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Metastability for Kawasaki dynami
s atlow temperature with two types of parti
lesF. den Hollander 1 2F. R. Nardi 3 2A. Troiani 1July 14, 2011Abstra
tThis is the �rst in a series of three papers in whi
h we study a two-dimensional latti
egas 
onsisting of two types of parti
les subje
t to Kawasaki dynami
s at low temperaturein a large �nite box with an open boundary. Ea
h pair of parti
les o

upying neighboringsites has a negative binding energy provided their types are di�erent, while ea
h parti
lehas a positive a
tivation energy that depends on its type. There is no binding energybetween neighboring parti
les of the same type. At the boundary of the box parti
les are
reated and annihilated in a way that represents the presen
e of an in�nite gas reservoir.We start the dynami
s from the empty box and 
ompute the transition time to the fullbox. This transition is triggered by a 
riti
al droplet appearing somewhere in the box.We identify the region of parameters for whi
h the system is metastable. For thisregion, in the limit as the temperature tends to zero, we show that the �rst entran
edistribution on the set of 
riti
al droplets is uniform, 
ompute the expe
ted transitiontime up to a multipli
ative fa
tor that tends to one, and prove that the transition timedivided by its expe
tation is exponentially distributed. These results are derived underthree hypotheses on the energy lands
ape, whi
h are veri�ed in the se
ond and the thirdpaper for a 
ertain subregion of the metastable region. These hypotheses involve threemodel-dependent quantities � the energy, the shape and the number of the 
riti
al droplets� whi
h are identi�ed in the se
ond and the third paper as well.The main motivation behind this work is to understand metastability of multi-typeparti
le systems. It turns out that for two types of parti
les the geometry of the energylands
ape is more 
omplex than for one type of parti
le. Consequently, it is a somewhatdeli
ate matter to 
apture the proper me
hanisms behind the growing and shrinking ofsub
riti
al, 
riti
al and super
riti
al droplets. Our proofs in the present paper use poten-tial theory and rely on ideas developed in Bovier, den Hollander and Nardi [6℄ for Kawasakidynami
s with one type of parti
le. Our target is to identify the minimal hypotheses thatlead to metastable behavior for multi-type Kawasaki dynami
s.MSC2010. 60K35, 82C26.Key words and phrases. Multi-type parti
le systems, Kawasaki dynami
s, metastable re-gion, metastable transition time, 
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al droplet, potential theory, Diri
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1 Introdu
tion and main resultsSe
tion 1.1 de�nes the model, Se
tion 1.2 introdu
es basi
 notation, Se
tion 1.3 identi�es themetastable region, while Se
tion 1.4 states the main theorems. Se
tion 1.5 dis
usses the maintheorems and pla
es them in the proper 
ontext. Se
tion 1.6 proves three geometri
 lemmasthat are needed in the proof of the main theorems.For an overview on metastability and droplet growth, we refer the reader to the monographby Olivieri and Vares [23℄, and the review papers by Bovier [3℄, [4℄, den Hollander [14℄, Olivieriand S
oppola [22℄, Gaudillière and S
oppola [12℄ and Gaudillière [13℄.1.1 Latti
e gas subje
t to Kawasaki dynami
sLet Λ ⊂ Z2 be a large �nite box. Let
∂Λ− = {x ∈ Λ: ∃ y /∈ Λ: |y − x| = 1},

∂Λ+ = {x /∈ Λ: ∃ y ∈ Λ: |y − x| = 1},
(1.1)be the internal boundary, respe
tively, the external boundary of Λ, and put Λ− = Λ\∂Λ−and Λ+ = Λ ∪ ∂Λ+. With ea
h site x ∈ Λ we asso
iate a variable η(x) ∈ {0, 1, 2} indi
atingthe absen
e of a parti
le or the presen
e of a parti
le of type 1 or type 2. A 
on�guration

η = {η(x) : x ∈ Λ} is an element of X = {0, 1, 2}Λ. To ea
h 
on�guration η we asso
iate anenergy given by the Hamiltonian
H(η) = −U

∑

(x,y)∈(Λ−)⋆

1{η(x)η(y)=2} +∆1

∑

x∈Λ

1{η(x)=1} +∆2

∑

x∈Λ

1{η(x)=2}, (1.2)where (Λ−)⋆ = {(x, y) : x, y ∈ Λ−, |x − y| = 1} is the set of non-oriented bonds inside Λ−,
−U < 0 is the binding energy between neighboring parti
les of di�erent types inside Λ−, and
∆1 > 0 and ∆2 > 0 are the a
tivation energies of parti
les of type 1, respe
tively, type 2 inside
Λ. W.l.o.g. we will assume that

∆1 ≤ ∆2. (1.3)The Gibbs measure asso
iated with H is
µβ(η) =

1

Zβ
e−βH(η), η ∈ X , (1.4)where β ∈ (0,∞) is the inverse temperature, and Zβ is the normalizing partition sum.Kawasaki dynami
s is the 
ontinuous-time Markov pro
ess (ηt)t≥0 with state spa
e Xwhose transition rates are

cβ(η, η
′) =

{

e−β[H(η′)−H(η)]+ , η, η′ ∈ X , η ∼ η′,
0, otherwise, (1.5)(i.e., Metroplis rate w.r.t. βH), where η ∼ η′ means that η′ 
an be obtained from η and vi
eversa by one of the following moves:

• inter
hanging the states 0 ↔ 1 or 0 ↔ 2 at neighboring sites in Λ(�hopping of parti
les inside Λ�), 2



• 
hanging the state 0 → 1, 0 → 2, 1 → 0 or 2 → 0 at single sites in ∂−Λ(�
reation and annihilation of parti
les inside ∂−Λ�).This dynami
s is ergodi
 and reversible with respe
t to the Gibbs measure µβ. Note thatparti
les are preserved in Λ−, but 
an be 
reated and annihilated in ∂−Λ. Think of theparti
les entering and exiting Λ along non-oriented edges between ∂−Λ and ∂+Λ (where weallow only one edge for ea
h site in ∂−Λ). The pairs (η, η′) with η ∼ η′ are 
alled 
ommuni
ating
on�gurations, the transitions between them are 
alled allowed moves. Note that parti
les in
∂−Λ do not intera
t with parti
les anywhere in Λ.The dynami
s de�ned by (1.2) and (1.5) models the behavior inside Λ of a latti
e gas in
Z2, 
onsisting of two types of parti
les subje
t to random hopping with hard 
ore repulsionand with binding between di�erent neighboring types. We may think of Z2\Λ as an in�nitereservoir that keeps the parti
le densities inside Λ �xed at ρ1 = e−β∆1 and ρ2 = e−β∆2 . Inour model this reservoir is repla
ed by an open boundary ∂−Λ, where parti
les are 
reated andannihilated at a rate that mat
hes these densities. Consequently, our Kawasaki dynami
s is a�nite-state Markov pro
ess.Note that there is no binding energy between neighboring parti
les of the same type.Consequently, the model does not redu
e to Kawasaki dynami
s for one type of parti
le when
∆1 = ∆2.1.2 NotationTo identify the metastable region in Se
tion 1.3 and state our main theorems in Se
tion 1.4,we need some notation.De�nition 1.2.1 (a) ni(η) is the number of parti
les of type i = 1, 2 in η.(b) B(η) is the number of bonds in (Λ−)⋆ 
onne
ting neighboring parti
les of di�erent type in
η, i.e., the number of a
tive bonds in η.(
) A droplet is a maximal set of parti
les 
onne
ted by a
tive bonds.(d) � is the 
on�guration where Λ is empty, ⊞ is the 
on�guration where Λ is �lled as a
he
kerboard (see Remark 1.4.8 below).(e) ω : η → η′ is any path of allowed moves from η to η′.(f) τA = inf{t ≥ 0: ηt ∈ A, ∃ 0 < s < t : ηs /∈ A}, A ⊂ X , is the �rst hitting/return time of
A.(g) Pη is the law of (ηt)t≥0 given η0 = η.De�nition 1.2.2 (a) Φ(η, η′) is the 
ommuni
ation height between η, η′ ∈ X de�ned by

Φ(η, η′) = min
ω : η→η′

max
ξ∈ω

H(ξ), (1.6)and Φ(A,B) is its extension to non-empty sets A,B ⊂ X de�ned by
Φ(A,B) = min

η∈A,η′∈B
Φ(η, η′). (1.7)(b) S(η, η′) is the 
ommuni
ation level set between η and η′ de�ned by

S(η, η′) =

{

ζ ∈ X : ∃ω : η → η′, ω ∋ ζ : max
ξ∈ω

H(ξ) = H(ζ) = Φ(η, η′)

}

. (1.8)3



(
) Vη is the stability level of η ∈ X de�ned by
Vη = Φ(η,Iη)−H(η), (1.9)where Iη = {ξ ∈ X : H(ξ) < H(η)} is the set of 
on�gurations with energy lower than η.(d) Xstab = {η ∈ X : H(η) = minξ∈X H(ξ)} is the set of stable 
on�gurations, i.e., the set of
on�gurations with minimal energy.(e) Xmeta = {η ∈ X : Vη = maxξ∈X\Xstab

Vξ} is the set of metastable 
on�gurations, i.e., theset of non-stable 
on�gurations with maximal stability level.(f) Γ = Vη for η ∈ Xmeta (note that η 7→ Vη is 
onstant on Xmeta), Γ⋆ = Φ(�,⊞)−H(�) (notethat H(�) = 0).De�nition 1.2.3 (a) (η → η′)opt is the set of paths realizing the minimax in Φ(η, η′).(b) A set W ⊂ X is 
alled a gate for η → η′ if W ⊂ S(η, η′) and ω ∩ W 6= ∅ for all
ω ∈ (η → η′)opt.(
) A set W ⊂ X is 
alled a minimal gate for η → η′ if it is a gate for η → η′ and for any
W ′ ( W there exists an ω′ ∈ (η → η′)opt su
h that ω′ ∩W ′ = ∅.(d) A priori there may be several (not ne
essarily disjoint) minimal gates. Their union isdenoted by G(η, η′) and is 
alled the essential gate for (η → η′)opt. (The 
on�gurations in
S(η, η′)\G(η, η′) are 
alled dead-ends.)1.3 Metastable regionWe want to understand how the system tunnels from � to ⊞ when the former is a lo
alminimum and the latter is a global minimum of H. We begin by identifying the metastableregion, i.e., the region in parameter spa
e for whi
h this is the 
ase.Lemma 1.3.1 The 
ondition ∆1 + ∆2 < 4U is ne
essary and su�
ient for � to be a lo
alminimum but not a global minimum of H.Proof. Note that H(�) = 0. We know that � is a lo
al minimum of H, sin
e as soon as aparti
le enters Λ we obtain a 
on�guration with energy either ∆1 > 0 or ∆2 > 0. To showthat there is a 
on�guration η̂ with H(η̂) < 0, we write

