
EURANDOM PREPRINT SERIES
2011-010

Approximate Evaluation of Multi-Location Inventory
Models with Lateral Transshipments

and Hold Back Levels

A.C.C. van Wijk, I.J.B.F. Adan, G.J. van Houtum
ISSN 1389-2355

1

Approximate Evaluation of Multi–Location Inventory

Models with Lateral Transshipments

and Hold Back Levels

A.C.C. van Wijk∗1,2,3, I.J.B.F. Adan1,3, and G.J. van Houtum2,3

Eindhoven University of Technology, Eindhoven, The Netherlands

1Department of Mathematics and Computer Science
2School of Industrial Engineering

3Eurandom

February 23, 2011

Abstract

We consider a continuous-time, single-echelon, multi-location inventory model with Pois-

son demand processes. In case of a stock-out at a local warehouse, a demand can be

fulfilled via a lateral transshipment (LT). Each warehouse is assigned a predetermined

sequence of other warehouses where it will request for an LT. However, a warehouse can

hold its last part(s) back from such a request. This is called a hold back pooling policy,

where each warehouse has hold back levels determining whether a request for and LT by

another warehouse is satisfied. We are interested in the fractions of the demand satisfied

from stock (fill rate), satisfied via a lateral transshipment, and via an emergency shipment

from an external source. From this the average costs of a policy can be determined. We

present two approximation algorithms for the evaluation of a given policy, approximat-

ing the above mentioned fractions. The first one, the Poisson overflow algorithm, is an

extension of algorithms known in the literature. The second one, the On/Off overflow

algorithm is new and more sophisticated. Instead of approximating the stream of LT-

requests from a warehouse as a Poisson process, we use an interrupted Poisson process.

This is a process that is turned alternatingly On and Off for exponentially distributed

durations. In a numerical study we show that both algorithms perform very well. The

On/Off algorithm is significantly more accurate than the Poisson algorithm, but requires

longer computation times.

Keywords: inventory, lateral transshipment, approximation algorithm, interrupted Pois-

son process.

∗Corresponding author: P.O. Box 513, 5600MB Eindhoven, The Netherlands, a.c.c.v.wijk@tue.nl

1

1 Introduction

Pooling of inventory has proven to be an interesting option for costs reductions and service

level improvements. By sharing inventory between local warehouses such pooling benefits

can be achieved. In case of a stock-out at one warehouse, a demand can be satisfied via

a stock transfer from another warehouse. These stock transfers, which happen within the

same echelon, are called lateral transshipments. One possible strategy for this is the so-called

complete pooling policy, in which the local warehouses basically act as being one. Complete

pooling however, might not always be optimal. In this paper we study the so-called hold back

pooling policy. This policy has recently been proven to be optimal under certain conditions

in a two location setting (Van Wijk et al. 2009). The policy was introduced by Xu et al.

(2003) in a periodic review setting, and also arose to be optimal in a related two location

problem (Archibald et al. 1997). Under a hold back pooling policy a warehouse can hold back

its last part(s) in stock from a lateral transshipment request from another warehouse. The

hold back levels of the warehouses determine how many parts are held back. For determining

the optimal hold back levels, evaluation of the costs of a given setting is necessary. These

costs can be calculated when one knows the fractions of the demand that are satisfied from

stock (fill rate), satisfied via a lateral transshipment, and satisfied via an emergency ship-

ment. For this, we present two approximation algorithms which can be used for evaluation.

Hence, these algorithms facilitate the search for optimal hold back and base stock levels. The

distinct feature of both algorithms compared to current algorithms given in the literature,

is that they can handle hold back levels. Moreover, our second algorithm approximates the

lateral transshipments requests between the warehouses more precisely than current algo-

rithms. These are commonly approximated by a Poisson process (Axsäter 1990, Alfredsson

and Verrijdt 1999, Kukreja et al. 2001, Kutanoglu 2008, Kranenburg and Van Houtum 2009,

Reijnen et al. 2009), where we use a more accurate On/Off Poisson process. This improves

the accuracy of the results.

In the present paper, we consider an inventory model consisting of N local warehouses, exe-

cuting a base stock policy with one-for-one replenishments. The demand at each of the ware-

houses follows a Poisson process and the replenishment times are exponentially distributed.

In case of a positive stock level, an incoming demand is directly satisfied from stock. In

2

case of a stock-out, there are two possibilities: either the demand is satisfied via a lateral

transshipment from one of the other local warehouses, or the demand is lost for the local

warehouse. In the latter case it has to be fulfilled at higher costs from either a central ware-

house or another external source (having ample capacity). We refer to this as an emergency

shipment. However, lost sales also fit in the presented model. A local warehouse is only

willing to hand over a part if it has sufficient inventory, that is, if its inventory level is above a

certain threshold, called the hold back level. This hold back level can depend on the location

the LT request originates from. Furthermore, each warehouse follows a prescribed sequence

of other warehouses it will contact for a lateral transshipment. Note that complete pooling,

a strategy often assumed in literature, is a special case of this.

The given model is motivated by a spare parts inventory system, which services an installed

base of technically advanced machines. As downtimes of these machines are very expensive,

ready-for-use spare parts are kept in stock to be able to quickly respond to a failure of a

machine. Typically for these settings, demand rates are low and spare parts may be costly.

Defective parts are returned to the warehouse, repaired and added back to the inventory.

Because of the expensive downtimes, back-orders are not allowed. For demands not satisfied,

a costly emergency repair procedure has to be carried out. In such a setting, Kranenburg and

Van Houtum (2009) show that based on data of the company ASML, an original equipment

manufacturer in the semiconductor industry, the use of lateral transshipments may lead to

a 50% cost reduction in comparison to no use of LTs (while keeping the service levels the

same). Also Robinson (1990) shows that substantial cost savings can be realized by the use

of lateral transshipments, even when the transportation costs are high. Moreover, the model

described here applies not only to spare parts, but in general to multi-location, single-echelon

inventory systems.

As inventory pooling can reduce costs and improve service levels, a lot of research has been

devoted to the use of lateral transshipments, see Wong et al. (2006) and Paterson et al.

(2011) for overviews. There are many options for the decisions on when to apply lateral

transshipments. Generally, we distinguish between complete pooling and partial pooling. In

the first case, all local warehouses act as being one: a demand is only lost in case all are stocked

out. For partial pooling all kinds of restrictions are possible, e.g. lateral transshipments can

3

only take place between geographically nearby warehouses (Caggiano et al. 2009, Kutanoglu

2008, Kutanoglu and Mahajan 2009, Reijnen et al. 2009), the lateral transshipments might be

executed in only one way (Axsäter 2003, Liu and Lee 2007, Olsson 2010), not all inventory has

to be shared (Van Wijk et al. 2009, Xu et al. 2003). We take these restrictions into account

in the following way. Firstly, each warehouse is assigned a sequence of warehouses it consults

for a lateral transshipment. Reijnen et al. (2009) motivate this by a time constraint on the

fulfillment of a demand: only warehouses close enough are consulted. Another motivation

may be the transport facilities nearby some warehouses. In this way, also transshipments

in one-direction only can be taken into account. Next to this, we use a hold back policy

for the pooling of inventory. This policy was introduced by Xu et al. (2003) in a periodic

review setting. In this case the outgoing lateral transshipments are limited by hold back

levels. Only when the inventory of a warehouse is above its hold back level, it is willing to

satisfy a lateral transshipment request. That is, a warehouse can hold back its last part(s)

on stock. We focus here on a continuous review model, for which we consider an equivalent

policy. We refer to this as a hold back policy as well, as this will not cause any confusion.

Note that by the combination of these partial pooling options, we have a very general form

of partial pooling: restrictions on the warehouses between which lateral transshipments take

place (including one directional transshipments), and not all inventory has to be shared. This

policy includes complete pooling as a special case, when each warehouse can request for a

lateral transshipment from all other warehouses and all hold back levels are set to zero.

