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Abstract

In this paper we study metastability for a stochastic dynamics with a parallel
updating rule in particular for a probabilistic cellular automata. The problem is
addressed in the FreidlinWentzel regime, i.e., finite volume, small magnetic field,
and in the limit when temperature tends to zero.

We are interested in how the system nucleates, i.e., in properties of the transition
from the metastable state (the configuration with all minuses) to the stable state
(the configuration with all pluses). In this paper we show that the nucleation time
divided by its average converges to an exponential random variable and we express
the proportionality constant for the average nucleation time in terms of parameters
of the model. Our approach combines geometric and potential theoretic arguments.

A special feature of parallel dynamics is the existence of many fixed points and
cyclic pairs of the zero temperature dynamics, in which the system can be trapped
in its way to the stable phase. These cyclic points are corresponding to chessboard
kind of configurations that under the parallel dynamics alternate between even and
odd.
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1. Introduction

Metastable states are very common in nature and are typical of systems close to a
first order phase transition. It is often observed that a system can persist for a long
period of time in a phase which is not the one favored by the thermodynamic parameters;
classical examples are the super-saturated vapor and the magnetic hysteresis. The rigorous
description of this phenomenon in the framework of well defined mathematical models
is relatively recent, dating back to the pioneering paper [CGOV], and has experienced
substantial progress in the last decade. See [OV], [Bo], [Ho] for reviews and for a list of
the most important papers on this subject.

A natural setup in which the phenomenon of metastability can be studied is that
of Markov chains, or Markov processes, describing the time evolution of a statistical
mechanical system. Think for instance to a stochastic lattice spin system. In this context
powerful theories (see [BEGK], [MNOS], [OS]) have been developed with the aim to find
answers valid with maximal generality and to reduce to a minimum the number of model
dependent inputs necessary to describe the metastable behavior of the system.

Whatever approach is chosen, a key model dependent question is the computation
of the minimal energy barrier, called communication energy, to be overcome by a path
connecting the metastable to the stable state. Such a problem is in general quite com-
plicated and becomes particularly difficult when the dynamics has a parallel character.
Indeed, if simultaneous updates are allowed on the lattice, then no constraint on the struc-
ture of the trajectories in the configuration space is imposed. Therefore, to compute the
communication energy, one must take into account all the possible transitions in the con-
figuration space. The problem of the computation of the communication energy between
the metastable (configuration with all minuses) to the stable state (configuration with
all pluses) in a parallel dynamics setup has been addressed in [CN] in the probabilistic
cellular automaton without self interaction. In particular, in [CN] the typical questions
of metastability, that is the determination of the exit time and of the exit tube, have
been answered for a reversible Probabilistic Cellular Automaton, in which each spin is
coupled only with its nearest neighbors. In that paper it has been shown that, during the
transition from the metastable minus state to the stable plus state, the system visits an
intermediate chessboard-like phase. See [De] for introduction of the model probabilistic
cellular automata and [CNP], [De], [GLD], [Ru], [St], [TVSMKP] for other results and
applications.

In the present paper we study the reversible PCA in which each spin interacts both
with itself and with its nearest neighbors; the metastable behavior of such a model has
been investigated on heuristic and numerical grounds in [BCLS] and rigorously in [CNS].
The addition of the self-interaction changes completely the metastability scenario; in
particular in [CNS] the authors show that the chessboard-like phase plays no role in the
exit from the metastable phase. Another very interesting feature of this model is the
presence of a large number of fixed points of the zero-temperature dynamics in which the
system can be trapped.

We are interested in how the system nucleates, i.e., how it reaches the configuration
with all pluses starting from all minuses. Our goal is to improve on earlier results by
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combining detailed results on the energy landscape for the dynamics and the potential
theoretic approach to metastability that was developed [BEGK] and further exposed
in [Bo]. Using the potential theoretic approach to metastability, developed in [BEGK]
our main theorems sharpen earlier results obtained in [CNS]. We use the three model
dependent ingredients proved in [CNS]: (1) the solution of the global variational problem
for all the paths connecting the metastable and the stable state, i.e., the computation of
the communication energy; (2) a sort of recurrence property stating that, starting from
each configuration different from the metastable and the stable state, it is possible to
reach a configuration at lower energy following a path with an energy cost strictly smaller
than the communication energy; (3) determination of particular set of configurations, i.e.,
critical configurations for the transition from metastable to stable state and the neighbor
of this set. This set of critical configurations is necessarily visited by the system during
its excursion from the metastable to the stable state, it plays the role of the saddle
configurations and represents the most important part of the typical tube of trajectories
the system follows during the transition.