H(η) = n1(η)∆1 + n2(η)∆2 −B(η)U. (1.10)Sin
e ∆1 ≤ ∆2, we may assume w.l.o.g. that n1(η) ≥ n2(η). Indeed, if n1(η) < n2(η), then wesimply take the 
on�guration η1⇔2 obtained from η by inter
hanging the types 1 and 2, i.e.,
η1⇔2(x) =











1 if η(x) = 2,

2 if η(x) = 1,

0 otherwise, (1.11)whi
h satis�es H(η1⇔2) ≤ H(η).Sin
e B(η) ≤ 4n2(η), we have
H(η) ≥ n1(η)∆1 + n2(η)∆2 − 4n2(η)U ≥ n2(η)(∆1 +∆2 − 4U). (1.12)Hen
e, if ∆1 + ∆2 ≥ 4U , then H(η) ≥ 0 for all η and H(�) = 0 is a global minimum. Onthe other hand, 
onsider a 
on�guration η̂ su
h that n1(η̂) = n2(η̂) and n1(η̂) + n2(η̂) = ℓ24



for some ℓ ∈ 2N. Arrange the parti
les of η̂ in a 
he
kerboard square of side length ℓ. Then astraightforward 
omputation gives
H(η̂) = 1

2ℓ
2∆1 +

1
2ℓ

2∆2 − 2ℓ(ℓ− 1)U, (1.13)and so
H(η̂) < 0 ⇐⇒ ℓ2(∆1 +∆2) < 4ℓ(ℓ− 1)U ⇐⇒ ∆1 +∆2 < (4− 4ℓ−1)U. (1.14)Hen
e, if ∆1 +∆2 < 4U , then there exists an ℓ̄ ∈ 2N su
h that H(η̂) < 0 for all ℓ ∈ 2N with

ℓ ≥ ℓ̄. Here, Λ must be taken large enough, so that a droplet of size ℓ̄ �ts inside Λ−. �Note that Γ⋆ = Γ⋆(U,∆1,∆2) ∈ (0,∞) be
ause of Lemma 1.3.1.Within the metastable region ∆1 + ∆2 < 4U , we may as well ex
lude the subregion
∆1,∆2 < U (see Fig. 1). In this subregion, ea
h time a parti
le of type 1 enters Λ andatta
hes itself to a parti
le of type 2 in the droplet, or vi
e versa, the energy goes down.Consequently, the �
riti
al droplet� for the transition from � to ⊞ 
onsists of only two freeparti
les, one of type 1 and one of type 2. Therefore this subregion does not exhibit propermetastable behavior.

Figure 1: Proper metastable region.1.4 Main theoremsTheorems 1.4.3�1.4.5 below will be proved in the metastable region subje
t to the followinghypotheses:(H1) Xstab = ⊞.(H2) There exists a V ⋆ < Γ⋆ su
h that Vη ≤ V ⋆ for all η ∈ X\{�,⊞}.The third hypothesis 
onsists of three parts 
hara
terizing the entran
e set of G(�,⊞), theset of 
riti
al droplets, and the exit set of G(�,⊞). To formulate this hypothesis some furtherde�nitions are needed.De�nition 1.4.1 (a) C⋆
bd is the minimal set of 
on�gurations in G(�,⊞) su
h that all pathsin (� → ⊞)opt enter G(�,⊞) through C⋆

bd.(b) P is the set of 
on�gurations visited by these paths just prior to their �rst entran
e of
G(�,⊞). 5



(H3-a) Every η̂ ∈ P 
onsists of a single droplet somewhere in Λ−. This single droplet �ts insidean L⋆ × L⋆ square somewhere in Λ− for some L⋆ ∈ N large enough that is independentof η̂ and Λ. Every η ∈ C⋆
bd 
onsists of a single droplet η̂ ∈ P and a free parti
le of type

2 somewhere in ∂−Λ.De�nition 1.4.2 (a) C⋆
att is the set of 
on�gurations obtained from P by atta
hing a parti
leof type 2 to the single droplet, and de
omposes as C⋆

att = ∪η̂∈PC
⋆
att(η̂).(b) C⋆ is the set of 
on�gurations obtained from P by adding a parti
le of type 2 somewhere in

Λ, and de
omposes as C⋆ = ∪η̂∈PC
⋆(η̂).Note that Γ⋆ = H(C⋆\C⋆

att) = H(P) + ∆2, and that C⋆ 
onsists of pre
isely those 
on�g-urations �interpolating� between P and C⋆
att: a free parti
le of type 2 enters ∂−Λ and movesto the single droplet where it atta
hes itself via an a
tive bond. Think of P as the set of
on�gurations where the dynami
s is �almost over the hill�, of C⋆ as the set of 
on�gurationswhere the dynami
s is �on top of the hill�, and of the free parti
le as �a
hieving the 
rossover�when it atta
hes itself properly to the single droplet (the meaning of the word properly willbe
ome 
lear in Se
tion 2.4).The set P is referred to as the set of proto
riti
al droplets. We write N⋆ to denote the
ardinality of P modulo shifts of the droplet. The set C⋆\C⋆

att is referred to as the set of 
riti
aldroplets.(H3-b) All transitions from C⋆ that either add a parti
le in Λ or in
rease the number of droplets(by breaking an a
tive bond) lead to energy > Γ⋆.(H3-
) All ω ∈ (C⋆
bd → ⊞)opt pass through C⋆

att. For every η̂ ∈ P there exists a ζ ∈ C⋆
att(η̂) su
hthat Φ(ζ,⊞) < Γ⋆.We are now ready to state our main theorems subje
t to (H1)�(H3).Theorem 1.4.3 (a) limβ→∞ P�(τC⋆

bd
< τ⊞ | τ⊞ < τ�) = 1.(b) limβ→∞ P�(ητC⋆

bd
= ζ) = 1/|C⋆

bd| for all ζ ∈ C⋆
bd.Theorem 1.4.4 There exists a 
onstant K = K(Λ;U,∆1,∆2) ∈ (0,∞) su
h that

lim
β→∞

e−βΓ⋆

E�(τ⊞) = K. (1.15)Moreover,
K ∼

1

N⋆

log |Λ|

4π|Λ|
as Λ → Z2. (1.16)Theorem 1.4.5 limβ→∞ P�(τ⊞/E�(τ⊞) > t) = e−t for all t ≥ 0.We 
lose this se
tion with a few remarks.Remark 1.4.6 The free parti
le in (H3-a) is of type 2 only when ∆1 < ∆2. If ∆1 = ∆2(re
all (1.3)), then the free parti
le 
an be of type 1 or 2. Indeed, for ∆1 = ∆2 there is fullsymmetry of S(�,⊞) under the map 1 ⇔ 2 de�ned in (1.11).6



Remark 1.4.7 We will see in Se
tion 1.6 that (H1�H2) imply that
(Xmeta,Xstab) = (�,⊞), Γ = Γ⋆. (1.17)Remark 1.4.8 We will see in [17℄ that, depending on the shape of Λ and the 
hoi
e of

U,∆1,∆2, Xstab may a
tually 
onsist of more than the single 
on�guration ⊞, namely, it may
ontain 
on�gurations that di�er from ⊞ in ∂−Λ. Sin
e this boundary e�e
t does not a�e
tour main theorems, we will ignore it here. A pre
ise des
ription of Xstab will be given in [17℄.Moreover, depending on the 
hoi
e of U,∆1,∆2, large droplets with minimal energy tend tohave a shape that is either square-shaped or rhombus-shaped. Therefore it turns out to beexpedient to 
hoose Λ to have the same shape. Details will be given in [17℄.Remark 1.4.9 As we will see in Se
tion 2.4, the value ofK is given by a non-trivial variationalformula involving the set of all 
on�gurations where the dynami
s 
an enter and exit C⋆. Thisset in
ludes not only the border of the �Γ⋆-valleys� around � and ⊞, but also the borderof �wells� inside the energy plateau C⋆ that have energy < Γ⋆ but 
ommuni
ation height Γ⋆towards both � and ⊞. It 
ontains P, C⋆
att and possibly more, as we will see in [18℄ (forKawasaki dynami
s with one type of parti
le this was shown in Bovier, den Hollander andNardi [6℄, Se
tion 2.3.2). As a result of this geometri
 
omplexity, for �nite Λ only upper andlower bounds are known for K. What (1.16) says is that these bounds merge and simplifyin the limit as Λ → Z2 (after the limit β → ∞ has already been taken), and that for theasymptoti
s only the simpler quantity N⋆ matters rather than the full geometry of 
riti
aland near 
riti
al droplets. We will see in Se
tion 2.4 that, apart from the uniformity propertyexpressed in Theorem 1.4.3(b), the reason behind this simpli�
ation is the fa
t that simplerandom walk (the motion of the free parti
le) is re
urrent on Z2.1.5 Dis
ussion1. Theorem 1.4.3(a) says that C⋆ is a gate for the nu
leation, i.e., on its way from � to ⊞the dynami
s passes through C⋆. Theorem 1.4.3(b) says that all proto
riti
al droplets andall lo
ations of the free parti
le in ∂−Λ are equally likely to be seen upon �rst entran
e in

G(�,⊞). Theorem 1.4.4 says that the average nu
leation time is asymptoti
 to KeΓβ, whi
his the 
lassi
al Arrhenius law, and it identi�es the asymptoti
s of the prefa
tor K in the limitas Λ be
omes large. Theorem 1.4.5, �nally, says that the nu
leation time is exponentiallydistributed on the s
ale of its average.2. Theorems 1.4.3�1.4.5 are model-independent, i.e., they are expe
ted to hold in the sameform for a large 
lass of sto
hasti
 dynami
s in a �nite box at low temperature exhibitingmetastable behavior. So far this universality has been veri�ed for only a handful of examples,in
luding Kawasaki dynami
s with one type of parti
le (see also item 4 below). In Se
tion 2we will see that (H1)�(H3) are the minimal hypotheses needed for metastable behavior, inthe sense that any relative of Kawasaki dynami
s for whi
h Theorems 1.4.3�1.4.5 hold mustsatisfy (H1)�(H3) (in
luding multi-type Kawasaki dynami
s).The model-dependent ingredient of Theorems 1.4.3�1.4.5 is the triple
(Γ⋆, C⋆, N⋆). (1.18)This triple depends on the parameters U,∆1,∆2 in a manner that will be identi�ed in [17℄ and[18℄. The set C⋆ also depends on Λ, but in su
h a way that |C⋆| ∼ N⋆|Λ| as Λ → Z2, with the7



error 
oming from boundary e�e
ts. Clearly, Λ must be taken large enough so that 
riti
aldroplets �t inside (i.e., Λ must 
ontain an L⋆ × L⋆ square with L⋆ as in (H3-a)).

