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Abstract

In this paper we prove a law of large numbers for a general class of Zd-valued random
walks in dynamic random environments, including examples that are non-elliptic. We
assume that the random environment has a certain space-time mixing property, which we
call conditional cone-mixing, and that the random walk has a tendency to stay inside wide
enough space-time cones. The proof is based on a generalization of the regeneration scheme
developed by Comets and Zeitouni [5] for static random environments, which was recently
adapted by Avena, den Hollander and Redig [1] to dynamic random environments. We
exhibit a number of one-dimensional examples to which our law of large numbers applies.
For some of these examples the sign of the speed can be determined.
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1 Introduction

1.1 Background

Random walk in random environment (RWRE) has been an active area of research for more
than three decades. Informally, RWRE’s are random walks in discrete or continuous space-
time whose transition kernels or transition rates are not fixed but are random themselves,
constituting a random environment. Typically, the law of the random environment is taken
to be translation invariant. Once a realization of the random environment is fixed, we say
that the law of the random walk is quenched. Under the quenched law, the random walk is
Markovian but not translation invariant. It is also interesting to consider the quenched law
averaged over the law of the random environment, which is called the annealed law. Under the
annealed law, the random walk is not Markovian but translation invariant. For an overview
on RWRE, we refer the reader to Zeitouni [11, 12], Sznitman [9, 10], and references therein.

In the past decade, several models have been considered in which the random environment
itself evolves in time. These are referred to as random walk in dynamic random environment
(RWDRE). By viewing time as an additional spatial dimension, RWDRE can be seen as a
special case of RWRE, and as such it inherits the difficulties present in RWRE in dimensions
two or higher. However, RWDRE is harder than RWRE because it is an interpolation between
RWRE and homogeneous random walk, which arise as limits when the dynamics is slow,
respectively, fast. For a list of mathematical papers dealing with RWDRE, we refer the reader
to Avena, den Hollander and Redig [2]. Most of the literature on RWDRE is restricted to
situations in which the space-time correlations of the random environment are either absent
or rapidly decaying.
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Figure 1: Jump rates of the random walk on top of a hole (= 0), respectively, a particle (= 1).

One paper in which a milder space-time mixing property is considered is Avena, den
Hollander and Redig [1], where a law of large numbers (LLN) is derived for a class of one-
dimensional RWDRE’s in which the role of the random environment is taken by an interacting
particle system (IPS) with configuration space

Ω := {0, 1}Z. (1.1)

The transition rates of the random walk are as in Fig. 1: on a hole (i.e., on a 0) the random
walk has rate α to jump one unit to the left and rate β to jump one unit to the right, while on
a particle (i.e., on a 1) the rates are reversed (w.l.o.g. it may be assumed that 0 < β < α <∞,
so that the random walk has a drift to the left on holes and a drift to the right on particles).
Hereafter, we will refer to this model as the (α, β)-model. The random walk starts at 0 and a
LLN is proved under the assumption that the IPS satisfies a space-time mixing property called
cone-mixing, which means that the states inside a space-time cone are almost independent of
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the states in a space plane far below this cone. The proof uses a regeneration scheme originally
developed by Comets and Zeitouni [5] for RWRE and adapted to deal with RWDRE. This
proof can be easily extended to Zd, d ≥ 2, with the appropriate corresponding notion of
cone-mixing.

1.2 Elliptic vs. non-elliptic

The original motivation for the present paper was to study the (α, β)-model in the limit as
α→∞ and β ↓ 0. In this limit, which we will refer to as the (∞, 0)-model, the walk almost is
a deterministic functional of the IPS and therefore is non-elliptic. The challenge was to find
a way to deal with the lack of ellipticity. As we will see in Section 3, our set-up will be rather
general and will include the (α, β)-model, the (∞, 0)-model, as well as various other models.
Two papers that deal with non-elliptic (actually, deterministic) RW(D)RE’s are Madras [7]
and Matic (arXiv:0911.1809v2), where a recurrence vs. transience criterion, respectively, a
large deviation principle are derived.

In the RW(D)RE literature, ellipticity assumptions play an important role. RW(D)RE
on Zd, d ≥ 1, is called elliptic when, almost surely w.r.t. the random environment, all the
rates are finite and there is a basis {ei}1≤i≤d of Zd such that the rate to go from x to x+ ei
is positive for 1 ≤ i ≤ d. RW(D)RE is called uniformly elliptic when, almost surely w.r.t.
the random environment, these rates are bounded away from infinity, respectively, bounded
away from zero. In [5] and [1], uniform ellipticity is crucial in order to take advantage of the
cone-mixing property. More precisely, it is crucial that the rates are uniformly elliptic in a
direction in which the walk is transient. By this we mean that there is a non-zero vector e and a
deterministic time T such that the quenched probability for the random walk to displace itself
by e during time T is uniformly positive for almost all realizations of the random environment.
The (α, β)-model is uniformly elliptic for e pointing in the time direction, since the total jump
rate is α + β at every site. For the (∞, 0)-model, however, there is no such e. In fact, there
are many interesting models where the probability to move to any fixed space-time position
is zero inside a set of environments of positive probability, and for all of these models the
approach in [1] fails.

