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Abstract

We consider a memoryless single station service system with servers S = {m1, . . . , mK},
and with job types C = {a, b, . . .}. Service is skill based, so that server mi can serve a subset
of job types C(mi). Waiting jobs are served on a first come first served basis, while arriving
jobs that find several idle servers are assigned to a feasible server randomly. We show that
there exist assignment probabilities under which the system has a product form stationary
distribution, and obtain explicit expressions for it.

Keywords: Service system; first come first served policy; multi-type jobs; multi-type servers;
partial balance, product form solution.

1 Introduction

In this paper we study a service (typically manufacturing) system which serves several types of
jobs, labeled a, b, c, . . ., and we denote the set of job types by C. Service is provided by K servers
(machines), labeled m1, . . . ,mK . We denote the set of machines byM. Jobs arrive at the system
in independent Poisson streams with rates λi, i ∈ C, and have independent service requirements
which are exponentially distributed with rate 1. Each machine is capable of handling a specific
subset of job types. Machine mi can only handle jobs from the set C(mi) ⊂ C. The union of
these is C. Machine mi works at rate µmi .

The service discipline in the system is a combination of First-Come-First-Served (FCFS)
and random assignment. Arriving jobs which find no feasible available machine wait in a single
queue, and are processed in a FCFS order as long as it is possible. This means that as soon as
a machine finishes a job it takes the first job in the queue that it can process, possibly skipping
several jobs that it cannot process. Jobs which upon arrival find some available feasible machines,
are assigned to one of them randomly and go into service immediately. Else they join the end of
the queue.
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To fully specify the system we need to specify the random assignment: we assume that an
arriving job of type i will choose a feasible machine from those which are idle according to a
specified probability distribution which depends on i and on the set of idle machines. We call
these distributions the assignment probability distributions. There is one assignment probability
distribution for each type of job and for each subset of idle machines which contains at least
one feasible machine for that type of job. We treat these assignment probability distributions as
control parameters for the system. Figure 1 shows two examples of such systems, which we will
refer to as System A and System B.
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Figure 1: Some service systems with multi-type jobs and multi-type servers
.

A full Markovian description of the system is to list all the jobs in the system in their
order of arrivals, including jobs which are being processed, and to imagine that the machines
are situated in the queue on the position of the job that they are processing. To illustrate we
consider System B in Figure 1, in which there are three job types a, b, c and three machines with
C(m1) = {a, b}, C(m2) = {a, c}, C(m3) = {a}.

In Figure 2 a possible situation of System B is depicted. The jobs are denoted by circles
and the machines by rectangles. Jobs in service have a rectangle drawn around them with the
identity of the machine inside. There are 12 jobs in the system, all the machines are busy, with
machine m1 processing the first job in line, which must therefore be either of type a or of type b.
Following this job machine m2 is processing the first job in the line which it can process, which
is job 5 in the line, and must therefore be either type a or type c. Machine m3 is processing
the first job in the line (apart from jobs 1 and 5) which it can process, which must be of type
a. There are 3 jobs waiting between machine m1 and m2. These cannot be processed by either
machine m2 or by machine m3, so they must be type b jobs. There are 4 jobs waiting between
m2 and m3. Those cannot be processed by machine m3, so they must be of types b or c. Finally
there are 2 jobs at the back of the queue, behind machine m3, which may be of types a, b, or c.

a/b/c

m1

a/b/c b/c b/c b/c b/c b b b

m2m3

a/ba/ca

Figure 2: A possible state for System B.

We will actually aggregate some of the states in this detailed description, to simplify the
model while retaining the Markovian property. We will retain the identity and location of the
busy machines, but we will not specify the type of job which they are working on, and we will
only record the number of jobs between the busy machines, and not specify the string of job
types. Thus the situation of Figure 2 will be denoted as the state (2,m3, 4,m2, 3,m1).

2



With this reduced description the system is still Markovian. Our main result in this paper is
to show that there exist choices of the assignment probability distributions, such that the system
has a product form stationary distribution. This product form stationary distribution is unique,
and we obtain it explicitly.

To motivate and illustrate the results we will first analyze System A of Figure 1, with two
types of jobs C = {a, b} and two servers, where C(m1) = {a, b} and C(m2) = {a}. Here only
jobs of type a have a choice of machines, and that happens only when a job of type a arrives to
find both machines available, in other words when the system is empty. Hence the assignment
probability distributions reduce simply to the probability η of assigning an arriving job of type
a to machine m1, when the system is empty. This system has previously been analyzed by
Adan, Foley and McDonald [1]. In Section 2 we solve the equilibrium equations for this system,
and derive the correct assignment probability η and the product form solution. We note that
this solution satisfies partial balance equations. We also show that for all other choices of η
the system will not have a product form solution. Furthermore, if we choose a more detailed
state description, again there will be no product form solution. These results are summarized in
Theorem 1.

We then formulate and derive our main result in Section 3. We define the states (Section
3.1), write down the transition rates (Section 3.2), and the equilibrium equations (Section 3.3).
We then formulate some partial balance equations (Section 3.4), and obtain a candidate solution
(Section 3.5). We derive a necessary assignment condition (Section 3.6), and show in Section 3.7
that if the assignment condition holds then the candidate solution satisfies all the partial balance
equations. This leads us to explicit conditions for ergodicity, and an explicit expression for the
stationary distribution (Theorem 2). Finally, in Section 3.8 we show that it is always possible to
choose assignment probability distributions so that the assignment condition holds. Section 3.8
is based on our recent paper [2], which considers a loss system which is similar to our system. It
is shown there that the same assignment condition implies that the loss system is time reversible
and insensitive to processing time distributions.

We conjecture that when the traffic intensity approaches 1 the assignment probability dis-
tributions become less relevant and the product form solution is then a good approximation for
general assignment probability distributions. In particular this leads to a model of FCFS infinite
matching discussed in our paper [3].

We conclude in Section 4 with the derivation of the waiting time distributions of jobs of
various types.

Our model in this paper is formulated as a manufacturing model. However, it should find as
much use also to describe, for example, skill based routing of calls to operators in call centers,
routing of wireless messages to ad hoc nodes, processing of chips, multi-processor scheduling and
mounting of printed circuit boards; see in particular [9, 6, 5, 4].

2 A system with two servers and two job types

In this section we analyze System A of Figure 1. This system has been analyzed by Adan, Foley
and McDonald [1], who found the product form solution for a special value of η, and derived
exact asymptotics for the general system. Here we present a full derivation of the product
form solution, to illustrate and motivate the general results in Section 3, and to reach several
additional conclusions, summarized in Theorem 1. Note that the results in Sections 3 and 4 are
independent of the results in this section. For ease of presentation, the notation used in this
section will slightly deviate from the one introduced in Section 1.

System A has two machines, m1, m2, and two types of jobs, a, b, where machine m1 can
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serve both types, and machine m2 can serve only type a jobs. Arrivals are Poisson, with rates
λa, λb, and service times are exponential with machine dependent rates µi, i = 1, 2. Service is
on a FCFS basis, and there is one control parameter:

η is the probability that a type a job that arrives to find an empty system will be
assigned to machine m1.

Clearly, for ergodicity it is necessary that both

λb
µ1

< 1,
λa + λb
µ1 + µ2

< 1 (1)

should hold. In this section we will show that the conditions above are also sufficient.
In our Markovian description the system can be in the following states:

• (n,m2,m,m1), where m,n ≥ 0, with m + n + 2 jobs, machine m1 working on the first
job followed by m jobs waiting between machine m1 and machine m2, all of which must
be of type b, followed by machine m2 working on the m + 2nd job in line, followed by an
additional n jobs that have not yet been identified, and are waiting behind machine m2.

• (n,m1, 0,m2), where n ≥ 0, with n+2 jobs, machine m2 is working on the first job, machine
m1 is working on the second job, and there are an additional n jobs of unidentified type
waiting behind the two machines.

• (m,m1), where m ≥ 0, machine m1 is working on the first job, followed by m jobs which
are all of type b, and machine m2 is idle.

• (0,m2), machine m2 is working on a single job in the system, and machine m1 is idle.

• (0) the empty system state.

