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1 Introdution and main resultsSetion 1.1 de�nes the model, Setion 1.2 introdues basi notation, Setion 1.3 identi�es themetastable region, while Setion 1.4 states the main theorems. Setion 1.5 disusses the maintheorems and plaes them in the proper ontext. Setion 1.6 proves three geometri lemmasthat are needed in the proof of the main theorems.For an overview on metastability and droplet growth, we refer the reader to the monographby Olivieri and Vares [23℄, and the review papers by Bovier [3℄, [4℄, den Hollander [14℄, Olivieriand Soppola [22℄, Gaudillière and Soppola [12℄ and Gaudillière [13℄.1.1 Lattie gas subjet to Kawasaki dynamisLet Λ ⊂ Z2 be a large �nite box. Let
∂Λ− = {x ∈ Λ: ∃ y /∈ Λ: |y − x| = 1},

∂Λ+ = {x /∈ Λ: ∃ y ∈ Λ: |y − x| = 1},
(1.1)be the internal boundary, respetively, the external boundary of Λ, and put Λ− = Λ\∂Λ−and Λ+ = Λ ∪ ∂Λ+. With eah site x ∈ Λ we assoiate a variable η(x) ∈ {0, 1, 2} indiatingthe absene of a partile or the presene of a partile of type 1 or type 2. A on�guration

η = {η(x) : x ∈ Λ} is an element of X = {0, 1, 2}Λ. To eah on�guration η we assoiate anenergy given by the Hamiltonian
H(η) = −U

∑

(x,y)∈(Λ−)⋆

1{η(x)η(y)=2} +∆1

∑

x∈Λ

1{η(x)=1} +∆2

∑

x∈Λ

1{η(x)=2}, (1.2)where (Λ−)⋆ = {(x, y) : x, y ∈ Λ−, |x − y| = 1} is the set of non-oriented bonds inside Λ−,
−U < 0 is the binding energy between neighboring partiles of di�erent types inside Λ−, and
∆1 > 0 and ∆2 > 0 are the ativation energies of partiles of type 1, respetively, type 2 inside
Λ. W.l.o.g. we will assume that

∆1 ≤ ∆2. (1.3)The Gibbs measure assoiated with H is
µβ(η) =

1

Zβ
e−βH(η), η ∈ X , (1.4)where β ∈ (0,∞) is the inverse temperature, and Zβ is the normalizing partition sum.Kawasaki dynamis is the ontinuous-time Markov proess (ηt)t≥0 with state spae Xwhose transition rates are

cβ(η, η
′) =

{

e−β[H(η′)−H(η)]+ , η, η′ ∈ X , η ∼ η′,
0, otherwise, (1.5)(i.e., Metroplis rate w.r.t. βH), where η ∼ η′ means that η′ an be obtained from η and vieversa by one of the following moves:

• interhanging the states 0 ↔ 1 or 0 ↔ 2 at neighboring sites in Λ(�hopping of partiles inside Λ�), 2



• hanging the state 0 → 1, 0 → 2, 1 → 0 or 2 → 0 at single sites in ∂−Λ(�reation and annihilation of partiles inside ∂−Λ�).This dynamis is ergodi and reversible with respet to the Gibbs measure µβ. Note thatpartiles are preserved in Λ−, but an be reated and annihilated in ∂−Λ. Think of thepartiles entering and exiting Λ along non-oriented edges between ∂−Λ and ∂+Λ (where weallow only one edge for eah site in ∂−Λ). The pairs (η, η′) with η ∼ η′ are alled ommuniatingon�gurations, the transitions between them are alled allowed moves. Note that partiles in
∂−Λ do not interat with partiles anywhere in Λ.The dynamis de�ned by (1.2) and (1.5) models the behavior inside Λ of a lattie gas in
Z2, onsisting of two types of partiles subjet to random hopping with hard ore repulsionand with binding between di�erent neighboring types. We may think of Z2\Λ as an in�nitereservoir that keeps the partile densities inside Λ �xed at ρ1 = e−β∆1 and ρ2 = e−β∆2 . Inour model this reservoir is replaed by an open boundary ∂−Λ, where partiles are reated andannihilated at a rate that mathes these densities. Consequently, our Kawasaki dynamis is a�nite-state Markov proess.Note that there is no binding energy between neighboring partiles of the same type.Consequently, the model does not redue to Kawasaki dynamis for one type of partile when
∆1 = ∆2.1.2 NotationTo identify the metastable region in Setion 1.3 and state our main theorems in Setion 1.4,we need some notation.De�nition 1.2.1 (a) ni(η) is the number of partiles of type i = 1, 2 in η.(b) B(η) is the number of bonds in (Λ−)⋆ onneting neighboring partiles of di�erent type in
η, i.e., the number of ative bonds in η.() A droplet is a maximal set of partiles onneted by ative bonds.(d) � is the on�guration where Λ is empty, ⊞ is the on�guration where Λ is �lled as ahekerboard (see Remark 1.4.8 below).(e) ω : η → η′ is any path of allowed moves from η to η′.(f) τA = inf{t ≥ 0: ηt ∈ A, ∃ 0 < s < t : ηs /∈ A}, A ⊂ X , is the �rst hitting/return time of
A.(g) Pη is the law of (ηt)t≥0 given η0 = η.De�nition 1.2.2 (a) Φ(η, η′) is the ommuniation height between η, η′ ∈ X de�ned by

Φ(η, η′) = min
ω : η→η′

max
ξ∈ω

H(ξ), (1.6)and Φ(A,B) is its extension to non-empty sets A,B ⊂ X de�ned by
Φ(A,B) = min

η∈A,η′∈B
Φ(η, η′). (1.7)(b) S(η, η′) is the ommuniation level set between η and η′ de�ned by

S(η, η′) =

{

ζ ∈ X : ∃ω : η → η′, ω ∋ ζ : max
ξ∈ω

H(ξ) = H(ζ) = Φ(η, η′)

}

. (1.8)3



() Vη is the stability level of η ∈ X de�ned by
Vη = Φ(η,Iη)−H(η), (1.9)where Iη = {ξ ∈ X : H(ξ) < H(η)} is the set of on�gurations with energy lower than η.(d) Xstab = {η ∈ X : H(η) = minξ∈X H(ξ)} is the set of stable on�gurations, i.e., the set ofon�gurations with minimal energy.(e) Xmeta = {η ∈ X : Vη = maxξ∈X\Xstab

Vξ} is the set of metastable on�gurations, i.e., theset of non-stable on�gurations with maximal stability level.(f) Γ = Vη for η ∈ Xmeta (note that η 7→ Vη is onstant on Xmeta), Γ⋆ = Φ(�,⊞)−H(�) (notethat H(�) = 0).De�nition 1.2.3 (a) (η → η′)opt is the set of paths realizing the minimax in Φ(η, η′).(b) A set W ⊂ X is alled a gate for η → η′ if W ⊂ S(η, η′) and ω ∩ W 6= ∅ for all
ω ∈ (η → η′)opt.() A set W ⊂ X is alled a minimal gate for η → η′ if it is a gate for η → η′ and for any
W ′ ( W there exists an ω′ ∈ (η → η′)opt suh that ω′ ∩W ′ = ∅.(d) A priori there may be several (not neessarily disjoint) minimal gates. Their union isdenoted by G(η, η′) and is alled the essential gate for (η → η′)opt. (The on�gurations in
S(η, η′)\G(η, η′) are alled dead-ends.)1.3 Metastable regionWe want to understand how the system tunnels from � to ⊞ when the former is a loalminimum and the latter is a global minimum of H. We begin by identifying the metastableregion, i.e., the region in parameter spae for whih this is the ase.Lemma 1.3.1 The ondition ∆1 + ∆2 < 4U is neessary and su�ient for � to be a loalminimum but not a global minimum of H.Proof. Note that H(�) = 0. We know that � is a loal minimum of H, sine as soon as apartile enters Λ we obtain a on�guration with energy either ∆1 > 0 or ∆2 > 0. To showthat there is a on�guration η̂ with H(η̂) < 0, we write

H(η) = n1(η)∆1 + n2(η)∆2 −B(η)U. (1.10)Sine ∆1 ≤ ∆2, we may assume w.l.o.g. that n1(η) ≥ n2(η). Indeed, if n1(η) < n2(η), then wesimply take the on�guration η1⇔2 obtained from η by interhanging the types 1 and 2, i.e.,
η1⇔2(x) =











1 if η(x) = 2,

2 if η(x) = 1,

0 otherwise, (1.11)whih satis�es H(η1⇔2) ≤ H(η).Sine B(η) ≤ 4n2(η), we have
H(η) ≥ n1(η)∆1 + n2(η)∆2 − 4n2(η)U ≥ n2(η)(∆1 +∆2 − 4U). (1.12)Hene, if ∆1 + ∆2 ≥ 4U , then H(η) ≥ 0 for all η and H(�) = 0 is a global minimum. Onthe other hand, onsider a on�guration η̂ suh that n1(η̂) = n2(η̂) and n1(η̂) + n2(η̂) = ℓ24



for some ℓ ∈ 2N. Arrange the partiles of η̂ in a hekerboard square of side length ℓ. Then astraightforward omputation gives
H(η̂) = 1

2ℓ
2∆1 +

1
2ℓ

2∆2 − 2ℓ(ℓ− 1)U, (1.13)and so
H(η̂) < 0 ⇐⇒ ℓ2(∆1 +∆2) < 4ℓ(ℓ− 1)U ⇐⇒ ∆1 +∆2 < (4− 4ℓ−1)U. (1.14)Hene, if ∆1 +∆2 < 4U , then there exists an ℓ̄ ∈ 2N suh that H(η̂) < 0 for all ℓ ∈ 2N with

ℓ ≥ ℓ̄. Here, Λ must be taken large enough, so that a droplet of size ℓ̄ �ts inside Λ−. �Note that Γ⋆ = Γ⋆(U,∆1,∆2) ∈ (0,∞) beause of Lemma 1.3.1.Within the metastable region ∆1 + ∆2 < 4U , we may as well exlude the subregion
∆1,∆2 < U (see Fig. 1). In this subregion, eah time a partile of type 1 enters Λ andattahes itself to a partile of type 2 in the droplet, or vie versa, the energy goes down.Consequently, the �ritial droplet� for the transition from � to ⊞ onsists of only two freepartiles, one of type 1 and one of type 2. Therefore this subregion does not exhibit propermetastable behavior.

