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Abstract
Observing that pure discount curves are now based on a variety of tenors

giving rise to tenor speci�c zero coupon bond prices, the question is raised on
how to construct tenor speci�c prices for all �nancial contracts. Noting that
in conic �nance one has the law of two prices, bid and ask, that are nonlinear
functions of the random variables being priced, we model dynamically consis-
tent sequences of such prices using the theory of nonlinear expectations. The
latter theory is closely connected to solutions of backward stochastic di¤erence
equations. The drivers for these stochastic di¤erence equations are here con-
structed using concave distortions that implement risk charges for local tenor
speci�c risks. It is then observed that tenor speci�c prices given by the mid
quotes of bid and ask converge to the risk neutral price as the tenor is decreased
and liquidity increased when risk charges are scaled by the tenor. Square root
tenor scaling can halt the convergence to risk neutral pricing, preserving bid
ask spreads in the limit. The greater liquidity of lower tenors may lead to an
increase or decrease in prices depending on whether the lower liquidity of a
higher tenor has a mid quote above or below the risk neutral value. Generally
for contracts with a large upside and a bounded downside the prices fall with
liquidity while the opposite is the case for contracts subject to a large downside
and a bounded upside.

1 Introduction

The aftermath of the �nancial crisis of 2008 has brought with it the existence
of tenor speci�c yield curves. The existence of these curves was �rst brought to
our attention by Mercurio (2010a, 2010b). We now have explicit constructions
of discount curves or zero coupon bond prices at di¤erent tenors. Somewhat
more precisely, there is the OIS curve, along with the one, three, six and twelve
month curves. Di¤erences re�ect the fact, for example, that the �rst three
consecutive one month forward rates when compounded fall short of the �rst
three month forward rate. In the past these di¤erences also existed but the gaps
were small and possibly well within bid ask bounds. Following the crisis of 2008
the di¤erences have become quite substantial, leading �nancial institutions to
explicitly construct tenor speci�c discount curves.
The simplest of all contracts is the pure discount bond and if its price is

tenor speci�c then the same probably holds for other more complicated claims
like stocks, and derivatives on underlying stock prices. The question we address
in this paper are the theoretical foundations for tenor speci�c pricing, what
possibly do these prices mean, and can we develop procedures for the explicit
theoretical computation of tenor speci�c prices on all contracts.
It is clear that with multiple prices for pure discount bonds among other

assets, the law of one price is abandoned, or preserved depending on how we see
the tenor speci�c price. Some argue that longer tenors embody higher credit
risk and hence are not the same cash �ow (Morini (2008)). The higher rates
on longer tenors being the compensation for the additional credit exposure.
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However, shorter tenors are in some sense more liquid and the higher price
could just re�ect the value of the additional liquidity. The possibility that both
credit and liquidity considerations may be simultaneously involved is recognized
for example in Mercurio (2009). In this paper we develop a liquidity based model
for tenor speci�c yield curves that can then be applied to other assets as well.
Other approaches to multiple yield curves include for example Kijima, Tanaka,
and Wong (2008).
Our approach to liquidity modeling builds on the two price model of markets

introduced in Cherny and Madan (2010). The two price model of markets
takes the market to be an abstract counterparty for all �nancial transactions
by economic agents. As a counterparty, the market takes the otherside of all
transactions and this typically involves holding the opposite risk position to the
maturity of the contingent claim or holding it for the length of the period in a
static one period model. Unlike economic agents who optimize their objectives,
the market is a passive counterparty that accepts certain cash �ows. The market
will take a nonnegative cash �ow and more generally is modeled as accepting
a convex cone of cash �ows that contains the nonnegative cash �ows. The
underlying probability under which the market evaluates the possibilities is given
by a single market selected risk neutral measure. The set of acceptable cash �ows
are then those that have a positive expectation with respect to a collection of test
measures that are equivalent to the selected base risk neutral measure (Artzner,
Delbaen, Eber and Heath (1999), Carr Geman and Madan (2001), Jaschke and
Kuchler (2001)). We may denote this class of test measures M with elements
Q 2M: The base risk neutral measure is denoted Q0 and the measures Q 2M
are equivalent to Q0:
It is shown in Cherny and Madan (2010) that the ask price a(X); respectively

bid price b(X) for a potentially hedged cash �ow X are then given by the
supremum, respectively in�mum, over all Q 2M of the expectation under Q of
X; or

a(X) = sup
Q2M

EQ[X]

b(X) = inf
Q2M

EQ[X]:

It is further argued in Carr, Madan and Vicente Alvarez (2010) that one may
take the mid quote as a candidate for a two way price in such two price markets.
Typically this mid quote price is not equal to the risk neutral expectation and is
above or below the risk neutral expectation depending on the nature of the cash
�ow. For cash �ows with a large upside, like out-of-the-money options, the ask
price pulls the mid quote above the risk neutral expectation, while the opposite
holds true for risky loans with a bounded upside and a large downside risk
exposure. The di¤erence between the mid quote and the risk neutral expectation
is taken as pro�t in Carr, Madan and Vicente Alvarez (2010). The underlying
model in Cherny and Madan (2010) and Carr, Madan and Vicente Alvarez
(2010) is a static one period model.
This paper generalizes these methods to a dynamic model operating at mul-
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tiple tenors. For �nancial transactions it is realized by the market that whenever
an economic agent enters a �nancial transaction they may hold it to maturity
or to some horizon or they may seek to reverse the transaction before this time.
The market then asks the economic agents as to what are the frequencies at
which they wish to consider a possible reversal. The economic agents then asks
the market, what are the tenor speci�c exit prices at di¤erent tenors expressed
as functions of the underlying risks whose future values are currently unknown.
What we provide in this paper are model speci�c procedures determining tenor
speci�c exit prices on a variety of contracts.
We apply the recently developed theory of nonlinear expectations (Shige

Peng (2004), Rosazza Gianin (2006)) to construct dynamically consistent se-
quences of bid and ask prices on multiple tenors. Our tenor speci�c exit price
schedules are then given by the mid quotes of these sequences. The shorter
the tenor, the more liquid the pricing and this leads us to the construction of
liquidity contingent pricing. The limiting prices may or may not be risk neutral
depending on the scaling employed in risk charges.
The outline of the rest of the paper is as follows. Section 2 presents evidence

on tenor speci�c yield curves or pure discount bond prices post crisis. Section 3
presents a theoretical determination of tenor speci�c pricing of �nancial claims
via nonlinear expectations. Section 4 introduces drivers for nonlinear expecta-
tions based on concave distortions. Section 5 presents the computations in a
simple binomial context. Section 6 develops tenor speci�c discount curves when
the underlying spot rate process satis�es the Cox, Ingersoll and Ross square root
process. Section 7 reports on tenor speci�c stock prices when the underlying
risk is geometric Brownian motion or the variance gamma process. Section 8
takes up tenor speci�c option pricing. Section 9 reports on the pricing of stocks
and options on stocks under square root tenor scaling. Section 10 concludes.

2 Tenor Speci�c Yield Curves

Most banks post the crisis of 2008 construct pure discount curves using as
base instruments �xed income contracts like certi�cates of deposit, forward rate
agreements, futures contracts, and swaps to build discount curves at a variety
of tenors, with the most popular ones being the OIS curve for the daily tenor,
followed by tenors of 1; 3; 6 and 12 months. By way of an example we present in
Figure (1) the gap in basis points between the pure discount price of maturity t
on a tenor above OIS and the OIS price on December 15 2010. The price gap
is almost 200 basis points near a ten year maturity.
From this data one may also construct the spread between forward rates on

the higher tenors and the OIS forward rate. Figure (2) presents a graph of
these spreads at various maturities. The spread in the forward rates reach up
to 70 basis points.
We have to ask ourselves what these prices are and what is their basis. A pos-

sibility is that the di¤erences are credit related, but the instruments employed
are quite varied with multiple counterparties and it is unclear that the biases
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Figure 1: Zero coupon bond prices at tenors of one, three, six and twelve months
less the OIS price in basis points.
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Figure 2: Forward Rate spreads at various tenors over OIS forward rates.
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built in are purely credit related. For example, Eberlein, Madan and Schoutens
(2011) show using a joint model of credit and liquidity that the Lehman default
was a liquidity event for the remaining banks and not a credit issue. Certainly
lower tenors represent a greater liquidity so might the di¤erence be to some
extent due to this enhanced liquidity. How does liquidity expressed via a lower
trading tenor theoretically a¤ect prices. These are the questions we now address.

3 Theoretical Tenor Speci�c Pricing

This section develops the theory for tenor speci�c pricing in general. However,
to focus attention we begin with the simplest security of the pure discount bond.
All economic agents must trade with the market and in line with the principles
of conic �nance the market serves as the passive counterparty for all �nancial
transactions. The market is aware of a single risk neutral instantaneous spot
rate process r = (r(t); t � 0) at which funds may be transfered by the market
through time. Suppose for simplicity that the underlying process for r is a one
dimensional Markov process.
Consider in this context the desire by an economic agent to buy from the

market a unit face pure discount bond of unit maturity. If the market �xes the
ask price at a; the market holds the random present value cash �ow of

X(0; 1) = a� e�
R 1
0
r(u)du:

The economic agent could hold the bond for unit time and then collect the unit
face value. If the market prices this contract to acceptability using a convex set
of test measuresM then the ask price is given by

a = sup
Q2M

EQ
h
e�

R 1
0
r(u)du

i
while the bid price is

b = inf
Q2M

EQ
h
e�

R 1
0
r(u)du

i
;

and the mid quote or the reference two way price is the average of the bid and
ask prices.
Suppose now the economic agent wishes to have from the only market he or

she must trade with, the opportunity to unwind this position at some earlier
date and he or she wishes to see the terms at which this unwind my be possible.
Essentially the economic agent asks the market for a schedule of bid and ask
prices as functions of the prevailing spot rate at a frequency of h = 1=N: For
N = 4 we have a quarterly schedule while N = 12 yields a monthly schedule.
The market then has to �rst determine the bid and ask prices at time 1�h:

At this time the present value of the risk Xa; Xb for an ask respectively bid
price is

Xa(1� h; 1) = a� e�
R 1
1�h r(u)du

Xb(1� h; 1) = e�
R 1
1�h r(u)du � b
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If the market uses the same cone of acceptability then these ask and bid prices
are

a1�h(r(1� h)) = sup
Q2M

EQ
h
e�

R 1
1�h r(u)du

i
b1�h(r(1� h)) = inf

Q2M
EQ

h
e�

R 1
1�h r(u)du

i
:

In principle this schedule may be computed. We now consider the determination
of the schedule at the next time step of 1� 2h:
Now the market is ready to sell for a(1� h) at time 1� h and we ask what

price is the market willing to sell for at time 1�2h: If it sells for a at time 1�2h
we have the present value cash �ow at time 1 � h of earning the interest and
buying back at 1� h for the ask price of a1�h(r(1� h)):

Xa(1� 2h; 1� h) = a� a1�h(r(1� h))e�
R 1�h
1�2h r(u)du

The corresponding bid cash �ow is

Xb(1� 2h; 1� h) = b1�h(r(1� h))e�
R 1�h
1�2h r(u)du � b

It follows from making these risks acceptable that

a1�2h(r(1� 2h)) = sup
Q2M

EQ
h
a1�h(r(1� h))e�

R 1�h
1�2h r(u)du

i
b1�2h(r(1� 2h)) = inf

Q2M
EQ

h
b1�h(r(1� h))e�

R 1�h
1�2h r(u)du

i
We thus get the ask and bid recursions on tenor h of

ah(t� h) = sup
Q2M

�
EQ

h
e�

R t
t�h r(u)duah(t)

i�
bh(t� h) = inf

Q2M

�
EQ

h
e�

R t
t�h r(u)dubh(t)

i�
The tenor speci�c discount curve is then given by the time zero mid quotes
computed on each tenor h as

mh(T ) =
ah(0) + bh(0)

2
:

The spreads between di¤erent tenors arise in these computations from liquidity
considerations embedded in the cones of acceptable risks. They are not credit
related as we do not have any defaults but just a reluctance to take exposures.
Observe that if we go back to the law of one price with a base risk neutral
measure Q0 we may rewrite the recursion as

bh(t�h) = EQ
0
h
e�

R t
t�h r(u)dubh(t)

i
+ inf
Q2M

�
EQ

h
e�

R t
t�h r(u)dubh(t)� EQ

0
h
e�

R t
t�h r(u)dubh(t)

ii�
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where we have the one step ahead expectation plus a risk charge based on the
deviation. These risk charges are for exposure to unhedgeable risk and the
motivations are related to those considered for example by Bernardo and Ledoit
(2000), Cochrane and Saa-Requejo (2000), µCerný and Hodges (2000), Carr,
Geman and Madan (2001) and Jaschke and Kuchler (2001).
This risk charge is for exposure to deviations and could in principle be the

same for two di¤erent tenors. However, the charge is for a risk exposure over an
interval of length h and should be levied as a rate per unit time with the charge
for h units of time being proportional to h: Hence the recursion employed for
the tenor h is

bh(t� h) = EQ
0
h
e�

R t
t�h r(u)dubh(t)

i
+ h inf

Q2M

�
EQ

h
e�

R t
t�h r(u)dubh(t)� EQ

0
h
e�

R t
t�h r(u)dubh(t)

ii�
ah(t� h) = EQ

0
h
e�

R t
t�h r(u)duah(t)

i
+ h sup

Q2M

�
EQ

h
e�

R t
t�h r(u)duah(t)� EQ

0
h
e�

R t
t�h r(u)duah(t)

ii�
Section 9 brie�y investigates scaling by the square root of the tenor. One

may observe from binomial model computations in Section 5.2 below that the
risk charge at a time step of 1=n is proportional to the square root of 1=n. Since
this is summed over n terms in a partion of unit time, the resulting total risk
charges would go to in�nity with no time scaling. Scaling by 1=n sends the
limiting risk charge to zero with convergence of prices to risk neutral values.
Square root scaling is motivated and reported on in section 9.
The resulting bid and ask price sequences are dynamically consistent nonlin-

ear expectations operators associated with the solution of backward stochastic
di¤erence equations. We have presented them here without reference to this
underlying framework. To establish this connection we �rst brie�y review these
concepts and the connection between them as they have been established in the
literature.
In the context of a discrete time �nite state Markov chain with states ei

identi�ed with the unit vectors of RM for some large integer M; Cohen and
Elliott (2010) have de�ned dynamically consistent translation invariant non-
linear expectation operators E(:jFt): The operators are de�ned on the family
of subsets

�
Qt � L2(FT )

	
: For completeness we recall here this de�nition of

an Ft�consistent nonlinear expectation forfQtg : This Ft�consistent nonlinear
expectation forfQtg is a system of operators

E(:jFt) : L2(FT )! L2 (Ft) ; 0 � t � T

satisfying the following properties:
1. For Q;Q0 2 Qt; if Q � Q0 P� a:s: componentwise, then