The Markov process is a random walk with geometric jumps in the interior of the (m,n)
positive quadrant, with modified transitions close to the axes and the origin. Arrivals join the
queue or activate an available machine. On completion of service by machine m1, if the queues
are not empty the earliest job goes into service. On completion of service by machine m2, the
machine moves along the line of n unidentified jobs until it finds a type a job to process, or if
none is available, it becomes idle. The jobs which are passed over in this search are now identified
as type b and are queued between the two machines. Each of the unidentified n jobs at the end
of the line is of type b with a probability γ = λb

λa+λb
. Thus machine m2 will identify j− 1 jobs of

type b and then find a type a job with probability pj = (1− γ)γj−1, j = 1, . . . , n, or identify all
n jobs as type b and become idle with probability γn. The transitions and transition rates are
illustrated in Figure 3. Note that the Markov process is irreducible.

The stationary probabilities, denoted by π(x) for state (x) need to satisfy the following
equilibrium equations, for all the states excluding (0,m1, 0,m2), (0,m1), (0,m2), (0). There are
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Figure 3: State transitions for the two machine System A.

four different cases:

(λa + λb + µ1 + µ2)π(n,m2,m,m1) = (λa + λb)π(n− 1,m2,m,m1) + µ1π(n,m2,m+ 1,m1)

+µ2(1− γ)
m∑
j=0

γjπ(n+ j + 1,m2,m− j,m1) (2)

+µ2(1− γ)γmπ(n+m+ 1,m1, 0,m2), n > 0,m ≥ 0,

(λa + λb + µ1 + µ2)π(0,m2,m,m1) = λaπ(m,m1) + µ1π(0,m2,m+ 1,m1)

+µ2(1− γ)
m∑
j=0

γjπ(j + 1,m2,m− j,m1) (3)

+µ2(1− γ)γmπ(m+ 1,m1, 0,m2), m ≥ 0,

(λa + λb + µ1)π(m,m1) = λbπ(m− 1,m1) + µ1π(m+ 1,m1)

+µ2

m∑
j=0

γjπ(j,m2,m− j,m1) (4)

+µ2γ
mπ(m,m1, 0,m2), m > 0,

(λa + λb + µ1 + µ2)π(n,m1, 0,m2) = (λa + λb)π(n− 1,m1, 0,m2) + µ1π(n+ 1,m1, 0,m2)
+µ1π(n+ 1,m2, 0,m1), n > 0. (5)

We attempt to derive a product form solution, in other words we assume the solution is of
the form π(n,m2,m,m1) = xmyn, for all m,n ≥ 0, with some constants 0 < x, y < 1. In
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the following Propositions 1–8 we derive solutions to the equations, ignoring the normalizing
constant which will turn them into probabilities.

Proposition 1. If π(n,m2,m,m1) = xmyn for all m,n ≥ 0, then π(n,m1, 0,m2) = cyn, where
c = γy

x−γy .

Proof. We substitute the form of the solution π(n,m2,m,m1) = xmyn into equation (2):

(λa + λb + µ1 + µ2)xmyn = (λa + λb)xmyn−1 + µ1x
m+1yn

+µ2(1− γ)
m∑
j=0

γjxm−jyn+j+1

+µ2(1− γ)γmπ(n+m+ 1,m1, 0,m2).

Summing the finite geometric series terms and dividing by xmyn−1 we obtain

(λa + λb + µ1 + µ2)y = (λa + λb) + µ1xy

+µ2(1− γ)y2 1−
(
γy
x

)m+1

1− γy
x

+µ2(1− γ)y2
(γy
x

)m 1
yn+m+1

π(n+m+ 1,m1, 0,m2).

This equation can hold for every m,n > 0 only if:

π(n+m+ 1,m1, 0,m2) =
γy

x− γy
yn+m+1 .

Proposition 2. If π(n,m2,m,m1) = xmyn for all m,n ≥ 0, then π(m,m1) = dxm, where
d = λa+λb

λay
.

Proof. Substituting the expanded candidate solution (using the result of Proposition 1) into
equations (2) and (3) we get:

(λa + λb + µ1 + µ2)xmyn = (λa + λb)xmyn−1 + µ1x
m+1yn + µ2(1− γ)xm+1yn+1 1

x− γy
,

(λa + λb + µ1 + µ2)xm = λaπ(m,m1) + µ1x
m+1 + µ2(1− γ)xm+1y

1
x− γy

.

Dividing the first equation by yn, and comparing with the second, we get:

λaπ(m,m1) = (λa + λb)xmy−1.

Proposition 3. If π(n,m2,m,m1) = xmyn for all m,n ≥ 0, where 0 < x, y < 1, then x = λb
µ1

and y = λa+λb
µ1+µ2

.
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Proof. Substituting the expanded candidate solution (using the results of Propositions 1 and 2)
into equations (2) and (4), and canceling powers of x, y we get:

(λa + λb + µ1 + µ2) = (λa + λb)y−1 + µ1x+ µ2(1− γ)
xy

x− γy
,

(λa + λb + µ1)
λa + λb
λay

= λb
λa + λb
λay

x−1 + µ1
λa + λb
λay

x+ µ2
x

x− γy
.

Recall that 1− γ = λa
λa+λb

, multiply the second equation by (1− γ)y and subtract from the first
to obtain after easy manipulations

y =
(λa + λb)x
λb + µ2x

.

Substituting back into one of the equations we obtain:

(λa + λb + µ1)
λb + µ2x

λax
= λb

λb + µ2x

λax2
+ µ1

λb + µ2x

λa
+
λb + µ2x

x
.

The resulting cubic equation has roots x = 1 and x = λb
µ1

(double root). By (1), the latter is the
only root in (0, 1). The corresponding value of y is then: y = λa+λb

µ1+µ2
.

So far we have solved equations (2)–(4) and obtained values for the product form solution.
Substituting the values of x, y from Proposition 3 in the expressions obtained in Propositions 1,
2, we have in summary:

x =
λb
µ1
, y =

λa + λb
µ1 + µ2

, c =
µ1

µ2
, d =

µ1 + µ2

λa
, (6)

These form the unique solution for (2)–(4).

Proposition 4. The product form solution with the values of x, y, c, d of (6) satisfies (5).

Proof. Substituting the values which we obtained into equation (5), and dividing by yn we get:

(λa + λb + µ1 + µ2)
µ1

µ2
= (λa + λb)

µ1

µ2

µ1 + µ2

λa + λb
+ µ1

µ1

µ2

λa + λb
µ1 + µ2

+ µ1
λa + λb
µ1 + µ2

which is easily seen to hold.

Note that this is a “lucky” solution — we had 4 parameters to determine and 4 sets of
equations, but the elimination of the geometric terms already determined one of the parameters,
c, and so we had 4 sets of equations for just 3 parameters. Hence, we should not regard this as
a method that works for general random walks with diagonal geometric jumps.

It now remains to verify and determine the remaining values around the origin, for which we
get the following 3 equilibrium equations:

(λa + λb + µ1 + µ2)π(0,m1, 0,m2) = (λa + λb)π(0,m2) + µ1π(1,m1, 0,m2) (7)
+µ1π(1,m2, 0,m1),

(λa + λb + µ1)π(0,m1) = (λb + ηλa)π(0) + µ1π(1,m1) (8)
+µ2π(0,m1, 0,m2) + µ2π(0,m2, 0,m1),

(λa + λb + µ2)π(0,m2) = (1− η)λaπ(0) + µ1π(0,m1, 0,m2) (9)
+µ1π(0,m2, 0,m1),

in which we have two unknowns, π(0,m2), π(0), and three equations, with the additional control
parameter η.
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Proposition 5. The unique choice of η and the solution of the remaining stationary probabilities
are:

η =
λa

2λa + λb
, π(0,m2) =

µ1

µ2

µ1 + µ2

λa + λb
, π(0) =

2λa + λb
λa + λb

µ1

λa

µ1 + µ2

λa + λb
(10)

Proof. Substituting the values of the stationary probabilities obtained so far into equation (7)
we get:

(λa + λb + µ1 + µ2)
µ1

µ2
= (λa + λb)π(0,m2) + µ1

µ1

µ2

λa + λb
µ1 + µ2

+ µ1
λa + λb
µ1 + µ2

= (λa + λb)π(0,m2) +
µ1

µ2
(λa + λb),

from which we solve π(0,m2) = µ1
µ2

µ1+µ2
λa+λb

.
Substituting all the known values in the remaining equations we get:

(λa + λb + µ1)
µ1 + µ2

λa
= (λb + ηλa)π(0) + µ1

µ1 + µ2

λa

λb
µ1

+ µ2
µ1

µ2
+ µ2,

(λa + λb + µ2)
µ1

µ2

µ1 + µ2

λa + λb
= (1− η)λaπ(0) + µ1

µ1

µ2
+ µ1,

which after rearrangement and canceling becomes:

µ1
µ1 + µ2

λa
= (λb + ηλa)π(0),

µ1
µ1 + µ2

λa + λb
= (1− η)λaπ(0).