Our results are comparable with those derived for the Ising model in two and three
dimensions evolving according to Glauber dynamics, respectively on finite box in [BM],
and on volume growing exponentially fast with the inverse temperature in [BHS]. These
works sharpened earlier results in [NS] in two dimensions and in [BC] in three dimensions.

Our results are comparable with those derived for lattice gas in two and three dimen-
sions subject to kawasaki dynamics, respectively on finite box in [BHN], and on volume
growing exponentially fast with the inverse temperature in [BHS] and in [GHNOS]. These
works sharpened earlier results in [HOS] in two dimensions and in [HNOS] in three di-
mensions.

Kawasaki differs from Glauber in that it is a conservative dynamics: particles are
conserved in the interior of the box. For critical comparison of Glauber and Kawasaki
dynamics we refer to [MNOS] and [Ho]. Kawasaki and Glauber dynamics have very differ-
ent properties, but they are both dynamics that allow only local changes, i.e, exchange of
position of two particles for Kawasaki and change one spin per time for Glauber dynamics.
Probabilistic Cellular automata are parallel dynamics where simultaneous updates are al-
lowed on the lattice, then there is no continuity constraint on the cardinality of particles
or plus spins can be used on the structure of the trajectories in the configuration space.
Therefore, in the determination of the three model dependent inputs named above, one
must take into account at any time all the possible transitions in the configuration space.
For comparison Probabilistis Cellular Automata and serial dynamics in the context of
metastability see [CNS3], [C], [CN], [CNS] and [CNS2].

The outline of the paper is as follows. In section 2 we define the model (in subsections
2.1 and 2.2), the stationary measure in 2.3 and the communication energy for probabilistic
cellular automaton 2.4. Moreover, the end of section 2 in subsection 2.5 we recall earlier
results. In section 3 we state our main theorems. In section 4 we proof of Lemma 2.1. In
section 5 we review the results on Potential Theoretic approach that we will use in section
6. In section 6 we prove our main theorem 3.1.
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2. Probabilistic Cellular Automata

In this section we introduce the basic notation, define the model of reversible Probabilistic
Cellular Automata which will be studied in the sequel, and state the main known results.

2.1. The lattice and The configuration space

The spatial structure is modeled by the two–dimensional finite square Λ ⊂ Z2 of side
length L with periodic boundary condition namely, by the torus Λ. We consider Λ endowed
with the lattice distance d(x, y) := |x− y|.

We say that x, y ∈ Λ are nearest neighbors iff d(x, y) = 1. For X ⊂ Λ we let ∂X :=
{x ∈ Xc : d(x,X) = 1} be the external boundary of X and X := X ∪ ∂X be the closure
of X. Two sets X,Y ⊂ Λ are said to be not interacting if and only if d(X, Y ) ≥ 3.

Let x ∈ Λ; for `1, `2 strictly positive reals we let Q`1,`2(x) := {y ∈ Λ : x1 ≤ y1 ≤ x1 +
(`1−1), x2 ≤ y2 ≤ x2+(`2−1)} be the rectangle of side lengths [`1] and [`2] with x the site
with smallest coordinates. For X ⊂ Λ and ` > 0 we set B`(X) := {y ∈ Λ : d(X, y) ≤ `};
if ` = 1 we shall write B(X) for B1(X), note that B(X) = X. If x ∈ Λ we write B`(x) for
B`({x}), note that B`(x) is the ball of radius [`] centered at x. Finally, we remark that
B(x) is the five site cross centered at x ∈ Λ.

The single spin state space is given by the finite set S0 := {−1, +1} which we consider
endowed with the discrete topology; the associated Borel σ–algebra is denoted by F0. The
configuration space in X ⊂ Λ is defined as SX := SX

0 and considered equipped with the
product topology and the corresponding Borel σ algebra FX . The model and the related
quantities that will be introduced later on will all depend on Λ, but since Λ is fixed it will
be dropped from the notation; in this spirit we let SΛ =: S and FΛ =: F .

Given Y ⊂ X ⊂ Λ and σ := {σx ∈ S{x}, x ∈ X} ∈ SX , we denote by σY the restriction
of σ to Y namely, σY := {σx, x ∈ Y }.

