A new method for deriving waiting-time approximations in polling systems with renewal arrivals

J.L. Dorsman1,2, R.D. van der Mei1,3 and E.M.M. Winands3

1CWI, Probability and Stochastic Networks, Amsterdam, The Netherlands
2Eindhoven University of Technology, EURANDOM, Eindhoven, The Netherlands
3VU University Amsterdam, Department of Mathematics, Amsterdam, The Netherlands
j.l.dorsman@tue.nl, R.D.van.der.Mei@cwi.nl, emm.winands@few.vu.nl

Abstract

We study the waiting-time distributions in cyclic polling models with renewal arrivals, general service and switch-over times, and exhaustive service at each of the queues. The assumption of renewal arrivals prohibits an exact analysis and reduces the available analytic results to heavy-traffic asymptotics, limiting results for large switch-over times and large numbers of queues, and some numerical algorithms. Motivated by this, the goal of this paper is to propose a new method for deriving simple closed-form approximations for the complete waiting-time distributions that work well for arbitrary load values. Extensive simulation results show that the approximations are highly accurate over a wide range of parameter settings.

Key words: Polling systems, renewal arrivals, waiting-time distribution, approximation