From this we obtain
λb + ηλa = (λa + λb)(1− η),

having as unique solution η = λa
2λa+λb

. Substituting back into the equations we finally obtain:

π(0) =
2λa + λb
λa + λb

λb
λa

µ1

λb

µ1 + µ2

λa + λb
.

We make several more observations:

Proposition 6. Conditions (1) are necessary and sufficient for ergodicity.

Proof. Necessity is obvious. To prove sufficiency notice that the obtained product form is a non-
null and, due to (1), convergent solution to the equilibrium equations of an irreducible Markov
process, which implies by Theorem 1 in Foster [8] that the system is ergodic.

Proposition 7. The stationary probabilities satisfy partial balance, for each state the flux out of
the state due to departures equals the flux into the state due to arrivals, and (consequently) the
flux out of the state due to arrivals equals the flux into the state due to departures.
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Proof. It is immediate to check that:

(µ1 + µ2)π(n,m2,m,m1) = (λa + λb)π(n− 1,m2,m,m1), n > 0,m ≥ 0
(µ1 + µ2)π(n,m1, 0,m2) = (λa + λb)π(n− 1,m1, 0,m2), n > 0,
(µ1 + µ2)π(0,m2,m,m1) = λaπ(m,m1), m ≥ 0,
µ1π(m,m1) = λbπ(m− 1,m1), m > 0,
(µ1 + µ2)π(0,m1, 0,m2) = (λa + λb)π(0,m2),
µ1π(0,m1) = (λb + ηλa)π(0),
µ2π(0,m2) = (1− η)λaπ(0).

Proposition 8. If one expands the state space to include the identity of the job being processed
by machine m1 (which is either type a or type b), then there is no solution of the form

π((n,m2,m,m1a) = B1x1
my1

n, π(n,m2,m,m1a) = B2x2
my2

n, m, n ≥ 0,

for the system.

Proof. The state space now is augmented to include:

(0), (0,m2), (m,m1a), (m,m1b), (n,m1a, 0,m2), (n,m1b, 0,m2),
(n,m2,m,m1a), (n,m2,m,m1b), m, n ≥ 0

where m1a, m1b distinguish the type on which machine m1 is working. For this expanded chain
the transition rates are similar to those of the less detailed chain, except that if machine m1

finishes a job of type a or b and it is at the head of the queue with type b jobs left behind it by
machine m2, it will always work next on a job of type b, and hence machine m1 can only start
processing a job of type a in transitions from states on the two vertical axes in Figure 3, where
m = 0.
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The new equilibrium equations are

(λa + λb + µ1 + µ2)π(n,m2,m,m1a) = (λa + λb)π(n− 1,m2,m,m1a)

+µ2(1− γ)
m∑
j=0

γjπ(n+ j + 1,m2,m− j,m1a) (11)

+µ2(1− γ)γmπ(n+m+ 1,m1a, 0,m2), n > 0,m ≥ 0,

(λa + λb + µ1 + µ2)π(n,m2,m,m1b) = (λa + λb)π(n− 1,m2,m,m1b)
+µ1π(n,m2,m+ 1,m1b) + µ1π(n,m2,m+ 1,m1a)

+µ2(1− γ)
m∑
j=0

γjπ(n+ j + 1,m2,m− j,m1b) (12)

+µ2(1− γ)γmπ(n+m+ 1,m1b, 0,m2), n > 0,m ≥ 0,

(λa + λb + µ1 + µ2)π(0,m2,m,m1a) = λaπ(m,m1a),

+µ2(1− γ)
m∑
j=0

γjπ(j + 1,m2,m− j,m1a) (13)

+µ2(1− γ)γmπ(m+ 1,m1a, 0,m2), m ≥ 0,

(λa + λb + µ1 + µ2)π(0,m2,m,m1b) = λaπ(m,m1b)
+µ1π(0,m2,m+ 1,m1b) + µ1π(0,m2,m+ 1,m1a)

+µ2(1− γ)
m∑
j=0

γjπ(j + 1,m2,m− j,m1b) (14)

+µ2(1− γ)γmπ(m+ 1,m1b, 0,m2), m ≥ 0,

(λa + λb + µ1)π(m,m1a) = λbπ(m− 1,m1a)

+µ2

m∑
j=0

γjπ(j,m2,m− j,m1a) (15)

+µ2γ
mπ(m,m1a, 0,m2), m > 0,

(λa + λb + µ1)π(m,m1b) = λbπ(m− 1,m1b) + µ1π(m+ 1,m1b) + µ1π(m+ 1,m1a)

+µ2

m∑
j=0

γjπ(j,m2,m− j,m1b) (16)

+µ2γ
mπ(m,m1b, 0,m2), m > 0,

(λa + λb + µ1 + µ2)π(n,m1a, 0,m2) = (λa + λb)π(n− 1,m1a, 0,m2)
+µ1(1− γ)π(n+ 1,m1a, 0,m2)
+µ1(1− γ)π(n+ 1,m1b, 0,m2) (17)
+µ1(1− γ)π(n+ 1,m2, 0,m1a)
+µ1(1− γ)π(n+ 1,m2, 0,m1b), n > 0,
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(λa + λb + µ1 + µ2)π(n,m1b, 0,m2) = (λa + λb)π(n− 1,m1b, 0,m2)
+µ1γπ(n+ 1,m1a, 0,m2)
+µ1γπ(n+ 1,m1b, 0,m2) (18)
+µ1γπ(n+ 1,m2, 0,m1a)
+µ1γπ(n+ 1,m2, 0,m1b), n > 0.

We try to solve for a product form solution as stated, finding values for x1, x2, y1, y2. We see
that π(n,m2,m+ 1,m1a) and π(n,m2,m,m1b) both appear in equation (12), so it will contain
terms xm1 , x

m
2 and yn1 , y

n
2 for all m,n, and these can only be reduced to finitely many equations

if
x1 = x2, y1 = y2.

We then have

π(n,m2,m,m1) = π(n,m2,m,m1a) + π(n,m2,m,m1b) = (B1 +B2)xmyn

and therefore we will have that:

x =
λb
µ1
, y =

λa + λb
µ1 + µ2

.

It now follows from equations (11) and (12), exactly as in the proof of Proposition 1, that

π(n,m1a, 0,m2) = c π(n,m2, 0,m1a), π(n,m1b, 0,m2) = c π(n,m2, 0,m1b), c =
µ1

µ2
.

Similarly, comparing equations (11), (13) and comparing equations (12), (14), we get exactly as
in Proposition 2 that

π(m,m1a) = d π(0,m2,m,m1a), π(m,m1b) = d π(0,m2,m,m1b), d =
µ1 + µ2

λa
.

The calculation breaks down when we try to solve for the values of x, y, which we already obtained
from the formulae for π(n,m2,m,m1). From equations (11), (15) we now see (as in the proof of
Proposition 3) that x, y have to solve:

B1(λa + λb + µ1 + µ2) = B1(λa + λb)y−1 +B1µ2(1− γ)
xy

x− γy
,

B1(λa + λb + µ1)
λa + λb
λay

= B1λb
λa + λb
λay

x−1 +B1µ2
x

x− γy
,

and from equations (12), (16) we see that x, y have to solve:

B2(λa + λb + µ1 + µ2) = B2(λa + λb)y−1 + (B2 +B1)µ1x+B2µ2(1− γ)
xy

x− γy
,

B2(λa + λb + µ1)
λa + λb
λay

= B2λb
λa + λb
λay

x−1 + (B2 +B1)µ1
λa + λb
λay

x+B2µ2
x

x− γy
.

But the values x = λb
µ1
, y = λa+λb

µ1+µ2
do not solve either of these, unless we let B1 = 0, B2 = 1,

but this is not acceptable, since we need to have both B1 > 0 and B2 > 0.