E(QjFt) � E(Q0jFt)

P�a:s: componentwise, with for each i;

eiE(QjFt) = eiE(Q0jFt)
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only if eiQ = eiQ0 P�a:s:
2. E(QjFt) = Q P�a:s: for any Ft�measurable Q:
3. E(E(QjFt)jFs) = E(QjFs) P�a:s: for any s � t
4. For any A 2 Ft; 1AE(QjFt) = E(1AQjFt) P�a:s:
Furthermore the system of operators is dynamically translation invariant if

for any Q 2 L2 (FT ) and any q 2 L2 (Ft) ;

E(Q+ qjFt) = E(QjFt) + q:

Such dynamically consistent translation invariant nonlinear expectations
may be constructed from solutions of Backward Stochastic Di¤erence and or
Di¤erential Equations (Cohen and Elliott (2010), El Karoui and Huang (1997)).
These are equations to be solved simultaneously for processes Y; Z where Yt is
the nonlinear expectation and the pair (Y;Z) satisfy

Yt �
X

t�u<T
F (!; u; Yu; Zu) +

X
t�u<T

ZuMu+1 = Q

for a suitably chosen adapted map F : 
�f0; � � � ; Tg�RK�RK�N ! RK called
the driver and for Q an RK valued FT measurable terminal random variable.
We shall work in this paper generally with the case K = 1: For all t; (Yt; Zt) are
Ft measurable. Furthermore for a translation invariant nonlinear expectation
the driver F must be independent of Y and must satisfy the normalisation
condition F (!; t; Yt; 0) = 0:
The drivers of the backward stochastic di¤erence equations are the risk

charges and for our ask and bid price sequences at tenor h we have drivers
F a; F b where

F a(!; u; Yu; Zu) = h sup
Q2M

EQ [ZuMu+1]

F b(!; u; Yu; Zu) = h inf
Q2M

EQ [ZuMu+1] ;

and the drivers are independent of Y: The process Zt represents the residual risk
in terms of a set of spanning martingale di¤erencesMu+1 and in our applications
we solve for the nonlinear expectations Yt without in general identifying either
Zt or the set of spanning martingale di¤erences. We de�ne risk charges directly
for the risk de�ned for example as the zero mean random variable

e�
R t
t�h r(u)duah(t)� EQ

0
h
e�

R t
t�h r(u)duah(t)

i
:

Leaving aside pure discount bonds we may consider for example a one year
call option written on a forward or futures price S(t) with zero risk neutral drift,
unit maturity, strike K and payo¤

(S(1)�K)+:

Dynamically consistent forward bid and ask price sequences on the tenor h may
be constructed as nonlinear expectations starting with

a(1) = b(1) = (S(1)�K)+:
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Thereafter we apply the recursions

at�h(S(t� h)) = EQ
0

[at(S(t))] + h sup
Q2M

�
EQ

h
at(S(t))� EQ

0

[at(S(t))]
i�

bt�h(S(t� h)) = EQ
0

[bt(S(t))] + h inf
Q2M

�
EQ

h
bt(S(t))� EQ

0

[bt(S(t))]
i�

Similar recursions apply to put options and other functions of the terminal stock
price. For path dependent claims of an underlying Markov process with payo¤
on tenor h of

F ((S(jh) ; 0 � j � J)) = V aJ = V bJ
We determine the ask and bid value of the remaining uncertainty V aj (S(jh)); V

b(S(jh))
by the recursions

V aj (S(jh)) = E
Q0 �

F (S(kh) ; 0 � k � j + 1)� F (S(kh) ; 0 � k � j) + V aj+1(S((j + 1)h))
�

+h sup
Q2M

EQ
�

F (S(kh) ; 0 � k � j + 1)� F (S(kh) ; 0 � k � j) + V aj+1(S((j + 1)h))
�EQ0 �

F (S(kh) ; 0 � k � j + 1)� F (S(kh) ; 0 � k � j) + V aj+1(S((j + 1)h))
� �

The ask value of the claim is then

F (S(kh) ; 0 � k � j) + V aj (S(jh)):

Similarly for the bid we have

V bj (S(jh)) = E
Q0 �

F (S(kh) ; 0 � k � j + 1)� F (S(kh) ; 0 � k � j) + V bj+1(S((j + 1)h))
�

+h inf
Q2M

EQ
�

F (S(kh) ; 0 � k � j + 1)� F (S(kh) ; 0 � k � j) + V bj+1(S((j + 1)h))
�EQ0 �

F (S(kh) ; 0 � k � j + 1)� F (S(kh) ; 0 � k � j) + V bj+1(S((j + 1)h))
� �

and the bid value of the claim is

F (S(kh) ; 0 � k � j) + V bj (S(jh)):