In the present paper, to deal with the possible lack of ellipticity we require a different
space-time mixing property for the dynamic random environment, which we call conditional
cone-mixing. Moreover, as in [5] and [1], we require the random walk to have a tendency to
stay inside space-time cones. Under these assumptions, we are able to set up a regeneration
scheme and prove a LLN. Our result includes the LLN for the (α, β)-model in [1], the (∞, 0)-
model for at least two subclasses of IPS’s that we will exhibit, as well as models that are
intermediate, in the sense that they are neither uniformly elliptic in any direction, nor are as
environment-dependent as the (∞, 0)-model.

1.3 Outline

The rest of the paper is organized as follows. In Section 2 we discuss, still informally, the
(∞, 0)-model and the regeneration strategy. This section serves as a motivation for the formal
definition in Section 3 of the class of models we are after, which is based on three structural
assumptions. Section 4 contains the statement of our LLN under four hypotheses, and a
description of two classes of one-dimensional IPS’s that satisfy these hypotheses for the (∞, 0)-
model. Section 5 contains preparation material, given in a more general context, that is used
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in the proof of the LLN given in Section 6. In Section 7 we verify the hypotheses for the two
classes of IPS’s described in Section 4. We also obtain a criterion to determine the sign of the
speed in the LLN, via a comparison with independent spin-flip systems. Finally, in Section 8,
we discuss how to adapt the proofs in Section 7 to other models, namely, generalizations of
the (α, β)-model and the (∞, 0)-model, and mixtures thereof. We also give an example where
our hypotheses fail.

The examples in our paper are all one-dimensional, even though our LLN is valid in Zd,
d ≥ 1.

2 Motivation

2.1 The (∞, 0)-model

Let
ξ := (ξt)t≥0 with ξt :=

(
ξt(x)

)
x∈Z (2.1)

be a one-dimensional IPS on Ω with bounded and translation-invariant transition rates. We
will interpret the states ξt(x) by saying that at time t site x contains either a hole (ξt(x) = 0)
or a particle (ξt(x) = 1). Typical examples to have in mind are independent spin-flips and
simple exclusion.

Suppose that, given a realization of ξ, we run the (α, β)-model with 0 < β � 1� α <∞.
Then the behavior of the random walk is as follows. Suppose that ξ0(0) = 1 and that the walk
starts at 0. The walk rapidly moves to the first hole on its right, typically before any of the
particles it encounters manages to flip to a hole. When it arrives at the hole, the walk starts
to rapidly jump back and forth between the hole and the particle to the left of the hole: we
say that it sits in a trap. If ξ0(0) = 0 instead, then the walk rapidly moves to the first particle
on its left, where it starts to rapidly jump back and forth in a trap. In both cases, before
moving away from the trap, the walk typically waits until one or both of the sites in the trap
flip. If only one site flips, then the walk typically moves in the direction of the flip until it
hits a next trap, etc. If both sites flip simultaneously, then the probability for the walk to sit
at either of these sites is close to 1

2 , and hence it leaves the trap in a direction that is close to
being determined by an independent fair coin.

The limiting dynamics when α→∞ and β ↓ 0 can be obtained from the above description
by removing the words “rapidly, “typically” and “close to”. Except for the extra Bernoulli(1

2)
random variables needed to decide in which direction to go to when both sites in a trap flip
simultaneously, the walk up to time t is a deterministic functional of (ξs)0≤s≤t. In particular,
if we take ξ to be a spin-flip system with only single-site flips, then apart from the first jump
the walk is completely deterministic. Since the walk spends all of its time in traps where it
jumps back and forth between a hole and a particle, we may imagine that it lives on the edges
of Z. We implement this observation by associating with each edge its left-most site, i.e., we
say that the walk is at x when we actually mean that it is jumping back and forth between x
and x+ 1.

Let
W := (Wt)t≥0 (2.2)

denote the random walk path, which is càdlàg and, by the observations made above, is of the
form

Wt := Ft
(
(ξs)0≤s≤t, Y

)
, t ≥ 0, (2.3)
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Figure 2: The vertical lines represent presence of particles. The dotted line is the path of the (∞, 0)-
walk.

where Ft is a measurable function taking values in Z, and Y is a sequence of i.i.d. Bernoulli(1
2)

random variables independent of ξ. Note that W also has the following three properties:

(1) For any fixed time s, given (ξu)0≤u≤s and (Wu)0≤u≤s, (Ws+t−Ws)t≥0 is equal in distri-
bution to (Wt)t≥0 when ξ is started from ξ̄s = (ξ̄s(x))x∈Z, where ξ̄s(x) = ξs(x+Ws). In
particular, (ξt,Wt)t≥0 is Markovian.

(2) Given that W stays inside a space-time cone until time t, (Ws)0≤s≤t is a functional only
of Y and of the states in ξ up to time t inside this cone.

(3) Each jump of the path follows the same mechanism as the first jump, i.e.,

Pη
(
Wt −Wt− = x | (ξs)0≤s≤t, (Ws)0≤s<t

)
= PθWt−ξt(W0 = x). (2.4)

For the (∞, 0)-model the path is always in a trap, and so the r.h.s. of (2.4) is a.s. equal
to δ0(x). However, in the sequel we will have occasion to also consider discrete-time
models for which the r.h.s. may be different.