To get the actual steady state probabilities we need a normalizing constant B which is found
by summing up the obtained solution over all states and taking reciprocal. We summarize all
findings in the following theorem, which includes the value obtained for the normalizing constant:
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Theorem 1. The system is ergodic if and only if λb
µ1
< 1, λa+λb

µ1+µ2
< 1.

The system has a product form solution if and only if η = λa
2λa+λb

.

The stationary distribution in that case is

π(n,m2,m,m1) = B

(
λb
µ1

)m(
λa + λb
µ1 + µ2

)n
, m, n ≥ 0,

π(n,m1, 0,m2) = B
µ1

µ2

(
λa + λb
µ1 + µ2

)n
, n ≥ 0,

π(m,m1) = B
µ1 + µ2

λa

(
λb
µ1

)m
, m ≥ 0,

π(0,m2) = B
µ1

µ2

µ1 + µ2

λa + λb
,

π(0) = B
2λa + λb
λa + λb

µ1

λa

µ1 + µ2

λa + λb
,

where the normalizing constant is given by

B =
µ2λa(λa + λb)2(µ1 − λb)(µ1 + µ2 − λa − λb)

µ1(µ1 + µ2)
(
µ2

2λ
2
a + µ1λa(µ1 − λb)(λa + λb) + µ1µ2(2λa + λb)(µ1 + µ2 − λb)

) .
The product form solution satisfies partial balance: flux into a state due to arrivals equals flux

out of that state due to departures.

If one expands the state space to include the identity of the job in service by machine m1 then
there is no product form solution.

3 The Multidimensional Model

In this section we consider the general K machine system. In Section 3.1 we describe the state
space which we use to describe this system. In Section 3.2 we describe the Markovian transition
probabilities and rates. In Section 3.3 we formulate the equilibrium equations for the model. In
Section 3.4 we formulate partial balance equations and in Section 3.5 we use them to obtain a
product form candidate solution to the equilibrium equations. In Section 3.6 we formulate the
assignment condition and in Section 3.7 we show that under the assignment condition the partial
balance equations are satisfied by the candidate solution, i.e. this product form solution is the
stationary distribution of the Markov chain. Finally, we use the results of Adan, Hurkens and
Weiss [2] to show how it is always possible to calculate assignment probability distributions so as
to satisfy the assignment condition.
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We introduce the following notation:

M := an arbitrary machine M from the set of machines M = {m1, . . . ,
mK}. The capitalised M points to one of the machines mi. Note
that the names (or labels) of the machines mi are not capitalised.

λX :=
∑
c∈X

λc, where X ⊂ C.

µY :=
∑
M∈Y

µM , where Y ⊂M.

C(Y) := total set of job types that can be handled by the machines in
Y ⊂M, which is equal to

⋃
M∈Y C(M).

U(Y) := set of job types unique to the machines in Y ⊂ M, thus the set
of job types that cannot be handled by machines outside Y. We
have U(Y) = C(Y).

3.1 The state space for the multidimensional system

For models with K machines we use the following state description:

(ni, Mi, ni−1, Mi−1, . . . , n1, M1): States in which there are i machines busy. These ma-
chines are denoted by M1, . . . ,Mi, where {M1, . . . ,Mi} ⊂ M. The number of jobs between
machines Mj and Mj+1 is denoted by nj(≥ 0), with j = 1, . . . , i− 1. The number of waiting jobs
at the end of the queue, behind machine Mi, is denoted by ni.

The state space is denoted by S and to simplify the notation we use s to denote an arbitrary
state (ni,Mi, . . . , n1,M1) ∈ S. Figure 4 shows a system in state s. There are a few things that

M1M2Mi

n1

   

ni

U (M1)U (M1,M2) U (M1,…,Mi )

n2

Figure 4: General system in state s = (ni,Mi, . . . , n2,M2, n1,M1).

are important to note about this state description:
First, the waiting jobs between machines Mj and Mj+1 can only be handled by the machines

M1, . . . ,Mj and not by any of the machines Mj+1, . . . ,Mi or any of the idle machines. This is
due to the First-Come-First-Served processing order. Thus waiting jobs between machines Mj

and Mj+1 can only be of type c ∈ U({M1, . . . ,Mj}), according to the definition of U(Y). The ni
waiting jobs in the back of the queue cannot be handled by any of the idle machines and have
to be of type c ∈ U({M1, . . . ,Mi}).

Second, since each part of the queue between two machines contains jobs from different
subsets of job types it is necessary to keep these sets separated in the state description. It is not
possible to aggregate the state description any further without losing the Markov property.

Third, it is possible that the set of job types U({M1, . . . ,Mj}) is empty for a certain set of
machines {M1, . . . ,Mj}. In this case there are no jobs which cannot be handled by any of the
machines Mj+1, . . . ,Mi or the idle machines. Thus there can be no waiting jobs between Mj
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and Mj+1, and therefore nj can only be equal to zero. Hence, the state space is given by

S = {0} ∪
K⋃
i=1

{(ni,Mi, . . . , n1,M1)|{M1, . . . ,Mi} ⊂ M, nj ≥ 0,

nj = 0 if U({M1, . . . ,Mj}) = ∅, j = 1, . . . , i},

where state 0 denotes the empty state (in which all machines are idle).
Fourth, it is important to note that in this state description we lose job type information

about the jobs that are in service, since we only denote the machine that is handling the job and
not the job type of the job. This aggregation preserves the Markov property since all types are
processed by machine mi at rate µi. In Section 2 we already argued that a more detailed state
description, where this job type information is included in the state description, does not result in
a product form solution for System A. It is reasonable to conjecture that specifying the job types
in process will destroy the possibility of a product form solution also in the multidimensional
model.

Fifth, note that the Markov process on S is irreducible. Clearly, it is possible to reach the
empty state 0 from any other state s ∈ S. To see that any state s = (ni,Mi, . . . , n1,M1) can
be reached from 0, observe that starting from 0, with positive probability, the first K events are
arrivals occupying all machines. Then, again with positive probability, the next K − i events
are departures from machines M /∈ {M1, . . . ,Mi} and we end up in a state where only machines
Mi, . . . ,M1 are busy and no jobs are waiting. Then, the next ni + · · · + n1 + i events are
arrivals that can exclusively be processed by the busy machines Mi, . . . ,M1. Subsequently, with
positive probability, the next i events are departures from each of the machines M1, . . . ,Mi.
First M1 finishes a job and is able to handle the first waiting job. Then M2 finishes a job, skips
that first n1 waiting jobs and handles the next one, and so on, until we eventually reach state
s = (ni,Mi, . . . , n1,M1) when Mi finishes its job, skips the first n1 + · · ·+ni−1 waiting jobs and
starts processing the next one.

3.2 The transition behaviour

We discuss the possible transitions of the general model below.
From an arbitrary state s = (ni,Mi,. . . , n1,M1) ∈ S the following transitions are possible:

(i) Arrival of jobs: if a job arrives that cannot be handled by any of the idle machines, it joins
the back of the queue. In state s, arriving jobs that cannot by handled by any of the idle
machines must be of type c ∈ U({M1, . . . ,Mi}). Thus such a job arrives with intensity
λU({M1,...,Mi}). With intensity λC − λU({M1,...,Mi}) a job arrives that can be handled by
one or more idle machines. For this job an assignment probability distribution determines
to which machine it is sent. The assignment probability distributions determine the total
transition rate from a state s to a state (0,M, s).

To simplify the discussion we introduce the following notation:

λM ({M1, . . . ,Mi}) := transition intensity from state s = (ni,M i, . . . ,
n1,M1) to state (0,M, s), for all possible permu-
tations M i, . . . ,M1 of the sequence Mi, . . . ,M1

and all machines M that are not busy in state s.

Note that the arrival intensities λM ({M1, . . . ,Mi}) only depend on the set of busy machines
{M1, . . . ,Mi} and not on the sequence of machines Mi, . . . , M1 and thus not on the order
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of the machines in the queue. Given the assignment probability distributions, the arrival
rates can be calculated. Note that the following holds∑

M∈M\{M1,...,Mi}

λM ({M1, . . . ,Mi}) = λC − λU({M1,...,Mi}). (19)

We discuss the choice of assignment probabilities further in Sections 3.6, 3.8.