Figure 1: Proper metastable region.1.4 Main theoremsTheorems 1.4.3�1.4.5 below will be proved in the metastable region subjet to the followinghypotheses:(H1) Xstab = ⊞.(H2) There exists a V ⋆ < Γ⋆ suh that Vη ≤ V ⋆ for all η ∈ X\{�,⊞}.The third hypothesis onsists of three parts haraterizing the entrane set of G(�,⊞), theset of ritial droplets, and the exit set of G(�,⊞). To formulate this hypothesis some furtherde�nitions are needed.De�nition 1.4.1 (a) C⋆
bd is the minimal set of on�gurations in G(�,⊞) suh that all pathsin (� → ⊞)opt enter G(�,⊞) through C⋆

bd.(b) P is the set of on�gurations visited by these paths just prior to their �rst entrane of
G(�,⊞). 5



(H3-a) Every η̂ ∈ P onsists of a single droplet somewhere in Λ−. This single droplet �ts insidean L⋆ × L⋆ square somewhere in Λ− for some L⋆ ∈ N large enough that is independentof η̂ and Λ. Every η ∈ C⋆
bd onsists of a single droplet η̂ ∈ P and a free partile of type

2 somewhere in ∂−Λ.De�nition 1.4.2 (a) C⋆
att is the set of on�gurations obtained from P by attahing a partileof type 2 to the single droplet, and deomposes as C⋆

att = ∪η̂∈PC
⋆
att(η̂).(b) C⋆ is the set of on�gurations obtained from P by adding a partile of type 2 somewhere in

Λ, and deomposes as C⋆ = ∪η̂∈PC
⋆(η̂).Note that Γ⋆ = H(C⋆\C⋆

att) = H(P) + ∆2, and that C⋆ onsists of preisely those on�g-urations �interpolating� between P and C⋆
att: a free partile of type 2 enters ∂−Λ and movesto the single droplet where it attahes itself via an ative bond. Think of P as the set ofon�gurations where the dynamis is �almost over the hill�, of C⋆ as the set of on�gurationswhere the dynamis is �on top of the hill�, and of the free partile as �ahieving the rossover�when it attahes itself properly to the single droplet (the meaning of the word properly willbeome lear in Setion 2.4).The set P is referred to as the set of protoritial droplets. We write N⋆ to denote theardinality of P modulo shifts of the droplet. The set C⋆\C⋆

att is referred to as the set of ritialdroplets.(H3-b) All transitions from C⋆ that either add a partile in Λ or inrease the number of droplets(by breaking an ative bond) lead to energy > Γ⋆.(H3-) All ω ∈ (C⋆
bd → ⊞)opt pass through C⋆

att. For every η̂ ∈ P there exists a ζ ∈ C⋆
att(η̂) suhthat Φ(ζ,⊞) < Γ⋆.We are now ready to state our main theorems subjet to (H1)�(H3).Theorem 1.4.3 (a) limβ→∞ P�(τC⋆

bd
< τ⊞ | τ⊞ < τ�) = 1.(b) limβ→∞ P�(ητC⋆

bd
= ζ) = 1/|C⋆

bd| for all ζ ∈ C⋆
bd.Theorem 1.4.4 There exists a onstant K = K(Λ;U,∆1,∆2) ∈ (0,∞) suh that

lim
β→∞

e−βΓ⋆

E�(τ⊞) = K. (1.15)Moreover,
K ∼

1

N⋆

log |Λ|

4π|Λ|
as Λ → Z2. (1.16)Theorem 1.4.5 limβ→∞ P�(τ⊞/E�(τ⊞) > t) = e−t for all t ≥ 0.We lose this setion with a few remarks.Remark 1.4.6 The free partile in (H3-a) is of type 2 only when ∆1 < ∆2. If ∆1 = ∆2(reall (1.3)), then the free partile an be of type 1 or 2. Indeed, for ∆1 = ∆2 there is fullsymmetry of S(�,⊞) under the map 1 ⇔ 2 de�ned in (1.11).6



Remark 1.4.7 We will see in Setion 1.6 that (H1�H2) imply that
(Xmeta,Xstab) = (�,⊞), Γ = Γ⋆. (1.17)Remark 1.4.8 We will see in [17℄ that, depending on the shape of Λ and the hoie of

U,∆1,∆2, Xstab may atually onsist of more than the single on�guration ⊞, namely, it mayontain on�gurations that di�er from ⊞ in ∂−Λ. Sine this boundary e�et does not a�etour main theorems, we will ignore it here. A preise desription of Xstab will be given in [17℄.Moreover, depending on the hoie of U,∆1,∆2, large droplets with minimal energy tend tohave a shape that is either square-shaped or rhombus-shaped. Therefore it turns out to beexpedient to hoose Λ to have the same shape. Details will be given in [17℄.Remark 1.4.9 As we will see in Setion 2.4, the value ofK is given by a non-trivial variationalformula involving the set of all on�gurations where the dynamis an enter and exit C⋆. Thisset inludes not only the border of the �Γ⋆-valleys� around � and ⊞, but also the borderof �wells� inside the energy plateau C⋆ that have energy < Γ⋆ but ommuniation height Γ⋆towards both � and ⊞. It ontains P, C⋆
att and possibly more, as we will see in [18℄ (forKawasaki dynamis with one type of partile this was shown in Bovier, den Hollander andNardi [6℄, Setion 2.3.2). As a result of this geometri omplexity, for �nite Λ only upper andlower bounds are known for K. What (1.16) says is that these bounds merge and simplifyin the limit as Λ → Z2 (after the limit β → ∞ has already been taken), and that for theasymptotis only the simpler quantity N⋆ matters rather than the full geometry of ritialand near ritial droplets. We will see in Setion 2.4 that, apart from the uniformity propertyexpressed in Theorem 1.4.3(b), the reason behind this simpli�ation is the fat that simplerandom walk (the motion of the free partile) is reurrent on Z2.1.5 Disussion1. Theorem 1.4.3(a) says that C⋆ is a gate for the nuleation, i.e., on its way from � to ⊞the dynamis passes through C⋆. Theorem 1.4.3(b) says that all protoritial droplets andall loations of the free partile in ∂−Λ are equally likely to be seen upon �rst entrane in

G(�,⊞). Theorem 1.4.4 says that the average nuleation time is asymptoti to KeΓβ, whihis the lassial Arrhenius law, and it identi�es the asymptotis of the prefator K in the limitas Λ beomes large. Theorem 1.4.5, �nally, says that the nuleation time is exponentiallydistributed on the sale of its average.2. Theorems 1.4.3�1.4.5 are model-independent, i.e., they are expeted to hold in the sameform for a large lass of stohasti dynamis in a �nite box at low temperature exhibitingmetastable behavior. So far this universality has been veri�ed for only a handful of examples,inluding Kawasaki dynamis with one type of partile (see also item 4 below). In Setion 2we will see that (H1)�(H3) are the minimal hypotheses needed for metastable behavior, inthe sense that any relative of Kawasaki dynamis for whih Theorems 1.4.3�1.4.5 hold mustsatisfy (H1)�(H3) (inluding multi-type Kawasaki dynamis).The model-dependent ingredient of Theorems 1.4.3�1.4.5 is the triple
(Γ⋆, C⋆, N⋆). (1.18)This triple depends on the parameters U,∆1,∆2 in a manner that will be identi�ed in [17℄ and[18℄. The set C⋆ also depends on Λ, but in suh a way that |C⋆| ∼ N⋆|Λ| as Λ → Z2, with the7



error oming from boundary e�ets. Clearly, Λ must be taken large enough so that ritialdroplets �t inside (i.e., Λ must ontain an L⋆ × L⋆ square with L⋆ as in (H3-a)).