The reason for emphasizing these properties will become clear in Section 3.

2.2 Regeneration

The cone-mixing property that is assumed in [1] to prove the LLN for the (α, β)-model can
be loosely described as the requirement that all the states of the IPS inside a space-time
cone opening upwards depend weakly on the states inside a space plane far below the tip (see
Fig. 3). Let us give a rough idea of how this property can lead to regeneration. Consider
the event that the walk stands still for a long time. Since the jump times of the walk are
independent of the IPS, so is this event. During this pause, the environment around the walk is
allowed to mix, which by the cone-mixing property means that by the end of the pause all the
states inside a cone with a tip at the space-time position of the walk are almost independent
of the past of the walk. If thereafter the walk stays confined to the cone, then its future
increments will be almost independent of its past, and so we get an approximate regeneration.
Since in the (α, β)-model there is a uniformly positive probability for the walk to stay inside
a space-time cone with a large enough inclination, we see that the idea of regeneration can
indeed be made to work.
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Figure 3: Cone-mixing property: asymptotic independence of states inside a space-time cone
from states inside a space plane.

For the actual proof of the LLN in [1], cone-mixing must be more carefully defined. For
technical reasons, there must be some uniformity in the decay of correlations between events
in the space-time cone and in the space plane. This uniformity holds, for instance, for any
spin-flip system in the M < ε regime (Liggett [6], Section I.3), but not for the exclusion
process or the supercritical contact process. Therefore the approach outlined above works for
the first IPS, but not for the other two.

There are three properties of the (α, β)-model that make the above heuristics plausible.
First, to be able to apply the cone-mixing property relative to the space-time position of the
walk, it is important that the pair (IPS,walk) is Markovian and that the law of the environment
as seen from the walk at any time is comparable to the initial law. Second, there is a uniformly
positive probability for the walk to stand still for a long time and afterwards stay inside a
space-time cone. Third, once the walk stays inside a space-time cone, its increments depend
on the IPS only through the states inside that cone. Let us compare these observations
with what happens in the (∞, 0)-model. Property (1) from Section 2.1 gives us the Markov
property, while property (2) gives us the measurability inside cones. As we will see, property
(3) implies absolute continuity of the law of the environment as seen from the walk at any
positive time with respect to its counterpart at time zero. Therefore, as long as we can make
sure that the walk has a tendency to stay inside space-time cones (which is reasonable when
we are looking for a LLN), the main difference is that the event of standing still for a long
time is not independent of the environment, but rather is a deterministic functional of the
environment. Consequently, it is not at all clear whether cone-mixing is enough to allow for
regeneration. On the other hand, the event of standing still is local, since it only depends on
the states of the two neighboring sites of the trap where the walk is pausing. For most IPS’s,
the observation of a local event will not affect the weak dependence between states that are
far away in space-time. Hence, if such IPS’s are cone-mixing, then states inside a space-time
cone remain almost independent of the initial configuration even when we condition on seeing
a trap for a long time.

Thus, under suitable assumptions, the event “standing still for a long time” is a candidate
to induce regeneration. In the (α, β)-model this event does not depend on the environment
whereas in the (∞, 0)-model it is a deterministic functional of the environment. If we put the
(α, β)-model in the form (2.3) by taking for Y two independent Poisson processes with rates
α and β, then we can restate the previous sentence by saying that in the (α, β)-model the
regeneration-inducing event depends only on Y , while in the (∞, 0)-model it depends only on
ξ. We may therefore imagine that, also for other models that can be put in the form (2.3) and

6



that share properties (1)–(3), it will be possible to find more general regeneration-inducing
events that depend on both ξ and Y in a non-trivial manner. This motivates our setup in
Section 3.

3 Model setting

So far we have been discussing RWDRE driven by an IPS. However, there are convenient con-
structions of IPS’s on richer state spaces (like graphical representations) that can facilitate the
construction of the regeneration-inducing events mentioned in Section 2.2. We will therefore
allow for more general Markov processes to represent the dynamic random environment ξ.
Notation is set up in Section 3.1. Section 3.2 contains the three structural assumptions that
define the class of models we are after.

3.1 Notation

Let E be a separable metric space and ξ := (ξt)t≥0 a Markov process with state space EZd

where d ∈ N. Let Y := (Yn)n∈N be an i.i.d. sequence of random variables independent of ξ.
For I ⊂ [0,∞), abbreviate ξI := (ξu)u∈I , and analogously for Y . The joint law of ξ and Y

when ξ0 = η ∈ EZd will be denoted by Pη.
For t ≥ 0 and x ∈ Zd, let θt and θx denote the time-shift and space-shift operators given

by
θt(ξ, Y ) :=

(
(ξt+s)s≥0, (Ybtc+n)n∈N

)
, θx(ξ, Y ) :=

(
(θxξt)t≥0, (Yn)n∈N

)
, (3.1)

where θxξt(y) = ξt(x + y). In the sequel, whether θ is a time-shift or a space-shift operator
will always be clear from the index.