Lateral transshipments limited by holding back inventory is mainly considered in decentral-

ized inventory models (Zhao et al. 2006, 2008). In such a setting, the local warehouses are

independently owned and operated, which gives a game theoretical setting. Another reason

for holding back parts is a periodic review setting. Based on the remaining time until a sched-

uled replenishment, the decision is taken if a lateral transshipment takes places (Archibald

et al. 1997). This also occurs in a periodic review setting when the replenishment lead times

are non-zero (Tagaras and Cohen 1992). We, however, concentrate on a continuous review

model under central control.

Our incentive for the introduction of hold back levels is the recent work in Van Wijk et al.

(2009), in which it is proven for two local warehouses that the optimal lateral transship-

4

ment policy structure is a hold back policy, under two (sufficient) conditions on the cost

parameters. These conditions are typically satisfied when the lateral transshipment costs are

non-negligible, and the emergency shipment costs at both locations are not too asymmetric.

The setting assumed is identical to the setting as presented here. The benefit of holding back

inventory occurs when a warehouse has only one or a few parts left in stock. When handing

e.g. the last part out to a lateral transshipment request, costs have to be made for this. This

warehouse is stocked out until the next replenishment. When it faces a demand during this

time, this demand has to be satisfied either via a lateral transshipment or emergency ship-

ment. In both cases, more costs have to be made than when the first lateral transshipment

request was refused.

From the results of Van Wijk et al. (2009) for two locations, we might expect such a policy to

be optimal too, or at least to perform well, for a multi-location setting. Hence, in this work

we assume a hold back policy. Although exact evaluation and optimization is theoretically

possible via Markov chain analysis, this is infeasible for large instances by the curse of dimen-

sionality, and calculation times explode when trying to optimize the hold back and base stock

levels. Consequently, there is a need for a good and fast approximation of the performance

characteristics: the fractions of the demand that are fulfilled directly from stock, via a lateral

transshipment or via an emergency shipment. We present two algorithms for this purpose,

which evaluate the performance characteristics when the hold back and base stock levels are

given. This can then be used in heuristic optimization procedures for the hold back and base

stock levels themselves.

The presented approximation algorithms are related to the approximate evaluation method as

described in Axsäter (1990). He decomposes the network of local warehouses into individual

local warehouses. The lateral transshipments between them are modeled as overflow demand

streams, which are approximated by Poisson processes. In an iteration the rates of these

Poisson streams and the performance characteristics of the individual local warehouses, are

alternately updated. Similar algorithms are used in a.o. Alfredsson and Verrijdt (1999),

Kukreja et al. (2001), Kutanoglu (2008), Kranenburg and Van Houtum (2009), Reijnen et al.

(2009), each focusing on a different setting. For example, in Kranenburg and Van Houtum

(2009) a pooling structure is considered with so-called main and regular warehouses. Between

5

the mains, a complete pooling policy is assumed. As a consequence, a demand is only lost

if all main warehouses are out-of-stock. Hence the stock-out probability can be derived

exactly by the Erlang loss function. Reijnen et al. (2009) use a pooling structure based on

the geographical locations of the local warehouses, where lateral transshipments can only be

executed between nearby warehouses.

Our model extends these earlier models, as we allow for all earlier studied options for partial

pooling. Moreover, in our second algorithm we use a more accurate approximation. Instead

of assuming the overflow demand streams to be Poisson processes, we approximate them by

a Poisson process that can be turned On and Off, known as interrupted Poisson processes

(cf. Kuczura 1973). When a warehouse has parts in stock, the demand overflow to another

local warehouse where it requests for lateral transshipments, is turned Off. During a stock-

out, however, the demand overflow is turned On and follows a Poisson process. When the

consulted warehouse is that low on inventory that it does not fulfill lateral transshipment

requests, the overflow demand stream is routed to a next warehouse, etc. We approximate

the durations of these On and Off times to be exponentially distributed. We call this the

On/Off overflow algorithm. We call our first algorithm, using an ordinary Poisson overflow

process, the Poisson overflow algorithm.

The lateral transshipment problem as studied here is also related to models used in telecom-

munication systems, especially in call centers (see Gans et al. (2003) for an overview). In these

systems calling customers can be handled by different so-called operators or groups of opera-

tors. The inventory in our model is the equivalent of the operators in these call center models.

Certain types of calls can only be handled by a subset of operators having appropriate skills.

This leads to skill-based-routing of the customers. Typically, the overflow of customers is only

one-way. Here we would have an X-design (cf. Gans et al. 2003) as every incoming demand

can basically be fulfilled from every warehouse. For these designs, however, hardly any results

seem to known in the call center literature. Next to that, there is a difference in the way

rerouted customers/demands are handled. In call centers rerouting a customer would lead to

a slower service rate for that customer, where in a lateral transshipment model, rerouting of

a demand brings along direct costs, but the service (i.e. replenishment) rate remains equal.

This paper contributes to the literature in the following way. We study a model with hold

6

back levels. We present two approximate evaluation algorithms incorporating this feature.

The first one uses Poisson overflow streams and extends earlier algorithms in the literature.

Our main contribution is the second algorithm. In that we use On/Off Poisson processes,

which are more precise than the Poisson processes. By a numerical study we show that the

approximation produced by this algorithm is very accurate, while still being efficient in terms

of computation time. The algorithms include complete pooling as a special case.

The outline is as follows. We start by introducing the model and notation used in Section 2.

We also briefly discuss the exact analysis. In Section 3 we present the two approximation

algorithms: the Poisson overflow algorithm and the On/Off overflow algorithm. In Section 4

a numerical study is conducted to test the performance of the On/Off overflow algorithm,

using the Poisson overflow algorithm as the benchmark. We also compare the outcomes to

exact evaluation. Finally we draw conclusions in Section 5.

2 Model and notation

We consider an inventory system with N local warehouses, numbered i = 1, 2, . . . , N . These

warehouses keep a single, consumable stock keeping unit (SKU) on stock. Each warehouse

executes a basestock policy, with basestock level Si ∈ N ∪ {0}, i = 1, . . . , N , and one-for-one

replenishments. The actual stock level (on hand stock) is denoted by xi ∈ {0, 1, . . . , Si}.

Define x = {x1, . . . , xN}. In case of a stock-out, a demand can be fulfilled from another

warehouse. In this case, a part is transshipped from a warehouse with positive on hand stock

to the warehouse where the demand arose. This is called a lateral transshipment (LT). Each

warehouse has a set of hold back levels, determining if lateral transshipment requests form

other warehouses will be accepted. Let hi,j ∈ {0, . . . , Si} be the hold back level at warehouse i

for accepting an LT request from warehouse j 6= i. Only if xi > hi,j the request is fulfilled.

Define hi,i = 0 and let hi = (hi,1, . . . , hi,N) be the vector of hold back levels at warehouse i.

The replenishment lead time is exponentially distributed with mean 1/µi > 0 at warehouse i.

This assumption does not seem to be very restrictive, as typically the performance charac-

teristics of the system are relatively insensitive to the lead time distribution (see Alfredsson

and Verrijdt 1999, Reijnen et al. 2009). We assume ample replenishment capacity, i.e. the

7

replenishment rate is equal to (Si − xi)µi. The latter assumption is not restrictive as only

minor changes have to be made to deal with other settings. For example, a repair rate of µi,

independently of the number of outstanding orders, could be used as well.

The demand at warehouse i is given by a Poisson process with rate λi > 0, i = 1, . . . , N . We

refer to this as class i demand. If there is stock on hand at the warehouse where the demand

arises, the demand is directly fulfilled. Otherwise, the warehouse requests for an LT at other

warehouses. For this, each warehouse has a pre-specified order by which it will contact other

warehouses. Denote this sequence for warehouse i by σi, whose entries are in {1, . . . , N}\{i}.

If e.g. σ1 = {2, 3}, then warehouse 1 will first ask 2 for an LT, and then 3, and otherwise

the demand is satisfied by an external source and thus lost for the local warehouses (see

Figure 1). By j ∈ σi we denote that j is an element of the sequence σi, and σi(k) denotes

the kth element of the sequence, 1 ≤ k ≤ |σi|, where |σi| denotes the number of elements in

the sequence. As i /∈ σi we have 0 ≤ |σi| ≤ N − 1. Location j 6= i accepts warehouse i’s

LT request only if xj > hj,i. In this case a part is taken from warehouse j’s stock and used

to fulfill warehouse i’s demand. If xj ≤ hj,i for all j ∈ σi (or if σi = ∅), then the demand

is lost for the local warehouses. We do not allow for back orders, neither for rebalancing of

stock not triggered by demands. We assume all demand and replenishment processes to be

mutually independent.