2.2. The model: Probabilistic Cellular Automaton

Let β > 0 and h ∈ R such that |h| < 1 and 2/h is not integer, we consider the Markov
chain on S with transition matrix

p(σ, η) :=
∏
x∈Λ

px,σ (η(x)) ∀σ, η ∈ S (2.1)

where, for each x ∈ Λ and σ ∈ S, px,σ(·) is the probability measure on S{x} defined as
follows

px,σ(s) :=
1

1 + exp {−2βs(Sσ(x) + h)} =
1

2
[1 + s tanh β (Sσ(x) + h)] (2.2)

with s ∈ {−1, +1} and

Sσ(x) :=
∑

y∈V (x)

σ(y) (2.3)

where V (x) is a suitable neighborhood of the site x. Note that for x and s fixed px,·(s) ∈
FV (x) namely, the probability px,σ(s) for the spin at site x to be equal to s depends only
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on the values of the spins of σ inside the the neighborhood V (x) of x. The normalization
condition px,σ(s) + px,σ(−s) = 1 is trivially satisfied.
We study the metastability behavior of PCA model, appearing in (2.3) as

V (x) = V1(x) := B(x) (2.4)

The choice (2.4) corresponds to the model studied in [CNS], where also the self–
interaction of spin in x is taken into account.

Such a Markov chain on the finite space S is an example of reversible probabilistic cellular
automata (PCA). Let n ∈ N be the discrete time variable and σn ∈ S denote the state of
the chain at time n, the configuration at time n+1 is chosen according to the law p(σn, ·),
see (2.1), hence all the spins are updated simultaneously and independently at any time.
Finally, given σ ∈ S we consider the chain with initial configuration σ0 = σ, we denote
with Pσ the probability measure on the space of trajectories, by Eσ the corresponding
expectation value, and by

τσ
A := inf{t > 0 : σt ∈ A} (2.5)

the first hitting time on A ⊂ S; we shall drop the initial configuration from the notation
(2.5) whenever it is equal to −1, we shall write τA for τ−1

A , namely.

2.3. The stationary measure

It is straightforward, that the PCA (2.1) is reversible with respect to the finite volume
Gibbs measure µ(σ) := exp{−βH(σ)}/Z with Z :=

∑
η∈S exp{−βH(η)} and

H(σ) := Hβ,h(σ) := −h
∑
x∈Λ

σ(x)− 1

β

∑
x∈Λ

log cosh [β (Sσ(x) + h)] (2.6)

in other words the detailed balance condition

p(σ, η) e−H(σ) = p(η, σ) e−H(η) (2.7)

is satisfied for any σ, η ∈ S. Hence, the measure µ is stationary for the PCA (2.1); to un-
derstand its most important features it is useful to study the related Hamiltonian. Since
the Hamiltonian has the form (2.6) we shall often refer to 1/β as to the temperature and
to h as to the magnetic field.
The definition of ground states is not completely trivial in our model, indeed the Hamil-
tonian H depends on β. The ground states are those configurations on which the Gibbs
measure µ is concentrated when the limit β →∞ is considered, so they can be defined as
the minima of the energy

E(σ) := lim
β→∞

H(σ) = −h
∑
x∈Λ

σ(x)−
∑
x∈Λ

|Sσ(x) + h| (2.8)

uniformly in σ ∈ S. Let X ⊂ S if the energy E is constant on X namely, if all the
configurations in X have the same energy, we shall misuse the notation by writing E(X )
for E(σ) with σ ∈ X .
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2.4. Communication Energy

In our model the energy difference between two configurations σ and η is not sufficient
to say if the system prefers to jump from σ to η or vice versa. Indeed, there are pair of
configurations such that the system sees an energetic barrier in both directions. For this
reason we associate a sort of communication height H(σ, η) to each pair of configurations
σ, η ∈ S. More precisely we extend the Hamiltonian (2.6) to H : S ∪ S × S → R so that

H(σ, η) := H(σ)− log p(σ, η) (2.9)

We consider the communication energy

E(σ, η) := lim
β→∞

H(σ, η) ≥ max{E(σ), E(η)} (2.10)

and the transition rate

∆(σ, η) := E(σ, η)− E(σ) =
∑
x∈Λ:

η(x)(Sσ(x)+h)<0

2|Sσ(x) + h| ≥ 0 (2.11)

where in the last equality we have used the definition (2.8) of E(σ), (2.9), (2.1), and (2.2).
We state and prove a simple Lemma that relates the communication height H(σ, η) to
the communication energy E(σ, η).

Lemma 2.1 For any σ, η ∈ S we have:

H(σ, η) = E(σ, η) +
|Λ| log 2

β
(2.12)

We give now some useful definitions. A finite sequence of configurations ω = {ω1, . . . , ωn}
is called a path with starting configuration ω1 and ending configuration ωn; we denote
the length of a path |ω| := n. Given two paths ω and ω′ such that ω|ω| = ω′1 we let
ω + ω′ := {ω1, . . . , ω|ω|, ω′2, . . . , ω

′
|ω′|}; note that |ω + ω′| = |ω|+ |ω′| − 1. Given a path ω

we define the height along ω as

Φω :=

{
E(ω1) if |ω| = 1
maxi=1,...,|ω|−1 E(ωi, ωi+1) otherwise

(2.13)