We assume that ξ is translation-invariant, i.e., θxξ under Pη has the same distribution as
ξ under Pθxη. We also assume the existence of a (not necessarily unique) translation-invariant
equilibrium distribution µ for ξ, and write Pµ(·) :=

∫
µ(dη)Pη(·) to denote the joint law of ξ

and Y when ξ0 is drawn from µ.

For n ∈ N, let Yn := σ{Yk : 1 ≤ k ≤ n} be the σ-algebra generated by (Yk)1≤k≤n. For
m > 0 and R ∈ N, define the m-cone, respectively, the R-enlarged m-cone by

C(m) :=
{

(x, t) ∈ Zd × [0,∞) : ‖x‖ ≤ mt
}
,

CR(m) :=
{

(x, t) ∈ Zd × [0,∞) : ∃ (y, t) ∈ C(m) with ‖x− y‖ ≤ R
}
,

(3.2)

where ‖ · ‖ is the L1 norm. Let Ct(m) and CR,t(m) be the σ-algebras generated by the states
of ξ up to time t inside C(m) and CR(m), respectively.

3.2 Structural assumptions

In what follows we make three structural assumptions:

(A1) (Additivity)
W = (Wt)t≥0 is a random translation of a càdlàg random walk that starts at 0 and is a
functional of ξ and Y . More precisely, let (Ft)t∈[0,1] be a family of Zd-valued measurable
functions. Define a random process Z by putting

Z0 := 0
Zn+t − Zn := Ft(θZnξ(n,n+t], Yn+1), n ∈ N0, t ∈ (0, 1].

(3.3)
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Then Z has càdlàg paths and

Wt −W0 = θW0Zt, (3.4)

where W0 is a Zd-valued random variable that depends on ξ only through ξ0, i.e.,

Pµ(W0 = x | ξ) = Pµ(W0 = x | ξ0) a.s. ∀ x ∈ Zd. (3.5)

(A2) (Locality)
There exists an R ∈ N such that, for all m > 0, Z is measurable w.r.t. CR,∞(m) ∨ Y∞
on the event {Zt ∈ C(m) ∀ t ≥ 0}.

(A3) (Homogeneity of jumps)
For all n ∈ N0 and x ∈ Zd,

Pµ
(
Wn −Wn− = x | ξ[0,n],W[0,n)

)
= PθWn−ξn

(
W0 = x

)
Pµ-a.s. (3.6)

These are the analogues of properties (1)–(3) of the (∞, 0)-model mentioned in Section 2.1.

Let us denote by ξ̄ := (ξ̄t)t≥0 the environment process associated to W , i.e., ξ̄t := θWtξt,
and let µ̄t denote the law of ξ̄t under Pµ. We abbreviate µ̄ := µ̄0. Note that µ̄ = µ when
Pµ(W0 = 0) = 1. From (3.4) we see that (Wt−W0)t≥0 under Pµ has the same distribution as
Z under Pµ̄.

4 Main results

Theorems 4.1 and 4.2 below are the main results of our paper. Theorem 4.1 in Section 4.1 is
our LLN. Theorem 4.2 in Section 4.2 verifies the hypotheses in this LLN for the (∞, 0)-model
for two classes of one-dimensional IPS’s. For these classes some more information is available,
namely, convergence in Lp, p ≥ 1, and a criterion to determine the sign of the speed.

4.1 Law of large numbers

In order to develop a regeneration scheme for a random walk subject to assumptions (A1)–(A3)
based on the heuristics discussed in Section 2.2, we must have suitable regeneration-inducing
events. In the four hypotheses stated below, these regeneration-inducing events appear as a
sequence of events (ΓL)L∈N such that ΓL ∈ CR,L(m) ∨ YL for all L ∈ N and some m > 0.

(H1) (Determinacy)
On ΓL, Zt = 0 for all t ∈ [0, L] Pµ̄-a.s.

(H2) (Non-degeneracy)
For L large enough, there exists a γL > 0 such that Pη(ΓL) ≥ γL for µ̄-a.e. η.

(H3) (Cone constraints)
Let S := inf{t ≥ 0: Zt /∈ C(m)} denote the first exit time of C(m). Then there exist
a ∈ (1,∞), κL ∈ (0, 1] and ψL > 0 such that, for L large enough and µ̄-a.e. η,

(1) Pη(θLS =∞ | ΓL) ≥ κL,

(2) Eη
[
1{θLS<∞}(θLS)a | ΓL

]
≤ ψaL.

(4.1)
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(H4) (Conditional cone-mixing)
There exists a sequence of numbers (φL)L∈N in [0,∞) satisfying limL→∞ φL = 0 such
that, for L large enough and for µ̄-a.e. η,

|Eη (θLf | ΓL)− Eµ̄(θLf | ΓL)| ≤ φL ‖f‖∞ ∀ f ∈ CR,∞(m), f ≥ 0. (4.2)

We are now ready to state our LLN.