So, for a demand at warehouse i, there are three possibilities: fulfill it directly from stock,

via a lateral transshipment or it fulfilled via an emergency shipment. We are interested in

the fractions of the demands that are fulfilled in either way. For this, we define the following

fractions, for warehouse i:

• βi: fraction of the class i demand that is fulfilled directly from stock;

• αi,j : fraction of the class i demand that is fulfilled via lateral transshipment

from j (j 6= i), and by definition αi,j = 0 if j /∈ σi;

• θi: fraction of the class i demand fulfilled via emergency shipment.

Furthermore, we define αi to be the total fraction of the class i demand at warehouse i that

is fulfilled via lateral transshipment:

αi =
∑
j∈σi

αi,j , (1)

8

1

2

3

Figure 1: Demand overflow from warehouse 1 when σ1 = (2, 3).

where an empty sum equals zero. By definition, for all i it holds that:

βi + αi + θi = 1. (2)

The model can be evaluated exactly as a Markov process for given hold back and base stock

levels. The state of the system is given by the vector of stock levels x = {x1, . . . , xN} ∈ S

where the state space S is given by S = {0, 1, . . . , S1} × . . .× {0, 1, . . . , SN}. For N = 2 the

transition rates are shown in Figure 2. Denote by Q the transition rate matrix and by π the

stationary probability distribution of x. It is well known that π can be found by solving the

following system:
π.Q = 0,∑
x∈S

π(x) = 1.
(3)

From π, the values of βi, αi,j and θi follow.

By the dimension of S, which is |S| =
N∏
i=1

(Si + 1), and hence the dimension of Q, evaluation

of the stationary probability distribution by solving (3) is not feasible for larger values of N

and Si because of the curse of dimensionality. Hence, there is a need for fast and accurate

approximations for the βi’s, αi,j ’s and θi’s. In the next section two of such algorithms are

presented.

9

l 1 + l 2

 x 1

 x 2

 0
 0

 S 1

S 2

l 2

(S 1 - x 1) m 1(S 2 - x 2) m 2

l 1

l 1 h 1 , 2

 h 2 , 1

l 1 + l 2 l 1 + l 2

l 2

l 1 + l 2

l 1

l 2

q 1

a 1 b 1

Figure 2: Diagram of the transition rates for N = 2, when σ1 = (2), σ2 = (1) and the hold
back levels are given by h1,2 = 2 and h2,1 = 1. Note that when x1 = 0 and x2 > h2,1 = 1,
demands at warehouse 1 are satisfied by lateral transshipment from warehouse 2, and vice
versa when x2 = 0 and x1 > h1,2 = 2. Indicated are the states that contribute to β1 (light
gray), α1 (=α1,2, gray) and θ1 (dark gray).

3 Approximation Algorithms

In this section we present two algorithms for approximating βi, αi,j and θi for all i, j when

the hold back and base stock levels are given. We first explain the general idea behind both

algorithms. Then we present the Poisson overflow algorithm, followed by the On/Off overflow

algorithm. The performance of both is tested and compared in a numerical study in the next

section.

3.1 Idea behind approximations

Our approximations are based on a similar idea as that in Axsäter (1990). We make a

decomposition of the network of warehouses into individual local warehouses. In this way,

we only deal with solving a Markov process per local warehouse, with states xi, instead of

solving the Markov process with states x. The lateral transshipments are modeled as overflow

demand streams. These constitute an additional demand stream at the other warehouses.

The stream from warehouse i at j ∈ σi is referred to as the overflow stream (i, j). This is

graphically depicted in Figure 1. Consequently, each warehouse can be evaluated individually

10

as an Erlang loss system (M/M/S/S queue) with state dependent arrival rates. In earlier

approximations (Axsäter 1990, Alfredsson and Verrijdt 1999, Kukreja et al. 2001, Kutanoglu

2008, Kranenburg and Van Houtum 2009, Reijnen et al. 2009), these overflow demand streams

have been assumed to be Poisson processes. In our first algorithm, this approximation is used

as well, but then with the addition of hold back levels. In our second algorithm, however, we

approximate the overflow streams by the use of On/Off overflow processes, more precisely,

interrupted Poisson processes (cf. Kuczura 1973).

We expect the approximation using the On/Off processes to be more precise, as it better

follows the actual overflow demand streams. Overflow demands occur when the warehouse is

stocked out. So, during a stock-out the overflow demand process is turned On. The demands

it is then facing, flow over to other warehouses as lateral transshipment requests. On the other

hand, when the warehouse has a positive stock level, there are no overflow demands. So, the

overflow process is turned Off. Hence, it is one step more accurate than a Poisson process.

We call this algorithm the On/Off overflow algorithm. The approximation here is that we

assume the On and Off durations to be independently, exponentially distributed. We take

the means of both to be equal to the actual means. It will turn out that this approximation

performs very well.

The algorithms both consist of two main steps, which are alternately executed:

Step 1: Evaluation of the steady-state distribution (and hence performance characteristics)

of the individual warehouses, given the overflow demand streams;

Step 2: Updating of the overflow demand streams, given the steady-state distribution of the

individual warehouses.

The two steps are executed until the changes in consecutive iterations are smaller than some

pre-specified, small value ε.

3.2 Poisson overflow algorithm

We approximate the overflow demand streams by Poisson processes. Let λi,j be the rate of

the overflow demand stream (i, j), j ∈ σi. Define λi,i = λi and λi,j = 0, j /∈ σi, j 6= i. The

overflow demand rates λi,j for all j ∈ σi are calculated from the probabilities that a demand

11

is satisfied either directly from stock or via a lateral transshipment. Recall that a lateral

transshipment is carried out from warehouse j to warehouse i only if xj > hj,i. We denote

the probability that the latter is true by pi,j for all i and j ∈ σi∪{i}, defining pi,i = P[xi > 0].

So, pi,i is the fill rate of warehouse i: the probability that a demand can be directly fulfilled

from stock. The pi,j are derived when evaluating an individual warehouse.

We initially assume for all overflow demand rates λi,j = 0 and update these in each iteration

of the algorithm. Based on these, the probabilities pi,j are updated in each iteration as well.

Below we first explain these two parts of the iteration in more detail, as well as the finalization,

and then state the algorithm.

3.2.1 Evaluation of individual warehouses

Suppose that the overflow rates λi,j for all i and j ∈ σi are given. Then we determine

the probabilities that a demand can be fulfilled, either directly from stock, or via lateral

transshipment.

Each of the warehouses is evaluated individually. For warehouse i, we consider the Markov

process the state of which is given by its stock level xi on the state space {0, 1, . . . , Si}.

We have the following transitions. The replenishment rate is given by (Si − xi)µi. Class i

demands arise with rate λi, and are satisfied when xi > 0. Moreover, the warehouse faces the

demand overflow streams from the other warehouses, namely with rate λj,i from warehouse j.

However, only when xi > hi,j such a demand is satisfied. Therefore, the demand rate depends

on the state of the system.

Denote by γi(xi) the arrival rate when the stock level equals xi. Then γi(xi) is the sum of

the (overflow) demand arrival rates that are satisfied when in state xi:

γi(xi) =
N∑
j=1

λj,i · 1{xi > hi,j},

for xi ∈ {0, 1, . . . , Si}, taking hi,i = 0. Note that γi(0) = 0 and γi(xi) always includes λi = λi,i

for xi > 0. Figure 3 shows an example of the transitions rates, taking as state the number of

outstanding orders, denoted by y = Si − xi.

12

0
m 1

1
2 m 1

2 3
4 m 1

4
3 m 1

o f o u t s t a n -
d i n g o r d e r s :

s t o c k l e v e l : 5 4 3 2 1

g 1 (1) = l 1

5 m 1

5

0

g 1 (2) = l 1 + l 2 , 1g 1 (3) = l 1 + l 2 , 1 + l 4 , 1g 1 (4) = l 1 + l 2 , 1 + l 4 , 1g 1 (5) = l 1 + l 2 , 1 + l 4 , 1

Figure 3: Example of the transitions rates at warehouse 1, where N = 4, S1 = 5 and h1 =
(0, 1, 5, 2).

