ at q/βH and at t0. Now,∫ t0

q/βH

tψτ∗(t)dt =

∫ t0

q/βH

(∫ t

0

dy

)
ψτ∗(t)dt

= q/βH(Ψτ∗(t0)−Ψτ∗(q/βH))

+

∫ t0

q/βH

∫ t0

y

ψτ∗(t)dtdy.

(41)
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Accordingly (notice that Ψτ∗(t0) = 1− P{τ ∗ = t0} and Ψτ∗(q/βH) = e−λq/βH ),

E{τ ∗} =
q

βH
e−λq/βH + t0P{τ ∗ = t0}

+
q

βH
(1− P{τ ∗ = t0})−

q

βH
e−λq/βH

+ (t0 −
q

βH
)(1− P{τ ∗ = t0})

−
∫ t0

q/βH

H

(
βL(βHy − q)
βH − βL

;
q − βLy
βH − βL

)
dy

= t0 −
∫ t0

q/βH

H

(
βL(βHy − q)
βH − βL

;
q − βLy
βH − βL

)
dy.

(42)

In the present special exponential case, P{τ ∗ = t0} is given by (33). Thus, using (31),

E{τ ∗} = t0 −
(
t0 −

q

βH

)
·
∞∑
j=0

∫ 1

0

P

(
j;

λ

βH − βL

(
q

(
1− βL

βH

)
− βL

(
t0 −

q

βH

)
u

))
·

· p
(
j;

µ

βH − βL
(t0βH − q)u

)
du.

(43)

Recall that C = τ ∗ + I{τ ∗ ∈ LD}R. In the present case, since G is exponential, R ∼ exp(µ)

independently of τ ∗. Thus,

E{C} = E{τ ∗}+
1

µ
P{τ ∗ ∈ LD}. (44)

Moreover

P{τ ∗ ∈ LD} =

∫ t0

0

ψ
(1)
τ̃ (t)dt∫ t0

0

ψτ̃ (t)dt

. (45)

Notice that ∫ t0

0

ψτ̃ (t)dt = 1− e−λq/βH . (46)

Moreover,∫ t0

0

ψ
(1)
τ̃ (t)dt = λ

∞∑
n=1

∫ t∗

0

(p(n− 1;λt)− p(n;λt)) · P (n− 1; (t0 − t)µ)dt

+ λ
∞∑
n=1

∫ q/βH

t∗
(p(n− 1;λt)− p(n;λt)) · P (n− 1; (q − βHt)µ/βL)dt.

(47)
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For the first integral in (47) we make the transformation u = t/t∗, and for the second integral

we set u = (t− t∗)/(q/βH − t∗). We then obtain∫ t0

0

ψ
(1)
τ̃ (t)dt = λt∗

∞∑
n=1

∫ 1

0

(p(n− 1;λt∗u)− p(n;λt∗u)) · P (n− 1;µ(t0 − t∗u))du

+ λ

(
q

βH
− t∗

) ∞∑
n=1

∫ 1

0

(
p

(
n− 1;λ

(
t∗(1− u) +

q

βH
u

))
− p

(
n;λ

(
t∗(1− u) +

q

βH
u

)))
·

· P
(
n− 1;

µ

βL
(q − βHt∗)(1− u)

)
du.

(48)

The expected discarded quantity is, according to (9):

E{D(τ̃)I(τ̃ ≤ t∗)} = (βH − βL)t∗E{I(τ̃ ≤ t∗)} − (βH − βL)E{τ̃ I(τ̃ ≤ t∗)}

= (βH − βL)t∗P{τ ∗ = t0} − (βH − βL)

∫ t∗

0

tψτ̃ (t)dt.
(49)

Furthermore, according to (34),∫ t∗

0

tψτ̃ (t)dt = λ
∞∑
n=1

∫ t∗

0

t(p(n− 1;λt)− p(n;λt))P (n− 1;µ(t0 − t))dt

+ µ
∞∑
n=1

∫ t∗

0

tp(n;λt)p(n− 1;µ(t0 − t))dt.
(50)

As before, let u = t/t∗, then∫ t∗

0

tψτ̃ (t)dt = λt∗2
∞∑
n=1

∫ 1

0

u(p(n− 1;λt∗u)− p(n;λt∗u)) ·

· P (n− 1;µ(t0 − t∗u))du

+ µt∗2
∞∑
n=1

∫ 1

0

up(n;λt∗u)p(n− 1;µ(t0 − t∗u))du.

(51)

Introduce the function, for a > 0,

M(a; t) =

∫ a

0

(
q − βHt+

(
βH
βL
− 1

)
y

)
h(y; t)dy, (52)

where h(y; t) is the density of Y (t) given by (32). We have

M(a; t) = (q − βHt) ·H(a; t) +

(
βH
βL
− 1

)∫ a

0

yh(y; t)dy. (53)
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Moreover, ∫ a

0

yh(y; t)dy =

∫ a

0

∫ a

x

h(y; t)dydx

=

∫ a

0

(H(a; t)−H(x; t))dx

= aH(a, t)−
∫ a

0

H(x; t)dx.