Figure 2: Subregion of the proper metastable region onsidered in [17℄ and [18℄.3. In [17℄ and [18℄, we will prove (H1)�(H3), identify (Γ⋆, C⋆, N⋆) and derive an upper boundon V ⋆ in the subregion of the proper metastable region given by (see Fig. 2)
∆1 < U, ∆2 −∆1 > 2U. (1.19)More preisely, in [17℄ we will prove (H1), identify Γ⋆, show that V ⋆ ≤ 10U−∆1, and onludethat (H2) holds as soon as Γ⋆ > 10U −∆1, whih poses further restritions on U,∆1,∆2 ontop of (1.19). In [17℄ we will also see that it would be possible to show that V ⋆ ≤ 4U + ∆1provided ertain boundary e�ets (arising when a droplet sits lose to ∂−Λ or when two or moredroplets are lose to eah other) ould be ontrolled. Sine it will turn out that Γ⋆ > 4U +∆1throughout the region (1.19), this upper bound would settle (H2) without further restritionson U,∆1,∆2. In [18℄ we will prove (H3) and identify C⋆, N⋆.The simplifying features of (1.19) are the following: ∆1 < U implies that eah time apartile of type 1 enters Λ and attahes itself to a partile of type 2 in the droplet the energygoes down, while ∆2 −∆1 > 2U implies that no partile of type 2 sits on the boundary of adroplet that has minimal energy given the number of partiles of type 2 in the droplet. Weonjeture that (H1)�(H3) hold throughout the proper metastable region (see Fig. 1). However,as we will see in [17℄ and [18℄, (Γ⋆, C⋆, N⋆) is di�erent when ∆1 > U ompared to when ∆1 < U(beause the ritial droplets are square-shaped, respetively, rhombus-shaped).4. Theorems 1.4.3�1.4.5 generalize what was obtained for Kawasaki dynamis with one type ofpartile in den Hollander, Olivieri and Soppola [16℄, and Bovier, den Hollander and Nardi [6℄.In these papers, the analogues of (H1)�(H3) were proved, (Γ⋆, C⋆, N⋆) was identi�ed, andbounds on K were derived that beome sharp in the limit as Λ → Z2. What makes the modelwith one type of partile more tratable is that the stohasti dynamis follows a skeleton ofsubritial droplets that are squares or quasi-squares, as a result of a standard isoperimetriinequality for two-dimensional droplets. For the model with two types of partiles this tool isno longer appliable and the geometry is muh harder, as will beome lear in [17℄ and [18℄.Similar results hold for Ising spins subjet to Glauber dynamis, as shown in Neves andShonmann [21℄, and Bovier and Manzo [8℄. For this system, K has a simple expliit form.8



Theorems 1.4.3�1.4.5 are lose in spirit to the extension for Glauber dynamis when an alter-nating external �eld is inluded, as arried out in Nardi and Olivieri [19℄, and to the extensionfor Kawakasi dynamis with one type of partile when the interation between partiles isdi�erent in the horizontal and the vertial diretion, as arried out in Nardi, Olivieri andSoppola [20℄.Our results an in priniple be extended from Z2 to Z3. For one type of partile thisextension was ahieved in den Hollander, Nardi, Olivieri and Soppola [15℄, and Bovier, denHollander and Nardi [6℄. For one type of partile the geometry of the ritial droplet is moreomplex in Z3 than in Z2. This will also be the ase for two types of partiles, and hene itwill be hard to identify C⋆ and N⋆. Again, only upper and lower bounds an be derived for
K. Moreover, sine simple random walk on Z3 is transient, these bounds do not merge in thelimit as Λ → Z3. For Glauber dynamis the extension from Z2 to Z3 was ahieved in BenArous and Cerf [1℄, and Bovier and Manzo [8℄, and K again has a simple expliit form.5. In Gaudillière, den Hollander, Nardi, Olivieri and Soppola [9℄, [10℄, [11℄, and Bovier, denHollander and Spitoni [7℄, the result for Kawasaki dynamis (with one type of partile) ona �nite box with an open boundary obtained in den Hollander, Olivieri and Soppola [16℄and Bovier, den Hollander and Nardi [6℄ have been extended to Kawasaki dynamis (withone type of partile) on a large box Λ = Λβ with a losed boundary. The volume of Λβ growsexponentially fast with β, so that Λβ itself ats as a gas reservoir for the growing and shrinkingof subritial droplets. The fous is on the time of the �rst appearane of a ritial dropletanywhere in Λβ. It turns out that the nuleation time in Λβ roughly equals the nuleationtime in a �nite box Λ divided by the volume of Λβ, i.e., spatial entropy enters into the game.A hallenge is to derive a similar result for Kawasaki dynamis with two types of partiles.6. The model in the present paper an be extended by introduing three binding energies
U11, U22, U12 < 0 for the three di�erent pairs of types that an our in a pair of neigh-boring partiles. Clearly, this will further ompliate the analysis, and onsequently both
(Xmeta,Xstab) and (Γ⋆, C⋆, N⋆) will in general be di�erent. The model is interesting even when
∆1,∆2 < 0 and U < 0, sine this orresponds to a situation where the in�nite gas reservoir isvery dense and tends to push partiles into the box. When ∆1 < ∆2, partiles of type 1 tendto �ll Λ before partiles of type 2 appear, but this is not the on�guration of lowest energy.Indeed, if ∆2−∆1 < 4U , then the binding energy is strong enough to still favor on�gurationswith a hekerboard struture (modulo boundary e�ets). Identifying (Γ⋆, C⋆, N⋆) seems aompliated task.1.6 Consequenes of (H1)�(H3)Lemmas 1.6.1�1.6.4 below are immediate onsequenes of (H1)�(H3) and will be needed in theproof of Theorems 1.4.3�1.4.5 in Setion 2.Lemma 1.6.1 (H1)�(H2) imply that V� = Γ⋆.Proof. By De�nitions 1.2.2(�f) and (H1), ⊞ ∈ I�, whih implies that V� ≤ Γ⋆. We showthat (H2) implies V� = Γ⋆. The proof is by ontradition. Suppose that V� < Γ⋆. Then, byDe�nition 1.2.2() and (H2), there exists an η ∈ I�\⊞ suh that Φ(�, η) −H(�) < Γ⋆. But,by (H2) and the �niteness of X , there exist an m ∈ N and a sequene η0, . . . , ηm ∈ X with9



η0 = η and ηm = ⊞ suh that ηi+1 ∈ Iηi and Φ(ηi, ηi+1) ≤ H(ηi) + V ⋆ for i = 0, . . . ,m − 1.Therefore
Φ(η,⊞) ≤ max

i=0,...,m−1
Φ(ηi, ηi+1) ≤ max

i=0,...,m−1
[H(ηi) + V ⋆] = H(η) + V ⋆ < H(�) + Γ⋆, (1.20)where in the �rst inequality we use that

Φ(η, σ) ≤ max{Φ(η, ξ), Φ(ξ, σ)} ∀ η, σ, ξ ∈ X , (1.21)and in the last inequality that η ∈ I� and V ⋆ < Γ⋆. It follows that
Γ⋆ = Φ(�,⊞)−H(�) ≤ max{Φ(�, η), Φ(η,⊞)} −H(�) < Γ⋆, (1.22)whih is a ontradition. �Lemma 1.6.2 (H2) implies that Φ(η, {�,⊞}) −H(η) ≤ V ⋆ for all η ∈ X\{�,⊞}.Proof. Fix η ∈ X\{�,⊞}. By (H2) and the �niteness of X , there exist an m ∈ N and asequene η0, . . . , ηm ∈ X with η0 = η and ηm ∈ {�,⊞} suh that ηi+1 ∈ Iηi and Φ(ηi, ηi+1) ≤

H(ηi)+V ⋆ for i = 0, . . . ,m− 1. Therefore, as in (1.20), we get Φ(η, {�,⊞}) ≤ H(η)+V ⋆. �Lemma 1.6.3 (H1)�(H2) imply that H(η) > H(�) for all η ∈ X\� suh that Φ(η,�) ≤
Φ(η,⊞).Proof. By (H1), ⊞ ∈ Iη for all η 6= ⊞. The proof is by ontradition. Fix η ∈ X\�and suppose that H(η) ≤ H(�) = 0. Then � /∈ Iη. By (H2) and the �niteness of X ,there exist an m ∈ N and a sequene η0, . . . , ηm ∈ X with η0 = η and ηm = ⊞ suh that
ηi+1 ∈ Iηi and Φ(ηi, ηi+1) ≤ H(ηi) + V ⋆ for i = 0, . . . ,m − 1. Therefore, as in (1.20), we get
Φ(η,⊞) ≤ H(η) + V ⋆ ≤ H(�) + V ⋆ < H(�) + Γ⋆. Hene

Γ⋆ = Φ(�,⊞)−H(�) ≤ max{Φ(�, η),Φ(η,⊞)} −H(�)

= max{Φ(η,�),Φ(η,⊞)} −H(�) = Φ(η,⊞)−H(�) < Γ⋆,
(1.23)whih is a ontradition. �Lemma 1.6.4 (H3a), (H3-) and De�nition 1.4.2(a) imply that for every η ∈ C⋆

att all paths in
(η → �)opt pass through C⋆

bd.Proof. Let η be any on�guration in C⋆
att. Then, by (H3-a) and De�nition 1.4.2(a), there is aon�guration ξ, onsisting of a single protoritial droplet, say, D and a free partile (of type

2) next to the border of D, suh that η is obtained from ξ in a single move: the free partileattahes itself somewhere to D. Now, onsider any path starting at η, ending at �, and notexeeding energy level Γ⋆. The reverse of this path, starting at � and ending at η, an beextended by the single move from η to ξ to obtain a path from � to ξ that is also not exeedingenergy level Γ⋆. Moreover, this path an be further extended from ξ to ⊞ without exeedingenergy level Γ⋆ as well. To see the latter, note that, by (H3-), there is some loation x on theborder of D suh that the on�guration ζ ∈ C⋆
att onsisting of D with the free partile attahedat x is suh that there is a path from ζ to ⊞ that stays below energy level Γ⋆. Furthermore,10



we an move from ξ (with H(ξ) = Γ⋆) to ζ (with H(ζ) < Γ⋆) at onstant energy level Γ⋆,dropping below Γ⋆ only at ζ, simply by moving the free partile to x without letting it hit ∂−Λ.(By (H3-a), there is room for the free partile to do so beause D �ts inside an L⋆×L⋆ squaresomewhere in Λ−. Even when D touhes ∂−Λ the free partile an still avoid ∂−Λ, beause
x an never be in ∂−Λ: partiles in ∂−Λ do not interat with partiles in Λ−.) The resultingpath from � to ⊞ (via η, ξ and ζ) is a path in (� → ⊞)opt. However, by De�nition 1.4.1(a),any path in (� → ⊞)opt must hit C⋆

bd. Hene, the piee of the path from η to � must hit C⋆
bd,beause the piee of the path from η to ⊞ (via ξ and ζ) does not. �2 Proof of main theoremsIn this setion we prove Theorems 1.4.3�1.4.5 subjet to hypotheses (H1)�(H3). Setions 2.1�2.3 introdue the basi ingredients, while Setions 2.4�2.6 provide the proofs.We will follow the potential-theoreti argument that was used in Bovier, den Hollander andNardi [6℄ for Kawasaki dynamis with one type of partile. In fat, we will see that (H1)�(H3)are the minimal assumptions needed to prove Theorems 1.4.3�1.4.5.2.1 Dirihlet form and apaityThe key ingredient of the potential-theoreti approah to metastability is the Dirihlet form