Given two configurations σ, η ∈ S, we denote by Θ(σ, η) the set of all the paths ω starting
from σ and ending in η. The minimax between σ and η is defined as

Φ(σ, η) := min
ω∈Θ(σ,η)

Φω (2.14)

2.5. Nucleation time and critical configurations

We pose now the problem of metastability, we state the known related theorem for the
exit time for the model in (2.1) with 0 < h < 1. Suppose that the system is prepared in
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the state σ0 = −1, where −1 is the configuration with all the sites with spin −1, and let
the dynamics evolve according with (2.1), we want to study the transition towards the
phase +1, the configuration with all spin +1.

It was shown in [CNS] that the minus one state is metastable in the sense that the
system spends time exponentially big in configurations close to −1 before visiting +1, the
configuration with all positive spins.

Let us consider the critical length λ defined as follows:

λ :=
[2

h

]
+ 1 (2.15)

Let us give the following definitions:

Definition 2.2 (Saddles) 1. We denote by P the set of the protocritical droplets
consisting in the configurations with all the spins equal to −1 excepted those in a
rectangle of side λ − 1 and λ in a neighboring site adjacent to one of the longest
side.

2. we denote with C the set of the critical droplet consisting in the configurations with
all the spins equal to −1 excepted those in a rectangle of side λ− 1 and λ in a pair
of neighboring sites adjacent to one of the longest side.

η ∈ P ζ ∈ C

Figure 1: Protocritical and critical droplets

We restate a theorem from [CNS], giving a recurrence property on the set {−1, +1},
and estimate in probability of the first hitting time in the stable state.

Theorem 2.3 [CNS] Recall Γ1 has been defined in (3.1) and suppose h > 0 is chosen
small enough; then

1. for any σ ∈ S \ {−1} we have

Φ(σ, +1)− E(σ) ≤ Γ0 < Γ1 (2.16)

2. we have
Φ(−1, +1)− E(−1) = Γ1 (2.17)

3. for each path ω = {ω1, . . . , ωn} ∈ Θ(−1, +1) such that Φω = Γ1, then E(ωi−1, ωi) =
Γ1 iff ωi−1 ∈ P, ωi ∈ C and ωi = ωx

i−1 for a suitable x ∈ Λ. .
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We shall show that the first hitting time τ+1, to +1 is an exponential random variable
with mean exponentially large in β. Let us consider the critical length λ defined as follows:

λ :=
[2

h

]
+ 1 (2.18)

3. Main results sharp description of nucleation

We shall show that the first hitting time τ+1, to +1 is an exponential random variable
with mean exponentially large in β.

In order to state the main theorem for the PCA, we define the following activation
energy of the configurations that trigger the nucleation:

Γ1 := −4hλ2 + 4(4 + h)λ + 2− 6h (3.1)

corresponding to the choice of V in 2.4.

Theorem 3.1 Consider the probabilistic cellular automaton (2.1), for h > 0 small enough,
we have:

E−1(τ+1) =
1

Ki

eβΓi [1 + o(1)] β →∞. (3.2)

and
K1 = 2−|Λ| 8|Λ|(λ− 1); (3.3)

Theorem 3.2 Consider the probabilistic cellular automaton (2.1), for h > 0 small enough,
we have:

P−1(τ+1 > tE−1τ+1) = [1 + o(1)]e−t[1+o(1)] t ≥ 0. β →∞. (3.4)

4. Proof of Lemma 2.1

By using (2.9), (2.1), (2.2), and (2.11) we get

H(σ, η)−H(σ)− β [E(σ, η)− E(σ)]

=
∑
x∈Λ

log(1 + e−2βη(x)[Sσ(x)+h]) + β
∑
x∈Λ:

η(x)(Sσ(x)+h)<0

2η(x)[Sσ(x) + h]

=
∑
x∈Λ:

η(x)(Sσ(x)+h)>0

log(1 + e−2βη(x)[Sσ(x)+h]) +
∑
x∈Λ:

η(x)(Sσ(x)+h)<0

log(1 + e−2βη(x)[Sσ(x)+h])

+ β
∑
x∈Λ:

η(x)(Sσ(x)+h)<0

2η(x)[Sσ(x) + h]

=
∑
x∈Λ:

η(x)(Sσ(x)+h)>0

log(1 + e−2βη(x)[Sσ(x)+h]) +
∑
x∈Λ:

η(x)(Sσ(x)+h)<0

log(e+2βη(x)[Sσ(x)+h] + 1)

=
∑
x∈Λ

log(1 + e−2β|Sσ(x)+h|)