Tenor speci�c values may be constructed for a vast array of �nancial claims
using the procedures developed for nonlinear expectations after the selection
of an appropriate driver. The lower the tenor or the greater the frequency
of quotations the more the liquidity that is being o¤ered to economic agents.
One might enquire into the nature of the limiting price associated with various
drivers. These interesting questions are left for a future research e¤ort. For
results in a di¤usion context in this direction we refer to Stadje (2010). For the
moment we investigate the resulting tenor speci�c prices for bonds, stocks and
options on stocks in a variety of contexts for a speci�c set of drivers based on
distortions.
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4 Drivers for nonlinear expectations based on
distortions

The driver for a translation invariant nonlinear expectation is basically a positive
risk charge for the ask price and a positive risk shave for a bid price applied to a
zero mean risk exposure to be held over an interim. We are then given as input
the risk exposure ideally spanned by some martingale di¤erences as ZuMu+1 or
alternatively a zero mean random variable X with a distribution function F (x):
Cherny and Madan (2010) have constructed in the context of a static model law
invariant bid and ask prices based on concave distortions. The bid and prices
for a local exposure are then de�ned in terms of a concave distribution function
	(u) de�ned on the unit interval as

b =

Z 1

�1
xd	(F (x))

a = �
Z 1

�1
xd	(1� F (�x)) :

It is shown in Cherny and Madan (2010) that the setM of test measures seen as
measure changes on the unit interval applied to G(u) = F�1(u) are all densities
Z(u) with respect to Lebesgue measure for which the antiderivative H 0 = Z is
distortion bounded, or H � 	:
We consider in the rest of the paper drivers based on the distortionminmaxvar:

In this case

F b(ZuMu+1) =

Z 1

�1
xd	
(�(x))

F a (ZuMu+1) = �
Z 1

�1
xd	
 (1��(�x))

�(x) = Pr (ZuMu+1 � x) :

The distortion 	
(u) is given by

	
(u) = 1�
�
1� u

1
1+


�1+

:

Importantly it was shown in Carr, Madan and Vicente Alvarez (2010) that
for such distortions in general the mid quote lies above the risk neutral expec-
tation if a claim has large exposures at quantiles above the median and low
exposures below the median. The opposite is the case for large exposures at the
lower quantiles and low ones above. The quantile exposure is measured by the
sensitivity or derivative of the inverse of the distribution function. The follow-
ing sections take up numerical evaluations of tenor speci�c pricing of discount
bonds, stocks and options.
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5 Tenor Speci�c Binomial Trees

This section illustrates the computation of nonlinear expectations using distor-
tion based drivers on binomial trees. The �rst example illustrates how mid
quotes constructed from the bid and ask prices of conic �nance di¤er from risk
neutral valuations and the use of such mid quotes as candidates for the prices
of economies satisfying the law of one price will often display arbitrage oppor-
tunities that are not really there. The second example constructs tenor speci�c
prices of tenors one and two on a two period tree. Two subsections cover the
two examples.

5.1 Mid Quote Arbitrage

Consider a one period two state binomial tree with up and down factors of
u = 1:1 and d = 0:8 respectively. For an initial stock price of 100 with zero
rates and dividends and the distortion minmaxvar at the stress level of 0:5
the bid and ask prices of an at the money call are 3:74 and 8:84 respectively.
The corresponding bid and ask put prices are 2:31; 12:52: The risk neutral up
probability is

p =
1� d
u� d = :67:

The risk neutral call and put prices are with Su = S0u; Sd = S0d

rC = p(Su � S0) = 6:7
rP = (1� p)(S0 � Sd) = 6:7

The corresponding bid and ask prices for the call are

bC = rC + (�rC �	
(1� p) + (Su � S0 � rC) � (1�	
(1� p)) = 3:74
aC = rC + (�rC � (1�	
(p)) + (Su � S0 � rC) �	
(p)) = 8:85

while the put prices are

bP = rP + (�rP �	
(p) + (S0 � Sd � rP ) � (1�	
(p))) = 2:31
aP = rP + (�rP � (1�	
(1� p)) + (S0 � Sd � rP ) �	
(1� p) = 12:52:

The mid quote for the call and the put are

mC = 6:29

mP = 7:41

and the value of the stock using these option midquotes is

mC �mP + 100 = 98:88

re�ecting an arbitrage, but none exists. The cost of getting the stock via options
is

aC � bP + 100 = 8:85� 2:31 + 100 = 106:54

12



while the revenue from selling the stock via options is

bC � aP + 1 = 3:74� 12:52 + 100 = 91:22:

The use of midquotes as prices for the law of one price may re�ect illusory
arbitrages that are absent at unseen risk neutral valuations with negative cash
�ows when spreads are taken into account.