Theorem 4.1. Under assumptions (A1)–(A3) and hypotheses (H1)–(H4), there exists a w ∈
Rd such that

lim
t→∞

t−1Wt = w Pµ − a.s. (4.3)

Remark 1: Hypothesis (H4) above without the conditioning on ΓL in (4.2) is the same as the
cone-mixing condition used in Avena, den Hollander and Redig [1]. There, W0 = 0 Pµ-a.s., so
that µ̄ = µ.

Remark 2: Theorem 4.1 provides no information about the value of w, not even its sign
when d = 1. Understanding the dependence of w on model parameters is in general a highly
non-trivial problem.

4.2 Examples

We next describe two classes of one-dimensional IPS’s for which the (∞, 0)-model satisfies
hypotheses (H1)–(H4). Further details will be given in Section 7. In both classes, ξ is a
spin-flip system in Ω = {0, 1}Z with bounded and translation-invariant single-site flip rates.
We may assume that the flip rates at the origin are of the form

c(η) =

{
c0 + λ0p0(η) if η(0) = 1,
c1 + λ1p1(η) if η(0) = 0,

η ∈ Ω, (4.4)

for some ci, λi ≥ 0 and pi : Ω→ [0, 1], i = 0, 1.

Example 1: c(·) is in the M < ε regime (see Liggett [6], Section I.3).

Example 2: p(·) has range 1 and (λ0 + λ1)/(c0 + c1) < λc, where λc is the critical infection
rate of the one-dimensional nearest-neighbor contact process.

Theorem 4.2. Consider the (∞, 0)-model. Suppose that ξ is a spin-flip system with flip
rates given by (4.4). Then for Examples 1 and 2 there exist a version of ξ and events ΓL ∈
CR,L(m) ∨ YL, L ∈ N, satisfying hypotheses (H1)–(H4). Furthermore, the convergence in
Theorem 4.1 holds also in Lp for all p ≥ 1, and

w ≥ c0+λ0
c1+c0+λ0

(c1 − c0 − λ0) if c1 > c0 + λ0,

w ≤ − c1+λ1
c0+c1+λ1

(c0 − c1 − λ1) if c0 > c1 + λ1.
(4.5)

For independent spin-flip systems (i.e., when λ0 = λ1 = 0), we are able to show that w
is positive, zero or negative when the density c1/(c0 + c1) is, respectively, larger than, equal
to or smaller than 1

2 . Criterion (4.5) for other ξ is obtained by comparison with independent
spin-flip systems.
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We expect hypotheses (H1)–(H4) to hold for a very large class of IPS’s and walks. For
each choice of IPS and walk, the verification of hypotheses (H1)–(H4) constitutes a separate
problem. Typically, (H1)–(H2) are immediate, (H3) requires some work, while (H4) is hard.

Additional models will be discussed in Section 8. We will consider generalizations of the
(α, β)-model and the (∞, 0)-model, namely, pattern models and internal noise models, as well
as mixtures of them. The verification of (H1)–(H4) will be largely similar to the two models
discussed above and will therefore not be carried out in detail.

This concludes the motivation and the statement of our main results. The remainder of the
paper will be devoted to the proofs of Theorems 4.1 and 4.2, with the exception of Section 8,
which contains additional examples and remarks.

5 Preparation

The aim of this section is to prove two propositions (Propositions 5.2 and 5.4 below) that
will be needed in Section 6 to prove the LLN. In Section 5.1 we deal with approximate laws
of large numbers for general discrete- or continuous-time random walks in Rd. In Section 5.2
we specialize to additive functionals of a Markov chain whose law at any time is absolutely
continuous with respect to its initial law.

5.1 Approximate law of large numbers

This section contains two fundamental facts that are the basis of our proof of the LLN. They
deal with the notion of an approximate law of large numbers.

Definition 5.1. Let W = (Wt)t≥0 be a random process in Rd with t ∈ N or t ∈ [0,∞).
For ε ≥ 0 and v ∈ Rd, we say that W has an ε-approximate asymptotic velocity v, written
W ∈ AV (ε, v), if

lim sup
t→∞

∥∥∥∥Wt

t
− v
∥∥∥∥ ≤ ε a.s. (5.1)

We take ‖ · ‖ to be the L1-norm. A simple observation is that W a.s. has an asymptotic
velocity if and only if for every ε > 0 there exists a vε ∈ Rd such that W ∈ AV (ε, vε). In this
case limε↓0 vε exists and is equal to the asymptotic velocity v.

5.1.1 First key proposition: skeleton approximate velocity

The following proposition gives conditions under which an approximate velocity for the process
observed along a random sequence of times implies an approximate velocity for the full process.

Proposition 5.2. Let W be as in Definition 5.1. Let (τk)k∈N0 be an increasing sequence of
random times in [0,∞) (or N0) with limk→∞ τk = ∞ a.s., and let Xk := (Wτk , τk) ∈ Rd+1,
k ∈ N0. Suppose that the following hold:
(i) There exists an m > 0 such that

lim sup
k→∞

sup
s∈(τk,τk+1]

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ ≤ m a.s. (5.2)

(ii) There exist v ∈ Rd, u > 0 and ε ≥ 0 such that X ∈ AV (ε, (v, u)).
Then W ∈ AV ((3m+ 1)ε/u, v/u).
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Proof. First, let us check that (i) implies

lim sup
t→∞

‖Wt‖
t
≤ m a.s. (5.3)

Suppose that

lim sup
k→∞

sup
s>τk

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ ≤ m a.s. (5.4)

Since, for every k and t > τk,∥∥∥∥Wt

t

∥∥∥∥ ≤ ‖Wτk‖
t

+

∥∥∥∥Wt −Wτk

t− τk

∥∥∥∥ ∣∣∣1− τk
t

∣∣∣ ≤ ‖Wτk‖
t

+ sup
s>τk

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ ∣∣∣1− τk
t

∣∣∣ , (5.5)

(5.3) follows from (5.4) by letting t→∞ followed by k →∞.