(4.1)
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Moreover, since

H(σ) := −
∑
x∈Λ

log(cosh(β(Sσ(x) + h)))− β h
∑

x

σ(x)

= −
∑
x∈Λ

log(cosh(β|Sσ(x) + h|))− β h
∑

x

σ(x)

E(σ) := −h
∑

x

σ(x)−
∑

x

|Sσ(x) + h|

we have for the energy

H(σ)− β E(σ) = −
∑
x∈Λ

log(cosh(β|Sσ(x) + h|)) + β
∑

x

|Sσ(x) + h|

= −
∑

x

(log(cosh(β|Sσ(x) + h|))− log exp(β|Sσ(x) + h|))

= −
∑

x

(
log

eβ|Sσ(x)+h| + e−β|Sσ(x)+h|

2eβ|Sσ(x)+h|

)

= −
∑

x

(
log

1 + e−2β|Sσ(x)+h|

2

)
(4.2)

Adding ... (4.1) and (4.2) we get (2.12). ¤

5. Review on Potential Theoretic approach

The proof of the theorems (3.1) and (3.2) are based on the potential–theoretic approach to
metastability developed in Bovier, Eckhoff, Gayrard and Klein [BEGK]. In this approach
a key role is played by the notion of capacity between two sets of configurations, which
we are going to recall.

5.1. Capacity

We define the Dirichlet form in the following way: for h : S → R

E(h) =
1

2

∑
σ,η∈S

µ(σ)p(σ, η)[h(σ)− h(η)]2 =
1

2

∑
σ,η∈S

1

Z
e−βH(σ,η)[h(σ)− h(η)]2 (5.1)

where Z is the partition function.
From the definition of the communication energy (2.9), we have

µ(σ)p(σ, η) = µ(σ) e−β(H(σ,η)−H(σ)) =
1

Z
e−βH(σ,η).

Given two non-empty disjoint sets A,B the capacity of the pair A,B is defined by
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CAP(A,B) := min
h:S→[0,1]

h|A=1,h|B=0

E(h) (5.2)

and from this definition it follows that the capacity is a symmetric function of the sets A
and B.
The right hand side of (5.2) has a unique minimizer h∗A,B called equilibrium potential of
the pair A,B given by

h∗A,B(η) = Pη(τA < τB), (5.3)

for any η /∈ A ∪ B.

The strength of this variational representation comes from the monotonicity of the
Dirichlet form in the variable p(σ, η). In fact, the Dirichlet form E(h) is a monotone in-
creasing function of the transition probabilities p(σ, η) for σ 6= η, while it is independent
of the value p(σ, σ).
It is useful to recall that, due to 5.2, the Dirichlet for is monotone in terms of the
µ(σ)p(σ, η), i.e., the following theorem holds:

Theorem 5.1 Assume that E and Ẽ are Dirichlet form associated to two Markov chains
P and P̃ with state space S and reversible with respect the measure µ. Assume that the
transition probabilities p and p̃ are given, for x 6= y, by

p(x, y) =
g(x, y)

µ(x)
, (5.4)

p̃(x, y) =
g̃(x, y)

µ(x)
(5.5)

where g(x, y) = g(y, x), g̃(x, y) = g̃(y, x) and, for all x 6= y

g̃(x, y) ≤ g(x, y) (5.6)

Then for any non intersecting sets A, B ⊂ S,

cap(A,B) ≥ C̃AP(A,B) (5.7)

Obviously the proof is evident, since E(h) ≥ Ẽ(h) for any h. We remark that for the
model studied, we have g(x, y) = e−βH(x,y).

Thus, we will use Theorem 5.1 by simply setting some of the transition probabilities
p(x, y) equal to zero. Indeed if enough of these are zero, we obtain a chain where every-
thing can be computed easily. In order to get a good lower bound, the trick will be to
guess which transitions can be switched off without altering the capacities too much, and
still to simplify enough to be able to compute it.
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5.2. Relation between capacity and the mean hitting time

We want now to recall a theorem from [BEGK] that links mean hitting times and
capacities. Indeed, if we define the set of metastable configuration M:

Definition 5.2 Consider a family of Markov chains, indexed by β, on a finite state space
S. A set M⊆ S is called metastable if

lim
β→∞

maxη/∈M µ(η)[CAP(η,M)]−1

minη∈M µ(η)[CAP(η,M\ η)]−1 = 0 (5.8)

and the valley A(σ) for a configuration σ ∈M:

Definition 5.3

A(σ) := {ζ ∈ S : Pζ(τσ = τM) = sup
η∈M

Pζ(τη = τM)} (5.9)

With these definitions, we are able to write the mean hitting times in terms of the ca-
pacities, that satisfies a manageable variational principle. In fact, the following theorems
holds:

Theorem 5.4 Let σ ∈M and J ⊆M\ x be such that for all m /∈ J ∪ x either µ(m) ¿
µ(σ) or CAP(m, J) À CAP(m,σ). Then

EστJ =
µ(A(σ))

CAP(σ, J)
(1 + o(1)) (5.10)

for β large enough.