5.2 Nonlinear Expectations on Two Period Binomial Trees
with Multiple Tenors

We consider here a two period tree with an initial stock price of 100 and up
and down factors of 1:1; 0:95 respectively. The risk neutral probability p of an
up move is then 1=3:There are three states at the end of the tree and the bid
and ask at the money call prices on a single tenor of two periods with cash
�ows c0 = 0 < c1 = 4:5 < c2 = 21 and probabilities p0 = (1 � p)2 = :4444;
p1 = 2p(1� p) = :4444; p2 = p2 = :1111 are given by the equations

bC2 = c0	

(p0) + c1 (	


(p0 + p1)�	
(p0)) + c2 (1�	
(p0 + p1)) = 1:5569
aC2 = c2	


(p2) + c1 (	

(p2 + p1)�	
(p2)) + c0 (1�	
(p2 + p1)) = 9:0451:

The mid quote is 5:3010: For the roll over of bid and ask prices in two steps
of one period we show the results on a tree. The bid price at time 1=2 in the
upstate is

bC1u = rC1u+ :5
�
(S0ud� 100)+ � rC1u

�
	
(1� p) + (

�
S0u

2 � 100
�+ � rC1u) (1�	
(1� p))

aC1u = rC1u+ :5
�
(S0ud� 100)+ � rC1u

�
(1�	
(p)) + (

�
S0u

2 � 100
�+ � rC1u)	
(p)

rC1u = (1� p) � (S0ud� 100)+ + p �
�
S0u

2 � 100
�+
:

Similarly, one may compute bC1d, aC1d. Finally the equations for the ask price
at the root of the tree are

bC1 = maC1 + :5 ((aC1d�maC1)	
(1� p) + (aC1u�maC1)(1�	
(1� p))
aC1 = maC1 + :5 ((aC1d�maC1)(1�	
(p)) + (aC1u�maC1)	
(p))

maC1 = p � aC1u+ (1� p) � aC1d:

The full trees for a single step of two periods and two half steps are presented in a
Figure with bid, ask and mid prices computed at each node with the minmaxvar
distortion at stress 0:5:

6 Tenor Speci�c Discount Curves for the CIR
spot rate model

The construction of tenor speci�c discount curves require access to the proba-
bility law of random variables of the form

Xa(t; t+ h) = e�
R t+h
t

r(u)duat+h(r(t+ h)):
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S0 = 100.00$
____________________________

Call 4.33$
Bid                Mid            Ask

2.62    4.85     7.08

S1 = 110.00$
____________________________

Call 10.11$
Bid               Mid            Ask

8.20   10.31  12.41

S1 = 95.00$
____________________________

Call 1.50$
Bid               Mid            Ask

1.01    1.58    2.16

S2 = 90.25$
____________________________

Call 0.00$
Bid               Mid            Ask

0.00    0.00   0.00

S2 = 104.50$
____________________________

Call 4.50$
Bid               Mid            Ask

4.50    4.50    4.50

S0 = 121.00$
____________________________

Call 21.00$
Bid               Mid            Ask

21.00  21.00  21.00

MEAN   
____________________________
Bid               Mid            Ask

3.41    4.49    5.58

t=0 t=1t=1/2



S0 = 100.00$
____________________________

Call 4.33$
Bid                Mid            Ask

1.56    5.30     9.05

S2 = 90.25$
____________________________

Call 0.00$
Bid               Mid            Ask

0.00    0.00   0.00

S2 = 104.50$
____________________________

Call 4.50$
Bid               Mid            Ask

4.50    4.50    4.50

S0 = 121.00$
____________________________

Call 21.00$
Bid               Mid            Ask

21.00  21.00  21.00

t=0 t=1

2p(1‐p)



Hence one needs access to the joint law of the forward spot rate and the integral
over the interim. This is available for the Cox, Ingersoll, Ross (1985) spot rate
process de�ned by the stochastic di¤erential equation

dr = �(� � r)dt+ �
p
rdW

where � is the rate of mean reversion, � is the long term equilibrium interest
rate and � is the spot rate volatility parameter. The Laplace transform of
the forward spot rate given the current rate is available in closed form and an
application of an inverse Laplace transform along the lines of Abate and Whitt
(1995) gives us access to the distribution function. The forward spot rate may
then be simulated by the inverse uniform method.
The Laplace transform of the integral given the initial spot rate and the

�nal spot rate is also available in closed form (Pitman and Yor (1982)) and once
again an inverse Laplace transform allows us to draw from the density of the
integral given the rates at the two ends. In this way we may simulate readings
on Xa(t; t+ h) and Xb(t; t+ h): This simulation method has been suggested in
the literature by Glasserman (2003), Broadie and Kaya (2006) and Chan and
Joshi (2010). Working backwards from a one year maturity for the �rst step we
just need the law of the integral. Thereafter we �rst simulate r(t+ h) we then
interpolate from stored values of bid and ask prices at the later time step the
value for at+h(r(t + h)); bt+h(r(t + h)): Then we draw from the distribution of
the integral given the rates at the two ends to do the discounting and construct
a single reading on Xa or Xb:We are then in a position to perform the recursion
at di¤erent tenors back to time zero.
For a sample of parameter values to work with we employ the joint charac-

teristic function for the rate and its integral

�r(u; v) = E

�
exp

�
iur(t) + iv

Z t

0

r(s)ds

��
and determine the risk neutral pure discount bond prices as

P (0; t) = �r(0; i):

This model for bond prices was �tted to the OIS discount curve for data on
December 15 2010 presented in Section 2. The estimated parameters were

� = 0:3712

� = 0:0477

� = 0:0599

r0 = 0:00004:

A graph of the actual and �tted bond price curves is presented in Figure (3)
The recursions for bid and ask prices were performed using the minmaxvar

distortion at a stress level of 0:75; for all the local risk charges. Figure (4)
presents discount �ve year bond prices at time 0 for 3; 6 and 12 month tenors
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Figure 3: Actual and CIR model predicted OIS discount bond prices for matu-
rities up to 60 years.
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Figure 4: Tenor Speci�c Discount curves generated from mid quotes of dynamic
sequences of bid and ask prices constructed at the tenors of 3, 6, and 12 months
in black, red and blue respectively.