Figure 2: Subregion of the proper metastable region 
onsidered in [17℄ and [18℄.3. In [17℄ and [18℄, we will prove (H1)�(H3), identify (Γ⋆, C⋆, N⋆) and derive an upper boundon V ⋆ in the subregion of the proper metastable region given by (see Fig. 2)
∆1 < U, ∆2 −∆1 > 2U. (1.19)More pre
isely, in [17℄ we will prove (H1), identify Γ⋆, show that V ⋆ ≤ 10U−∆1, and 
on
ludethat (H2) holds as soon as Γ⋆ > 10U −∆1, whi
h poses further restri
tions on U,∆1,∆2 ontop of (1.19). In [17℄ we will also see that it would be possible to show that V ⋆ ≤ 4U + ∆1provided 
ertain boundary e�e
ts (arising when a droplet sits 
lose to ∂−Λ or when two or moredroplets are 
lose to ea
h other) 
ould be 
ontrolled. Sin
e it will turn out that Γ⋆ > 4U +∆1throughout the region (1.19), this upper bound would settle (H2) without further restri
tionson U,∆1,∆2. In [18℄ we will prove (H3) and identify C⋆, N⋆.The simplifying features of (1.19) are the following: ∆1 < U implies that ea
h time aparti
le of type 1 enters Λ and atta
hes itself to a parti
le of type 2 in the droplet the energygoes down, while ∆2 −∆1 > 2U implies that no parti
le of type 2 sits on the boundary of adroplet that has minimal energy given the number of parti
les of type 2 in the droplet. We
onje
ture that (H1)�(H3) hold throughout the proper metastable region (see Fig. 1). However,as we will see in [17℄ and [18℄, (Γ⋆, C⋆, N⋆) is di�erent when ∆1 > U 
ompared to when ∆1 < U(be
ause the 
riti
al droplets are square-shaped, respe
tively, rhombus-shaped).4. Theorems 1.4.3�1.4.5 generalize what was obtained for Kawasaki dynami
s with one type ofparti
le in den Hollander, Olivieri and S
oppola [16℄, and Bovier, den Hollander and Nardi [6℄.In these papers, the analogues of (H1)�(H3) were proved, (Γ⋆, C⋆, N⋆) was identi�ed, andbounds on K were derived that be
ome sharp in the limit as Λ → Z2. What makes the modelwith one type of parti
le more tra
table is that the sto
hasti
 dynami
s follows a skeleton ofsub
riti
al droplets that are squares or quasi-squares, as a result of a standard isoperimetri
inequality for two-dimensional droplets. For the model with two types of parti
les this tool isno longer appli
able and the geometry is mu
h harder, as will be
ome 
lear in [17℄ and [18℄.Similar results hold for Ising spins subje
t to Glauber dynami
s, as shown in Neves andS
honmann [21℄, and Bovier and Manzo [8℄. For this system, K has a simple expli
it form.8



Theorems 1.4.3�1.4.5 are 
lose in spirit to the extension for Glauber dynami
s when an alter-nating external �eld is in
luded, as 
arried out in Nardi and Olivieri [19℄, and to the extensionfor Kawakasi dynami
s with one type of parti
le when the intera
tion between parti
les isdi�erent in the horizontal and the verti
al dire
tion, as 
arried out in Nardi, Olivieri andS
oppola [20℄.Our results 
an in prin
iple be extended from Z2 to Z3. For one type of parti
le thisextension was a
hieved in den Hollander, Nardi, Olivieri and S
oppola [15℄, and Bovier, denHollander and Nardi [6℄. For one type of parti
le the geometry of the 
riti
al droplet is more
omplex in Z3 than in Z2. This will also be the 
ase for two types of parti
les, and hen
e itwill be hard to identify C⋆ and N⋆. Again, only upper and lower bounds 
an be derived for
K. Moreover, sin
e simple random walk on Z3 is transient, these bounds do not merge in thelimit as Λ → Z3. For Glauber dynami
s the extension from Z2 to Z3 was a
hieved in BenArous and Cerf [1℄, and Bovier and Manzo [8℄, and K again has a simple expli
it form.5. In Gaudillière, den Hollander, Nardi, Olivieri and S
oppola [9℄, [10℄, [11℄, and Bovier, denHollander and Spitoni [7℄, the result for Kawasaki dynami
s (with one type of parti
le) ona �nite box with an open boundary obtained in den Hollander, Olivieri and S
oppola [16℄and Bovier, den Hollander and Nardi [6℄ have been extended to Kawasaki dynami
s (withone type of parti
le) on a large box Λ = Λβ with a 
losed boundary. The volume of Λβ growsexponentially fast with β, so that Λβ itself a
ts as a gas reservoir for the growing and shrinkingof sub
riti
al droplets. The fo
us is on the time of the �rst appearan
e of a 
riti
al dropletanywhere in Λβ. It turns out that the nu
leation time in Λβ roughly equals the nu
leationtime in a �nite box Λ divided by the volume of Λβ, i.e., spatial entropy enters into the game.A 
hallenge is to derive a similar result for Kawasaki dynami
s with two types of parti
les.6. The model in the present paper 
an be extended by introdu
ing three binding energies
U11, U22, U12 < 0 for the three di�erent pairs of types that 
an o

ur in a pair of neigh-boring parti
les. Clearly, this will further 
ompli
ate the analysis, and 
onsequently both
(Xmeta,Xstab) and (Γ⋆, C⋆, N⋆) will in general be di�erent. The model is interesting even when
∆1,∆2 < 0 and U < 0, sin
e this 
orresponds to a situation where the in�nite gas reservoir isvery dense and tends to push parti
les into the box. When ∆1 < ∆2, parti
les of type 1 tendto �ll Λ before parti
les of type 2 appear, but this is not the 
on�guration of lowest energy.Indeed, if ∆2−∆1 < 4U , then the binding energy is strong enough to still favor 
on�gurationswith a 
he
kerboard stru
ture (modulo boundary e�e
ts). Identifying (Γ⋆, C⋆, N⋆) seems a
ompli
ated task.1.6 Consequen
es of (H1)�(H3)Lemmas 1.6.1�1.6.4 below are immediate 
onsequen
es of (H1)�(H3) and will be needed in theproof of Theorems 1.4.3�1.4.5 in Se
tion 2.Lemma 1.6.1 (H1)�(H2) imply that V� = Γ⋆.Proof. By De�nitions 1.2.2(
�f) and (H1), ⊞ ∈ I�, whi
h implies that V� ≤ Γ⋆. We showthat (H2) implies V� = Γ⋆. The proof is by 
ontradi
tion. Suppose that V� < Γ⋆. Then, byDe�nition 1.2.2(
) and (H2), there exists an η ∈ I�\⊞ su
h that Φ(�, η) −H(�) < Γ⋆. But,by (H2) and the �niteness of X , there exist an m ∈ N and a sequen
e η0, . . . , ηm ∈ X with9



η0 = η and ηm = ⊞ su
h that ηi+1 ∈ Iηi and Φ(ηi, ηi+1) ≤ H(ηi) + V ⋆ for i = 0, . . . ,m − 1.Therefore
Φ(η,⊞) ≤ max

i=0,...,m−1
Φ(ηi, ηi+1) ≤ max

i=0,...,m−1
[H(ηi) + V ⋆] = H(η) + V ⋆ < H(�) + Γ⋆, (1.20)where in the �rst inequality we use that

Φ(η, σ) ≤ max{Φ(η, ξ), Φ(ξ, σ)} ∀ η, σ, ξ ∈ X , (1.21)and in the last inequality that η ∈ I� and V ⋆ < Γ⋆. It follows that
Γ⋆ = Φ(�,⊞)−H(�) ≤ max{Φ(�, η), Φ(η,⊞)} −H(�) < Γ⋆, (1.22)whi
h is a 
ontradi
tion. �Lemma 1.6.2 (H2) implies that Φ(η, {�,⊞}) −H(η) ≤ V ⋆ for all η ∈ X\{�,⊞}.Proof. Fix η ∈ X\{�,⊞}. By (H2) and the �niteness of X , there exist an m ∈ N and asequen
e η0, . . . , ηm ∈ X with η0 = η and ηm ∈ {�,⊞} su
h that ηi+1 ∈ Iηi and Φ(ηi, ηi+1) ≤

H(ηi)+V ⋆ for i = 0, . . . ,m− 1. Therefore, as in (1.20), we get Φ(η, {�,⊞}) ≤ H(η)+V ⋆. �Lemma 1.6.3 (H1)�(H2) imply that H(η) > H(�) for all η ∈ X\� su
h that Φ(η,�) ≤
Φ(η,⊞).Proof. By (H1), ⊞ ∈ Iη for all η 6= ⊞. The proof is by 
ontradi
tion. Fix η ∈ X\�and suppose that H(η) ≤ H(�) = 0. Then � /∈ Iη. By (H2) and the �niteness of X ,there exist an m ∈ N and a sequen
e η0, . . . , ηm ∈ X with η0 = η and ηm = ⊞ su
h that
ηi+1 ∈ Iηi and Φ(ηi, ηi+1) ≤ H(ηi) + V ⋆ for i = 0, . . . ,m − 1. Therefore, as in (1.20), we get
Φ(η,⊞) ≤ H(η) + V ⋆ ≤ H(�) + V ⋆ < H(�) + Γ⋆. Hen
e

Γ⋆ = Φ(�,⊞)−H(�) ≤ max{Φ(�, η),Φ(η,⊞)} −H(�)

= max{Φ(η,�),Φ(η,⊞)} −H(�) = Φ(η,⊞)−H(�) < Γ⋆,
(1.23)whi
h is a 
ontradi
tion. �Lemma 1.6.4 (H3a), (H3-
) and De�nition 1.4.2(a) imply that for every η ∈ C⋆

att all paths in
(η → �)opt pass through C⋆

bd.Proof. Let η be any 
on�guration in C⋆
att. Then, by (H3-a) and De�nition 1.4.2(a), there is a
on�guration ξ, 
onsisting of a single proto
riti
al droplet, say, D and a free parti
le (of type