Hence the strategy for proving the main theorems will be to identify the metastable sets
(i.e., −1, +1), and to give sharp estimates for the capacities among the elements of this
set, via a suitable application of the variational principle for the Dirichlet form.

6. Proof of Theorem 3.1

In order to proof the theorem, we first show that the metastable setM is the set {−1, +1},
then we give sharp estimates on CAP(−1, +1) and we will conclude the proof using
Theorem 5.4.

6.1. Metastable set M = {−1, +1}
Recall definition 2.2 and theorem 2.3. Moreover we recall an elementary estimate given
in [BHN]:
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Lemma 6.1 [BHN] For every non–empty disjoint sets A,B ⊂ S, there exist constants
0 < C1 ≤ C2 < ∞ (depending on A,B) such that for all β:

C1 ≤ eβΦ(A,B) Z CAP(A,B) ≤ C2. (6.1)

Thus M is a metastable set in the sense that the following holds:

Theorem 6.2
M = {−1, +1} (6.2)

Proof
From (2.16) and (6.1), it follows that, for any η /∈ {−1, +1}

µ(η)[CAP(η,M)]−1 ≤ Z

C1

µ(η) eβ φ(η,+1) ≤ e−H(σ)

C1

eβ φ(η,M) ≤ C3 eβ(Γ1−δ) (6.3)

for some δ > 0, where in the last inequality we used (4.2).
If η ∈ {−1, +1}, we have:

µ(η)[CAP(−1, +1)]−1 ≥ C4e
β Γ1 . (6.4)

Indeed, if η = −1 equation (6.4) follows from (6.1), (2.17) and (4.2), while if η = +1 we
can write:

µ(+1)

CAP(−1, +1)
≥ Z

µ(+1)

C2 e−β φ(−1,+1)
=

eβφ(−1,+1)−H(+1)

C2

> C5 eβ Γ1

Hence, from (6.4) and (6.3), we get

maxη/∈M µ(η)[CAP(η,M)]−1

minη∈M µ(η)[CAP(η,M\ η)]−1 ≤ C6 e−β δ

that concludes the proof. ¤

6.2. Sharp estimates for CAP(−1, +1)

We want to recall now the definition given in [CNS] of the generalized basin of attraction
G ⊂ S of −1. In this set, containing −1, but not +1, one is able to evaluate the commu-
nication energy for all the possible direct jumps from the interior to the exterior of such
a set G. In the case of parallel dynamics, the lacking of continuity increases the difficulty
of the computation of the communication energy between the metastable and the stable
state and makes the definition of G more complicated. To define the set G one introduces
two mappings A,B : S → S.

The map A flips the first, in lexicographic order, unstable plus spin of σ to which
corresponds a decrease of the energy. Under iteratively application of the map A: Ā, the
effect of the map A is that the number of pluses decreases, but only unstable pluses are
flipped. Let σ ∈ S the configuration Bσ is the single step bootstrap percolation, i.e., it
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changes the value in x ∈ Λ if the σ(x) = −1 and
∑

y∈V (x) σ(x) ≥ −1 In other words B
flips all the minus unstable spins and, among the stable minus spins, only those with two
neighboring minuses.

Note that configurations σ such that B̄Āσ contains plus stripes winding around the
torus Λ do not belong to G.

The iteration of the map A and then of B converge to a fixed point in a finite time, and
the composed mapping has the remarkable property of having the support consisting in
well separated rectangles or stripes winding around the torus. We can now define the set
G. Denoting by Q`i,1,`i,2

(xi) the collection of pairwise not interacting rectangles (or stripes)
belonging to the support of the fixed point of the composed mapping, we define G as the
set of all configurations such that the fixed point is either −1 or min{`i,1, `i,2} ≤ λ−1 and
max{`i,1, `i,2} ≤ L − 2 for any i = 1, . . . , n. Note that the set G contains the subcritical
configurations and that configurations σ such that B̄Āσ contains plus stripes winding
around the torus Λ do not belong to G.
Following [CNS] we can evaluate the minmax between G and Gc. Indeed

Proposition 6.3 [CNS]
With the definitions above, for h > 0 small enough and L = L(h) large enough, we have

1. −1 ∈ G, +1 ∈ S \ G, and C ⊂ S \ G;

2. for each η ∈ G and ζ ∈ S \ G we have E(η, ζ) ≥ E(−1) + Γ1;

3. for each η ∈ G and ζ ∈ S \ G we have E(η, ζ) = E(−1) + Γ1 if and only if ζ ∈ C,
η ∈ P and ζ = ηx for a suitable x ∈ Λ.