Consequently, we can analyze warehouse i separately using the Erlang loss model. The

steady-state behavior of the number of outstanding orders is identical to the steady-state

behavior of the number of busy servers y in an Erlang loss system (M/M/Si/Si queue) with

Si servers, a state-dependent arrival (i.e. demand) rate γi(Si−y), and the mean replenishment

lead time 1/µi as mean service time. Define L̃i to be the stationary probability distribution

of y ∈ {0, 1, . . . , Si} at warehouse i. When denoting by L̃i(y) its yth element, it is given by:

L̃i(y) =

y−1∏
j=0

γi(Si − j)

µyi y!

Si∑
n=0

n−1∏
m=0

γi(Si −m)

µni n!

, y = 0, . . . , Si.

Recall that γi(·) is fully determined by the vectors hi and (λ1,i, . . . , λN,i).

From the stationary probability distribution L̃i(·) the probabilities pi,j can be computed:

pi,j = P[xj > hj,i]

=

Sj−hj,i−1∑
y=0

L̃j(y), for all i and j ∈ σi, (4)

and 0 otherwise. Note that L̃i(·) depends on the overflow demand rates λi,j .

3.2.2 Updating overflow rates

Suppose that the probabilities pi,j ’s are given, for all i, j, then we derive the overflow demand

rates λi,j . As a fraction βi = pi,i of the demand is satisfied directly from stock, the overflow

13

demand stream λi,σi(1) (assuming σi 6= ∅) is λi,σi(1) = (1 − βi)λi. Of this stream, a fraction

pi,σi(1) is satisfied by warehouse σi(1), hence the remaining overflow to σi(2) is given by:

λi,σi(2) = (1 − pi,σi(1))λi,σi(1). In general, defining λi,i = λi and pi,σi(0) = βi, the overflow

demand stream λi,σi(k) is recursively given by λi,σi(k) = (1 − pi,σi(k−1))λi,σi(k−1). Hence, for

k = 1, . . . , |σi|:

λi,σi(k) = λi

k−1∏
l=0

(1− pi,σi(l)). (5)

Note that this make use of the assumed independence of the stock levels at the local ware-

houses.

3.2.3 Finalization

When the iteration step of the algorithm terminates, the values of βi, αi,j and θi can be

computed in the following way. The fraction of demand that is directly satisfied from stock

(the fill rate) is given by:

βi = pi,i. (6)

For the fraction of the demands that is satisfied by lateral transshipment from warehouse j,

we have

αi,j = pi,j
λi,j
λi
, for all i and j ∈ σi. (7)

Here λi,j/λi is the fraction of the demand of i that is offered to warehouse j, and of this, a

fraction pi,j is satisfied. Next, the total fraction that is satisfied via lateral transshipment,

αi, is given by (1). Finally, the fraction of the demand that is not satisfied by the local

warehouses, θi, follows from (2).

3.2.4 Poisson overflow algorithm

Input: λi, µi, Si, hi, σi, for i = 1, . . . , N , ε;

Output: βi, αi,j and so αi, θi, for i, j = 1, . . . , N, i 6= j.

Step 0: Initialize for all i, j ∈ σi: λi,j = 0 and λi,i = λi.

Step 1: Calculate for all i, j ∈ σi ∪ {i}: pi,j using (4).

14

Step 2: Calculate for all i, j ∈ σi: λi,j using (5).

Step 3: Repeat Steps 1 and 2 until the pi,j ’s do not change more than ε, for all i, j. Then

return, for all i, j ∈ σi: βi using (6), αi,j using (7), αi using (1), and θi using (2).

3.3 On/Off overflow algorithm

In the previous approximation we have assumed the overflow demand process to be Poisson

processes. We now develop a more precise approximation for these processes. Namely, instead

of a Poisson process, we use an interrupted Poisson process (cf. Kuczura 1973): a Poisson

process which is alternately turned On, for an exponentially distributed time, and then turned

Off, for another (independent) exponentially distributed time. Hence, the process is described

by three parameters. For the overflow demand stream (i, j) let 1/φj,i be the mean Off duration,

1/ηj,i the mean On duration, and λi the rate while On. So, we have to estimate two out of

the three parameters of the interrupted Poisson process.

The idea is as follows. The overflow demand processes of warehouse i at warehouse σi(1)

can be in two states, based on warehouse i’s stock level. If warehouse i has stock on hand,

there is no overflow. So, the overflow process is turned Off. However, if warehouse i faces a

stock-out, all demands flow over to warehouse σi(1): the overflow process is turned On, and

is given by a Poisson process with rate λi.

The same reasoning is applicable for the overflow demand of i at warehouse σi(k) for k =

2, . . . , |σi|. The overflow process is On at σi(2) exactly when i is stocked out and ware-

house σi(1)’s inventory level is below its hold back level for i, i.e., when xσi(1) ≤ hσi(1),i. The

overflow is turned Off otherwise.

When precisely overflows are turned On or Off, basically depends on the entire state space.

The approximation we apply here, is to approximate the On and Off durations by exponential

distributions. We choose the means of these to be equal to the estimated mean durations.

These means are updated in each iteration of the algorithm.

The mean On duration at σi(1) is the duration that the stock level xi equals zero. It is exactly

15

exponentially distributed, with mean

1/ησi(1),i = 1/(Si µi). (8)

In general, for the other On and Off durations, the exponential distribution is an approxima-

tion.

Like in the Poisson overflow algorithm, we initialize by putting all overflow demand streams

to zero. That is, all On/Off processes start being turned Off:

φj,i = 0 for j ∈ σi,

ηj,i =∞ for j ∈ σi, j 6= 1.
(9)

Below we first explain the two parts of the iteration and the finalization. Then we state the

algorithm.

3.3.1 Evaluation of individual warehouses

Given the mean On and Off durations, we evaluate each of the individual warehouses.

Consider warehouse i. Next to its own demand stream, it faces a number of overflow de-

mands streams, namely from the warehouses j for which i ∈ σj . Denote this vector by

di = (j | i ∈ σj , j = 1, . . . , N), and by di(k) its kth element. As each of these overflow

demand streams can either be turned On or Off, we have 2|di| possible combinations, where

|di| ≤ N − 1. Hence the joint process of the stock level and this state of the overflow demand

streams, is a Markov process on a state space of dimension 2|di| by Si + 1. We encode the

states by (y, δ) for y = Si − xi the number of outstanding orders, y ∈ {0, 1, . . . , Si}, and

δ ∈ {0, 1}|di|, where thekth component of δ equals 0 if the overflow stream from di(k) is Off,

and 1 if On. This state space is denoted by Si. Figure 4 shows an example.

The transition rates of this Markov process are as follows. When the process is in state (y, δ)

three types of transitions can occur: a replenishment, an (overflow) demand, or a change in

whether one of the processes is On or Off. With rate y µi replenishments take place, moving

the process to state (y−1, δ). A demand, occurring with rate λi, moves the process to (y+1, δ)

16

0

2 O F F , 3 O F F : (0 , 0) 0

h 1 , 2f 1 , 2

l 1

m 1

1

1
2 m 1

2 3 4

2 3 4
3 m 1 4 m 1

2 O N , 3 O F F : (1 , 0)

2 O F F , 3 O N : (0 , 1)

2 O N , 3 O N : (1 , 1) 0

0

h 1 , 3

f 1 , 3

l 1 + l 3

1

1

l 1 + l 3

2 3 4

2 3 4

l 1 l 1

l 1 l 1 l 1

l 1 + l 2 l 1 + l 2 l 1 + l 2 l 1 + l 2

l 1 + l 2 + l 3 l 1 + l 2 + l 3 l 1 + l 2 l 1 + l 2

f 1 , 3

h 1 , 3

h 1 , 2f 1 , 2

0 1 2 3 4 = S 1y :

Figure 4: Example of the Markov processes of warehouse 1, where N = 3, S1 = 4, h1 = (0, 0, 2)
and d1 = {2, 3}.

if y < Si. An overflow demand, occurring at rate λk for all k ∈ di when the overflow demand

stream (k, i) is On, is only accepted if Si − y > hi,k. This also moves the process to state

(y + 1, δ). Finally, each of the overflow demand processes can switch from On to Off or vice

versa. Transitions are only possible between states for which δ differs in exactly one entry.