2) next to the border of D, su
h that η is obtained from ξ in a single move: the free parti
leatta
hes itself somewhere to D. Now, 
onsider any path starting at η, ending at �, and notex
eeding energy level Γ⋆. The reverse of this path, starting at � and ending at η, 
an beextended by the single move from η to ξ to obtain a path from � to ξ that is also not ex
eedingenergy level Γ⋆. Moreover, this path 
an be further extended from ξ to ⊞ without ex
eedingenergy level Γ⋆ as well. To see the latter, note that, by (H3-
), there is some lo
ation x on theborder of D su
h that the 
on�guration ζ ∈ C⋆
att 
onsisting of D with the free parti
le atta
hedat x is su
h that there is a path from ζ to ⊞ that stays below energy level Γ⋆. Furthermore,10



we 
an move from ξ (with H(ξ) = Γ⋆) to ζ (with H(ζ) < Γ⋆) at 
onstant energy level Γ⋆,dropping below Γ⋆ only at ζ, simply by moving the free parti
le to x without letting it hit ∂−Λ.(By (H3-a), there is room for the free parti
le to do so be
ause D �ts inside an L⋆×L⋆ squaresomewhere in Λ−. Even when D tou
hes ∂−Λ the free parti
le 
an still avoid ∂−Λ, be
ause
x 
an never be in ∂−Λ: parti
les in ∂−Λ do not intera
t with parti
les in Λ−.) The resultingpath from � to ⊞ (via η, ξ and ζ) is a path in (� → ⊞)opt. However, by De�nition 1.4.1(a),any path in (� → ⊞)opt must hit C⋆

bd. Hen
e, the pie
e of the path from η to � must hit C⋆
bd,be
ause the pie
e of the path from η to ⊞ (via ξ and ζ) does not. �2 Proof of main theoremsIn this se
tion we prove Theorems 1.4.3�1.4.5 subje
t to hypotheses (H1)�(H3). Se
tions 2.1�2.3 introdu
e the basi
 ingredients, while Se
tions 2.4�2.6 provide the proofs.We will follow the potential-theoreti
 argument that was used in Bovier, den Hollander andNardi [6℄ for Kawasaki dynami
s with one type of parti
le. In fa
t, we will see that (H1)�(H3)are the minimal assumptions needed to prove Theorems 1.4.3�1.4.5.2.1 Diri
hlet form and 
apa
ityThe key ingredient of the potential-theoreti
 approa
h to metastability is the Diri
hlet form

Eβ(h) =
1
2

∑

η,η′∈X

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2, h : X → [0, 1], (2.1)where µβ is the Gibbs measure de�ned in (1.4) and cβ is the kernel of transition rates de�nedin (1.5). Given a pair of non-empty disjoint sets A,B ⊂ X , the 
apa
ity of the pair A,B isde�ned by

CAPβ(A,B) = min
h : X→[0,1]

h|A≡1,h|B≡0

Eβ(h), (2.2)where h|A ≡ 1 means that h(η) = 1 for all η ∈ A and h|B ≡ 0 means that h(η) = 0 for all
η ∈ B. The unique minimizer h⋆A,B of (2.2), 
alled the equilibrium potential of the pair A,B,is given by

h⋆A,B(η) = Pη(τA < τB), η ∈ X\(A ∪ B), (2.3)and is the solution of the equation
(cβh)(η) = 0, η ∈ X\(A ∪ B),

h(η) = 1, η ∈ A,

h(η) = 0, η ∈ B,

(2.4)with (cβh)(η) =
∑

η′∈X cβ(η, η
′)h(η′). Moreover,

CAPβ(A,B) =
∑

η∈A

µβ(η) cβ(η,X\η)Pη(τB < τA) (2.5)with cβ(η,X\η) =
∑

η′∈X\η cβ(η, η
′) the rate of moving out of η. This rate enters be
ause τAis the �rst hitting time of A after the initial 
on�guration is left (re
all De�nition 1.2.1(f)).Note that the reversibility of the dynami
s and (2.1�2.2) imply

CAPβ(A,B) = CAPβ(B,A). (2.6)11



The following lemma establishes bounds on the 
apa
ity of two disjoint sets. These boundsare referred to as a priori estimates and will serve as the starting point for more re�nedestimates later on.Lemma 2.1.1 For every pair of non-empty disjoint sets A,B ⊂ X there exist 
onstants 0 <
C1 ≤ C2 < ∞ (depending on Λ and A,B) su
h that

C1 ≤ eβΦ(A,B)ZβCAPβ(A,B) ≤ C2 ∀ β ∈ (0,∞). (2.7)Proof. The proof is given in [6℄, Lemma 3.1.1. We repeat it here, be
ause it uses basi
properties of 
ommuni
ation heights that provide useful insight.Upper bound: The upper bound is obtained from (2.2) by pi
king h = 1K(A,B) with
K(A,B) = {η ∈ X : Φ(η,A) ≤ Φ(η,B)}. (2.8)The key observation is that if η ∼ η′ with η ∈ K(A,B) and η′ ∈ X\K(A,B), then

(1) H(η′) < H(η),
(2) H(η) ≥ Φ(A,B).

(2.9)To see (1), suppose that H(η′) ≥ H(η). Clearly,
H(η′) ≥ H(η) ⇐⇒ Φ(η′,F) = Φ(η,F) ∨H(η′) ∀F ⊂ X . (2.10)But η ∈ K(A,B) tells us that Φ(η,A) ≤ Φ(η,B), hen
e Φ(η′,A) ≤ Φ(η′,B) by (2.10), andhen
e η′ ∈ K(A,B), whi
h is a 
ontradi
tion.To see (2), note that (1) implies the reverse of (2.10):
H(η) ≥ H(η′) ⇐⇒ Φ(η,F) = Φ(η′,F) ∨H(η) ∀F ⊂ X . (2.11)Trivially, Φ(η,B) ≥ H(η). We 
laim that equality holds. Indeed, suppose that equality fails.Then we get

H(η) < Φ(η,B) = Φ(η′,B) < Φ(η′,A) = Φ(η,A), (2.12)where the equalities 
ome from (2.11), while the se
ond inequality uses that η′ ∈ X\K(A,B).Thus, Φ(η,A) > Φ(η,B), whi
h 
ontradi
ts η ∈ K(A,B). From Φ(η,B) = H(η) we obtain
Φ(A,B) ≤ Φ(A, η) ∨ Φ(η,B) = Φ(η,B) = H(η), whi
h proves (2).Combining (2.9) with (1.4�1.5) and using reversibility, we �nd that

µβ(η)cβ(η, η
′) ≤

1

Zβ
e−βΦ(A,B) ∀ η ∈ K(A,B), η′ ∈ X\K(A,B), η ∼ η′. (2.13)Hen
e

CAPβ(A,B) ≤ Eβ(1K(A,B)) ≤ C2
1

Zβ
e−βΦ(A,B) (2.14)with C2 = |{(η, η′) ∈ X 2 : η ∈ K(A,B), η′ ∈ X\K(A,B), η ∼ η′}|.Lower bound: The lower bound is obtained by pi
king any path ω = (ω0, ω1, . . . , ωL) thatrealizes the minimax in Φ(A,B) and ignoring all the transitions that are not in this path, i.e.,

CAPβ(A,B) ≥ min
h : ω→[0,1]

h(ω0)=1,h(ωL)=0

Eω
β (h), (2.15)12



where the Diri
hlet form Eω
β is de�ned as Eβ in (2.1) but with X repla
ed by ω. Due to theone-dimensional nature of the set ω, the variational problem in the right-hand side 
an besolved expli
itly by elementary 
omputations. One �nds that the minimum equals

M =

[

L−1
∑

l=0

1

µβ(ωl)cβ(ωl, ωl+1)

]−1

, (2.16)and is uniquely attained at h given by
h(ωl) = M

l−1
∑

k=0

1

µβ(ωk)cβ(ωk, ωk+1)
, l = 0, 1, . . . , L. (2.17)We thus have

CAPβ(A,B) ≥ M

≥
1

L
min

l=0,1,...,L−1
µβ(ωl)cβ(ωl, ωl+1)

=
1

K

1

Zβ
min

l=0,1,...,L−1
e−β[H(ωl)∨H(ωl+1)]

= C1
1

Zβ
e−βΦ(A,B)

(2.18)
with C1 = 1/L. �2.2 Graph stru
ture of the energy lands
apeView X as a graph whose verti
es are the 
on�gurations and whose edges 
onne
t 
ommuni-
ating 
on�gurations, i.e., (η, η′) is an edge if and only if η ∼ η′. De�ne� X ⋆ is the subgraph of X obtained by removing all verti
es η with H(η) > Γ⋆ and alledges in
ident to these verti
es;� X ⋆⋆ is the subgraph of X ⋆ obtained by removing all verti
es η with H(η) = Γ⋆ and alledges in
ident to these verti
es;� X� and X⊞ are the 
onne
ted 
omponents of X ⋆⋆ 
ontaining � and ⊞, respe
tively.Lemma 2.2.1 The sets X� and X⊞ are disjoint (and hen
e are dis
onne
ted in X ⋆⋆), and