We want to introduce the cycle A−1 that is contained in G:

A−1 := {η ∈ G : ∃ω = {ω0 = η, ..., ωn = −1} : ω ⊂ G and Φω < Γ1 + E(−1)} (6.5)

A−1 is a subset of G, such that the communication energies towards −1 is strictly
smaller than Γ1 + E(−1). Note that P ⊂ A−1.
Analogously we define A+1:

A+1 := {η ∈ Gc : ∃ω = {ω0 = η, ..., ωn = +1} : ω ⊂ G and Φω < Γ1 + E(−1)} (6.6)

Notice that C ⊂ A+1. We remark that from Proposition 6.3, for any η ∈ A−1 and for any
ζ ∈ A+1, E(η, ζ) ≥ Γ1 + E(−1) and E(η, ζ) = Γ1 + E(−1) iff η ∈ P and ζ ∈ C.

Now we have all the ingredients to prove the sharp estimates for the capacity between −1
and +1.

Theorem 6.4 With the notation of theorem 3.1

CAP(−1, +1) = K1 µ(−1)e−β Γ1(1 + o(1)) (6.7)

in the limit β →∞
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Figure 2: Upper bound

Proof.
In order to prove the theorem we give upper and lower bounds for the capacity CAP(−1, +1).

i) Upper bound
We use the general strategy to prove an upper bound by guessing some a–priori
properties of the minimizer h?, solution of the variational problem (5.2).
Let us consider the two basin of attraction A−1 and A+1, then we give an upper
bound hu for the equilibrium potential h? choosing a test function in the following
way:

hu(σ) :=

{
1 σ ∈ A−1,
0 σ ∈ Ac

−1
(6.8)

Thus

E(hu) =
1

Z

∑
σ∈A−1,

η∈A+1

e−H(σ,η) +
1

Z

∑
σ∈A−1,

η∈(A+1∪A−1)c

e−H(σ,η)

=
1

Z 2|Λ|
∑

σ∈A−1,

η∈A+1

e−βE(σ,η) +
1

Z 2|Λ|
∑

σ∈A−1,

η∈(A+1∪A−1)c

e−β E(σ,η) (6.9)

where in the second step we used (2.12). We denote with N1 the cardinality of the
set of the saddles where the minmax Γ1 is attained. Using

2|Λ| E(hu)

µ(−1)
≤

∑
exp{−β[E(σ, η)− E(−1)]} (6.10)
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we get contribution of terms E(σ, η) = Γ1, while all terms E(σ, η) > Γ1 give a lower
contribution. Using this remark the l.h.s of (6.9), is bounded as follows:

2|Λ| E(hu)

µ(−1)
≤ N1 e−βΓ1 + |S| e−β(Γ1+δ), (6.11)

where δ > 0.
Indeed the minmax Φ(A−1,A+1) = Γ1+E(−1) and by Proposition 6.3, it is attained
only in the transitions between configurations η ∈ P and ζ ∈ C. Therefore, for all
the other transitions we have E(η, ζ) > Γ1 + E(−1).

ii) Lower bound
In order to have a lower bound, let us estimate the equilibrium potential. We can
prove the following Lemma:

Lemma 6.5 ∃C > 0, ∃δ > 0 such that for β large enough:

min
η∈A−1

h?(η) ≥ 1− Ce−δβ (6.12)

max
η∈A+1

h?(η) ≤ Ce−δβ (6.13)

Proof
Using a standard renewal argument, given η /∈ {−1, +1}:

Pη(τ+1 < τ−1) =
Pη(τ+1 < τ−1∪η)

1− Pη(τ−1∪+1 > τη)
; (6.14)

Pη(τ−1 < τ+1) =
Pη(τ−1 < τ+1∪η)

1− Pη(τ−1∪+1 > τη)
. (6.15)

Indeed if the process starting at point η wants to realize the event {τ+1 < τ−1} it
could do so either by going to −1 immediately and without returning to η again, or
it may return to η without going to +1 or −1. Clearly once the process return to
η, we can use the strong Markov property. Thus

Pη(τ+1 < τ−1) = Pη(τ+1 < τ−1∪η) + Pη(τη < τ+1∪−1 ∧ τ+1 < τ−1)

= Pη(τ+1 < τ−1∪η) + Pη(τη < τ+1∪−1)Pη(τ+1 < τ−1)

and solving the equation for Pη(τ+1 < τ−1) we have the renewal equation.