(ii) Departure of jobs: if a job is finished on a machine, then that machine scans the queue
from right to left until it finds the first job it can handle. There are two possibilities:

MkMMi

nk − l

   

ni l

 

Mk+1

 

insertkl
M (s)

MkMi

nk − l

   

ni l

 

Mk+1

 

s

Figure 5: Transition from state insertMkl (s) to state s = (ni,Mi,. . . , n1,M1)

(1) The machine does not find a job it can handle. This transition is illustrated in
Figure 5. Such a transition is possible to state s = (ni,Mi, . . . , n1,M1) from state
(ni,Mi, . . . , l,M, nk − l,Mk, . . . , n1,M1), where machine M is situated in the queue
between Mk and Mk+1. We denote this state by insertMkl (s). In this state there
are nk − l jobs between Mk and M and l jobs between M and Mk+1. The jobs
between machines M and Mk+1 can only be of type c ∈ U({M1, . . . ,Mk,M}), thus
with probability

λU({M1,...,Mk})

λU({M1,...,Mk,M})
,

such a job cannot be handled by machine M . A job between machine Mj and Mj+1,
j > k, cannot be handled by machine M with probability

λU({M1,...,Mj})

λU({M1,...,Mj ,M})
.

Thus if machine M finishes its job then, with probability pMkl (s), it will not find a job
in the queue that it can handle and will become idle, where pMkl (s) is defined as:

pMkl (s) := δk(M)lδk+1(M)nk+1 . . . δi(M)ni ,
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with

δj(M) :=
λU({M1,...,Mj})

λU({M1,...,Mj ,M})
, j = 1, . . . , i. (20)

We set, by convention, δj(M) = 0 if U({M1, . . . ,Mj}) ⊆ U({M1, . . . ,Mj ,M}) = ∅.
Thus with probability pMkl (s) a jump is made from state insertMkl (s) to state s, given
that machine M finishes its job.
In the special case of k = 0, before the transition into s machine M is working on
the first job in the queue, and in that case l = 0, since otherwise all jobs between the
first and second busy machines must be of type in U({M}), and machine M will be
able to process all of them. Hence, for k = 0 the only transition in which machine M
becomes idle is from insertM00(s) to s, and in fact:

pM00(s) = pM1n1
(s).

M j

M j−1

nj

     

swapkl
M j (s)

s

Mk+1M j+1 M j

lnj+1

   

M j−1

nj

     

Mk+1M j+1

ln j+1

   

Figure 6: Transition from state swapMj

kl (s) to state s.

(2) The machine finds a job it can handle. This transition is illustrated in Figure 6. In
this case one of the busy machines finishes its job and finds somewhere in the queue
another job that it can process. The state s can be reached by such a transition from
state

(ni,Mi, . . . , nj+1,Mj+1,nj + nj−1 + 1,Mj−1, . . . ,

Mk+1, l,Mj , nk − l,Mk, . . . , n1,M1).

This state will be denoted by swapMj

kl (s) with j − 1 ≥ k. In this state machine Mj is
located between machines Mk and Mk+1. Between machines Mj−1 and Mj+1 there
are nj−1 + nj + 1(> 0) jobs; this is of course only possible if U({M1, . . . ,Mj} 6= ∅.
If machine Mj finishes its job a transition is made to state s if the first job that Mj

can handle is the nj−1 + 1-th job (from the right) between Mj−1 and Mj+1. The
probability of this event is:

q
Mj

kl (s) := δk(Mj)lδk+1(Mj)nk+1 . . . δj−1(Mj)nj−1 (1− δj−1(Mj)) ,

16



with δj(M) defined in (20). The system makes a jump from state swapMj

kl (s) to state
s with probability qMj

kl (s), given that Mj finishes its job.
In the special case that k = j − 1 machine Mj starts and ends its move between
machines Mj−1 and Mj , and there are initially nj + 1 + l jobs between Mj and Mj+1

and nj−1 − l jobs between Mj−1 and Mj . This state is denoted by swapMj

j−1,l(s) and
the probability that a transition is made from this state to state s equals

q
Mj

j−1,l(s) = δj−1(Mj)l(1− δj−1(Mj)).

Slightly different is the special case that k = 0, where there are two possibilities: In
the transition from swapM1

0n1
(s) to s machine M1 was working on the first job, and

there were n1 + 1 jobs queued between it and machine M2, and the machine moved to
the next job. Because the next job is in U({M1}) the probability for this transition is

qM1
0n1

(s) = 1.

Otherwise, if j > 1 then l = 0 and

q
Mj

00 (s) = q
Mj

1n1
(s).

3.3 Equilibrium equations

We can now formulate the set of equilibrium equations. The equilibrium probability of being
in the state s is denoted by π(s). The state s can be reached by (i) an arrival of a job, (ii) a
departure of a job from a machine that finds no new job in the queue and (iii) a departure of a
job from a machine that does find a new job in the queue. The equilibrium equations display
these three possibilities. The left hand side of the equations equals the total probability flux
out of state s. The right hand side of the equations equals the probability flux into state s and
consist of three parts, corresponding to respectively (i), (ii) and (iii). In part (ii) we need to sum
over all possible states with one more busy machine (machine M) and over all possible positions
of this machine in the queue. In part (iii) we need to sum over all machines Mj ∈ {M1, . . . ,Mi}
for which U({M1, . . . ,Mj} 6= ∅, and over the positions of machine Mj in the queue. For all states
s = (ni,Mi, . . . , n1,M1) ∈ S\{0} the equilibrium equations are given by:
For ni > 0, (

λC + µ{M1,...,Mi}
)
π(s) =λU({M1,...,Mi})π(ni − 1,Mi, . . . , n1,M1) (i)

+
∑

M∈M\{M1,...,Mi}

µMPM (s) (ii)

+
i∑

j = 1
U({M1, . . . ,Mj}) 6= ∅

µMj
QMj

(s). (iii) (21)

For ni = 0,(
λC + µ{M1,...,Mi}

)
π(s) =λMi({M1, . . . ,Mi−1})π(ni−1,Mi−1, . . . , n1,M1) (i)

+
∑

M∈M\{M1,...,Mi}

µMPM (s) (ii)

+
i∑

j = 1
U({M1, . . . ,Mj}) 6= ∅

µMj
QMj

(s), (iii) (22)
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where

PM (s) =
i∑

k=1

nk∑
l=0

pMkl (s)π(insertMkl (s)) + pM1n1
(s)π(s, 0,M), (23)

QMj
(s) =

j−1∑
k=1

nk∑
l=0

q
Mj

kl (s)π(swapMj

kl (s)) + q
Mj

1n1
π(swapMj

00 (s)). (24)

We may omit the equation for state 0, since the set of equilibrium equations is dependent.

3.4 Partial balance equations

We now decompose the equilibrium equations for the model into partial balance equations.
We will show that if these equations are satisfied, the model has a product form solution. It
appears that the partial balance equations are satisfied and thus that the model has a product
form distribution, if a so-called assignment condition is satisfied. The assignment condition is
discussed in Sections 3.6 and 3.8.

Since the job type of a departing job is not known (a departing job from machine M can
be of any job type c ∈ C(M)), it is more appropriate to consider station- or machine-balance,
instead of job type-balance. For state s this results in the following equations:

(i) One equation for each idle machine M ∈M\{M1, . . . ,Mi}: the total probability flux out of
state s due to an arrival of a job that is taken into service by machine M (arrival intensity
λM ({M1, . . . ,Mi})) equals the total probability flux into state s due to a departure of a job
on machine M after which the machine becomes idle. This results in the equations:

λM ({M1, . . . ,Mi})π(s) = µMPM (s),
M ∈M\{M1, . . . ,Mi}. (25)

(ii) One equation for the set of busy machines {M1, . . . ,Mi}: the total probability flux out of
state s, due to an arrival of a job that can only be processed on one or more machines in
{M1, . . . ,Mi} and not on any of the idle machines in M\{M1, . . . ,Mi} (arrival intensity
λU({M1,...,Mi})), equals the total probability flux into state s, due to the departure of a job on
one of the machines, which finds another job in the queue, so that the set of busy machines
{M1, . . . ,Mi} remains the same. This equation cannot be divided into one equation for
every machine Mj ∈ {M1, . . . ,Mi}, since upon arrival it is not possible to say which
machine Mj will process the arriving job. This results in the equation:

λU({M1,...,Mi})π(s) =
i∑

j = 1
U({M1, . . . ,Mj}) 6= ∅

µMjQMj (s). (26)

3.5 Candidate product form solution

With the formulated partial balance equations it is easy to derive the candidate product form
solution. This can be done for every s, by subtracting the sum of equations (25) for all machines
M ∈M\{M1, . . . ,Mi} plus equation (26) from equation (21) (and by using (19)), and similarly
from equation (22). This yields the following equations:

µ{M1,...,Mi}π(s) =λU({M1,...,Mi})π(ni − 1,Mi, . . . , n1,M1), ni > 0, (27)
µ{M1,...,Mi}π(s) =λMi

({M1, . . . ,Mi−1})π(ni−1,Mi−1, . . . , n1,M1), ni = 0. (28)
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It is clear that these equations yield the candidate product form solution given by

π(s) = αnii
λMi({M1, . . . ,Mi−1})

µ{M1,...,Mi}
· · ·αn1

1

λM1(∅)
µ{M1}

π(0), (29)

where

αj :=
λU({M1,...,Mj})

µ{M1,...,Mj}
j = 1, 2, . . . , i. (30)

It is also clear that if this product form solution satisfies the equations (25) for all machines
M ∈M\{M1, . . . ,Mi} and (26), then also the equations (21) and (22) are satisfied. Thus, if the
candidate solution (29) satisfies the partial balance equations (25) and (26), then the model has
a product form solution.

3.6 Assignment condition

Because λMi({M1, . . . ,Mi−1}) still depends on the control parameters, the partial balance equa-
tion (25) and (26) will not be satisfied for every value of the control parameters. We show in the
proof of our main result in the following section that these equations are satisfied if the control
parameters are chosen such that the following condition is satisfied:

Assignment condition
For i = 1, . . . ,K, and for every subset {Mi, . . . ,M1} ∈ M of size i, the following holds

i∏
j=1

λMj
({M1, . . . ,Mj−1}) =

i∏
j=1

λMj
({M1, . . . ,M j−1})

for every permutation M i, . . . ,M1 of Mi, . . . ,M1.

This condition implies that the product
∏i
j=1 λMj ({M1, . . . ,Mj−1}) should be independent

of the order of the machines Mi, . . . ,M1 in the queue.
We assume for now that the assignment condition is satisfied. We show in Section 3.8 that it

is always possible to choose the assignment probability distributions in such a way that the as-
signment condition is satisfied. We also show that while the assignment probability distributions
that achieve that may not be unique, the resulting λM ({M1, . . . ,Mi}) are unique.

We can simplify the notation by introducing

Πλ({M1, . . . ,Mi}) :=
i∏

j=1

λMj
({M1, . . . ,Mj−1}), for all {M1, . . . ,Mi} ∈ M,

Πµ(Mi, . . . ,M1) :=
i∏

j=1

µ{M1,...,Mj}, for all (Mi, . . . ,M1) ∈Mi,

where Mi is defined as the set of all possible sequences (Mi, . . . ,M1) of all possible subsets
{M1, . . . ,Mi} ⊂ M of size i. Note that Πλ({M1, . . . ,Mi}) is independent of the order of the
machines in the sequence Mi, . . . ,M1, since we assumed that the assignment condition is satisfied,
and that Πµ(Mi, . . . ,M1) is not. Now that we have formulated the assignment condition, we can
state our main result.
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3.7 Main result

We have formulated the equilibrium equations and derived a candidate product form solution
with the use of partial balance. This candidate product form solution is the solution of the global
balance equations (21) and (22) if the assignment condition is satisfied. This is shown in the
proof of the following theorem.

Theorem 2. The model described in Section 3.1 has a product form solution if the control
parameters of the model (the assignment probability distributions) are chosen in such a way that
the assignment condition is satisfied. Then, for all states s = (ni,Mi, . . . , n1,M1) ∈ S, the
solution is

π(s) = αnii · · ·α
n1
1

Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0).

After normalisation this solution becomes the stationary distribution.

Proof: We only have to verify that the partial balance equations are satisfied whenever the
assignment condition holds. Therefore we need to verify that the solution (29) satisfies the
equations (25) and (26).

To verify equation (25) we first look at one term of the sum PM (s), which we divide by
λM ({M1, . . . ,Mi})π(s). After substituting the product form solution (29) we obtain the following
derivation, which we justify in the following paragraph:

µMp
M
kl (s)

π(insertMkl (s))
λM ({M1, . . . ,Mi})π(s)

=
µM

λM ({M1, . . . ,Mi})
δk(M)lδk+1(M)nk+1 . . . δi(M)ni

π(0) Πλ({M1,...,Mi,M})
Πµ(Mi,··· ,M,Mk,··· ,M1)

π(0)Πλ({M1,...,Mi})
Πµ(Mi,...,M1)

αn1
1 · · ·α

nk−l
k

(
λU({M1,...,Mk,M})
µ{M1,...,Mk,M}

)l (λU({M1,...,Mk+1,M})

µ{M1,...,Mk+1,M}

)nk+1

· · ·
(
λU({M1,...,Mi,M})
µ{M1,...,Mi,M}

)ni
αn1

1 · · ·α
ni
i

= µM

(
δk(M)
αk

λU({M1,...,Mk,M})

µ{M1,...,Mk,M}

)l(
δk+1(M)
αk+1

λU({M1,...,Mk+1,M})

µ{M1,...,Mk+1,M}

)nk+1

· · · (31)(
δi(M)
αi

λU({M1,...,Mi,M})

µ{M1,...,Mi,M}

)ni µ{M1,...,Mk,Mk+1} · · ·µ{M1,...,Mi}

µ{M1,...,Mk,M}µ{M1,...,Mk,Mk+1,M} · · ·µ{M1,...,Mi,M}

=
µM

µ{M1,...,Mk,M}

(
µ{M1,...,Mk}

µ{M1,...,Mk,M}

)l( µ{M1,...,Mk+1}

µ{M1,...,Mk+1,M}

)nk+1+1

· · ·
(

µ{M1,...,Mi}

µ{M1,...,Mi,M}

)ni+1

= (1− βk)(βk)l(βk+1)nk+1+1 · · · (βi)ni+1.

Here the first equality is just the substitution of (29). The second equality follows by cancel-
ing and rearranging terms, expanding Πµ(·) in the numerator and denominator, and using the
assignment condition to see that

Πλ({M1, . . . ,Mi,M}) = λM ({M1, . . . ,Mi})Πλ({M1, . . . ,Mi}).

The third equality follows from the definitions of δ and α, by further cancellations and rear-
rangements. For the last equality we define:

βj =
µ{M1,...,Mj}

µ{M1,...,Mj ,M}
, j = 1, . . . , i.
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A similar calculation leads to:

µMp
M
1,n1

(s)
π(s, 0,M)

λM ({M1, . . . ,Mi})π(s)
=

i∏
j=1

(βj)nj+1. (32)

Equations (31), (32) can be used to simplify µMPM (s). We get:

µMPM (s) =
i∑

k=1

nk∑
l=0

pMkl (s)π(insertMkl (s)) + pM1n1
(s)π(s, 0,M)

= λM ({M1, . . . ,Mi})π(s)

[
i∏

h=1

(βj)nj+1 +
i∑

k=1

nk∑
l=0

(1− βk)(βk)l
i∏

h=k+1

(βj)nj+1

]
. (33)

We now see that the sum of all the β terms on the right hand side is 1. We note that the βk
represent probabilities for Bernoulli trials, of which there are altogether

∑i
k=1(nk + 1) trials,

starting with ni + 1 trials with success probability of (1 − βi), followed by nk + 1 trials with
success probability (1 − βk), for k = i − 1, . . . , 2, 1. The summation of terms

∑i
k=1

∑nk
l=0 sums

up the probabilities that the first success will be on the first, the second, . . . or the last of the
trials, while the first summand is the probability of no success at all. These obviously add up to
1. This verifies (25).