15



as a function of the initial spot rate that we let vary to levels reached at the
�rst time point of 3; 6 and 12 months.
An increase in the price of pure discount bonds associated with the shorter

tenor is observed in the model in line with market data for such tenor speci�c
discount curves. The theory for tenor speci�c pricing presented in this paper
is capable of generating tenor speci�c discount curves of the form observed in
markets post the crisis of 2008.

7 Tenor Speci�c Forward Stock Prices

This section considers tenor speci�c pricing for an underlying risk neutral process
that is forward price martingale. Our �rst example is that of geometric Brown-
ian motion. The risk neutral process here is

S(t) = S(0) exp

�
�W (t)� �

2t

2

�
for a Brownian motion W (t) and we take the initial stock price S(0) to be 100:
Economic agents trading with the market do not have access to this risk neutral
process that represents the underlying risk priced by the market.
Consider �rst the forward prices for delivery of stock in one year for a variety

of volatilities and quoting tenors. We take for the two way price of the market,
the mid quote constructed using the distortion minmaxvar at the stress level
0:75: Table 1 presents the resulting midquotes.

TABLE 1
Mid Quotes under GBM

Volatility
Tenor .2 .3 .4
12m 101.8420 103.7851 106.9213
6m 101.1343 102.4458 104.5791
3m 100.4782 101.4591 102.5282
1m 100.1019 100.0572 100.2699

It is clear that for the geometric Brownian motion model the single time step mid
quote is above the risk neutral value and furthermore as one enhances liquidity
by decreasing the tenor the prices fall towards the risk neutral value. The
positive skewness of the lognormal distribution lifts the supremum and results in
a mid quote above the risk neutral value. This e¤ect is dampened for the shorter
tenors. Actual risk neutral stock price distributions have a considerable left
skewness as re�ected in the implied volatility smiles. It is therefore instructive
to investigate mid quotes in tenor speci�c pricing for models that �t the smile.
For this we turn next to the variance gamma model.
For a set of stylized parameter values we �x � the volatility of the Brownian

motion at :2 as a control on volatility. We then take some moderate and high
values for skewness and excess kurtosis via setting � at �:3;�:6 and setting �
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at :5; 1:5: For these four settings we report in Table 2 on the midquotes for a
quarterly tenor on a one year forward quote.

TABLE 2
Mid Quotes under VG
� � � midquote
:2 :5 �:3 97:7905
:2 :5 �:6 97:0130
:2 1:5 �:3 96:0998
:2 1:5 �:6 95:2685

It may be observed that in all these cases the mid quote is below the risk
neutral value. Preliminary numerical investigations con�rm that as we increase
liquidity we do get a convergence to the risk neutral value and hence it appears
that an increase in liquidity raises the two way price quote on stocks for two
price markets.

8 Tenor Speci�c Option Prices

This section reports on the mid quote and the risk neutral value of out of the
money options and loan type contracts for an underlying geometric Brownian
motion with a 30% volatility and the four V G processes considered in section
6. The out of the money options are a put struck at 80 and a call struck at
120 with an annual maturity. The loan or risky debt type contract pays the
minimum of 1:25 times the stock price and a 100 dollars. Loss is then taken for
stock prices below 80: In each case the risk neutral value and the mid quote are
reported at each of two tenors, quarterly and monthly. The results are in tables
3 and 4, one for the quarterly tenor and the other for the monthly tenor. The
loan mid quotes are below risk neutral values and rise as the tenor comes down.
The opposite is the case with out-of-the-money options re�ecting the expected
convergence to risk neutral values.

TABLE 3
Tenor Speci�c Options, Tenor 3m

Risky Debt 80 Put 120 Call
Model RNV MidQuote RNV MidQuote RNV MidQuote
GBM .3 95:7828 94:1758 3:4018 4:6827 5:1379 7:7697
VG(.2,.5,-.3) 95:8767 93:1988 3:3304 5:4839 2:4325 3:4840
VG(.2,.5,-.6) 91:2 87:4621 7:0161 10:0061 6:95 7:9183
VG(.2,1.5,-.3) 93:4180 89:6225 5:3079 8:3473 2:4641 3:2026
VG(.2,1.5,-.6) 87:3013 82:3885 10:2863 14:2151 8:9318 9:0814
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TABLE 4
Tenor Speci�c Options, Tenor 1m