Eβ(h) =
1
2

∑

η,η′∈X

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2, h : X → [0, 1], (2.1)where µβ is the Gibbs measure de�ned in (1.4) and cβ is the kernel of transition rates de�nedin (1.5). Given a pair of non-empty disjoint sets A,B ⊂ X , the apaity of the pair A,B isde�ned by

CAPβ(A,B) = min
h : X→[0,1]

h|A≡1,h|B≡0

Eβ(h), (2.2)where h|A ≡ 1 means that h(η) = 1 for all η ∈ A and h|B ≡ 0 means that h(η) = 0 for all
η ∈ B. The unique minimizer h⋆A,B of (2.2), alled the equilibrium potential of the pair A,B,is given by

h⋆A,B(η) = Pη(τA < τB), η ∈ X\(A ∪ B), (2.3)and is the solution of the equation
(cβh)(η) = 0, η ∈ X\(A ∪ B),

h(η) = 1, η ∈ A,

h(η) = 0, η ∈ B,

(2.4)with (cβh)(η) =
∑

η′∈X cβ(η, η
′)h(η′). Moreover,

CAPβ(A,B) =
∑

η∈A

µβ(η) cβ(η,X\η)Pη(τB < τA) (2.5)with cβ(η,X\η) =
∑

η′∈X\η cβ(η, η
′) the rate of moving out of η. This rate enters beause τAis the �rst hitting time of A after the initial on�guration is left (reall De�nition 1.2.1(f)).Note that the reversibility of the dynamis and (2.1�2.2) imply

CAPβ(A,B) = CAPβ(B,A). (2.6)11



The following lemma establishes bounds on the apaity of two disjoint sets. These boundsare referred to as a priori estimates and will serve as the starting point for more re�nedestimates later on.Lemma 2.1.1 For every pair of non-empty disjoint sets A,B ⊂ X there exist onstants 0 <
C1 ≤ C2 < ∞ (depending on Λ and A,B) suh that

C1 ≤ eβΦ(A,B)ZβCAPβ(A,B) ≤ C2 ∀ β ∈ (0,∞). (2.7)Proof. The proof is given in [6℄, Lemma 3.1.1. We repeat it here, beause it uses basiproperties of ommuniation heights that provide useful insight.Upper bound: The upper bound is obtained from (2.2) by piking h = 1K(A,B) with
K(A,B) = {η ∈ X : Φ(η,A) ≤ Φ(η,B)}. (2.8)The key observation is that if η ∼ η′ with η ∈ K(A,B) and η′ ∈ X\K(A,B), then

(1) H(η′) < H(η),
(2) H(η) ≥ Φ(A,B).

(2.9)To see (1), suppose that H(η′) ≥ H(η). Clearly,
H(η′) ≥ H(η) ⇐⇒ Φ(η′,F) = Φ(η,F) ∨H(η′) ∀F ⊂ X . (2.10)But η ∈ K(A,B) tells us that Φ(η,A) ≤ Φ(η,B), hene Φ(η′,A) ≤ Φ(η′,B) by (2.10), andhene η′ ∈ K(A,B), whih is a ontradition.To see (2), note that (1) implies the reverse of (2.10):
H(η) ≥ H(η′) ⇐⇒ Φ(η,F) = Φ(η′,F) ∨H(η) ∀F ⊂ X . (2.11)Trivially, Φ(η,B) ≥ H(η). We laim that equality holds. Indeed, suppose that equality fails.Then we get

H(η) < Φ(η,B) = Φ(η′,B) < Φ(η′,A) = Φ(η,A), (2.12)where the equalities ome from (2.11), while the seond inequality uses that η′ ∈ X\K(A,B).Thus, Φ(η,A) > Φ(η,B), whih ontradits η ∈ K(A,B). From Φ(η,B) = H(η) we obtain
Φ(A,B) ≤ Φ(A, η) ∨ Φ(η,B) = Φ(η,B) = H(η), whih proves (2).Combining (2.9) with (1.4�1.5) and using reversibility, we �nd that

µβ(η)cβ(η, η
′) ≤

1

Zβ
e−βΦ(A,B) ∀ η ∈ K(A,B), η′ ∈ X\K(A,B), η ∼ η′. (2.13)Hene

CAPβ(A,B) ≤ Eβ(1K(A,B)) ≤ C2
1

Zβ
e−βΦ(A,B) (2.14)with C2 = |{(η, η′) ∈ X 2 : η ∈ K(A,B), η′ ∈ X\K(A,B), η ∼ η′}|.Lower bound: The lower bound is obtained by piking any path ω = (ω0, ω1, . . . , ωL) thatrealizes the minimax in Φ(A,B) and ignoring all the transitions that are not in this path, i.e.,

CAPβ(A,B) ≥ min
h : ω→[0,1]

h(ω0)=1,h(ωL)=0

Eω
β (h), (2.15)12



where the Dirihlet form Eω
β is de�ned as Eβ in (2.1) but with X replaed by ω. Due to theone-dimensional nature of the set ω, the variational problem in the right-hand side an besolved expliitly by elementary omputations. One �nds that the minimum equals

M =

[

L−1
∑

l=0

1

µβ(ωl)cβ(ωl, ωl+1)

]−1

, (2.16)and is uniquely attained at h given by
h(ωl) = M

l−1
∑

k=0

1

µβ(ωk)cβ(ωk, ωk+1)
, l = 0, 1, . . . , L. (2.17)We thus have

CAPβ(A,B) ≥ M

≥
1

L
min

l=0,1,...,L−1
µβ(ωl)cβ(ωl, ωl+1)

=
1

K

1

Zβ
min

l=0,1,...,L−1
e−β[H(ωl)∨H(ωl+1)]

= C1
1

Zβ
e−βΦ(A,B)

(2.18)
with C1 = 1/L. �2.2 Graph struture of the energy landsapeView X as a graph whose verties are the on�gurations and whose edges onnet ommuni-ating on�gurations, i.e., (η, η′) is an edge if and only if η ∼ η′. De�ne� X ⋆ is the subgraph of X obtained by removing all verties η with H(η) > Γ⋆ and alledges inident to these verties;� X ⋆⋆ is the subgraph of X ⋆ obtained by removing all verties η with H(η) = Γ⋆ and alledges inident to these verties;� X� and X⊞ are the onneted omponents of X ⋆⋆ ontaining � and ⊞, respetively.Lemma 2.2.1 The sets X� and X⊞ are disjoint (and hene are disonneted in X ⋆⋆), and

X� = {η ∈ X : Φ(η,�) < Φ(η,⊞) = Γ⋆},

X⊞ = {η ∈ X : Φ(η,⊞) < Φ(η,�) = Γ⋆}.
(2.19)Moreover, P ⊂ X�, and C⋆

att(η̂) ∩ X⊞ 6= ∅ for all η̂ ∈ P.Proof. By De�nition 1.2.2(f), all paths onneting � and ⊞ reah energy level ≥ Γ⋆. Therefore
X� and X⊞ are disonneted in X ⋆⋆ (beause X ⋆⋆ does not ontain verties with energy ≥ Γ⋆).First note that, by (H2) and (1.21), Γ⋆ = Φ(�,⊞) ≤ max{Φ(η,�), Φ(η,⊞)} ≤ Γ⋆, andhene either Φ(η,�) = Γ⋆ or Φ(η,⊞) = Γ⋆ or both. To hek the �rst line of (2.19) we argueas follows. For any η ∈ X�, we have H(η) < Γ⋆ (beause X� ⊂ X ⋆⋆) and Φ(η,�) < Γ⋆(beause X is onneted). Conversely, let η be suh that Φ(η,�) < Γ⋆. Then H(η) < Γ⋆,13



hene η ∈ X ⋆⋆, and there is a path onneting η and � that stays below energy level Γ⋆.Therefore η belongs to the onneted omponent of X ⋆⋆ ontaining �, i.e., η ∈ X�. Theseond line of (2.19) is heked in an analogous manner.To prove that P ⊂ X�, we must show that Φ(�, η̂) < Γ⋆ for all η̂ ∈ P. Pik any η̂ ∈ P,and let η ∈ C⋆
bd be any on�guration obtained from η̂ by adding a partile of type 2 somewherein ∂−Λ. Denote by Ω(η) the set of optimal paths from � to ⊞ that enter G(�,⊞) via η(note that this set is non-empty beause C⋆

bd is a minimal gate by De�nition 1.4.1(a)). ByDe�nition 1.4.1(b), ωi ∈ Ω(η) visits η̂ before η for all i ∈ 1, . . . , |Ω(η)|. The proof proeedsvia ontradition. Suppose that maxσ∈ωi\Si(η) H(σ) = Γ⋆ for all i ∈ 1, . . . , |Ω(η)|, where Si(η)onsists of η and all its suessors in ωi. Let σ⋆
i (η) be the last on�guration σ ∈ ωi\Si(η)suh that H(σ) = Γ⋆, and put L(η) = {σ⋆