We repeat similarly for (26). Justification of the various steps will follow. Let j ∈ {2, . . . , i}
with U({M1, . . . ,Mj}) 6= ∅. For j − 1 ≥ k ≥ 1 and 0 ≤ l ≤ nk we get:

µMj
q
Mj

kl (s)
π(swapMj

kl (s))
π(s)

= µMj
δk(Mj)lδk+1(Mj)nk+1 . . . δj−1(Mj)nj−1 (1− δj−1(Mj))

π(0) Πλ({M1,...,Mi})
Πµ(Mi,··· ,Mj+1,Mj−1,··· ,Mj ,Mk,··· ,M1)

π(0)Πλ({M1,...,Mi})
Πµ(Mi,...,M1)

αn1
1 · · ·α

nk−l
k

(
λU({M1,...,Mk,Mj})

µ{M1,...,Mk,Mj}

)l
· · ·
(
λU({M1,...,Mj−1,Mj})

µ{M1,...,Mj−1,Mj}

)nj−1+1+nj
α
nj+1
j+1 · · ·α

ni
i

αn1
1 · · ·α

ni
i

= µMj

(
δk(Mj)
αk

λU({M1,...,Mk,Mj})

µ{M1,...,Mk,Mj}

)l
· · ·
(
δj−1(Mj)
αj−1

λU({M1,...,Mj−1,Mj})

µ{M1,...,Mj−1,Mj}

)nj−1

(1− δj−1(Mj))

µ{M1,...,Mk,Mk+1} · · ·µ{M1,...,Mj−2,Mj−1}

µ{M1,...,Mk,Mj} · · ·µ{M1,...,Mj−2,Mj}

λU({M1,...,Mj−1,Mj})

µ{M1,...,Mj−1,Mj}

=
(
λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

) µMj

µ{M1,...,Mk,Mj}(
µ{M1,...,Mk}

µ{M1,...,Mk,Mj}

)l( µ{M1,...,Mk+1}

µ{M1,...,Mk+1,Mj}

)nk+1+1

· · ·
(

µ{M1,...,Mj−1}

µ{M1,...,Mj−1,Mj}

)nj−1+1

=
(
λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)
(1− βk,j)(βk,j)l(βk+1,j)nk+1+1(βj−1,j)nj−1+1.

Here in the first equality we note that Πλ({M1, . . . ,Mi}) is independent of the swap of the posi-
tion of Mj by the assignment condition. The second equality is obtained by canceling common
terms, and some rearranging. The very last term is there because there is one more job in the
swap state. The third equality follows from the definitions of δ and α, and for the last equality
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we define:
βh,j =

µ{M1,...,Mh}

µ{M1,...,Mh,Mj}
, 1 ≤ h ≤ j − 1.

A similar calculation leads to

µMj
q
Mj

1,n1
(s)

π(swapMj

00 (s))
π(s)

=
(
λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

) j−1∏
h=1

(βh,j)nh+1.

We now add up the terms for each Mj , 1 < j ≤ i to get:

µMj
QMj

(s) = µMj

j−1∑
k=1

nk∑
l=0

q
Mj

kl (s)π(swapMj

kl (s)) + µMj
q
Mj

1n1
π(swapMj

00 (s))

= π(s)
(
λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)[
j−1∏
h=1

βh,j
nh+1 +

j−1∑
k=1

nk∑
l=0

(1− βk,j)βk,j l
j−1∏

h=k+1

βh,j
nh+1

]
= π(s)

(
λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)
,

where the argument that the sum of products of β’s equals 1 is the same as for the insert
transitions.

For j = 1 with U({M1}) 6= ∅ we get:

µM1QM1(s) = µM1q
M1
1,n1

(s)π(swapM1
0,n1

(s))

= µM11
λU({M1}

µM1

π(s)

= π(s)
(
λU({M1}) − λU(∅)

)
,

where we use λU(∅) = 0.
Finally, adding up over all j ∈ {1, . . . , i} with U({M1, . . . ,Mj}) 6= ∅ we get:

i∑
j = 1

U({M1, . . . ,Mj}) 6= ∅

µMjQMj (s) = π(s)
i∑

j = 1
U({M1, . . . ,Mj}) 6= ∅

(
λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)

= π(s)
i∑

j=1

(
λU({M1,...,Mj−1,Mj}) − λU({M1,...,Mj−1})

)
= π(s)

(
λU({M1,...,Mi}) − λU(∅)

)
= π(s)λU({M1,...,Mi}),

where the second equality is valid since, if U({M1, . . . ,Mj}) = ∅, then λU({M1,...,Mk}) = 0 for
k = 1, . . . , j. This verifies (26), and thus completes the proof. �

3.8 Verifying the assignment condition

In order to be able to state that a product form solution exists, we need to verify that indeed it
is always possible to find assignment probability distributions which result in assignment rates
that satisfy the assignment conditions. But this is exactly the result obtained in [2]. Below we
summarize the results from [2].
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First of all it is shown that for given arrival rates λc, c ∈ C, and given the job classes served
by each machine, C(mj), j = 1, . . . ,K, the assignment probabilities are unique, and can be
calculated recursively from the formula:

λMj (M\{Mj}) = λC(Mj), j = 1, . . . ,K,

and

λMj
({M1, . . . ,Mi}) = λC(M\({M1,...,Mi}))

/(
1 +

∑
k∈M\({M1,...,Mi,Mj})

λMk
({M1, . . . ,Mi,Mj})

λMj
({M1, . . . ,Mi,Mk})

)
,

i ≤ K − 2, Mj 6∈ {M1, . . . ,Mi}.

It is then necessary to find assignment probability distributions which result in these assign-
ment rates. We define P (c,Mj | {M1, . . . ,Mi}) to be the probability that an arriving job of type
c who finds machines {M1, . . . ,Mi} busy will be assigned to the idle machine Mj . Here we get
a distribution for each type of job and each subset of machines {M1, . . . ,Mi} for which there
exists at least one machine Mj such that c ∈ C(Mj) and Mj 6∈ {M1, . . . ,Mi}.

All that is needed is to find values P (c,Mj | {M1, . . . ,Mi}) ≥ 0 such that

λMj ({M1, . . . ,Mi}) =
∑

c∈C(Mj)

λcP (c,Mj | {M1, . . . ,Mi}),

and it is shown in [2] that there always exist such values (which often are not unique).
It is shown that appropriate values can be obtained by solving a maximal flow problem (cf.

[7]) for each subset of busy machines {M1, . . . ,Mi}. In this maximal flow problem there is a
source node s, with an arc of capacity λc to a node c for every c ∈ C(M\{M1, . . . ,Mi}), and a
terminal node t with an arc of capacity λMj ({M1, . . . ,Mi}) from a node Mj to node t for every
Mj ∈ M\{M1, . . . ,Mi}, and an arc of infinite capacity from node c to node Mj if c ∈ C(Mj).
Let a maximal flow for this problem be given by ν(c,Mj), on the arcs with infinite capacity.
Then one defines: P (c,Mj | {M1, . . . ,Mi}) = ν(c,Mj)/λc. This will give assignment probability
distributions with the required properties if the maximal flow utilizes all the capacities of the
arcs from the source and of the arcs into the terminal. It is shown that this is always the case.
This follows from the following monotonicity property of the assignment rates:

λMj ({M1, . . . ,Mi}) ≥ λMj ({M1, . . . ,Mi−1}),

which is proved in [2].
Below we present an example; see Example 2 in [2] for detailed calculations. It illustrates

that the assignment probability distributions need not be unique.

Example:

There are three job types, numbered 1, 2 and 3, and three servers, also numbered 1, 2, and 3
with C(1) = {2, 3}, C(2) = {1, 3}, C(3) = {1, 2}. Let λ = λ1 + λ2 + λ3. We get for one or two
idle servers and i 6= j 6= k:

P (j, i|{j, k}) = P (k, i|{j, k}) = 1, P (i, j|{k}) = P (j, i|{k}) = 1,

P (k, i|{k}) =
λi + λk

λi + λj + 2λk
, P (k, j|{k}) =

λj + λk
λi + λj + 2λk

.
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When all three servers are idle, the assignment probability distributions are not unique. Using
the abbreviations P (i, j) ≡ P (i, j|∅), the distributions can be parameterized as: P (i, j)

P (j, k)
P (k, i)

 =

 1− P (i, k)
1− P (j, i)
1− P (k, j)

 = (1− θ)


max(0,ηj−λk,λi−ηk)

λi
max(0,ηk−λi,λj−ηi)

λj
max(0,ηi−λj ,λk−ηj)

λk

+ θ


min(λi,ηj ,λi+λj−ηk)

λi
min(λj ,ηk,λj+λk−ηi)

λj
min(λk,ηi,λi+λk−ηj)

λk


where 0 ≤ θ ≤ 1 and

ηj =
λ(λ2 − λ2

j )
3λ2 − λ2

1 − λ2
2 − λ2

3

.