With rate φi,di(j) the overflow from warehouse di(j) is switched On, j = 1, . . . , |di|, hence

with this rate the process moves to state (y, δ + edi(j)), where ek denotes the unit vector of

appropriate length with an 1 at position k. Analogously, with rate ηi,di(j) the process moves

to state (y, δ − edi(j)). See again Figure 4 for an example.

Denote by Qi the matrix of transitions rates and denote by πi(y, δ) the stationary probability

distribution of this process. Then πi can be found by solving the system:

πi.Qi = 0,∑

(y,δ)∈Si πi(y, δ) = 1.

(10)

The dimension of Qi is (Si + 1)2|di| by (Si + 1)2|di|, where |di| ≤ N − 1. We have to solve

the system for all i = 1, . . . , N in each iteration of the algorithm. Note that this is of a much

17

smaller order than the original problem (3), where the dimension of Q is
∏N
i=1(Si + 1) by∏N

i=1(Si + 1).

3.3.2 Updating On and Off durations

Given the stationary probability distribution of each of the individual warehouses, we update

the mean On and Off durations. Consider warehouse i and first concentrate on σi(1). Its

mean On duration is fixed: 1/ησi(1),i = 1/(Si µi). We show that, by using the stationary

probability distribution πi, we can directly find the mean Off duration 1/φi.

The fraction of class i’s demands that is satisfied from stock is βi. Hence, by pasta, βi is also

the fraction of time that class i’s overflow is turned Off. This gives that the fraction of time the

overflow is turned On is 1 − βi. The state space Si can be split into two mutually exclusive

subsets, say Si,off (all states (y, δ) ∈ Si for which y < Si) and Si,on (all states (y, δ) ∈ Si

for which y = Si). Denote by E[Si,off] the expected duration the process is in subset Si,off,

once first entered it, before leaving it again. Define E[Si,on] analogously. It is clear that the

following should hold:
βi

1− βi
=
E[Si,off]

E[Si,on]
.

Using that φσi(1),i = 1/E[Si,off] and ησi(1),i = 1/E[Si,on] = Si µi, it follows that:

φσi(1),i = Si µi
1− βi
βi

. (11)

The βi follows from the stationary probability distribution πi:

βi = 1−
∑

(Si,δ)∈Si

πi(Si, δ).

For the On and Off durations of i at σi(k) for k = 2, . . . , |σi| some more work has to be done.

Firstly, note that when the overflow stream (i, σi(1)) is turned On, there are periods that

these demands are satisfied by warehouse σi(1), and periods that this is not the case because

xσi(1) ≤ hσi(1),i. During the latter periods, the overflow (i, σi(2)) is turned On. The duration

of this On period, and that of the Off period as well, of i at σi(2) depends on the (Markov)

18

process at warehouse σi(1). Hence, in general, the duration of the On and Off periods of i

at warehouse σi(k) follows from evaluation of the Markov process at warehouse σi(k − 1),

k = 1, . . . , |σi|.

To find the expected On and Off durations of an overflow stream, we have to determine the

expected time the Markov process is in a certain subset of states from the moment on the

process enters it, before leaving it again. For this, we split the state space Sσi(k−1) into two

subsets, one consisting of the states in which the overflow of i to warehouse σi(k) in turned

On, and the other for which it is turned Off. To calculate the mean time spent in a certain

subset, we view all states except the subset of interest as absorbing states, i.e. states that the

Markov process cannot leave anymore once entered. Then we need to derive the mean time

until absorption in these states. We first describe, following Grinstead and Snell (1997), how

the mean time to absorption can be computed in general. Next we explain how this can be

used to calculate the mean On and Off durations.

Consider a general, irreducible Markov process with state space S ′ = S ′1∪S ′2, where S ′1∩S ′2 = ∅,

with transition rates qij for i, j ∈ S ′. Let the matrix P be the transition probability matrix,

given by pii = (νmax − |qii|)/νmax, and pij = qij/νmax for i 6= j, where νmax = maxi |qii|. Let

PS′1 be an |S ′1| by |S ′1| matrix with only the rows and columns of P that correspond to states

in S ′1. Its row sums are ≤ 1. Given that we start in a state s ∈ S ′1, let ts denote the expected

number of steps to get absorbed in S ′2. It is the unique solution of

(I − PS′1)~t = (1, 1 . . . , 1)T ,

where ~t = (t1, . . . , t|S′1|)
T and I is the identity matrix of appropriate size. Then the vector

with the mean times until absorption of the Markov process is ~t/νmax.

When we are given an initial distribution over the starting states in S ′1, say ~p = (p1, . . . , p|S′1|),

the mean time until absorption is

E[T (S ′1)] = ~p · ~t/νmax, (12)

where the dot denotes the inner product of two vectors. When we want to find the mean

duration the system is in S ′1 before going to S ′2, this initial distribution is given by the steady

19

state probability distribution that the first step out of S ′2 is to s ∈ S ′1, say ps. Denote by

π = (πS′1 , πS′2) the stationary probability distribution. Let

~̃p = πS′2 · PS′2,S′1 ,

where PS′2,S′1 denotes the (non-square) matrix, which is the part of the transition probability

matrix P of which the rows correspond to states in S ′2, and the columns to states in S ′1. We

normalize ~̃p to find ~p = {p1, . . . , p|S′1|}:

~p = ~̃p/
∑
s∈S′1

p̃s.

Hence, using (12) we have E[T (S ′1)] and the rate at which the process jumps from subset S ′1
to S ′2 is 1/E[T (S ′1)].

In order to calculate the mean On and Off durations of the stream (i, σi(k)), we split the

state space Sσi(k−1) into two mutually independent subsets. Let j = σi(k − 1). The overflow

of i to σi(k) is turned On when i’s overflow to j is On but is not satisfied there, because the

stock level xj ≤ hj,i. Denote by Sj(i) the subset of states of Sj for which this holds. Recall

that y = Si − xi, then this subset is given by:

Sj(i) = {(y, δ) ∈ Sj | δ(i) = 1 and y > hj,i},

where δ(i) denotes the component of δ corresponding to the overflow demand stream (i, j).

Furthermore, define Sj(i) = Sj\Sj(i), that is, the complement of Sj(i) with respect to Sj .

In the example of Figure 4, S1(2) consists of only two states: (4, (1, 0)) and (4, (1, 1)).

Only when warehouse 1 is out-of-stock (y = 4), the overflow demand stream (2, 1) is not

satisfied when On. Hence, in these states, the overflow stream (2, σ2(k)) is On, when

σ2(k − 1) = 1. Analogously, S1(3) consists of six states, given by S1(3) = {(y1, δ) ∈ S1 |

δ ∈ {(0, 1), (1, 1)} and y1 > 2 = h3,1}. In these states the overflow stream (3, σ3(k)) is On,

when σ3(k − 1) = 1.

The mean On and Off durations of (i, σi(k)) now follow from the mean times spent in subset

Sσi(k−1)(i), respectively subset Sσi(k−1)(i), from the moment on the process enters the subset,

20

before leaving it again. Hence, the rates ηj,i and φj,i follow and are given by:

ησi(k),i = 1/E[T (Sσi(k−1)(i))],

φσi(k),i = 1/E[T (Sσi(k−1)(i))],
(13)

for all i and k = 2, . . . , |σi|. Here we define 1/0 := ∞ and 1/∞ := 0. If, for example,

E[T (Sσi(k−1)(i))] = 0, then the overflow demand stream basically skips warehouse σi(k − 1)

and is entirely routed to warehouse σi(k). This overflow process then has the same mean

On and Off durations. Furthermore, recall that when On, the demand rate of the overflow

stream (i, σi(k)) equals λi, that is, we do not have to estimate the overflow demand rate in

this algorithm.

3.3.3 Finalization

When the algorithm terminates, it remains to calculate the βi, αi,j , αi and θi from the πi’s.