1(η), . . . , σ
⋆
|Ω(η)|(η)}. Then the set (C⋆

bd\η) ∪ L(η) isa minimal gate. But ωi hits σ⋆
i (η) before η, and so this ontradits the fat that C⋆

bd is theentrane set of G(�,⊞).The laim that C⋆
att(η̂) ∩ X⊞ 6= ∅ for all η̂ ∈ P is immediate from (H3-). �We now have all the geometri ingredients that are neessary for the proof of Theo-rems 1.4.3�1.4.5 along the lines of [6℄, Setion 3. Our hypotheses (H1)�(H3) replae thesomewhat deliate and model-dependent geometri analysis for Kawasaki dynamis with onetype of partile that was arried out in [6℄, Setion 2. They are the minimal hypotheses thatare neessary to arry out the proof below. Their veri�ation will be given in [17℄ and [18℄.2.3 Metastable set, link between average nuleation time and apaityBovier, Ekho�, Gayrard and Klein [5℄ de�ne metastable sets in terms of apaities:De�nition 2.3.1 A non-empty set A ⊂ X is alled metastable if

lim
β→∞

maxη/∈A µβ(η)/CAPβ(η,A)

minη∈A µβ(η)/CAPβ(η,A\η)
= 0. (2.20)In order to apply the theory in [5℄, we need the following.Lemma 2.3.2 The set {�,⊞} is metastable in the sense of De�nition 2.3.1.Proof. By (1.4), Lemma 1.6.2 and the lower bound in (2.7), the numerator is bounded fromabove by eV

⋆β/C1 = e(Γ
⋆−δ)β/C1 for some δ > 0. By (1.4), the de�nition of Γ⋆ and the upperbound in (2.7), the denominator is bounded from below by eΓ

⋆β/C2 (with the minimum beingattained at �). �Lemma 2.3.2 has an important onsequene:Lemma 2.3.3 E�(τ⊞) = [ZβCAPβ(�,⊞)]−1 [1 + o(1)] as β → ∞.Proof. Aording to [5℄, Theorem 1.3(i), we have
E�(τ⊞) =

µβ(R�)

CAPβ(�,⊞)
[1 + o(1)] as β → ∞, (2.21)14



where
R� =

{

η ∈ X : Pη(τ� < τ⊞) ≥ Pη(τ⊞ < τ�)
}

. (2.22)Realling (2.3), we an rewrite (2.22) as R� = {η ∈ X : h⋆
�,⊞(η) ≥ 1

2}. It follows fromLemma 2.4.1 below that
lim
β→∞

min
η∈X�

h⋆�,⊞(η) = 1, lim
β→∞

max
η∈X⊞

h⋆�,⊞(η) = 0. (2.23)Hene, for β large enough,
X� ⊂ R� ⊂ X\X⊞. (2.24)By Lemma 2.2.1, the seond inlusion implies that Φ(η,�) ≤ Φ(η,⊞) for all η ∈ R�. ThereforeLemma 1.6.3 yields

min
η∈R�\�

H(η) > H(�) = 0, (2.25)whih implies that µβ(R�)/µβ(�) = 1 + o(1). Sine µβ(�) = 1/Zβ , the laim follows. �Lemma 2.3.3 shows that the proof of Theorem 1.4.4 revolves around getting sharp boundson ZβCAPβ(�,⊞). The a priori estimates in Lemma 2.1.1 serve as a jump board for thederivation of these bounds.2.4 Proof of Theorem 1.4.4Our starting point is Lemma 2.3.3. Realling (2.1�2.3), our task is to show that
ZβCAPβ(�,⊞) = 1

2

∑

η,η′∈X

Zβµβ(η)cβ(η, η
′) [h⋆�,⊞(η)− h⋆�,⊞(η

′)]2

= [1 + o(1)]Θ e−Γ⋆β as β → ∞,

(2.26)and to identify the onstant Θ, sine (2.26) will imply (1.15) with Θ = 1/K. This is done infour steps, organized in Setions 2.4.1�2.4.4.2.4.1 Step 1: Triviality of h⋆
�,⊞ on X�, X⊞ and X ⋆⋆\(X� ∪ X⊞)For all η ∈ X\X ⋆ we have H(η) > Γ⋆, and so there exists a δ > 0 suh that Zβµβ(η) ≤

e−(Γ⋆+δ)β . Therefore, we an replae X by X ⋆ in the sum in (2.26) at the ost of a prefator
1 +O(e−δβ). Moreover, we have the following analogue of [6℄, Lemma 3.3.1.Lemma 2.4.1 There exist C < ∞ and δ > 0 suh that

min
η∈X�

h⋆
�,⊞(η) ≥ 1− Ce−δβ , max

η∈X⊞

h⋆
�,⊞(η) ≤ Ce−δβ , ∀ β ∈ (0,∞). (2.27)Proof. A standard renewal argument gives the relations, valid for η /∈ {�,⊞},

Pη(τ⊞ < τ�) =
Pη(τ⊞ < τ�∪η)

1− Pη(τ�∪⊞ > τη)
, Pη(τ� < τ⊞) =

Pη(τ� < τ⊞∪η)

1− Pη(τ�∪⊞ > τη)
. (2.28)For η ∈ X�\�, we estimate

h⋆�,⊞(η) = 1− Pη(τ⊞ < τ�) = 1−
Pη(τ⊞ < τ�∪η)

Pη(τ�∪⊞ < τη)
≥ 1−

Pη(τ⊞ < τη)

Pη(τ� < τη)
(2.29)15



and, with the help of (2.5) and Lemma 2.1.1,
Pη(τ⊞ < τη)

Pη(τ� < τη)
=

Zβ CAPβ(η,⊞)

Zβ CAPβ(η,�)
≤ C(η) e−[Φ(η,⊞)−Φ(η,�)]β ≤ C(η) e−δβ , (2.30)whih proves the �rst laim with C = maxη∈X�\� C(η). Note that h⋆

�,⊞(�) is a onvexombination of h⋆
�,⊞(η) with η ∈ X�\�, and so the laim inludes η = �.For η ∈ X⊞\⊞, we estimate
h⋆
�,⊞(η) = Pη(τ� < τ⊞) =

Pη(τ� < τ⊞∪η)

Pη(τ�∪⊞ < τη)
≤

Pη(τ� < τη)

Pη(τ⊞ < τη)
(2.31)and, with the help of (2.5) and Lemma 2.1.1,

Pη(τ� < τη)

Pη(τ⊞ < τη)
=

Zβ CAPβ(η,�)

Zβ CAPβ(η,⊞)
≤ C(η) e−[Φ(η,�)−Φ(η,⊞)]β ≤ C(η) e−δβ , (2.32)whih proves the seond laim with C = maxη∈X⊞\⊞C(η). �In view of Lemma 2.4.1, h⋆

�,⊞ is trivial on the set X�∪X⊞, and its ontribution to the sumin (2.26), whih is O(e−δβ), an be aounted for by the prefator 1 + o(1). Consequently, allthat is needed is to understand what h⋆
�,⊞ looks like on the set

X ⋆\(X� ∪ X⊞) = {η ∈ X ⋆ : Φ(η,�) = Φ(η,⊞) = Γ⋆}. (2.33)However, h⋆
�,⊞ is also trivial on the set

X ⋆⋆\(X� ∪ X⊞) =

I
⋃

i=1

Xi, (2.34)whih is a union of wells Xi, i = 1, . . . , I, in S(�,⊞) for some I ∈ N. (Eah Xi is a maximal setof ommuniating on�gurations with energy < Γ⋆ and with ommuniation height Γ⋆ towardsboth � and ⊞.) Namely, we have the following analogue of [6℄, Lemma 3.3.2.Lemma 2.4.2 There exist C < ∞ and δ > 0 suh that
max

η,η′∈Xi

|h⋆
�,⊞(η)− h⋆

�,⊞(η
′)| ≤ Ce−δβ ∀ i = 1, . . . , I, β ∈ (0,∞). (2.35)Proof. Fix i. Let η′ ∈ Xi be suh that minσ∈Xi

H(σ) = H(ηi) and pik η ∈ Xi. Estimate
h⋆
�,⊞(η) = Pη(τ� < τ⊞) ≤ Pη(τ� < τη′) + Pη(τη′ < τ� < τ⊞). (2.36)First, as in the proof of Lemma 2.4.1, we have

Pη(τ� < τη′) =
Pη(τ� < τη∪η′)

1− Pη(τ�∪η′ > τη)
≤

Pη(τ� < τη)

Pη(τη′ < τη)

=
ZβCAPβ(η,�)

ZβCAPβ(η, η′)
≤ C(η, η′) e−[Φ(η,�)−Φ(η,η′)]β ≤ C(η, η′) e−δβ ,

(2.37)where we use that Φ(η,�) = Γ⋆ and Φ(η, η′) < Γ⋆. Seond,
Pη(τη′ < τ� < τ⊞) = Pη(τη′ < τ�∪⊞)Pη′(τ� < τ⊞) ≤ Pη′(τ� < τ⊞) = h⋆

�,⊞(η
′). (2.38)16



Combining (2.36�2.38), we get
h⋆�,⊞(η) ≤ C(η, η′) e−δβ + h⋆�,⊞(η

′) (2.39)Interhanging η and η′,we get the laim with C = maxi maxη,η′∈Xi
C(η, η′). �In view of Lemma 2.4.2, the ontribution to the sum in (2.26) of the transitions inside awell an also be put into the prefator 1 + o(1). Thus, only the transitions in and out of wellsontribute.2.4.2 Step 2: Variational formula for KBy Step 1, the estimation of ZβCAPβ(�,⊞) redues to the study of a simpler variationalproblem. The following is the analogue of [6℄, Proposition 3.3.3.Lemma 2.4.3 ZβCAPβ(�,⊞) = [1 + o(1)]Θ e−Γ⋆β as β → ∞ with