4 The waiting time distribution

In this section we use the distributional form of Little’s Law [10] to derive the waiting time
distributions of jobs of various types.

The basic formula says that, within a queueing system, a stream of jobs that enter in a
Poisson stream of rate λ, stay for a while without affecting either future arrivals or the time
spent in the system by previous jobs, and leave in the same order as they arrived, satisfy the
following relation between steady state number of jobs in the system N and the time spent in
the system W :

E(zN ) = E(e−λW (1−z)).

We use this relation to derive explicit expressions for the steady state waiting time of jobs of
type c in the system, from the time that they enter the system and until the time that they enter
service. It turns out that this waiting time is distributed as a mixture of sums of exponentials
with various parameters.

We introduce the following random variables associated with the system:

Nj is the number of jobs waiting between machines Mj and Mj+1, or behind the last machine
if machine Mj is the last busy machine, or 0 if there are less then j busy machines,
j = 1, . . . ,K.

Nc,j is the number of jobs of type c among Nj . Recall that all jobs of Nj need to be of types
U({M1, . . . ,Mj}, so Nc,j = 0 if c 6∈ U({M1, . . . ,Mj}.

Nc· is the total number of jobs of type c in the queue, obtained by adding up all non-zero Nc,j
for j = 1, . . . ,K. Note that if c 6∈ U({M1, . . . ,Mi}, then one of the idle machines can serve
jobs of type c, and hence Nc· = 0.

We now derive E(zNc·). To do so we first condition on the set of busy machines. Recall that
the steady state probability of state s = (ni,Mi, . . . , n1,M1) is

π(s) = αnii · · ·α
n1
1

Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

π(0).

We then have that for the system in steady state,

P (NK = 0, . . . , Ni+1 = 0, Ni = ni,Mi, . . . , N1 = n1,M1 |M1, . . . ,Mi) =
i∏

j=1

(1− αj)α
nj
j .
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Recall also that

αj =
λU({M1,...,Mj})

µ{M1,...,Mj}
j = 1, 2, . . . , i,

and that for c ∈ U({M1, . . . ,Mj}), the conditional distribution of Nc,j conditional on Nj is
binomial:

P (Nc,j = m|Nj = n) =
(
n

m

)(
λc

λU({M1,...,Mj})

)m(
1− λc

λU({M1,...,Mj})

)n−m
.

For N a geometric random variable with parameter α and for M conditional on N a binomial
random variable with parameters (N, θ) we have:

E(zM ) =
∞∑
n=0

(1− α)αnE(zM |N = n) =
∞∑
n=0

(1− α)αn
n∑

m=0

(
n

m

)(
zθ
)m(1− θ)n−m

=
∞∑
n=0

(1− α)
(
α
(
1− θ + zθ

))n
=

1− α
1− α

(
1− θ + zθ

) =
1− αθ

1−α(1−θ)

1− αθ
1−α(1−θ) z

,

from which we can conclude that the unconditional M has a geometric distribution with param-
eter αθ

1−α(1−θ) .
We can now calculate the joint generating function of Nc,1, . . . , Nc,K , conditional on the

busy machines M1, . . . ,Mi. We note that for j = 1, . . . , i, the conditional distribution of Nj is
geometric with parameter αj , and that if c ∈ U({M1, . . . ,Mj}), then Nc,j |Nj is binomial with
parameters Nj and θj = λc

λU({M1,...,Mj})
. Hence Nc,j is geometric with parameter

ηc,j =
αjθj

1− αj(1− θj)
=

λc
µ{M1,...,Mj} − λU({M1,...,Mj}) + λc

.

Furthermore, from the product form of the stationary distribution it is seen that conditional on
the busy machines M1, . . . ,Mi, the N1, . . . , Ni are independent, and hence also Nc,1, . . . , Nc,i are
independent. We therefore obtain for the sequence of busy machines M1, . . . ,Mi,

E(zNc,11 · · · zNc,KK |M1, . . . ,Mi) =
i∏

j = 1
c ∈ U({M1, . . . ,Mj})

1− ηc,j
1− ηc,jzj

.

The generating function of Nc· = Nc,1 + · · · + Nc,K conditional on M1, . . . ,Mi is obtained by
substituting zj = z for all j:

E(zNc· |M1, . . . ,Mi) =
i∏

j = 1
c ∈ U({M1, . . . ,Mj})

1− ηc,j
1− ηc,jz

.

To uncondition we use the steady state probability that machines M1, . . . ,Mi are busy:

π(·,Mi, . . . , ·,M1) =
Πλ({M1, . . . ,Mi})
Πµ(Mi, . . . ,M1)

i∏
j=1

1
1− αj

π(0). (34)
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By summing over all possible sequences (Mi, . . . ,M1), we then have that:

E(zNc·) =
K∑
i=0

∑
(Mi,...,M1)∈Mi

π(·,Mi, . . . , ·,M1)
i∏

j = 1
c ∈ U({M1, . . . ,Mj})

1− ηc,j
1− ηc,jz

We now apply the distributional form of Little’s law. To obtain the Laplace-Stieltjes transform
(LST) of the waiting time we need to use E(e−sW ) = E

((
λ−s
λ

)N)
, and in particular, if N has

a geometric distribution with parameter η, then

E(e−sW ) = E

((
λ− s
λ

)N)
=

1− η
1− η(λ−sλ )

=
1−η
η λ

1−η
η λ+ s

,

which implies that W is an exponential random variable with parameter 1−η
η λ.

Hence, for LST of the steady-state waiting time Wc of a job of type c, we obtain:

E(e−sWc·) =
K∑
i=0

∑
(Mi,...,M1)∈Mi

π(·,Mi, . . . , ·,M1)
i∏

j = 1
c ∈ U({M1, . . . ,Mj})

1−ηc,j
ηc,j

λc
1−ηc,j
ηc,j

λc + s
.

Using the definition of ηc,j we get the surprising simplification, whenever c ∈ U({M1, . . . ,Mj}):

1− ηc,j
ηc,j

λc =
1− λc

µ{M1,...,Mj}−λU({M1,...,Mj})+λc

λc
µ{M1,...,Mj}−λU({M1,...,Mj})+λc

λc = µ{M1,...,Mj} − λU({M1,...,Mj}),

from which λc has miraculously disappeared. Rewriting this we now have:

Proposition 9. The LST of the steady-state waiting time Wc of a job of type c is equal to

E(e−sWc·) =
K∑
i=0

∑
(Mi,...,M1)∈Mi

π(·,Mi, . . . , ·,M1)

i∏
j = 1

c ∈ U({M1, . . . ,Mj})

µ{M1,...,Mj} − λU({M1,...,Mj})

µ{M1,...,Mj} − λU({M1,...,Mj}) + s
, (35)

where π(·,Mi, . . . , ·,M1) is given by (34).

This has the following interpretation: Consider the system in steady state. Jobs of type c
arrive as a Poisson stream, and hence they see the queue in steady state, and find machines
(Mi, . . . ,M1) busy with probability π(·,Mi, . . . , ·,M1). If some of the idle machines can process
a job of type c, the arriving job will go into service immediately, and the waiting time will be 0.
This is expressed in (35) by noting that in that case c 6∈ U({M1, . . . ,Mi}), and so the product is
empty (and thus equal to 1). Else it will have to wait a sum of exponential waiting times.

There will be an exponential waiting time term for machine Mj if c ∈ U({M1, . . . ,Mj}).
This will include terms for machine Mi,Mi−1, . . . as long as none of them can serve c, and
terminate with a term for the first machine Mk which can serve c. To be precise, c ∈ C(Mk),
while c 6∈ C(Mj) for j = k + 1, . . . , i.
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The waiting time term for machine Mj is exponential with rate µ{M1,...,Mj}−λU({M1,...,Mj}),
which is the waiting time in an M/M/1 queue with arrival rate λU({M1,...,Mj}) and service rate
µ{M1,...,Mj}.

Hence, when a job of type c arrives, his waiting time can be interpreted as going through a
tandem sequence of M/M/1 queues, until he can be served by the last of them.
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