This comes down to taking the summation of πi over certain subsets of states:

βi = 1−
∑

(Si,δ)∈Si

πi(Si, δ),

αi,j =
∑

(y,δ)∈Sj : δ(i)=1,
y≤Sj−hj,i−1

πj(y, δ), for j ∈ σi, and 0 otherwise,

αi =
∑
j∈σi

αi,j ,

θi = 1− βi − αi.

(14)

3.3.4 On/off overflow algorithm

Input: λi, µi, Si, hi, σi, for i = 1, . . . , N , ε;

Output:βi, αi,j and so αi, and θi, for i, j = 1, . . . , N, i 6= j.

Step 0: Initialize for all i, j: φj,i and ηj,i using (8) and (9).

Step 1: Solve for all warehouses i the stationary probability distribution πi using (10).

Step 2: Calculate for all i, j ∈ σi: ηj,i and φj,i using (11) and (13).

21

TESTBED

µ1 = µ2 = . . . = µ5 1,

f1, f2, f3, f4, f5 ∈ {50%,70%,90%,95%} → determines S1, . . . , S5 using (15),
h̄i ∈ {0, 1, . . . , Si − 1} for all i

λ1 ∈ {0.2, 0.5, 1, 2},
λ2, λ3 ∈ {0.2, 0.5, 1},
λ4, λ5 ∈ {1},

N = 2 : (σ1, σ2) ∈ {{{2}, {1}},
{{}, {1}}},

N = 3 : (σ1, σ2, σ3) ∈ {{{2, 3}, {3, 1}, {1, 2}},
{{2}, {3}, {1}},
{{}, {1}, {1}}},

N = 5 : (σ1, . . . , σ5) ∈ {{{2, 3, 4, 5}, {3, 4, 5, 2}, {4, 5, 1, 2}, {5, 1, 2, 3}, {1, 2, 3, 4}},
{{2}, {3}, {4}, {5}, {1}},
{{}, {1}, {1}, {1}, {1}}}.

Table 1: Test bed for numerical study: factorial design of the given possibilities.

Step 3: Repeat Steps 1 and 2 until the elements of πi do not change more than ε, for all i.

Then return, for i, j ∈ σi: βi, αi,j , αi, and θi using (14).

4 Numerical study

In order to determine the performance of the two presented approximation algorithms, we

execute a numerical study. We first focus on the case where all hold back levels are set to 0.

For that the Poisson overflow algorithm boils down to the algorithm given in Reijnen et al.

(2009). Hence we can test the performance gained by the use of the On/Off approximation.

Then we allow for hold back levels. In both cases, we compare both the performance of the

algorithms with respect to the exact outcomes (via Markov analysis as described in Section 2),

as well as the mutual performance of the algorithms.

Testbed

We consider N = 2, 3, and 5 local warehouses. We perform a factorial design of the test

bed given in Table 1. In the table, the values of λi, µi, and σi are given, as well as fi. This

22

is the minimum fill rate of warehouse i in isolation, i.e. in a situation without any lateral

transshipments. From fi the base stock level Si follows:

Si = min {S ∈ N ∪ {0} | L (S, λi/µi) ≤ 1− fi} , (15)

where L is the Erlang loss function: L (S, ρ) = ρS/S!∑S
n=1 ρ

n/n!
.

For N = 2, 3, and 5, we test 384, 1500, respectively 2500 instances without hold back

levels, and 1000, 3000, respectively 5000 instances with hold back levels. That is, for N = 2

without hold back levels, we perform a full factorial design of the settings given in Table 1,

and for the other cases we randomly select the indicated number of instances from the full

factorial designs. We restrict our attention to a single hold back level per warehouse, i.e.

h̄i := hi,1 = . . . = hi,N . For the instances with hold back levels, we take h̄i ∈ {0, 1, . . . , Si−1},

excluding instances where {h̄1, . . . , h̄N} = {0, . . . , 0}. So, we can both have instances where

all hold back levels are positive, as well as instances with combinations of zero and positive

hold back levels.

For all instances we run:

• Poisson overflow algorithm, using ε = 10−10;

• On/off overflow algorithm, using ε = 10−10;

• Exact Markov analysis (see Section 2).

We concentrate on the average and maximum absolute errors in the βi, αi, and θi (i =

1, . . . , N). Let

∆βi = |βi,approx−βi,exact|∗100, ∆αi = |αi,approx−αi,exact|∗100, ∆θi = |θi,approx−θi,exact|∗100.

That is, we consider the error ∆βi as the differences in the percentages βi,approx and βi,exact.

By ‘av∆β’ and ‘max∆β’ we denote the average respectively maximum over all ∆βi (α, θ

analogously).

The summary of all results is given in Table 2, which gives the average absolute errors and

the maximal absolute errors for βi, αi, and θi for both the Poisson overflow algorithm as well

as the On/Off overflow algorithm. From these results, it turns out that the On/Off algorithm

23

clearly outperforms the Poisson algorithm. The average error for On/Off in β is about four

times smaller. Also, the maximal errors are much smaller. Already from N = 3 on the errors

in the On/Off algorithm are almost nil. In the following, we further investigate the results.

Graphs

In Figures 5 and 6 the errors are graphically represented. Again it becomes clear that the

On/Off overflow algorithm outperforms the Poisson overflow algorithm.

Hold back levels

When we split out the results according to whether we include hold back levels or not, the

results are given in Table 3. Both algorithms perform better for the case with hold back

levels, about a factor two to three. We expect that this is because of the smaller overflow

streams in the case of hold back levels. When hold back levels are set, a higher fraction of

the demand is already satisfied at the warehouse itself, because it holds stock back from LT.

Hence the overflow to the next warehouse is smaller (Poisson algorithm), respectively longer

turned Off (On/Off algorithm).

Complete pooling

For the special case of complete pooling, we compare the results to those of the approxima-

tion algorithm as given in Kranenburg and Van Houtum (2009). Under a complete pooling

strategy, all warehouses basically act as being one large warehouse. Hence, the fraction θi is

the same for all warehouses i = 1, . . . , N . Moreover, it can be computed exactly using the

Erlang loss formula and this is exploited in their approximation. For the rest, Kranenburg

and Van Houtum (2009) use an iterative approximation algorithm comparable to our Poisson

overflow algorithm. As θi is determined exactly, the absolute errors in βi and αi are always

equal.

The results for complete pooling are given in Table 4, from which it becomes clear that

both our On/Off overflow algorithm and Kranenburg and Van Houtum’s algorithm perform

24

(a) Poisson overflow algorithm (b) On/Off overflow algorithm

Figure 5: Scatterplot of the absolute errors in αi versus βi, expressed as percentages, for
N = 2 (i = 1, 2, in each plot 2,768 data points).

Figure 6: Scatterplot of the absolute errors, expressed as percentages, in the Poisson overflow
algorithm minus those in the On/Off overflow algorithm, plotted for αi versus βi, for N = 2
(i = 1, 2, 2,768 data points). Explanation: each data point on the right of (above) 0 indicates
a case where the On/Off overflow algorithm performs better for βi (αi); on the left (below) a
case where the Poisson overflow algorithm performs better for βi (αi).

25

P
o
is

so
n

o
ve

rfl
o
w

a
lg

.
O

n
O

ff
o
ve

rfl
o
w

a
lg

.
N

(#
in
st
.)

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

al
l
N

(1
3
38

4
)

0.
01

6
5.

51
0

0.
07

0
8.

39
0

0.
06

1
3.

40
6

0.
00

4
1.

3
84

0.
0
25

5
.3

9
6

0
.0

2
1

4
.4

0
6

N
=

2
(1

3
8
4)

0.
14

4
5.

51
0

0.
63

5
8.

39
0

0.
55

9
3.

40
6

0.
03

8
1.

3
84

0.
2
23

5
.3

9
6

0
.1

9
0

4
.4

0
6

N
=

3
(4

5
0
0)

0.
00

1
0.

06
2

0.
00

5
0.

09
8

0.
00

5
0.

05
4

0.
00

0
0.

0
40

0.
0
02

0
.0

8
8

0
.0

0
2

0
.0

5
4

N
=

5
(7

5
0
0)

0.
00

2
0.

06
2

0.
00

4
0.

10
2

0.
00

4
0.