To check (5.4), define, for k ∈ N0 and l ∈ N,

m(k, l) := sup
s∈(τk,τk+l]

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ and m(k,∞) := sup
s>τk

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ = lim
l→∞

m(k, l). (5.6)

Using the fact that (x1 + x2)/(y1 + y2) ≤ (x1/y1) ∨ (x2/y2) for all x1, x2 ∈ R and y1, y2 > 0,
we can prove by induction that

m(k, l) ≤ max{m(k, 1), . . . ,m(k + l − 1, 1)}, l ∈ N. (5.7)

Fix ε > 0. By (i), a.s. there exists a kε such that m(k, 1) ≤ m + ε for k > kε. By (5.7), the
same is true for m(k, l) for all l ∈ N, and therefore also for m(k,∞). Since ε is arbitrary, (5.4)
follows.

Let us now proceed with the proof of the proposition. Assumption (ii) implies that, a.s.,

lim sup
k→∞

∥∥∥∥Wτk

k
− v
∥∥∥∥ ≤ ε and lim sup

k→∞

∣∣∣τk
k
− u
∣∣∣ ≤ ε. (5.8)

Assume w.l.o.g. that τ0 = 0. For t ≥ 0, let kt be the (random) non-negative integer such that

τkt ≤ t < τkt+1. (5.9)

Then, from (5.8) and (5.9) we deduce that

lim sup
t→∞

∣∣∣∣ tkt − u
∣∣∣∣ ≤ ε and so lim sup

t→∞

∣∣∣∣ tkt − τkt
kt

∣∣∣∣ ≤ 2ε. (5.10)

Observe that, since τ1 <∞ a.s., kt > 0 a.s. for large enough t. For such t we may write∥∥∥∥uWt

t
− v
∥∥∥∥ ≤‖Wt‖

t

∣∣∣∣u− t

kt

∣∣∣∣+

∥∥∥∥Wt −Wτkt

kt

∥∥∥∥+

∥∥∥∥Wτkt

kt
− v
∥∥∥∥

≤‖Wt‖
t

∣∣∣∣u− t

kt

∣∣∣∣+ sup
s∈(τkt ,τkt+1]

∥∥∥∥Ws −Wτkt

s− τkt

∥∥∥∥ ∣∣∣∣ t− τktkt

∣∣∣∣+

∥∥∥∥Wτkt

kt
− v
∥∥∥∥ , (5.11)

from which we obtain the conclusion by taking the limsup as t→∞ in (5.11), using (i), (5.3),
(5.8) and (5.10), and then dividing by u.
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5.1.2 Conditions for the skeleton to have an approximate velocity

The following lemma states sufficient conditions for a discrete-time process to have an ap-
proximate velocity. It will be used in the proof of Proposition 5.4 below.

Lemma 5.3. Let X = (Xk)k∈N0 be a sequence of random vectors in Rd with joint law P .
Suppose that there exist a probability measure Q on Rd and numbers φ ∈ [0, 1), a > 1, K > 0
with

∫
Rd ‖x‖

aQ(dx) ≤ Ka, such that, P -a.s. for all k ∈ N0,
(i) |P (Xk+1 −Xk ∈ A | X0, . . . , Xk)−Q(A)| ≤ φ for all A measurable;
(ii) E[‖Xk+1 −Xk‖a|X0, . . . , Xk] ≤ Ka.
Then

lim sup
n→∞

∥∥∥∥Xn

n
− v
∥∥∥∥ ≤ 2Kφ(a−1)/a P -a.s., (5.12)

where v =
∫
Rd xQ(dx). In other words, X ∈ AV (2Kφ(a−1)/a, v).

Proof. The proof is an adaptation of the proof of Lemma 3.13 in [5]; we include it here for
completeness. With regular conditional probabilities, we can, using (i), couple P and Q⊗N0

according to a standard splitting representation (see e.g. Berbee [3]). More precisely, on an
enlarged probability space we can construct random variables

(∆k, X̃k, X̂k)k∈N0 (5.13)

such that

(1) (∆k)k∈N0 is an i.i.d. sequence of Bernoulli(ε) random variables.

(2) (X̃k)k∈N0 is an i.i.d. sequence of random vectors with law Q.

(3) (∆l)l≥k is independent of (X̃l, X̂l)0≤l<k and of X̂k.

(4) ((1−∆k)X̃k + ∆kX̂k)k∈N0 is equal in distribution to (Xk)k∈N0 .