X� = {η ∈ X : Φ(η,�) < Φ(η,⊞) = Γ⋆},

X⊞ = {η ∈ X : Φ(η,⊞) < Φ(η,�) = Γ⋆}.
(2.19)Moreover, P ⊂ X�, and C⋆

att(η̂) ∩ X⊞ 6= ∅ for all η̂ ∈ P.Proof. By De�nition 1.2.2(f), all paths 
onne
ting � and ⊞ rea
h energy level ≥ Γ⋆. Therefore
X� and X⊞ are dis
onne
ted in X ⋆⋆ (be
ause X ⋆⋆ does not 
ontain verti
es with energy ≥ Γ⋆).First note that, by (H2) and (1.21), Γ⋆ = Φ(�,⊞) ≤ max{Φ(η,�), Φ(η,⊞)} ≤ Γ⋆, andhen
e either Φ(η,�) = Γ⋆ or Φ(η,⊞) = Γ⋆ or both. To 
he
k the �rst line of (2.19) we argueas follows. For any η ∈ X�, we have H(η) < Γ⋆ (be
ause X� ⊂ X ⋆⋆) and Φ(η,�) < Γ⋆(be
ause X is 
onne
ted). Conversely, let η be su
h that Φ(η,�) < Γ⋆. Then H(η) < Γ⋆,13



hen
e η ∈ X ⋆⋆, and there is a path 
onne
ting η and � that stays below energy level Γ⋆.Therefore η belongs to the 
onne
ted 
omponent of X ⋆⋆ 
ontaining �, i.e., η ∈ X�. These
ond line of (2.19) is 
he
ked in an analogous manner.To prove that P ⊂ X�, we must show that Φ(�, η̂) < Γ⋆ for all η̂ ∈ P. Pi
k any η̂ ∈ P,and let η ∈ C⋆
bd be any 
on�guration obtained from η̂ by adding a parti
le of type 2 somewherein ∂−Λ. Denote by Ω(η) the set of optimal paths from � to ⊞ that enter G(�,⊞) via η(note that this set is non-empty be
ause C⋆

bd is a minimal gate by De�nition 1.4.1(a)). ByDe�nition 1.4.1(b), ωi ∈ Ω(η) visits η̂ before η for all i ∈ 1, . . . , |Ω(η)|. The proof pro
eedsvia 
ontradi
tion. Suppose that maxσ∈ωi\Si(η) H(σ) = Γ⋆ for all i ∈ 1, . . . , |Ω(η)|, where Si(η)
onsists of η and all its su

essors in ωi. Let σ⋆
i (η) be the last 
on�guration σ ∈ ωi\Si(η)su
h that H(σ) = Γ⋆, and put L(η) = {σ⋆

1(η), . . . , σ
⋆
|Ω(η)|(η)}. Then the set (C⋆

bd\η) ∪ L(η) isa minimal gate. But ωi hits σ⋆
i (η) before η, and so this 
ontradi
ts the fa
t that C⋆

bd is theentran
e set of G(�,⊞).The 
laim that C⋆
att(η̂) ∩ X⊞ 6= ∅ for all η̂ ∈ P is immediate from (H3-
). �We now have all the geometri
 ingredients that are ne
essary for the proof of Theo-rems 1.4.3�1.4.5 along the lines of [6℄, Se
tion 3. Our hypotheses (H1)�(H3) repla
e thesomewhat deli
ate and model-dependent geometri
 analysis for Kawasaki dynami
s with onetype of parti
le that was 
arried out in [6℄, Se
tion 2. They are the minimal hypotheses thatare ne
essary to 
arry out the proof below. Their veri�
ation will be given in [17℄ and [18℄.2.3 Metastable set, link between average nu
leation time and 
apa
ityBovier, E
kho�, Gayrard and Klein [5℄ de�ne metastable sets in terms of 
apa
ities:De�nition 2.3.1 A non-empty set A ⊂ X is 
alled metastable if

lim
β→∞

maxη/∈A µβ(η)/CAPβ(η,A)

minη∈A µβ(η)/CAPβ(η,A\η)
= 0. (2.20)In order to apply the theory in [5℄, we need the following.Lemma 2.3.2 The set {�,⊞} is metastable in the sense of De�nition 2.3.1.Proof. By (1.4), Lemma 1.6.2 and the lower bound in (2.7), the numerator is bounded fromabove by eV

⋆β/C1 = e(Γ
⋆−δ)β/C1 for some δ > 0. By (1.4), the de�nition of Γ⋆ and the upperbound in (2.7), the denominator is bounded from below by eΓ

⋆β/C2 (with the minimum beingattained at �). �Lemma 2.3.2 has an important 
onsequen
e:Lemma 2.3.3 E�(τ⊞) = [ZβCAPβ(�,⊞)]−1 [1 + o(1)] as β → ∞.Proof. A

ording to [5℄, Theorem 1.3(i), we have
E�(τ⊞) =

µβ(R�)

CAPβ(�,⊞)
[1 + o(1)] as β → ∞, (2.21)14



where
R� =

{

η ∈ X : Pη(τ� < τ⊞) ≥ Pη(τ⊞ < τ�)
}

. (2.22)Re
alling (2.3), we 
an rewrite (2.22) as R� = {η ∈ X : h⋆
�,⊞(η) ≥ 1

2}. It follows fromLemma 2.4.1 below that
lim
β→∞

min
η∈X�

h⋆�,⊞(η) = 1, lim
β→∞

max
η∈X⊞

h⋆�,⊞(η) = 0. (2.23)Hen
e, for β large enough,
X� ⊂ R� ⊂ X\X⊞. (2.24)By Lemma 2.2.1, the se
ond in
lusion implies that Φ(η,�) ≤ Φ(η,⊞) for all η ∈ R�. ThereforeLemma 1.6.3 yields

min
η∈R�\�

H(η) > H(�) = 0, (2.25)whi
h implies that µβ(R�)/µβ(�) = 1 + o(1). Sin
e µβ(�) = 1/Zβ , the 
laim follows. �Lemma 2.3.3 shows that the proof of Theorem 1.4.4 revolves around getting sharp boundson ZβCAPβ(�,⊞). The a priori estimates in Lemma 2.1.1 serve as a jump board for thederivation of these bounds.2.4 Proof of Theorem 1.4.4Our starting point is Lemma 2.3.3. Re
alling (2.1�2.3), our task is to show that
ZβCAPβ(�,⊞) = 1

2

∑

η,η′∈X

Zβµβ(η)cβ(η, η
′) [h⋆�,⊞(η)− h⋆�,⊞(η

′)]2

= [1 + o(1)]Θ e−Γ⋆β as β → ∞,

(2.26)and to identify the 
onstant Θ, sin
e (2.26) will imply (1.15) with Θ = 1/K. This is done infour steps, organized in Se
tions 2.4.1�2.4.4.2.4.1 Step 1: Triviality of h⋆
�,⊞ on X�, X⊞ and X ⋆⋆\(X� ∪ X⊞)For all η ∈ X\X ⋆ we have H(η) > Γ⋆, and so there exists a δ > 0 su
h that Zβµβ(η) ≤

e−(Γ⋆+δ)β . Therefore, we 
an repla
e X by X ⋆ in the sum in (2.26) at the 
ost of a prefa
tor
1 +O(e−δβ). Moreover, we have the following analogue of [6℄, Lemma 3.3.1.Lemma 2.4.1 There exist C < ∞ and δ > 0 su
h that

min
η∈X�

h⋆
�,⊞(η) ≥ 1− Ce−δβ , max

η∈X⊞

h⋆
�,⊞(η) ≤ Ce−δβ , ∀ β ∈ (0,∞). (2.27)Proof. A standard renewal argument gives the relations, valid for η /∈ {�,⊞},

Pη(τ⊞ < τ�) =
Pη(τ⊞ < τ�∪η)

1− Pη(τ�∪⊞ > τη)
, Pη(τ� < τ⊞) =

Pη(τ� < τ⊞∪η)

1− Pη(τ�∪⊞ > τη)
. (2.28)For η ∈ X�\�, we estimate

h⋆�,⊞(η) = 1− Pη(τ⊞ < τ�) = 1−
Pη(τ⊞ < τ�∪η)

Pη(τ�∪⊞ < τη)
≥ 1−

Pη(τ⊞ < τη)

Pη(τ� < τη)
(2.29)15



and, with the help of (2.5) and Lemma 2.1.1,
Pη(τ⊞ < τη)

Pη(τ� < τη)
=

Zβ CAPβ(η,⊞)

Zβ CAPβ(η,�)
≤ C(η) e−[Φ(η,⊞)−Φ(η,�)]β ≤ C(η) e−δβ , (2.30)whi
h proves the �rst 
laim with C = maxη∈X�\� C(η). Note that h⋆

�,⊞(�) is a 
onvex
ombination of h⋆
�,⊞(η) with η ∈ X�\�, and so the 
laim in
ludes η = �.For η ∈ X⊞\⊞, we estimate
h⋆
�,⊞(η) = Pη(τ� < τ⊞) =

Pη(τ� < τ⊞∪η)

Pη(τ�∪⊞ < τη)
≤

Pη(τ� < τη)

Pη(τ⊞ < τη)
(2.31)and, with the help of (2.5) and Lemma 2.1.1,

Pη(τ� < τη)

Pη(τ⊞ < τη)
=

Zβ CAPβ(η,�)

Zβ CAPβ(η,⊞)
≤ C(η) e−[Φ(η,�)−Φ(η,⊞)]β ≤ C(η) e−δβ , (2.32)whi
h proves the se
ond 
laim with C = maxη∈X⊞\⊞C(η). �In view of Lemma 2.4.1, h⋆

�,⊞ is trivial on the set X�∪X⊞, and its 
ontribution to the sumin (2.26), whi
h is O(e−δβ), 
an be a

ounted for by the prefa
tor 1 + o(1). Consequently, allthat is needed is to understand what h⋆
�,⊞ looks like on the set

X ⋆\(X� ∪ X⊞) = {η ∈ X ⋆ : Φ(η,�) = Φ(η,⊞) = Γ⋆}. (2.33)However, h⋆
�,⊞ is also trivial on the set

X ⋆⋆\(X� ∪ X⊞) =

I
⋃

i=1

Xi, (2.34)whi
h is a union of wells Xi, i = 1, . . . , I, in S(�,⊞) for some I ∈ N. (Ea
h Xi is a maximal setof 
ommuni
ating 
on�gurations with energy < Γ⋆ and with 
ommuni
ation height Γ⋆ towardsboth � and ⊞.) Namely, we have the following analogue of [6℄, Lemma 3.3.2.Lemma 2.4.2 There exist C < ∞ and δ > 0 su
h that
max

η,η′∈Xi

|h⋆
�,⊞(η)− h⋆

�,⊞(η
′)| ≤ Ce−δβ ∀ i = 1, . . . , I, β ∈ (0,∞). (2.35)Proof. Fix i. Let η′ ∈ Xi be su
h that minσ∈Xi

H(σ) = H(ηi) and pi
k η ∈ Xi. Estimate
h⋆
�,⊞(η) = Pη(τ� < τ⊞) ≤ Pη(τ� < τη′) + Pη(τη′ < τ� < τ⊞). (2.36)First, as in the proof of Lemma 2.4.1, we have

Pη(τ� < τη′) =
Pη(τ� < τη∪η′)

1− Pη(τ�∪η′ > τη)
≤

Pη(τ� < τη)

Pη(τη′ < τη)

=
ZβCAPβ(η,�)