03
9

0.
00

1
0.

0
36

0.
0
02

0
.0

7
3

0
.0

0
2

0
.0

3
9

T
a
bl

e
2
:

S
u

m
m

a
ry

o
f

n
u

m
er

ic
a
l

re
su

lt
s:

a
ve

ra
ge

a
n

d
m

a
xi

m
a
l

a
bs

o
lu

te
er

ro
rs

in
β
i,
α
i,

a
n

d
θ i

,
ex

p
re

ss
ed

a
s

pe
rc

en
ta

ge
s,

fo
r

bo
th

th
e

P
o
is

so
n

o
ve

rfl
o
w

a
lg

o
ri

th
m

a
n

d
th

e
O

n
/
O

ff
o
ve

rfl
o
w

a
lg

o
ri

th
m

.

P
o
is

so
n

o
ve

rfl
o
w

a
lg

.
O

n
O

ff
o
ve

rfl
o
w

a
lg

.
N

(#
in
st
.)

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

al
l
N

(4
3
8
4)

0.
02

5
5.

51
0

0.
08

9
8.

39
0

0.
07

4
3.

40
6

0.
00

8
1.

38
4

0.
0
40

5
.3

9
6

0
.0

3
3

4
.4

0
6

N
=

2
(3

84
)

0.
26

7
5.

51
0

0.
96

1
8.

39
0

0.
80

5
3.

40
6

0.
08

7
1.

38
4

0.
4
40

5
.3

9
6

0
.3

6
2

4
.4

0
6

N
=

3
(1

50
0
)

0.
00

1
0.

04
0

0.
00

3
0.

08
8

0.
00

3
0.

05
4

0.
00

1
0.

04
0

0.
0
03

0
.0

8
8

0
.0

0
3

0
.0

5
4

N
=

5
(2

50
0
)

0.
00

3
0.

06
2

0.
00

6
0.

10
2

0.
00

5
0.

03
9

0.
00

1
0.

03
6

0.
0
01

0
.0

7
3

0
.0

0
1

0
.0

3
9

(a
)

Z
er

o
h
o
ld

b
a
ck

le
v
el

s

P
o
is

so
n

o
ve

rfl
o
w

a
lg

.
O

n
O

ff
o
ve

rfl
o
w

a
lg

.
N

(#
in
st
.)

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

al
l
N

(9
0
0
0)

0.
01

2
5.

11
3

0.
06

1
6.

44
1

0.
05

5
3.

33
9

0.
00

3
0.

85
1

0.
0
18

4
.2

0
1

0
.0

1
6

3
.3

5
0

N
=

2
(1

00
0
)

0.
09

7
5.

11
3

0.
50

9
6.

44
1

0.
46

5
3.

33
9

0.
01

9
0.

85
1

0.
1
39

4
.2

0
1

0
.1

2
5

3
.3

5
0

N
=

3
(3

00
0
)

0.
00

1
0.

06
2

0.
00

6
0.

09
8

0.
00

6
0.

04
5

0.
00

0
0.

02
5

0.
0
02

0
.0

6
7

0
.0

0
2

0
.0

4
6

N
=

5
(5

00
0
)

0.
00

1
0.

02
2

0.
00

3
0.

05
3

0.
00

3
0.

03
3

0.
00

1
0.

01
6

0.
0
03

0
.0

3
1

0
.0

0
2

0
.0

3
0

(b
)

W
it

h
h
o
ld

b
a
ck

le
v
el

s

T
a
bl

e
3
:

S
u

m
m

a
ry

o
f

n
u

m
er

ic
a
l

re
su

lt
s:

a
ve

ra
ge

a
bs

o
lu

te
er

ro
rs

a
n

d
m

a
xi

m
a
l

a
bs

o
lu

te
er

ro
rs

,
fo

r
β
i,
α
i,

a
n

d
θ i

,
i

=
1,
..
.,
N

,
ex

p
re

ss
ed

a
s

pe
rc

en
ta

ge
s.

26

significantly better than the Poisson overflow algorithm. Due to the exact calculation of

the θi’s Kranenburg and Van Houtum’s algorithm performs slightly better than our On/Off

algorithm. However, the errors are of the same order, and hence the On/Off algorithm

achieves (almost) the same accuracy as Kranenburg and Van Houtum’s algorithm, without

the use of the exact θi’s.

Pooling

In the testbed we distinguish three types of pooling strategies:

• complete overflow: σi = {i + 1, . . . , i + N − 1} mod N (is complete pooling when no

hold back levels are set);

• one step: σi = {i+ 1 mod N};

• all to 1: σi = {1} for i 6= 1 and σ1 = ∅.

Note that for N = 2 the first two strategies coincide. We split out the results according to

these pooling strategies, see Table 5. Clearly, the results are best for the all-to-1 strategy,

and remarkably of the same order for both the complete overflow and the one step strategies.

Fill rates

We specified four fill rates in the testbed: 50%, 70%, 90%, and 95%. In Table 6 we split

out the results according to the fill rate at location 1. The performance of both algorithms

increases as the fill rate increases. Note that the number of instance increases in f1, as the

higher f1 the higher S1, allowing for more possibilities for h1.

Calculation time

The calculation time of the Poisson algorithm is extremely fast, it needs merely a fraction of a

second to run. In every iteration, for all N warehouses a Markov process on Si + 1 states has

to be solved. In the numerical study, on average the algorithm converged in 8.4 iterations,

where the On/Off algorithm used on average 9.4 iteration before convergence. Also, the

On/Off algorithm requires some more calculation time in every iteration than the Poisson

27

C
om

p
l.

p
o
o
li

n
g

P
o
is

so
n

o
ve

rfl
o
w

a
lg

.
O

n
O

ff
o
ve

rfl
o
w

a
lg

.
K

ra
n

en
bu

rg
&

V
a
n

H
o
u

tu
m

N
(#

in
st
.)

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

al
l
N

(1
53

9
)

0.
06

0
5.

51
0

0.
21

5
8
.3

90
0.

16
5

3.
40

6
0.

02
3

1.
38

4
0.

1
12

5
.3

9
6

0
.0

9
1

4
.4

0
6

0.
0
26

1.
6
22

0.
0
26

1
.6

2
2

N
=

2
(1

9
2
)

0.
46

1
5.

51
0

1.
68

1
8
.3

90
1.

29
6

3.
40

6
0.

17
0

1.
38

4
0.

8
68

5
.3

9
6

0
.7

0
6

4
.4

0
6

0.
1
79

1.
6
22

0.
1
79

1
.6

2
2

N
=

3
(5

0
1
)

0.
00

2
0.

04
0

0.
00

8
0
.0

88
0.

00
7

0.
05

4
0.

00
2

0.
04

0
0.

0
08

0
.0

8
8

0
.0

0
7

0
.0

5
4

0.
0
03

0.
0
38

0.
0
03

0
.0

3
8

N
=

5
(8

4
6
)

0.
00

4
0.

06
2

0.
00

5
0
.1

02
0.

00
2

0.
03

9
0.

00
2

0.
03

6
0.

0
03

0
.0

7
3

0
.0

0
2

0
.0

3
9

0.
0
04

0.
0
51

0.
0
04

0
.0

5
1

T
a
bl

e
4
:

C
o
m

p
le

te
po

o
li

n
g:

su
m

m
a
ry

o
f

n
u

m
er

ic
a
l

re
su

lt
s,

ex
p
re

ss
ed

a
s

pe
rc

en
ta

ge
s.

R
es

u
lt

s
o
f

a
lg

o
ri

th
m

K
ra

n
en

bu
rg

&
V

a
n

H
o
u

tu
m

a
d
d
ed

fo
r

co
m

pa
ri

so
n

(f
o
r

w
h
ic

h
by

co
n

st
ru

ct
io

n
∆
θ i
≡

0)
.

P
o
ol

in
g

st
ra

te
gy

P
o
is

so
n

o
ve

rfl
o
w

a
lg

.
O

n
O

ff
o
ve

rfl
o
w

a
lg

.
N

(#
in
st
.)

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

co
m

p
l.

ov
er

fl
ow

(4
69

4
)

0
.0

39
5
.5

10
0.

16
2

8.
39

0
0.