Θ = min
C1...,CI

min
h : X⋆→[0,1]

h|X
�

≡1, h|X
⊞

≡0, h|Xi
≡Ci ∀ i=1,...,I

1
2

∑

η,η′∈X ⋆

1{η∼η′} [h(η) − h(η′)]2. (2.40)Proof. First, realling (1.4�1.5) and (2.1�2.2), we have
Zβ CAPβ(�,⊞) = Zβ min

h : X→[0,1]
h(�)=1, h(⊞)=0

1
2

∑

η,η′∈X

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2

= O
(

e−(Γ⋆+δ)β
)

+ Zβ min
h : X⋆→[0,1]

h(�)=1, h(⊞)=0

1
2

∑

η,η′∈X ⋆

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2.(2.41)Next, with the help of Lemmas 2.4.1�2.4.2, we get

min
h : X⋆→[0,1]

h(�)=1, h(⊞)=0

1
2

∑

η,η′∈X ⋆

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2

= min
h : X⋆→[0,1]

h=h⋆
�,⊞

on X
�
∪X

⊞
∪(X1,...,XI )

1
2

∑

η,η′∈X ⋆

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2

= [1 +O(e−δβ)] min
C1,...,CI

min
h : X⋆→[0,1]

h|X
�

≡1, h|X
⊞

≡0, h|Xi
≡Ci ∀ i=1,...,I

1
2

∑

η,η′∈X ⋆

µβ(η)cβ(η, η
′)[h(η) − h(η′)]2,(2.42)where the error term O(e−δβ) arises after we replae the approximate boundary onditions

h =







1−O(e−δβ) on X�,
O(e−δβ) on X⊞,
Ci +O(e−δβ) on Xi, i = 1, . . . , I,

(2.43)by the sharp boundary onditions
h =







1 on X�,
0 on X⊞,
Ci on Xi, i = 1, . . . , I.

(2.44)17



Finally, by (1.4�1.5) and reversibility, we have
Zβµβ(η)cβ(η, η

′) = 1{η∼η′} e
−Γ⋆β for all η, η′ ∈ X ⋆ that are not eitherboth in X� or both in X⊞ or both in Xi for some i = 1, . . . , I.

(2.45)To hek the latter, note that there are no allowed moves between these sets, so that either
H(η) = Γ⋆ > H(η′) or H(η) < Γ⋆ = H(η′) for allowed moves in and out of these sets. �Combining Lemmas 2.3.3 and 2.4.3, we see that we have ompleted the proof of (1.15) with
K = 1/Θ. The variational formula for Θ = Θ(Λ;U,∆1,∆2) is non-trivial beause it dependson the geometry of the wells Xi, i = 1, . . . , I.2.4.3 Step 3: Bounds on K in terms of apaities of simple random walkSo far we have only used (H1)�(H2). In the remainder of the proof we use (H3) to prove(1.16). The intuition behind (1.16) is the following. When the free partile attahes itselfto the protoritial droplet, the dynamis enters the set C⋆

att. The entrane on�gurations of
C⋆
att are either in X⊞ or in one of the Xi's. In the former ase the path an reah ⊞ whilestaying below Γ⋆ in energy, in the latter ase it annot. By Lemma 1.6.4, if the path exits an

Xi, then for it to return to X� it must pass through C⋆
bd, i.e., it must go through a series ofon�gurations onsisting of a single protoritial droplet and a free partile moving away fromthat protoritial droplet towards ∂−Λ. Now, this bakward motion has a small probabilitybeause simple random walk in Z2 is reurrent, namely, the probability is [1 + o(1)] 4π/ log |Λ|as Λ → Z2 (see [6℄, Equation (3.4.5)). Therefore, the free partile is likely to re-attah itselfto the protoritial droplet before it manages to reah ∂−Λ. Consequently, with a probabilitytending to 1 as Λ → Z2, before the free partile manages to reah ∂−Λ it will re-attah itself tothe protoritial droplet in all possible ways, whih must inlude a way suh that the dynamisenters X⊞. In other words, after entering C⋆

att the path is likely to reah X⊞ before it returnsto X�, i.e., it �goes over the hill�. Thus, in the limit as Λ → Z2, the Xi's beome irrelevant,and the dominant role is played by the transitions in and out of X� and by the simple randomwalk performed by the free partile.Remark 2.4.4 The protoritial droplet may hange eah time the path enters and exits an
Xi. There are Xi's from whih the path an reah ⊞ without going bak to C⋆ and withoutexeeding Γ⋆ in energy (see the proof of [6℄, Theorem 1.4.3, where this is shown for Kawasakidynamis with one type of partile).In order to make the above intuition preise, we need some further notation.De�nition 2.4.5 (a) For F ⊂ Z2, ∂+F and ∂−F are the external, respetively, internalboundary of F .(b) For η ∈ X , supp(η) is the set of oupied sites of η.() For η ∈ C⋆ ∪ C⋆

att, write η = (η̂, x) with η̂ ∈ P the protoritial droplet and x ∈ Λ theloation of the free/attahed partile of type 2.(d) For η̂ ∈ P, A(η̂) = {x ∈ ∂+supp(η̂) : H(η̂, x) < Γ⋆} is the set of sites where the freepartile of type 2 an attah itself to a partile of type 1 in ∂−supp(η) to form an ative bond.Note that x ∈ A(η̂) if and only if η = (η̂, x) ∈ C⋆
att, and that for every η ∈ C⋆

att either η ∈ X⊞18



or η ∈ Xi for some i = 1, . . . , I.(e) For η̂ ∈ P, let
G(η̂) = {x ∈ A(η̂) : (η̂, x) ∈ X⊞},

B(η̂) = {x ∈ A(η̂) : ∃ i = 1, . . . , I : (η̂, x) ∈ Xi},
(2.46)be alled the set of good sites, respetively, bad sites. Note that (η̂, x) may be in the same Xifor di�erent x ∈ B(η̂).(f) For η̂ ∈ P, let

I(η̂) = {i ∈ 1, . . . , I : ∃x ∈ B(η̂) : (η̂, x) ∈ Xi}. (2.47)Note that B(η̂) an be partitioned into disjoint sets B1(η̂), . . . , B|I(η̂)|(η̂) aording to whih Xithe on�guration (η̂, x) belongs to.(g) Write CS(η̂) = supp(η̂) ∪G(η̂), CS+(η̂) = ∂+CS(η̂) and CS++(η̂) = ∂+CS+(η̂).Note that De�nitions 2.4.5(�d) rely on (H3-a), and that G(η̂) 6= ∅ for all η̂ ∈ P by (H3-)and Lemma 2.2.1. For the argument below it is of no relevane whether B(η̂) 6= ∅ for some orall η̂ ∈ P.The following lemma is the analogue of [6℄, Proposition 3.3.4.Lemma 2.4.6 Θ ∈ [Θ1,Θ2] with
Θ1 = [1 + o(1)]

∑

η̂∈P

CAPΛ+ (

∂+Λ,CS(η̂)
)

,

Θ2 =
∑

η̂∈P

CAPΛ+ (

∂+Λ,CS++(η̂)
)

,
(2.48)where

CAPΛ+ (

∂+Λ, F
)

= min
g : Λ+→[0,1]

g|
∂+Λ

≡1, g|F≡0

1
2

∑

(x,x′)∈(Λ+)⋆

[g(x)− g(x′)]2, F ⊂ Λ, (2.49)with (Λ+)⋆ = {(x, y) : x, y ∈ Λ+, |x − y| = 1}, and o(1) an error term that tends to zero as
Λ → Z2.Proof. The variational problem in (2.40) deomposes into disjoint variational problems forthe maximally onneted omponents of X ⋆. Only those omponents that ontain X� or X⊞ontribute, sine for the other omponents the minimum is ahieved by piking h onstant.
Θ ≥ Θ1: A lower bound is obtained from (2.40) by removing all transitions that do not involvea �xed protoritial droplet and a move of the free/attahed partile of type 2. This removalgives

Θ ≥
∑

η̂∈P

min
Ci(η̂), i∈I(η̂)

min
g : Λ+→[0,1]

g|G(η̂)≡0, g|Bi(η̂)
≡Ci(η̂), i∈I(η̂), g|

∂+Λ
≡1

1
2

∑

(x,x′)∈[Λ+\supp(η̂)]⋆

[g(x) − g(x′)]2.
(2.50)To see how this bound arises from (2.40), pik h in (2.40) and g in (2.50) suh that

h(η) = h(η̂, x) = g(x), η̂ ∈ P, x ∈ Λ+\supp(η̂), (2.51)19



and use that, by De�nitions 2.4.5(�f), for every η̂ ∈ P (reall Lemma 2.2.1)
(η̂, x) ∈ X⊞, x ∈ G(η̂),
(η̂, x) ∈ Xi x ∈ Bi(η̂), i ∈ I(η̂),
(η̂, x) ∈ P ⊂ X�, x ∈ ∂+Λ.