ZβCAPβ(η, η′)
≤ C(η, η′) e−[Φ(η,�)−Φ(η,η′)]β ≤ C(η, η′) e−δβ ,

(2.37)where we use that Φ(η,�) = Γ⋆ and Φ(η, η′) < Γ⋆. Se
ond,
Pη(τη′ < τ� < τ⊞) = Pη(τη′ < τ�∪⊞)Pη′(τ� < τ⊞) ≤ Pη′(τ� < τ⊞) = h⋆

�,⊞(η
′). (2.38)16



Combining (2.36�2.38), we get
h⋆�,⊞(η) ≤ C(η, η′) e−δβ + h⋆�,⊞(η

′) (2.39)Inter
hanging η and η′,we get the 
laim with C = maxi maxη,η′∈Xi
C(η, η′). �In view of Lemma 2.4.2, the 
ontribution to the sum in (2.26) of the transitions inside awell 
an also be put into the prefa
tor 1 + o(1). Thus, only the transitions in and out of wells
ontribute.2.4.2 Step 2: Variational formula for KBy Step 1, the estimation of ZβCAPβ(�,⊞) redu
es to the study of a simpler variationalproblem. The following is the analogue of [6℄, Proposition 3.3.3.Lemma 2.4.3 ZβCAPβ(�,⊞) = [1 + o(1)]Θ e−Γ⋆β as β → ∞ with

Θ = min
C1...,CI

min
h : X⋆→[0,1]

h|X
�

≡1, h|X
⊞

≡0, h|Xi
≡Ci ∀ i=1,...,I

1
2

∑

η,η′∈X ⋆

1{η∼η′} [h(η) − h(η′)]2. (2.40)Proof. First, re
alling (1.4�1.5) and (2.1�2.2), we have
Zβ CAPβ(�,⊞) = Zβ min

h : X→[0,1]
h(�)=1, h(⊞)=0

1
2

∑

η,η′∈X

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2

= O
(

e−(Γ⋆+δ)β
)

+ Zβ min
h : X⋆→[0,1]

h(�)=1, h(⊞)=0

1
2

∑

η,η′∈X ⋆

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2.(2.41)Next, with the help of Lemmas 2.4.1�2.4.2, we get

min
h : X⋆→[0,1]

h(�)=1, h(⊞)=0

1
2

∑

η,η′∈X ⋆

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2

= min
h : X⋆→[0,1]

h=h⋆
�,⊞

on X
�
∪X

⊞
∪(X1,...,XI )

1
2

∑

η,η′∈X ⋆

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2

= [1 +O(e−δβ)] min
C1,...,CI

min
h : X⋆→[0,1]

h|X
�

≡1, h|X
⊞

≡0, h|Xi
≡Ci ∀ i=1,...,I

1
2

∑

η,η′∈X ⋆

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2,(2.42)where the error term O(e−δβ) arises after we repla
e the approximate boundary 
onditions

h =







1−O(e−δβ) on X�,
O(e−δβ) on X⊞,
Ci +O(e−δβ) on Xi, i = 1, . . . , I,

(2.43)by the sharp boundary 
onditions
h =







1 on X�,
0 on X⊞,
Ci on Xi, i = 1, . . . , I.

(2.44)17



Finally, by (1.4�1.5) and reversibility, we have
Zβµβ(η)cβ(η, η

′) = 1{η∼η′} e
−Γ⋆β for all η, η′ ∈ X ⋆ that are not eitherboth in X� or both in X⊞ or both in Xi for some i = 1, . . . , I.

(2.45)To 
he
k the latter, note that there are no allowed moves between these sets, so that either
H(η) = Γ⋆ > H(η′) or H(η) < Γ⋆ = H(η′) for allowed moves in and out of these sets. �Combining Lemmas 2.3.3 and 2.4.3, we see that we have 
ompleted the proof of (1.15) with
K = 1/Θ. The variational formula for Θ = Θ(Λ;U,∆1,∆2) is non-trivial be
ause it dependson the geometry of the wells Xi, i = 1, . . . , I.2.4.3 Step 3: Bounds on K in terms of 
apa
ities of simple random walkSo far we have only used (H1)�(H2). In the remainder of the proof we use (H3) to prove(1.16). The intuition behind (1.16) is the following. When the free parti
le atta
hes itselfto the proto
ritial droplet, the dynami
s enters the set C⋆

att. The entran
e 
on�gurations of
C⋆
att are either in X⊞ or in one of the Xi's. In the former 
ase the path 
an rea
h ⊞ whilestaying below Γ⋆ in energy, in the latter 
ase it 
annot. By Lemma 1.6.4, if the path exits an

Xi, then for it to return to X� it must pass through C⋆
bd, i.e., it must go through a series of
on�gurations 
onsisting of a single proto
riti
al droplet and a free parti
le moving away fromthat proto
riti
al droplet towards ∂−Λ. Now, this ba
kward motion has a small probabilitybe
ause simple random walk in Z2 is re
urrent, namely, the probability is [1 + o(1)] 4π/ log |Λ|as Λ → Z2 (see [6℄, Equation (3.4.5)). Therefore, the free parti
le is likely to re-atta
h itselfto the proto
riti
al droplet before it manages to rea
h ∂−Λ. Consequently, with a probabilitytending to 1 as Λ → Z2, before the free parti
le manages to rea
h ∂−Λ it will re-atta
h itself tothe proto
riti
al droplet in all possible ways, whi
h must in
lude a way su
h that the dynami
senters X⊞. In other words, after entering C⋆

att the path is likely to rea
h X⊞ before it returnsto X�, i.e., it �goes over the hill�. Thus, in the limit as Λ → Z2, the Xi's be
ome irrelevant,and the dominant role is played by the transitions in and out of X� and by the simple randomwalk performed by the free parti
le.Remark 2.4.4 The proto
riti
al droplet may 
hange ea
h time the path enters and exits an
Xi. There are Xi's from whi
h the path 
an rea
h ⊞ without going ba
k to C⋆ and withoutex
eeding Γ⋆ in energy (see the proof of [6℄, Theorem 1.4.3, where this is shown for Kawasakidynami
s with one type of parti
le).In order to make the above intuition pre
ise, we need some further notation.De�nition 2.4.5 (a) For F ⊂ Z2, ∂+F and ∂−F are the external, respe
tively, internalboundary of F .(b) For η ∈ X , supp(η) is the set of o

upied sites of η.(
) For η ∈ C⋆ ∪ C⋆

att, write η = (η̂, x) with η̂ ∈ P the proto
riti
al droplet and x ∈ Λ thelo
ation of the free/atta
hed parti
le of type 2.(d) For η̂ ∈ P, A(η̂) = {x ∈ ∂+supp(η̂) : H(η̂, x) < Γ⋆} is the set of sites where the freeparti
le of type 2 
an atta
h itself to a parti
le of type 1 in ∂−supp(η) to form an a
tive bond.Note that x ∈ A(η̂) if and only if η = (η̂, x) ∈ C⋆
att, and that for every η ∈ C⋆

att either η ∈ X⊞18



or η ∈ Xi for some i = 1, . . . , I.(e) For η̂ ∈ P, let
G(η̂) = {x ∈ A(η̂) : (η̂, x) ∈ X⊞},

B(η̂) = {x ∈ A(η̂) : ∃ i = 1, . . . , I : (η̂, x) ∈ Xi},
(2.46)be 
alled the set of good sites, respe
tively, bad sites. Note that (η̂, x) may be in the same Xifor di�erent x ∈ B(η̂).(f) For η̂ ∈ P, let

I(η̂) = {i ∈ 1, . . . , I : ∃x ∈ B(η̂) : (η̂, x) ∈ Xi}. (2.47)Note that B(η̂) 
an be partitioned into disjoint sets B1(η̂), . . . , B|I(η̂)|(η̂) a

ording to whi
h Xithe 
on�guration (η̂, x) belongs to.(g) Write CS(η̂) = supp(η̂) ∪G(η̂), CS+(η̂) = ∂+CS(η̂) and CS++(η̂) = ∂+CS+(η̂).Note that De�nitions 2.4.5(
�d) rely on (H3-a), and that G(η̂) 6= ∅ for all η̂ ∈ P by (H3-
)and Lemma 2.2.1. For the argument below it is of no relevan
e whether B(η̂) 6= ∅ for some orall η̂ ∈ P.The following lemma is the analogue of [6℄, Proposition 3.3.4.Lemma 2.4.6 Θ ∈ [Θ1,Θ2] with
Θ1 = [1 + o(1)]

∑

η̂∈P

CAPΛ+ (

∂+Λ,CS(η̂)
)

,

Θ2 =
∑

η̂∈P

CAPΛ+ (

∂+Λ,CS++(η̂)
)

,
(2.48)where

CAPΛ+ (

∂+Λ, F
)

= min
g : Λ+→[0,1]

g|
∂+Λ

≡1, g|F≡0

1
2

∑

(x,x′)∈(Λ+)⋆

[g(x)− g(x′)]2, F ⊂ Λ, (2.49)with (Λ+)⋆ = {(x, y) : x, y ∈ Λ+, |x − y| = 1}, and o(1) an error term that tends to zero as
Λ → Z2.Proof. The variational problem in (2.40) de
omposes into disjoint variational problems forthe maximally 
onne
ted 
omponents of X ⋆. Only those 
omponents that 
ontain X� or X⊞
ontribute, sin
e for the other 
omponents the minimum is a
hieved by pi
king h 
onstant.
Θ ≥ Θ1: A lower bound is obtained from (2.40) by removing all transitions that do not involvea �xed proto
riti
al droplet and a move of the free/atta
hed parti
le of type 2. This removalgives

Θ ≥
∑

η̂∈P

min
Ci(η̂), i∈I(η̂)

min
g : Λ+→[0,1]

g|G(η̂)≡0, g|Bi(η̂)
≡Ci(η̂), i∈I(η̂), g|

∂+Λ
≡1

1
2

∑

(x,x′)∈[Λ+\supp(η̂)]⋆

[g(x) − g(x′)]2.
(2.50)To see how this bound arises from (2.40), pi
k h in (2.40) and g in (2.50) su
h that

h(η) = h(η̂, x) = g(x), η̂ ∈ P, x ∈ Λ+\supp(η̂), (2.51)19



and use that, by De�nitions 2.4.5(
�f), for every η̂ ∈ P (re
all Lemma 2.2.1)
(η̂, x) ∈ X⊞, x ∈ G(η̂),
(η̂, x) ∈ Xi x ∈ Bi(η̂), i ∈ I(η̂),
(η̂, x) ∈ P ⊂ X�, x ∈ ∂+Λ.