Then ∀η ∈ A−1 \ −1 we have:

h?(η) = 1− Pη(τ+1 < τ−1}) = 1− Pη(τ+1 < τ−1∪η)

Pη(τ−1∪+1 < τη)
≥ 1− Pη(τ+1 < τη)

Pη(τ−1 < τη)
,
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and for the last term we have the equality:

Pη(τ+1 < τη)

Pη(τ−1 < τη)
=

CAP(η, +1)

CAP(η,−1)
. (6.16)

The upper bound for the numerator of (6.16) is easily obtained through the upper
bound on CAP(−1, +1). Indeed, CAP(η, +1) ≤ E(hu), with hu the same as in (6.8).
Hence, by (6.11) we have:

2|Λ| Z CAP(η, +1) ≤ N1 e−β Φ(−1,+1) + |S| e−β (Φ(−1,+1)+δ), (6.17)

The lower bound on the denominator is obtained by reducing the state space to a
single path from η to −1, picking an optimal path ω = {ω0, ω1, ..., ωn} that realizes
the minmax Φ(η,−1) and cutting all the transitions that are not in the path. On
this new space we define a new process with transition probabilities p̃(σ, η) such
that, for any σ 6= η ∈ ω:

p̃(σ, η) :=

{
p(σ, η) whenever ∃i : (σ, η) = (ωi, ωi+1)
0 otherwise

(6.18)

while p̃(σ, σ) = 1−∑
η 6=σ p̃(σ, η). If we denote with Eω(h) the Dirichlet form defined

as in (5.1), with S replaced by ω and p(σ, η) by p̃(σ, η), from Theorem 5.1 we have:

CAP(η,−1) ≥ min
h:ω→[0,1]

h(ω0)=1,h(ωn)=0

Eω(h) =: M (6.19)

Due to the one–dimensional nature of the set ω, the variational problem in the right
hand side can be solved explicitly by elementary computations. One finds that that
the minimum equals

M =

[
n−1∑

k=0

Z eH(ωk,ωk+1)

]−1

(6.20)

and it is uniquely attained at h given by

h(ωk) = M

k−1∑

l=0

Z eH(ωl,ωl+1) k = 0, 1, ..., n. (6.21)

CAP(η,−1) ≥ M ≥ 1

nZ
max

k
e−H(ωk,ωk+1)

= 2−|Λ|/n
1

Z
e−βΦ(η,−1)

We know that if η ∈ A−1 then Φ(η,−1) < Φ(η, +1). Indeed from the definition of
the set A−1:

Φ(η, +1) ≥ Γ1 + E(−1) > Φ(η,−1). (6.22)
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For this reason

h?(η) ≥ 1− C(η)e−β(Φ(−1,+1)−Φ(η,−1)) ≥ 1− C(η)e−βδ, (6.23)

and we can take C := supη∈A−1\−1 C(η) and this concludes the proof of (6.12).
With a similar argument, ∀η ∈ A+1 \+1 we have:

h?(η) = Pη(τ−1 < τ+1}) =
Pη(τ−1 < τ+1∪η)

Pη(τ−1∪+1 < τη)
≤ Pη(τ−1 < τη)

Pη(τ+1 < τη)

=
CAP(η,−1)

CAP(η, +1)
≤ C(η)e−βδ, (6.24)

which proves the second claim with C = maxη∈A+1\+1 C(η) ¤

Now we are able to give a lower bound for the capacity.
By Lemma (6.5) we have

CAP(−1, +1) = E(h?) ≥
∑

σ∈A−1
η∈A+1

µ(σ)p(σ, η)(h?(σ)− h?(η))2

≥ 2−|Λ| N1µ(−1)e−βΓ1 + o(e−βδ). (6.25)

Now we want to evaluate the combinatorial factor N1 of the sharp estimate.
We have to determinate all the possible ways to choose a protocritical droplet in the
lattice with periodic boundary conditions. We know that the set P of such configurations
contains all the rectangles Qλ−1,λ(x) with a single protuberance adjacent to one of the
largest sides. Because of the translational invariance on the lattice, we can associate
at each site x two rectangular droplets Qλ−1,λ(x) and Qλ,λ−1(x) such that their lower-
left corner is in x. Considering the periodic boundary conditions, the number of such
rectangles is

NQ = 2|Λ|. (6.26)

For every rectangle the possible transition between a protocritical droplet and a critical
droplet are:

NS = 2 (2(λ− 2) + 2) (6.27)

since there are two larger sides and given a single protuberance there are two ways two
form a double protuberance if the spin is not in a corner and just one otherwise. Thus

N1 = NQ NS = 8|Λ|(λ− 1)

and this completes the proof. ¤
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