(2.52)A further lower bound is obtained by removing from the right-hand side of (2.52) the boundaryondition on the sets Bi(η̂), i ∈ I(η̂). This gives
Θ ≥

∑

η̂∈P

min
g : Λ+→[0,1]

g|G(η̂)≡0, g|
∂+Λ

≡1

1
2

∑

(x,x′)∈[Λ+\supp(η̂)]⋆

[g(x) − g(x′)]2

=
∑

η̂∈P

CAPΛ+\supp(η̂)
(

∂+Λ, G(η̂)
)

,
(2.53)where the upper index Λ+\supp(η̂) refers to the fat that no moves in and out of supp(η̂) areallowed (i.e., this set ats as an obstale for the free partile). To omplete the proof we showthat, in the limit as Λ → Z2,

CAPΛ+ (

∂+Λ, supp(η̂) ∪G(η̂)
)

≥ CAPΛ+\supp(η̂)
(

∂+Λ, G(η̂)
)

≥ CAPΛ+ (

∂+Λ, supp(η̂) ∪G(η̂)
)

−O([1/ log |Λ|]2).
(2.54)Sine CS(η̂) = supp(η̂) ∪ G(η̂) and, as we will show in Step 4 below, CAPΛ+

(∂+Λ,CS(η̂))deays like 1/ log |Λ|, the lower bound follows.Before we prove (2.54), note that the apaity in the right-hand side of (2.54) inludesmore transitions than the apaity in the left-hand side, namely, all transitions from supp(η̂)to B(η̂). Let
g
Λ+\supp(η̂)
∂+Λ,G(η̂)

(x) = equilibrium potential for CAPΛ+\supp(η̂)
(

∂+Λ, G(η̂)
) at x. (2.55)Below we will show that gΛ+\supp(η̂)

∂+Λ,G(η̂)
(x) ≤ C/ log |Λ| for all x ∈ B(η̂) and some C < ∞. Sinein the Dirihlet form in (2.49) the equilibrium potential appears squared, the error made byadding to the apaity in the left-hand side of (2.54) the transitions from supp(η̂) to B(η̂)therefore is of order [1/ log |Λ|]2 times |B(η̂)|, whih explains how (2.54) arises.Formally, let P

η̂
x be the law of the simple random walk that starts at x ∈ B(η̂) and isforbidden to visit the sites in supp(η̂). Let y ∈ G(η̂). Using a renewal argument similar tothe one used in the proof of Lemma 2.4.1, and realling the probabilisti interpretation of theequilibrium potential in (2.3) and of the apaity in (2.5), we get

g
Λ+\supp(η̂)
∂+Λ,G(η̂) (x) = Pη̂

x(τ∂+Λ < τG(η̂)) =
P
η̂
x(τ∂+Λ < τG(η̂)∪x)

P
η̂
x(τG(η̂)∪∂+Λ < τx)

≤
P
η̂
x(τ∂+Λ < τx)

P
η̂
x(τy < τx)

=
CAPΛ+\supp(η̂) (x, ∂+Λ)

CAPΛ+\supp(η̂) (x, y)
.

(2.56)The denominator of (2.56) an be bounded from below by some C ′ > 0 that is independent of x,
y and supp(η̂). To see why, pik a path from x to y that avoids supp(η̂) but stays inside an L⋆×
L⋆ square around η̂ (reall (H3-a)), and argue as in the proof of the lower bound of Lemma 2.1.1.On the other hand, the numerator is bounded from above by CAPΛ+

(∂+Λ, G(η̂)), i.e., by the20



apaity of the same sets for a random walk that is not forbidden to visit supp(η̂), sine theDirihlet problem assoiated to the latter has the same boundary onditions, but inludes moretransitions. In the proof of Lemma 2.4.7 below, we will see that CAPΛ+
(∂+Λ, G(η̂)) deayslike C ′′/ log |Λ| for some C ′′ < ∞ (see (2.63�2.64) below). We therefore onlude that indeed

g
supp(η̂)
∂+Λ,G(η̂)

(x) ≤ C/ log |Λ| for all x ∈ B(η̂) with C = C ′′/C ′.
Θ ≤ Θ2: The upper bound is obtained from (2.40) by piking Ci = 0, i = 1, . . . , I, and

h(η) =







1 for η ∈ X�,
g(x) for η = (η̂, x) ∈ C++,
0 for η ∈ X ⋆\[X� ∪ C++],

(2.57)where
C++ =

{

η = (η̂, x) : η̂ ∈ P, x ∈ Λ\CS++(η̂)
} (2.58)onsists of those on�gurations in C⋆ for whih the free partile is at distane ≥ 2 of theprotoritial droplet. The hoie in (2.57) gives

Θ ≤
∑

η̂∈P

CAPΛ+ (

∂+Λ,CS++(η̂)
)

. (2.59)To see how this upper bound arises, note that:
• The hoie in (2.57) satis�es the boundary onditions in (2.40) beause (reall (2.33�2.34))

C++ ⊂ C⋆, [X� ∪ C⋆] ∩ [X⊞ ∪ (∪I
i=1Xi)] = ∅ =⇒ X ⋆\[X� ∪ C++] ⊃ [X⊞ ∪ (∪I

i=1Xi)].(2.60)
• By Lemma 2.2.1, P ⊂ X�. Therefore the �rst line of (2.57) implies that h(η) = 1 for

η = (η̂, x) with η̂ ∈ P and x ∈ ∂+Λ, whih is onsistent with the boundary ondition
g|∂+Λ ≡ 1 in (2.49).

• The third line of (2.57) implies that h(η) = 0 for η = (η̂, x) with η̂ ∈ P and x ∈ CS++(η̂),whih is onsistent with the boundary ondition g|F ≡ 0 in (2.49) for F = CS++(η̂).Further note that:
• By De�nitions 1.4.1�1.4.2 and (H3-b), the only transitions in X ⋆ between X� and C++are those where a free partile enters ∂−Λ.
• The only transitions in X ⋆ between C++ and X ⋆\[X� ∪ C++] are those where the freepartile moves from distane 2 to distane 1 of the protoritial droplet. All othertransitions either involve a detahment of a partile from the protoritial droplet (whihraises the number of droplets) or an inrease in the number of partiles in Λ. By (H3-b),suh transitions lead to energy > Γ⋆, whih is not possible in X ⋆.
• There are no transitions between X� and X ⋆\[X� ∪ C++].The latter show that (2.49) inludes all the transitions in (2.40). �21



2.4.4 Step 4: Sharp asymptotis for apaities of simple random walkWith Lemma 2.4.6 we have obtained upper and lower bounds on Θ in terms of apaities forsimple random walk on Z2 of the pairs of sets ∂+Λ and CS(η̂), respetively, CS++(η̂), with η̂summed over P. The transition rates of the simple random walk are 1 between neighboringpairs of sites. Lemma 2.4.7 below, whih is the analogue of [6℄, Lemma 3.4.1, shows that,in the limit as Λ → Z2, eah of these apaities has the same asymptoti behavior, namely,
[1+o(1)] 4π/ log |Λ|, irrespetive of the loation and shape of the protoritial droplet (providedit is not too lose to ∂+Λ, whih is a negligible fration of the possible loations). In whatfollows we pretend that Λ = BM = [−M,+M ]2 ∩ Z2 for some M ∈ N large enough. It isstraightforward to extend the proof to other shapes of Λ (see van den Berg [2℄ for relevantestimates).Lemma 2.4.7 For any ε > 0,

lim
M→∞

max
η̂∈P

d(∂+BM,supp(η̂))≥εM

∣

∣

∣

∣

logM

2π
CAPB+

M

(

∂+BM ,CS(η̂)
)

− 1

∣

∣

∣

∣

= 0,

lim
M→∞

max
η̂∈P

d(∂+BM,supp(η̂))≥εM

∣

∣

∣

∣

logM

2π
CAPB+

M

(

∂+BM ,CS++(η̂)
)

− 1

∣

∣

∣

∣

= 0,

(2.61)where d(∂+BM , supp(η̂)) = min{|x− y| : x ∈ ∂+BM , y ∈ supp(η̂)}.Proof. We only prove the �rst line of (2.61). The proof of the seond line is similar.Lower bound: For η̂ ∈ P, let y ∈ CS(η̂) ⊂ BM denote the site losest to the enter of CS(η̂).The apaity dereases when we enlarge the set over whih the Dirihlet form is minimized.Therefore we have
CAPB+

M (∂+BM ,CS(η̂)) ≥ CAPB+
M (∂+BM , y)

= CAP (BM−y)+(∂+(BM − y), 0) ≥ CAPB+
2M (∂+B2M , 0),

(2.62)where the last equality uses that (BM − y)+ ⊂ B+
2M beause y ∈ BM . By the analogue of(2.5�2.6) for simple random walk, we have (ompare (2.49) with (2.1�2.2))

CAPB+
2M (∂+B2M , 0) = CAPB+

2M (0, ∂+B2M ) = 4P0(τ∂+B2M
< τ0), (2.63)where P0 is the law on path spae of the disrete-time simple random walk on Z2 starting at0. Aording to Révész [24℄, Lemma 22.1, we have

P0(τ∂+B2M
< τ0) ∼

π

2 log(2M)
, M → ∞. (2.64)Combining (2.62�2.64), we get the desired lower bound.Upper bound: As in (2.62), we have

CAPB+
M (∂+BM ,CS(η̂)) ≤ CAPB+

M (∂+BM , Sy(η̂))

= CAP (BM−y)+(∂+(BM − y), Sy(η̂)− y) ≤ CAPB+
εM (∂+BεM , Sy(η̂)− y),

(2.65)22



where Sy(η̂) is the smallest square entered at y ontaining CS(η̂), and the last inequality usesthat (BM − y)+ ⊃ B+
εM when d(∂+BM , supp(η̂)) ≥ εM . By the reurrene of simple randomwalk, we have

CAPB+
εM (∂+BεM , Sy(η̂)− y) ∼ CAPB+

εM (∂+BεM , 0), M → ∞. (2.66)Combining (2.64�2.66), we get the desired upper bound. �Combining Lemmas 2.4.6�2.4.7, we �nd that Θ ∈ [Θ1,Θ2] with
Θ1 = O(εM) +

∑

η̂∈P

d(∂+BM,supp(η̂))≥εM

CAPB+
M (∂+BM ,CS(η̂))

= O(εM) +
2π

logM

∣

∣

{

η̂ ∈ P : d(∂+BM , supp(η̂)) ≥ εM
}∣

∣ [1 + o(1)]