(2.52)A further lower bound is obtained by removing from the right-hand side of (2.52) the boundary
ondition on the sets Bi(η̂), i ∈ I(η̂). This gives
Θ ≥

∑

η̂∈P

min
g : Λ+→[0,1]

g|G(η̂)≡0, g|
∂+Λ

≡1

1
2

∑

(x,x′)∈[Λ+\supp(η̂)]⋆

[g(x) − g(x′)]2

=
∑

η̂∈P

CAPΛ+\supp(η̂)
(

∂+Λ, G(η̂)
)

,
(2.53)where the upper index Λ+\supp(η̂) refers to the fa
t that no moves in and out of supp(η̂) areallowed (i.e., this set a
ts as an obsta
le for the free parti
le). To 
omplete the proof we showthat, in the limit as Λ → Z2,

CAPΛ+ (

∂+Λ, supp(η̂) ∪G(η̂)
)

≥ CAPΛ+\supp(η̂)
(

∂+Λ, G(η̂)
)

≥ CAPΛ+ (

∂+Λ, supp(η̂) ∪G(η̂)
)

−O([1/ log |Λ|]2).
(2.54)Sin
e CS(η̂) = supp(η̂) ∪ G(η̂) and, as we will show in Step 4 below, CAPΛ+

(∂+Λ,CS(η̂))de
ays like 1/ log |Λ|, the lower bound follows.Before we prove (2.54), note that the 
apa
ity in the right-hand side of (2.54) in
ludesmore transitions than the 
apa
ity in the left-hand side, namely, all transitions from supp(η̂)to B(η̂). Let
g
Λ+\supp(η̂)
∂+Λ,G(η̂)

(x) = equilibrium potential for CAPΛ+\supp(η̂)
(

∂+Λ, G(η̂)
) at x. (2.55)Below we will show that gΛ+\supp(η̂)

∂+Λ,G(η̂)
(x) ≤ C/ log |Λ| for all x ∈ B(η̂) and some C < ∞. Sin
ein the Diri
hlet form in (2.49) the equilibrium potential appears squared, the error made byadding to the 
apa
ity in the left-hand side of (2.54) the transitions from supp(η̂) to B(η̂)therefore is of order [1/ log |Λ|]2 times |B(η̂)|, whi
h explains how (2.54) arises.Formally, let P

η̂
x be the law of the simple random walk that starts at x ∈ B(η̂) and isforbidden to visit the sites in supp(η̂). Let y ∈ G(η̂). Using a renewal argument similar tothe one used in the proof of Lemma 2.4.1, and re
alling the probabilisti
 interpretation of theequilibrium potential in (2.3) and of the 
apa
ity in (2.5), we get

g
Λ+\supp(η̂)
∂+Λ,G(η̂) (x) = Pη̂

x(τ∂+Λ < τG(η̂)) =
P
η̂
x(τ∂+Λ < τG(η̂)∪x)

P
η̂
x(τG(η̂)∪∂+Λ < τx)

≤
P
η̂
x(τ∂+Λ < τx)

P
η̂
x(τy < τx)

=
CAPΛ+\supp(η̂) (x, ∂+Λ)

CAPΛ+\supp(η̂) (x, y)
.

(2.56)The denominator of (2.56) 
an be bounded from below by some C ′ > 0 that is independent of x,
y and supp(η̂). To see why, pi
k a path from x to y that avoids supp(η̂) but stays inside an L⋆×
L⋆ square around η̂ (re
all (H3-a)), and argue as in the proof of the lower bound of Lemma 2.1.1.On the other hand, the numerator is bounded from above by CAPΛ+

(∂+Λ, G(η̂)), i.e., by the20




apa
ity of the same sets for a random walk that is not forbidden to visit supp(η̂), sin
e theDiri
hlet problem asso
iated to the latter has the same boundary 
onditions, but in
ludes moretransitions. In the proof of Lemma 2.4.7 below, we will see that CAPΛ+
(∂+Λ, G(η̂)) de
ayslike C ′′/ log |Λ| for some C ′′ < ∞ (see (2.63�2.64) below). We therefore 
on
lude that indeed

g
supp(η̂)
∂+Λ,G(η̂)

(x) ≤ C/ log |Λ| for all x ∈ B(η̂) with C = C ′′/C ′.
Θ ≤ Θ2: The upper bound is obtained from (2.40) by pi
king Ci = 0, i = 1, . . . , I, and

h(η) =







1 for η ∈ X�,
g(x) for η = (η̂, x) ∈ C++,
0 for η ∈ X ⋆\[X� ∪ C++],

(2.57)where
C++ =

{

η = (η̂, x) : η̂ ∈ P, x ∈ Λ\CS++(η̂)
} (2.58)
onsists of those 
on�gurations in C⋆ for whi
h the free parti
le is at distan
e ≥ 2 of theproto
riti
al droplet. The 
hoi
e in (2.57) gives

Θ ≤
∑

η̂∈P

CAPΛ+ (

∂+Λ,CS++(η̂)
)

. (2.59)To see how this upper bound arises, note that:
• The 
hoi
e in (2.57) satis�es the boundary 
onditions in (2.40) be
ause (re
all (2.33�2.34))

C++ ⊂ C⋆, [X� ∪ C⋆] ∩ [X⊞ ∪ (∪I
i=1Xi)] = ∅ =⇒ X ⋆\[X� ∪ C++] ⊃ [X⊞ ∪ (∪I

i=1Xi)].(2.60)
• By Lemma 2.2.1, P ⊂ X�. Therefore the �rst line of (2.57) implies that h(η) = 1 for

η = (η̂, x) with η̂ ∈ P and x ∈ ∂+Λ, whi
h is 
onsistent with the boundary 
ondition
g|∂+Λ ≡ 1 in (2.49).

• The third line of (2.57) implies that h(η) = 0 for η = (η̂, x) with η̂ ∈ P and x ∈ CS++(η̂),whi
h is 
onsistent with the boundary 
ondition g|F ≡ 0 in (2.49) for F = CS++(η̂).Further note that:
• By De�nitions 1.4.1�1.4.2 and (H3-b), the only transitions in X ⋆ between X� and C++are those where a free parti
le enters ∂−Λ.
• The only transitions in X ⋆ between C++ and X ⋆\[X� ∪ C++] are those where the freeparti
le moves from distan
e 2 to distan
e 1 of the proto
riti
al droplet. All othertransitions either involve a deta
hment of a parti
le from the proto
riti
al droplet (whi
hraises the number of droplets) or an in
rease in the number of parti
les in Λ. By (H3-b),su
h transitions lead to energy > Γ⋆, whi
h is not possible in X ⋆.
• There are no transitions between X� and X ⋆\[X� ∪ C++].The latter show that (2.49) in
ludes all the transitions in (2.40). �21



2.4.4 Step 4: Sharp asymptoti
s for 
apa
ities of simple random walkWith Lemma 2.4.6 we have obtained upper and lower bounds on Θ in terms of 
apa
ities forsimple random walk on Z2 of the pairs of sets ∂+Λ and CS(η̂), respe
tively, CS++(η̂), with η̂summed over P. The transition rates of the simple random walk are 1 between neighboringpairs of sites. Lemma 2.4.7 below, whi
h is the analogue of [6℄, Lemma 3.4.1, shows that,in the limit as Λ → Z2, ea
h of these 
apa
ities has the same asymptoti
 behavior, namely,
[1+o(1)] 4π/ log |Λ|, irrespe
tive of the lo
ation and shape of the proto
riti
al droplet (providedit is not too 
lose to ∂+Λ, whi
h is a negligible fra
tion of the possible lo
ations). In whatfollows we pretend that Λ = BM = [−M,+M ]2 ∩ Z2 for some M ∈ N large enough. It isstraightforward to extend the proof to other shapes of Λ (see van den Berg [2℄ for relevantestimates).Lemma 2.4.7 For any ε > 0,

lim
M→∞

max
η̂∈P

d(∂+BM,supp(η̂))≥εM

∣

∣

∣

∣

logM

2π
CAPB+

M

(

∂+BM ,CS(η̂)
)

− 1

∣

∣

∣

∣

= 0,

lim
M→∞

max
η̂∈P

d(∂+BM,supp(η̂))≥εM

∣

∣

∣

∣

logM

2π
CAPB+

M

(

∂+BM ,CS++(η̂)
)

− 1

∣

∣

∣

∣

= 0,

(2.61)where d(∂+BM , supp(η̂)) = min{|x− y| : x ∈ ∂+BM , y ∈ supp(η̂)}.Proof. We only prove the �rst line of (2.61). The proof of the se
ond line is similar.Lower bound: For η̂ ∈ P, let y ∈ CS(η̂) ⊂ BM denote the site 
losest to the 
enter of CS(η̂).The 
apa
ity de
reases when we enlarge the set over whi
h the Diri
hlet form is minimized.Therefore we have
CAPB+

M (∂+BM ,CS(η̂)) ≥ CAPB+
M (∂+BM , y)

= CAP (BM−y)+(∂+(BM − y), 0) ≥ CAPB+
2M (∂+B2M , 0),

(2.62)where the last equality uses that (BM − y)+ ⊂ B+
2M be
ause y ∈ BM . By the analogue of(2.5�2.6) for simple random walk, we have (
ompare (2.49) with (2.1�2.2))

CAPB+
2M (∂+B2M , 0) = CAPB+

2M (0, ∂+B2M ) = 4P0(τ∂+B2M
< τ0), (2.63)where P0 is the law on path spa
e of the dis
rete-time simple random walk on Z2 starting at0. A

ording to Révész [24℄, Lemma 22.1, we have

P0(τ∂+B2M
< τ0) ∼

π

2 log(2M)
, M → ∞. (2.64)Combining (2.62�2.64), we get the desired lower bound.Upper bound: As in (2.62), we have

CAPB+
M (∂+BM ,CS(η̂)) ≤ CAPB+

M (∂+BM , Sy(η̂))

= CAP (BM−y)+(∂+(BM − y), Sy(η̂)− y) ≤ CAPB+
εM (∂+BεM , Sy(η̂)− y),

(2.65)22



where Sy(η̂) is the smallest square 
entered at y 
ontaining CS(η̂), and the last inequality usesthat (BM − y)+ ⊃ B+
εM when d(∂+BM , supp(η̂)) ≥ εM . By the re
urren
e of simple randomwalk, we have

CAPB+
εM (∂+BεM , Sy(η̂)− y) ∼ CAPB+

εM (∂+BεM , 0), M → ∞. (2.66)Combining (2.64�2.66), we get the desired upper bound. �Combining Lemmas 2.4.6�2.4.7, we �nd that Θ ∈ [Θ1,Θ2] with
Θ1 = O(εM) +