(5) With Gk = σ{∆l, X̃l, X̂l : 0 ≤ l ≤ k}, for any Borel function f ≥ 0, E[f(X̃k) | Gk−1] is
measurable w.r.t. σ{Xl : 0 ≤ l ≤ k − 1}.

Using (4), we may write

1

n

n∑
k=1

Xk =
1

n

n∑
k=1

X̃k −
1

n

n∑
k=1

∆kX̃k +
1

n

n∑
k=1

∆kX̂k, (5.14)

where the equality holds in distribution. As n→∞, the first term converges a.s. to v by the
LLN for i.i.d. random variables. By Hölder’s inequality, the norm of the second term is at
most (

1

n

n∑
k=1

∆k

)(a−1)/a(
1

n

n∑
k=1

‖X̃k‖a
)1/a

, (5.15)

which, by (1) and (2), converges a.s. as n→∞ to

ε(a−1)/a

(∫
Rd
‖x‖aQ(dx)

)1/a

≤ Kε(a−1)/a. (5.16)
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For the third term, put X∗k = E[X̂k | Gk−1]. Fix y ∈ Rd and put

My
n =

n∑
k=1

∆k

k
〈X̂k −X∗k , y〉. (5.17)

where 〈·, ·〉 denotes inner product. Then (My
n)n∈N0 is a (Gn)n∈N0-martingale whose quadratic

variation is

〈My〉n =

n∑
k=1

∆k

k2
〈X̂k −X∗k , y〉2. (5.18)

By the Burkholder-Gundy inequality, we have

E

[
sup
n∈N
|My

n |a∧2

]
≤ C E

[
〈My〉(a∧2)/2

∞

]
≤ C E

[ ∞∑
k=1

∆k

ka∧2

∣∣∣〈X̂k −X∗k , y〉
∣∣∣a∧2

]
≤ C ‖y‖a∧2Ka∧2,

(5.19)

where C denotes a generic constant. This implies that My
n is uniformly integrable for every y

and therefore converges a.s. as n→∞. Hence Kronecker’s lemma gives

lim
n→∞

1

n

n∑
k=1

∆k〈X̂k −X∗k , y〉 = 0 a.s. (5.20)

Since y is arbitrary, this in turn implies that

lim
n→∞

1

n

n∑
k=1

∆k(X̂k −X∗k) = 0 a.s. (5.21)

On the other hand, since ‖∆kX̂k‖ ≤ ‖Xk‖, we have by (1), (3) and (5) that

εE[‖X̂k‖a | Gk−1] = E[∆k‖X̂k‖a | Gk−1] ≤ E[‖Xk‖a | Gk−1] ≤ Ka, (5.22)

where the last inequality uses condition (ii). Combining (5.22) with Jensen’s inequality, we
obtain

‖X∗k‖ ≤ E
[
‖X̂k‖a | Gk−1

]1/a ≤ K

ε1/a
, (5.23)

so that ∥∥∥∥∥ 1

n

n∑
k=1

∆kX
∗
k

∥∥∥∥∥ ≤ K

ε1/a

(
1

n

n∑
k=1

∆k

)
. (5.24)

Since the right-hand side converges a.s. to Kε(a−1)/a as n→∞, the proof is finished.

5.2 Additive functionals of a discrete-time Markov chain

5.2.1 Notation

Let (ηn)n∈N0 be a Markov process in the canonical space equipped with the time-shift operators
(θn)n∈N0 . Put Fn := σ{ηi : 0 ≤ i ≤ n} and let Pη denote the law of (ηn)n∈N0 when η0 = η.
Fix an initial measure ν and suppose that

νn � ν, (5.25)
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where νn is the law of ηn under Pν , where Pν(·) :=
∫
ν(dη)Pη(·).

Let F be a Rd-valued measurable function and put Z0 = 0, Zn :=
∑n−1

k=0 F (ηk), n ∈ N.
Then

Zn+k − Zk = θkZn, k, n ∈ N0. (5.26)

We are interested in finding regeneration times (τk)k∈N0 such that (Zτk , τk)k∈N0 satisfies the
hypotheses of Lemma 5.3. In the Markovian setting it makes sense to look for τk of the form

τ0 = 0, τk+1 = τk + θτkτ, k ∈ N0, (5.27)

where τ is a random time.

Condition (i) of Lemma 5.3 is a “decoupling condition”. It states that the law of an incre-
ment of X depends weakly on the previous increments. Such a condition can be implemented
by the occurrence of a “decoupling event” under which the increments of (Zτk , τk)k∈N0 lose
dependence. In this setting, τ is a time at which the decoupling event is observed.

5.2.2 Second key proposition: approximate regeneration times

Proposition 5.4 below is a consequence of Lemma 5.3 and is the main result of this section.
It will be used together with Proposition 5.2 to prove the LLN in Section 6. It gives a way
to construct τ when the decoupling event can be detected by “probing the future” with a
stopping time.

For a random variable T taking values in N0, we define the image of T by IT := {n ∈
N0 : Pν(T = n) > 0}, and its closure under addition by ĪT := {n ∈ N0 : ∃ l ∈ N, i1, . . . , il ∈
IT : n = i1 + · · ·+ il}.