(54)

According to (31), ∫ a

0

H(x; t)dx =
∞∑
j=0

P (j;λt)

∫ a

0

p

(
j;
µ

βL
x

)
dx

=
βL
µ

∞∑
j=0

P (j;λt)

(
1− P

(
j;
µ

βL
a

))
.

(55)

Thus, for t < q/βH ,

M(a; t) =
∞∑
j=0

P (j;λt)p

(
j;
µ

βL
a

)(
q − βHt+

(
βH
βL
− 1

)
a

)

−
(
βH
βL
− 1

)
βL
µ

∞∑
j=0

P (j;λt)

(
1− P

(
j;µ

a

βL

))
.

(56)

With the aid of (30) and (56) we get

E{X(∞)} =

∫ t∗

0

M(βL(t0 − t); t)ψτ̃ (t)dt+

∫ q/βH

t∗
M(q − βHt; t)ψτ̃ (t)dt. (57)

Using the expressions derived above, in Table 6.1 we explore the effect of several parameters

on the cost function. We start with a collection of base values for the parameters, and then

vary one parameter at a time.

Table 6.1: The effect of several parameters on the cost function

Base values: π = 0.5, K = 10, cd = 10, cs = 20, ch = 10, λ = 0.1, µ = 0.2, βL = 10,

βH = 30, t0 = 24, q = 300.

NA = Not Available; the parameters do not satisfy the constraints.
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parameter P (q) parameter P(q)

βL = 5 0.8621 K = 6 3.4776

βL = 10 3.1281 K = 8 3.3028

βL = 15 NA K = 10 3.1281

βH = 20 1.4208 K = 12 2.9533

βH = 30 3.1281 K = 14 2.7785

βH = 40 4.3455 π = 0.48 2.6038

q = 250 1.4849 π = 0.49 2.8659

q = 300 3.1281 π = 0.50 3.1281

q = 350 3.7141 π = 0.51 3.3902

q = 400 3.1642 π = 0.52 3.6524

t0 = 20 1.7607

t0 = 24 3.1281

t0 = 30 NA
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In Table 6.2 we use the same base values as in the previous table, but we vary q from 200

to 400. Zooming in, it turns out that the optimal value of q is 352 (bold item in the table).

Table 6.2: Optimal choice of q

π = 0.5, K = 10, cd = 10, cs = 20, ch = 10, λ = 0.1, µ = 0.2, βL = 10, βH = 30, t0 = 24.

q P (q) q P (q)

200 NA 349 3.7132

225 NA 350 3.7141

250 1.4849 351 3.7145

275 2.4361 352 3.7146

300 3.1281 353 3.7141

325 3.5571 354 3.7132

330 3.6106 355 3.7118

335 3.6532 360 3.6981

340 3.6846 375 3.5873

345 3.7050 400 3.1643

Appendix: An alternative derivation of the distribution of the stopping time τ ∗

In this appendix we present a different method for deriving the distribution of τ ∗. This

method may also be useful in studying variants of the model of this paper.

Let W (t) denote the total time in the interval (0, t) in which the system is in HD periods.

Obviously, 0 ≤ W (t) ≤ t. The total demand up to time t is then

Q(t) = βHW (t) + βL(t−W (t)) = βLt+ (βH − βL)W (t). (58)

The distribution of W (t) can be found in the following manner. Let

NH(w) = max{n ≥ 0 :
n∑
i=0

Hi ≤ w}, (59)

where H0 = 0 and where Hi is the length of the ith HD period. Since Hi ∼ exp(λ),

{NH(w);w ≥ 0} is a Poisson process with intensity λ. Construct the compound Poisson
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process (with L0 = 0 and Ln denoting the length of the nth LD period)

Ỹ (w) =

NH(w)∑
n=0

Ln. (60)

Notice that P{Ỹ (w) = 0} = e−λw, and that Ỹ (w) = Y (w)/βL, cf. (5). Also, the c.d.f. of

Ỹ (w) is

H̃(y;w) = H(βLy;w) =
∞∑
n=0

p(n;λw)G(n)(y). (61)

Realize that W (t) is the stopping time

W (t) = inf{w > 0 : Ỹ (w) ≥ t− w}. (62)

Thus, since Ỹ (w) is increasing,

P{W (t) > w} = P{Ỹ (w) < t− w} = H(βL(t− w);w), for 0 < w < t. (63)

Also, P{W (t) = t} = e−λt.

Since τ = inf{t > 0 : Q(t) = q},

P{τ ≤ t} = 1− P{τ > t} = 1− P{Q(t) < q} = 1− P{βLt+ (βH − βL)W (t) < q}

= 1− P{W (t) <
q − βLt
βH − βL

} = H(βL
βHt− q
βH − βL

;
q − βLt
βH − βL

).(64)

Finally, since τ ∗ = min(τ, t0), we have (cf. (14)),

P{τ ∗ = t0} = 1−H(βL
βHt0 − q
βH − βL

;
q − βLt0
βH − βL

), (65)

and, for q
βH

< t < t0, cf. (19),

P{τ ∗ ≤ t} = H(βL
βHt− q
βH − βL

;
q − βLt
βH − βL

) =
∞∑
n=0

p(n;λ
q − βLt
βH − βL

)G(n)(
βHt− q
βH − βL

). (66)
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