∑

η̂∈P

d(∂+BM,supp(η̂))≥εM

CAPB+
M (∂+BM ,CS(η̂))

= O(εM) +
2π

logM

∣

∣

{

η̂ ∈ P : d(∂+BM , supp(η̂)) ≥ εM
}∣

∣ [1 + o(1)]

= O(εM) +
2π

logM
N⋆ [2(1 − ε)M ]2 [1 + o(1)],

(2.67)
and the same expression for Θ2, where we use that (re
all (H3-a))
CAPB+

M

(

∂+BM ,CS(η̂)
)

≤ CAPB+
M

(

B+
M\CS(η̂),CS(η̂)

)

= 1
2 |CS

+(η̂)| ≤ 1
2(L

⋆ + 2)2, (2.68)and we re
all from De�nition 1.4.1(b) that N⋆ is the 
ardinality of P modulo shifts of the pro-to
riti
al droplets. Let M → ∞ followed by ε ↓ 0, to 
on
lude that Θ ∼ 2πN⋆(2M)2/ logM .Sin
e |Λ| = (2M + 1)2 and K = 1/Θ, this proves (1.16) in Theorem 1.4.4.2.5 Proof of Theorem 1.4.5Proof. The proof is immediate from Lemma 2.3.2 and Bovier, E
kho�, Gayrard and Klein [5℄,Theorem 1.3(iv). The main idea is that, ea
h time the dynami
s rea
hes the 
riti
al dropletbut �fails to go over the hill and falls ba
k into the valley around ��, it has a probabilityexponentially 
lose to 1 to return to � (be
ause, by (H2), � lies at the bottom of its valley(re
all (2.3) and (2.27))) and to �start from s
rat
h�. Thus, the dynami
s manages to grow a
riti
al droplet and go over the hill only after a number of unsu

essful attempts that tends toin�nity as β → ∞, ea
h having a small probability that tends to zero as β → ∞. Consequently,the time to go over the hill is exponentially distributed on the s
ale of its average. �2.6 Proof of Theorem 1.4.3Proof. (a) We will show that there exist C < ∞ and δ > 0 su
h that
P� (τC⋆ < τ⊞ | τ⊞ < τ�) ≥ 1− Ce−δβ , ∀ β ∈ (0,∞), (2.69)whi
h implies the 
laim.By (2.5), CAPβ(�,⊞) = µβ(�) cβ(�,X\�)P�(τ⊞ < τ�) with µβ(�) = 1/Zβ . From thelower bound in Lemma 2.1.1 it therefore follows that

P�(τ⊞ < τ�) ≥ C1e
−Γ⋆β 1

cβ(�,X\�)
. (2.70)23



We will show that
P� ({τC⋆ < τ⊞}

c, τ⊞ < τ�) ≤ C2e
−(Γ⋆+δ)β 1

cβ(�,X\�)
. (2.71)Combining (2.70�2.71), we get (2.69) with C = C2/C1.By De�nitions 1.2.2(f) and 1.2.3(d), any path from � to ⊞ that does not pass through C⋆must hit a 
on�guration η with H(η) > Γ⋆. Therefore there exists a set S, with H(η) ≥ Γ⋆+ δfor all η ∈ S and some δ > 0, su
h that

P� ({τC⋆ < τ⊞}
c, τ⊞ < τ�) ≤ P� (τS < τ�) . (2.72)Now estimate, with the help of reversibility,

P� (τS < τ�) ≤
∑

η∈S

P� (τη < τ�)

=
∑

η∈S

µβ(η)cβ(η,X\η)

µβ(�)cβ(�,X\�)
Pη (τ� < τη)

≤
1

cβ(�,X\�)

∑

η∈S

|{η′ ∈ X\η : η ∼ η′}| e−βH(η)

≤
1

cβ(�,X\�)
C2 e

−(Γ⋆+δ)β

(2.73)
with C2 = |{(η, η′) ∈ S × X\{η} : η ∼ η′}|, where we use that cβ(η, η

′) ≤ 1. Combine(2.72�2.73) to get the 
laim in (2.71).(b) Write
P�

(

ητC⋆
bd

= η | τC⋆
bd

< τ�
)

=
P�

(

ητC⋆
bd

= η, τC⋆
bd

< τ�
)

P�

(

τC⋆
bd

< τ�
) , η ∈ C⋆

bd. (2.74)By reversibility,
P�

(

ητC⋆
bd

= η, τC⋆
bd

< τ�
)

=
µβ(η)cβ(η,X\η)

µβ(�)cβ(�,X\�)
Pη

(

τ� < τC⋆
bd

)

= e−Γ⋆β cβ(η,X\η)

cβ(�,X\�)
Pη

(

τ� < τC⋆
bd

)

, η ∈ C⋆
bd.

(2.75)Moreover (re
all (2.3�2.4)),
Pη

(

τ� < τC⋆
bd

)

=
∑

η′∈X\C⋆
bd

η∼η′

cβ(η, η
′)

cβ(η,X\η)
h⋆
�,C⋆

bd
(η′), η ∈ C⋆

bd, (2.76)where
h⋆
�,C⋆

bd
(η′) =







0 if η′ ∈ C⋆
bd,

1 if η′ = �,
Pη′(τ� < τC⋆

bd
) otherwise. (2.77)
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Be
ause P ⊂ X� by Lemma 2.2.1 and C⋆
bd ⊂ G(�,⊞) by De�nition 1.4.1(a), for all η′ ∈ P wehave Φ(η′, C⋆

bd)−Φ(η′,�) = Γ⋆−Φ(η′,�) ≥ δ > 0. Therefore, as in the proof of Lemma 2.4.1,it follows that
min
η′∈P

h⋆
�,C⋆

bd
(η′) ≥ 1− Ce−δβ , (2.78)Moreover, letting C̄⋆ be the set of 
on�gurations that 
an be rea
hed from C⋆

bd via an allowedmove that does not return to P, we have
max
η′∈C̄⋆

h⋆
�,C⋆

bd
(η′) ≤ Ce−δβ. (2.79)Indeed, h⋆

�,C⋆
bd
(η′) = 0 for η′ ∈ C⋆

bd, whileany path from C̄⋆\C⋆
bd to � that avoids C⋆

bd must rea
h an energy level > Γ⋆. (2.80)To obtain (2.79) from (2.80), we 
an do an estimate similar to (2.29�2.30) for η′ ∈ C̄⋆\C⋆
bd.To prove (2.80) we argue as follows. Let ζ ∈ C̄⋆, and let η be the 
on�guration in C⋆

bd fromwhi
h ζ is obtained in a single transition. If ζ ∈ C⋆
bd, then any path from ζ to � already startsfrom C⋆

bd and there is nothing to prove. Therefore, let ζ ∈ C̄⋆\C⋆
bd. Note that, by (H3-a), η
onsists of a single (proto
riti
al) droplet in Λ− plus a parti
le of type 2 in ∂−Λ. Re
alling thatparti
les in ∂−Λ do not intera
t with other parti
les, we see that any 
on�guration obtainedfrom η by deta
hing a parti
le from the (proto
riti
al) droplet in
reases the number of dropletsand, by (H3-b), raises the energy above Γ⋆. Therefore, ζ 
an only be obtained from η by movingthe free parti
le from ∂−Λ to Λ−. Only two 
ases are possible: either ζ ∈ C⋆

att or ζ ∈ C⋆\C⋆
bd.In the former 
ase, the 
laim follows via Lemma 1.6.4. In the latter 
ase, we must show that ifthere is a path ω : ζ → � that avoids C⋆

bd su
h that maxσ∈ω H(σ) ≤ Γ⋆, then a 
ontradi
tiono

urs.Indeed, if ω is su
h a path, then the reversed path ω′ is a path from � → ζ su
h that
maxσ∈ω′ H(σ) ≤ Γ⋆. But ω′ 
an be extended by the single move from ζ to η to obtain apath ω′′ : � → η su
h that maxσ∈ω′′ H(σ) ≤ Γ⋆. Moreover, sin
e η ∈ C⋆

bd, there exists a path
γ : η → ⊞ su
h that maxσ∈γ H(σ) ≤ Γ⋆. But then the path obtained by joining ω′′ and γis a path in (� → ⊞)opt su
h that the 
on�guration ζ visited just before η ∈ C⋆

bd belongs to
C⋆\C⋆

bd ⊂ C⋆. However, by De�nitions 1.4.1�1.4.2, this implies that ζ ∈ P, whi
h is impossiblebe
ause P ∩ C⋆ = ∅.The estimates in (2.78�2.79) 
an be used as follows. By restri
ting the sum in (2.76) to
η′ ∈ P and inserting (2.78), we get

Pη

(

τ� < τC⋆
bd

)

≥ (1− Ce−δβ)
cβ(η,P)

cβ(η,X\η)
, η ∈ C⋆

bd. (2.81)On the other hand, by inserting (2.79), we get
Pη

(

τ� < τC⋆
bd

)

≤
cβ(η,P)

cβ(η,X\η)
+ Ce−δβ|C̄⋆|, η ∈ C⋆

bd. (2.82)Be
ause H(P) < H(C⋆
bd) = Γ⋆, we have

cβ(η,P) =
∑

η′∈P

cβ(η, η
′) = |{η′ ∈ P : η ∼ η′}|, η ∈ C⋆

bd, (2.83)25



and, sin
e cβ(η,X\η) ≤ |X |, it follows that η 7→ cβ(η,P)/cβ(η,X\η) is bounded from below.Combine this observation with (2.81�2.82), to get
Pη

(

τ� < τC⋆
bd

)

= [1 +O(e−δβ)]
cβ(η,P)

cβ(η,X\η)
, η ∈ C⋆

bd. (2.84)Combining this in turn with (2.74�2.75), we arrive at
P�

(

ητC⋆
bd

= η | τC⋆
bd

< τ�
)

=
cβ(η,X\η)Pη(τ� < τC⋆

bd
)

∑

η′∈C⋆
bd

cβ(η′,X\η′)Pη′(τ� < τC⋆
bd
)

= [1 +O(e−δβ)]
cβ(η,P)

∑

η′∈C⋆
bd

cβ(η′,P)
, η ∈ C⋆

bd.

(2.85)Finally, ea
h site in ∂−Λ has one edge towards ∂+Λ and hen
e, by (2.83), η 7→ cβ(η,P) is
onstant on C⋆
bd. Together with (2.85) this proves the 
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