Risky Debt 80 Put 120 Call
Model RNV MidQuote RNV MidQuote RNV MidQuote
GBM .3 95:8017 95:1889 3:3705 3:8599 4:8799 5:8331
VG(.2,.5,-.3) 96:0179 94:4431 3:1921 4:4529 2:4178 2:7529
VG(.2,.5,-.6) 91:4011 88:9371 6:8378 8:8070 6:8789 6:7116
VG(.2,1.5,-.3) 93:6408 91:3086 5:1132 6:9834 2:4269 2:6336
VG(.2,1.5,-.6) 87:3896 84:0681 10:0263 12:6801 8:8675 8:3056

9 Square root tenor scaling

The random variable for a tenor h may be considered to have a variance broadly
proportional to h: One may therefore contemplate annualizing by scaling it by
1=
p
h before computing a risk charge that is then scaled by h: The net e¤ect

is to scale the risk charge by
p
h in place of h: We are grateful to Mitja Stadje

for making this observation and pointing us to his result that in the di¤usion
case such square root scaling preserves spreads in the limit, thereby halting the
convergence to risk neutral values as the tenor is decreased. We report in this
section the equivalents of Tables one through four with such a square root tenor
scaling in place of tenor scaling.

TABLE 5
Mid Quotes under GBM and root tenor
scaling

Volatility
Tenor .2 .3 .4
12m 101:8420 103:7851 106:9213
6m 101:6839 104:2970 107:9990
3m 101:9386 104:4102 107:3796
1m 101:5409 103:6056 106:2558

The 40% volatility contract with a tenor of 4 days had a mid quote of 105:0538:
The square root scaling does reduce the speed of convergence and maintains a
spread in the limit. We next report on quarterly scaling on V G with square
root tenor scaling.

TABLE 6
Mid Quotes under VG
under root tenor scaling
� � � midquote
:2 :5 �:3 97:1448
:2 :5 �:6 96:0687
:2 1:5 �:3 94:0838
:2 1:5 �:6 92:7382
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Once again we see that with square root scaling the distance to risk neutral is
enhanced. Finally we report on option pricing under root tenor scaling.

TABLE 7
Tenor Speci�c Options, Tenor 3m

Risky Debt 80 Put 120 Call
Model RNV MidQuote RNV MidQuote RNV MidQuote
GBM .3 95:6883 91:5419 3:4529 6:7707 5:0577 12:0317
VG(.2,.5,-.3) 95:9270 90:8465 3:2644 7:3303 2:4817 4:8811
VG(.2,.5,-.6) 91:3507 84:6722 6:8638 12:2119 6:8526 9:5767
VG(.2,1.5,-.3) 93:5032 86:8443 5:2722 10:6001 2:4456 4:1219
VG(.2,1.5,-.6) 87:1819 78:9192 10:1248 16:7625 8:9112 10:0043

TABLE 8
Tenor Speci�c Options, Tenor 1m

Risky Debt 80 Put 120 Call
Model RNV MidQuote RNV MidQuote RNV MidQuote
GBM .3 95:8005 91:9145 3:3495 6:4607 4:9204 11:2801
VG(.2,.5,-.3) 96:0447 90:1850 3:2029 7:8863 2:4073 4:5261
VG(.2,.5,-.6) 91:3790 83:3989 6:8634 13:2570 6:8914 8:2685
VG(.2,1.5,-.3) 93:5995 86:0582 5:0495 11:0829 2:6226 3:7702
VG(.2,1.5,-.6) 87:4155 77:6397 10:0508 17:8745 8:9499 8:7296

Additionally we recomputed the tenor speci�c discount curves of Section 6
for a square root scaling to �nd the 3 month tenor above the 12 month but now
by a smaller amount. It is anticipated that scalings higher than square root will
also lead to a convergence to risk neutral but now at a slower rate. Assuming a
su¢ ciently fast scaling it is reasonable to conjecture that the limit is generally
the risk neutral price.

10 Conclusion

Fixed income markets now construct pure discount curves based on a variety
of tenors for rolling over funds between time points. This gives rise to tenor
speci�c prices for zero coupon bonds and raises the issue of the possibility of
tenor speci�c pricing for all �nancial contracts. It is recognized that the law
of two prices, bid and ask, as constructed in theory of conic �nance set out
in Cherny and Madan (2010), yields prices that are nonlinear functions of the
random variables being priced. Dynamically consistent sequences of such prices
are then related to the theory of nonlinear expectations and its connections
with solutions to backward stochastic di¤erence equations. The drivers for the
stochastic di¤erence equations are related to concave distortions that implement
risk charges for the local risk speci�c to the tenor.
This theory is applied at a variety of tenors to generate such tenor speci�c

bid and ask prices for discount bonds, stocks, and options on stocks. It is
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observed that such tenor speci�c prices given by the mid quotes of bid and ask
converge to the risk neutral price as the tenor is decreased. The convergence to
the risk neutral may be halted by adjusting the scaling of risk charges to square
root tenor scaling for example. The greater liquidity of lower tenors may lead
to an increase or decrease in prices depending on whether the lower liquidity of
a higher tenor has a mid quote above or below the risk neutral value. Generally
for contracts with a large upside and a bounded downside the prices fall with
liquidity while the opposite is the case for contracts subject to a large downside
and a bounded upside.
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