13
3

3.
40

6
0.

01
2

1
.3

8
4

0
.0

6
6

5.
3
96

0.
0
56

4.
4
06

on
e

st
ep

(4
7
49

)
0
.0

37
5
.5

10
0.

16
1

8.
39

0
0.

13
3

3.
40

6
0.

01
1

1
.3

8
4

0
.0

6
5

5.
3
96

0.
0
55

4.
4
06

al
l

to
1

(4
6
3
3)

0
.0

06
2
.0

17
0.

03
2

2.
42

0
0.

03
8

2.
42

0
0.

00
1

0
.1

5
5

0
.0

0
3

0.
1
91

0.
0
04

0.
1
91

T
a
bl

e
5
:

R
es

u
lt

s
o
f

T
a
bl

e
2

sp
li

t
o
u

t
to

po
o
li

n
g

st
ra

te
gy

.
N

o
te

:
fo

r
N

=
2

‘c
o
m

p
le

te
o
ve

rfl
o
w

’
a
n

d
‘o

n
e

st
ep

’
co

in
ci

d
e.

F
il

l
ra

te
at

1
P

o
is

so
n

o
ve

rfl
o
w

a
lg

.
O

n
O

ff
o
ve

rfl
o
w

a
lg

.
N

(#
in
st
.)

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

a
v

∆
β

m
a
x

∆
β

a
v

∆
α

m
a
x

∆
α

a
v

∆
θ

m
a
x

∆
θ

f 1
=

5
0%

(2
0
7
2)

0
.0

3
8

5
.5

1
0

0
.1

3
4

8.
39

0
0.

11
1

3.
40

6
0.

01
1

1.
30

5
0
.0

5
1

5.
3
96

0.
0
41

4.
4
06

f 1
=

7
0%

(2
7
3
7)

0
.0

2
5

5
.3

7
4

0
.1

0
2

8.
32

8
0.

08
7

2.
99

3
0.

00
7

1.
38

4
0
.0

3
8

4.
7
20

0.
0
32

3.
5
70

f 1
=

9
0%

(3
8
0
2)

0
.0

1
1

3
.4

1
8

0
.0

6
0

5.
43

8
0.

05
5

2.
41

8
0.

00
3

0.
98

9
0
.0

2
1

3.
3
13

0.
0
18

2.
6
59

f 1
=

9
5%

(4
7
7
3)

0
.0

0
5

1
.5

0
5

0
.0

3
1

2.
83

8
0.

03
1

2.
41

8
0.

00
1

0.
52

3
0
.0

1
0

1.
6
64

0.
0
09

1.
3
49

T
a
bl

e
6
:

R
es

u
lt

s
o
f

T
a
bl

e
2

sp
li

t
o
u

t
to

fi
ll

ra
te

a
t

lo
ca

ti
o
n

1
.

28

algorithm, but is still reasonably fast. In every iteration a Markov process on (Si + 1) · 2|di|

has to be solved, for all N warehouses. Hence, its speed depends on the pooling strategy

chosen: complete overflow is slower than ‘one step’ and ‘all to 1’, as in the first case the

Markov processes contains more states than in the latter two cases. However, there is a

large gain compared to exact evaluation, which requires solving the steady state distribution

of a Markov process on
∏N
i=1(Si + 1) states. Furthermore, we mention that without hold

back levels, both the Poisson and the On/Off algorithm needs on average two extra steps to

converge, compared to the case hold back levels are set. We expect this to be due to the fact

that with hold back levels, more demands are directly satisfied at the warehouse itself, and

hence the overflow stream will be smaller, respectively, be longer turned Off. In that way, the

system will more quickly converge.

5 Conclusion and further research

In this paper we extended the Poisson overflow algorithm of Reijnen et al. Reijnen et al.

(2009) for hold back levels and introduced the On/Off overflow algorithm, which approximates

overflow demand streams more accurately by On/Off processes. In an extensive numerical

study, the On/Off algorithm turned out to be much more accurate than the Poisson overflow

algorithm.

The presented algorithms can be used to optimize hold back levels. This would provide in-

sights in how much can be gained by these. This, however, needs further research. Also, the

presented algorithms can be easily adapted to deal with other replenishment rates. Next to

that, one can easily include the random selection for the location where the lateral transship-

ment originates from.

References

Alfredsson, P. and J. Verrijdt (1999). Modeling emergency supply flexibility in a two-echelon inventory
system. Management Science 45 (10), 1416–1431.

Archibald, T., S. Sassen, and L. Thomas (1997). An optimal policy for a two depot inventory problem
with stock transfer. Management Science 43 (2), 173–183.

Axsäter, S. (1990). Modelling emergency lateral transshipments in inventory systems. Management
Science 36 (11), 1329–1338.

29

Axsäter, S. (2003). Evaluation of unidirectional lateral transshipments and substitutions in inventory
systems. European Journal of Operational Research 149 (2), 438–447.

Caggiano, K., P. Jackson, J. Muckstadt, and J. Rappold (2009). Efficient computation of time-based
customer service levels in a multi-item, multi-echelon supply chain: A practical approach for
inventory optimization. European Journal of Operational Research 199 (3), 744–749.

Gans, N., G. Koole, and A. Mandelbaum (2003). Telephone call centers: Tutorial, review, and research
prospects. Manufacturing and Service Operations Management 5 (2), 79–141.

Grinstead, C. and J. Snell (1997). Introduction to probability. American Mathematical Society.

Kranenburg, A. and G. Van Houtum (2009). A new partial pooling structure for spare parts networks.
European Journal of Operational Research 199 (3), 908–921.

Kuczura, A. (1973). The interrupted Poisson process as an overflow process. The Bell System Technical
Journal 52 (3), 437–448.

Kukreja, A., C. Schmidt, and D. Miller (2001). Stocking decisions for low-usage items in a multilocation
inventory system. Management Science 47 (10), 1371–1383.

Kutanoglu, E. (2008). Insights into inventory sharing in service parts logistics systems with time-based
service levels. Computers & Industrial Engineering 54 (3), 341–358.

Kutanoglu, E. and M. Mahajan (2009). An inventory sharing and allocation method for a multi-
location service parts logistics network with time-based service levels. European Journal of
Operational Research 194 (3), 728–742.

Liu, J. and C. Lee (2007). Evaluation of inventory policies with unidirectional substitutions. European
Journal of Operational Research 182 (1), 145–163.

Olsson, F. (2010). An inventory model with unidirectional lateral transshipments. European Journal
of Operational Research 200 (3), 725–732.

Paterson, C., G. Kiesmüller, R. Teunter, and K. Glazebrook (2011). Inventory models with lateral
transshipments: A review. European Journal of Operational Research 210 (2), 125–136.

Reijnen, I., T. Tan, and G. Van Houtum (2009). Inventory planning for spare parts networks with
delivery time requirements. Beta working paper, Eindhoven University of Technology.

Robinson, L. (1990). Optimal and approximate policies in multiperiod, multilocation inventory models
with transshipment. Operations Research 38 (2), 278–295.

Tagaras, G. and M. Cohen (1992). Pooling in two-location inventory systems with non-negligible
replenishment lead times. Management Science 38 (8), 1067–1083.

Van Wijk, A., I. Adan, and G. Van Houtum (2009). Optimal lateral transshipment policy for a two
location inventory problem. Eurandom report, Eindhoven University of Technology.

Wong, H., G. Van Houtum, D. Cattrysse, and D. Oudheusden (2006). Multi-item spare parts sys-
tems with lateral transshipments and waiting time constraints. European Journal of Operational
Research 171 (3), 1071–1093.

Xu, K., P. Evers, and M. Fu (2003). Estimating customer service in a two-location continuous re-
view inventory model with emergency transshipments. European Journal of Operational Re-
search 145 (3), 569–584.

Zhao, H., V. Deshpande, and J. Ryan (2006). Emergency transshipment in decentralized dealer
networks: When to send and accept transshipment requests. Naval Research Logistics 53 (6),
547–567.

Zhao, H., J. Ryan, and V. Deshpande (2008). Optimal dynamic production and inventory transship-
ment policies for a two-location make-to-stock system. Operations Research 56 (2), 400–410.

30