= O(εM) +
2π

logM
N⋆ [2(1 − ε)M ]2 [1 + o(1)],

(2.67)
and the same expression for Θ2, where we use that (reall (H3-a))
CAPB+

M

(

∂+BM ,CS(η̂)
)

≤ CAPB+
M

(

B+
M\CS(η̂),CS(η̂)

)

= 1
2 |CS

+(η̂)| ≤ 1
2(L

⋆ + 2)2, (2.68)and we reall from De�nition 1.4.1(b) that N⋆ is the ardinality of P modulo shifts of the pro-toritial droplets. Let M → ∞ followed by ε ↓ 0, to onlude that Θ ∼ 2πN⋆(2M)2/ logM .Sine |Λ| = (2M + 1)2 and K = 1/Θ, this proves (1.16) in Theorem 1.4.4.2.5 Proof of Theorem 1.4.5Proof. The proof is immediate from Lemma 2.3.2 and Bovier, Ekho�, Gayrard and Klein [5℄,Theorem 1.3(iv). The main idea is that, eah time the dynamis reahes the ritial dropletbut �fails to go over the hill and falls bak into the valley around ��, it has a probabilityexponentially lose to 1 to return to � (beause, by (H2), � lies at the bottom of its valley(reall (2.3) and (2.27))) and to �start from srath�. Thus, the dynamis manages to grow aritial droplet and go over the hill only after a number of unsuessful attempts that tends toin�nity as β → ∞, eah having a small probability that tends to zero as β → ∞. Consequently,the time to go over the hill is exponentially distributed on the sale of its average. �2.6 Proof of Theorem 1.4.3Proof. (a) We will show that there exist C < ∞ and δ > 0 suh that
P� (τC⋆ < τ⊞ | τ⊞ < τ�) ≥ 1− Ce−δβ , ∀ β ∈ (0,∞), (2.69)whih implies the laim.By (2.5), CAPβ(�,⊞) = µβ(�) cβ(�,X\�)P�(τ⊞ < τ�) with µβ(�) = 1/Zβ . From thelower bound in Lemma 2.1.1 it therefore follows that

P�(τ⊞ < τ�) ≥ C1e
−Γ⋆β 1

cβ(�,X\�)
. (2.70)23



We will show that
P� ({τC⋆ < τ⊞}

c, τ⊞ < τ�) ≤ C2e
−(Γ⋆+δ)β 1

cβ(�,X\�)
. (2.71)Combining (2.70�2.71), we get (2.69) with C = C2/C1.By De�nitions 1.2.2(f) and 1.2.3(d), any path from � to ⊞ that does not pass through C⋆must hit a on�guration η with H(η) > Γ⋆. Therefore there exists a set S, with H(η) ≥ Γ⋆+ δfor all η ∈ S and some δ > 0, suh that

P� ({τC⋆ < τ⊞}
c, τ⊞ < τ�) ≤ P� (τS < τ�) . (2.72)Now estimate, with the help of reversibility,

P� (τS < τ�) ≤
∑

η∈S

P� (τη < τ�)

=
∑

η∈S

µβ(η)cβ(η,X\η)

µβ(�)cβ(�,X\�)
Pη (τ� < τη)

≤
1

cβ(�,X\�)

∑

η∈S

|{η′ ∈ X\η : η ∼ η′}| e−βH(η)

≤
1

cβ(�,X\�)
C2 e

−(Γ⋆+δ)β

(2.73)
with C2 = |{(η, η′) ∈ S × X\{η} : η ∼ η′}|, where we use that cβ(η, η

′) ≤ 1. Combine(2.72�2.73) to get the laim in (2.71).(b) Write
P�

(

ητC⋆
bd

= η | τC⋆
bd

< τ�
)

=
P�

(

ητC⋆
bd

= η, τC⋆
bd

< τ�
)

P�

(

τC⋆
bd

< τ�
) , η ∈ C⋆

bd. (2.74)By reversibility,
P�

(

ητC⋆
bd

= η, τC⋆
bd

< τ�
)

=
µβ(η)cβ(η,X\η)

µβ(�)cβ(�,X\�)
Pη

(

τ� < τC⋆
bd

)

= e−Γ⋆β cβ(η,X\η)

cβ(�,X\�)
Pη

(

τ� < τC⋆
bd

)

, η ∈ C⋆
bd.

(2.75)Moreover (reall (2.3�2.4)),
Pη

(

τ� < τC⋆
bd

)

=
∑

η′∈X\C⋆
bd

η∼η′

cβ(η, η
′)

cβ(η,X\η)
h⋆
�,C⋆

bd
(η′), η ∈ C⋆

bd, (2.76)where
h⋆
�,C⋆

bd
(η′) =







0 if η′ ∈ C⋆
bd,

1 if η′ = �,
Pη′(τ� < τC⋆

bd
) otherwise. (2.77)
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Beause P ⊂ X� by Lemma 2.2.1 and C⋆
bd ⊂ G(�,⊞) by De�nition 1.4.1(a), for all η′ ∈ P wehave Φ(η′, C⋆

bd)−Φ(η′,�) = Γ⋆−Φ(η′,�) ≥ δ > 0. Therefore, as in the proof of Lemma 2.4.1,it follows that
min
η′∈P

h⋆
�,C⋆

bd
(η′) ≥ 1− Ce−δβ , (2.78)Moreover, letting C̄⋆ be the set of on�gurations that an be reahed from C⋆

bd via an allowedmove that does not return to P, we have
max
η′∈C̄⋆

h⋆
�,C⋆

bd
(η′) ≤ Ce−δβ. (2.79)Indeed, h⋆

�,C⋆
bd
(η′) = 0 for η′ ∈ C⋆

bd, whileany path from C̄⋆\C⋆
bd to � that avoids C⋆

bd must reah an energy level > Γ⋆. (2.80)To obtain (2.79) from (2.80), we an do an estimate similar to (2.29�2.30) for η′ ∈ C̄⋆\C⋆
bd.To prove (2.80) we argue as follows. Let ζ ∈ C̄⋆, and let η be the on�guration in C⋆

bd fromwhih ζ is obtained in a single transition. If ζ ∈ C⋆
bd, then any path from ζ to � already startsfrom C⋆

bd and there is nothing to prove. Therefore, let ζ ∈ C̄⋆\C⋆
bd. Note that, by (H3-a), ηonsists of a single (protoritial) droplet in Λ− plus a partile of type 2 in ∂−Λ. Realling thatpartiles in ∂−Λ do not interat with other partiles, we see that any on�guration obtainedfrom η by detahing a partile from the (protoritial) droplet inreases the number of dropletsand, by (H3-b), raises the energy above Γ⋆. Therefore, ζ an only be obtained from η by movingthe free partile from ∂−Λ to Λ−. Only two ases are possible: either ζ ∈ C⋆

att or ζ ∈ C⋆\C⋆
bd.In the former ase, the laim follows via Lemma 1.6.4. In the latter ase, we must show that ifthere is a path ω : ζ → � that avoids C⋆

bd suh that maxσ∈ω H(σ) ≤ Γ⋆, then a ontraditionours.Indeed, if ω is suh a path, then the reversed path ω′ is a path from � → ζ suh that
maxσ∈ω′ H(σ) ≤ Γ⋆. But ω′ an be extended by the single move from ζ to η to obtain apath ω′′ : � → η suh that maxσ∈ω′′ H(σ) ≤ Γ⋆. Moreover, sine η ∈ C⋆

bd, there exists a path
γ : η → ⊞ suh that maxσ∈γ H(σ) ≤ Γ⋆. But then the path obtained by joining ω′′ and γis a path in (� → ⊞)opt suh that the on�guration ζ visited just before η ∈ C⋆

bd belongs to
C⋆\C⋆

bd ⊂ C⋆. However, by De�nitions 1.4.1�1.4.2, this implies that ζ ∈ P, whih is impossiblebeause P ∩ C⋆ = ∅.The estimates in (2.78�2.79) an be used as follows. By restriting the sum in (2.76) to
η′ ∈ P and inserting (2.78), we get

Pη

(

τ� < τC⋆
bd

)

≥ (1− Ce−δβ)
cβ(η,P)

cβ(η,X\η)
, η ∈ C⋆

bd. (2.81)On the other hand, by inserting (2.79), we get
Pη

(

τ� < τC⋆
bd

)

≤
cβ(η,P)

cβ(η,X\η)
+ Ce−δβ|C̄⋆|, η ∈ C⋆

bd. (2.82)Beause H(P) < H(C⋆
bd) = Γ⋆, we have

cβ(η,P) =
∑

η′∈P

cβ(η, η
′) = |{η′ ∈ P : η ∼ η′}|, η ∈ C⋆

bd, (2.83)25



and, sine cβ(η,X\η) ≤ |X |, it follows that η 7→ cβ(η,P)/cβ(η,X\η) is bounded from below.Combine this observation with (2.81�2.82), to get
Pη

(

τ� < τC⋆
bd

)

= [1 +O(e−δβ)]
cβ(η,P)

cβ(η,X\η)
, η ∈ C⋆

bd. (2.84)Combining this in turn with (2.74�2.75), we arrive at
P�

(

ητC⋆
bd

= η | τC⋆
bd

< τ�
)

=
cβ(η,X\η)Pη(τ� < τC⋆

bd
)

∑

η′∈C⋆
bd

cβ(η′,X\η′)Pη′(τ� < τC⋆
bd
)

= [1 +O(e−δβ)]
cβ(η,P)

∑

η′∈C⋆
bd

cβ(η′,P)
, η ∈ C⋆

bd.

(2.85)Finally, eah site in ∂−Λ has one edge towards ∂+Λ and hene, by (2.83), η 7→ cβ(η,P) isonstant on C⋆
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