Proposition 5.4. Let T be a stopping time for the filtration (Fn)n∈N0 taking values in N ∪
{∞}. Put D := {T =∞}. Suppose that the following properties hold Pν-a.s.:
(i) For every n ∈ ĪT there exists a Dn ∈ Fn such that

D ∩ θnD = Dn ∩ θnD. (5.28)

(ii) There exist numbers ρ ∈ (0, 1], a > 1, C > 0, m > 0 and φ ∈ [0, 1) such that

(a) Pη0 (T =∞) ≥ ρ,
(b) Eη0 [T a, T <∞] ≤ Ca,
(c) On D, ‖Zt‖ ≤ mt for all t ∈ N0,
(d)

∣∣Pη0((Zn, θnT )n∈N0 ∈ A | D
)
− Pν

(
(Zn, θnT )n∈N0 ∈ A | D

)∣∣ ≤ φ. (5.29)

Then there exists a random time τ ∈ F∞ taking values in N such that X ∈ AV (ε, (v, u)),
where (v, u) = Eν [(Zτ , τ) | D], u > 0 and ε = 12(m+ 1)uφ(a−1)/a. Here, Xk := (Zτk , τk) with
τk as in (5.27).

5.2.3 Two further propositions

In order to prove Proposition 5.4, we will need two further propositions (Propositions 5.5 and
5.6 below).
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Proposition 5.5. Let τ be a random time measurable w.r.t. F∞ taking values in N. Put τk
as in (5.27) and Xk := (Zτk , τk). Suppose that there exists an event D ∈ F∞ such that the
following hold Pν-a.s.:
(i) For n ∈ Iτ , there exist events Hn and Dn ∈ Fn such that

(a) {τ = n} = Hn ∩ θnD,
(b) D ∩ θnD = Dn ∩ θnD.

(5.30)

(ii) There exist φ ∈ [0, 1), K > 0 and a > 1 such that that, on {Pη0(D) > 0},

(a) Eη0 [‖X1‖a|D] ≤ Ka,
(b) |Pη0 (X1 ∈ A|D)− Pν (X1 ∈ A|D)| ≤ φ ∀A measurable.

(5.31)

Then X ∈ AV
(
ε, (v, u)

)
, where ε = 2Kφ(a−1)/a and (v, u) := Eν [X1|D].

Proof. Let Fτk be the σ-algebra of the events before time τk, i.e., all events B ∈ F∞ such
that for all n ∈ N0 there exist Bn ∈ Fn such that B ∩ {τk = n} = Bn ∩ {τk = n}. We will
prove that, Pν-a.s., for all k ∈ N0,

|Pν (θτkX1 ∈ A|Fτk)− Pν(X1 ∈ A|D)| ≤ φ ∀A measurable (5.32)

and
Eν [‖θτkX1‖a|Fτk ] ≤ Ka. (5.33)

By putting Q(·) := Pν(X1 ∈ ·|D) and noting that Xk+1 −Xk = θτkX1 and Xj ∈ Fτk for all
0 ≤ j ≤ k, this will imply that the conditions of Lemma 5.3 are all satisfied.

To prove (5.32–5.33), we note that, by (i), we can verify by induction that (i)(a) holds
also for τk, i.e., for all n ∈ Iτk there exist Hk,n ∈ Fn such that

{τk = n} = Hk,n ∩ θnD. (5.34)

For B ∈ Fτk and a measurable nonnegative function f , we may write

Eν [1Bθτkf(X1)] =
∑
n∈Iτk

Eν
[
1B∩{τk=n}θnf(X1)

]
=
∑
n∈Iτk

Eν
[
1Bn∩Hk,nθn

(
1Df(X1)

)]
=
∑
n∈Iτk

Eν
[
1Bn∩Hk,nPηn(D)Eηn [f(X1)|D]

]
. (5.35)

To obtain (5.32), choose f(x) = ‖x‖a and conclude by using (ii)(a) together with (5.25). To
obtain (5.33), choose f = 1A, subtract Pν(B)Eν [f(X1)|D] from (5.35) using that, by (i)(a),
Pν(B) =

∑
n∈Iτk

Eν
[
1Bn∩Hk,nPηn(D)

]
and conclude by using (ii)(b) together with (5.25).

Observe that, by (i)(a), (5.25) and the assumption that τ <∞, we must have Pν(D) > 0.

Proposition 5.6. Let T be a stopping time as in Proposition 5.4 and suppose that condi-
tions (ii)(a) and (ii)(b) of that proposition are satisfied. Define a sequence of stopping times
(Tk)k∈N0 as follows. Put T0 = 0 and, for k ∈ N0,

Tk+1 :=

{
∞ if Tk =∞
Tk + θTkT otherwise.

(5.36)
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Put
N := inf{k ∈ N0 : Tk <∞ and Tk+1 =∞}. (5.37)

Then N <∞ a.s. and there exists a constant χ = χ(a, ρ) > 0 such that, Pν-a.s.,

Eη0 [T aN ] ≤ (χC)a. (5.38)

Furthermore, ITN ⊂ ĪT .

Proof. First, let us check that
Pη0(N ≥ n) ≤ (1− ρ)n. (5.39)

Indeed, N ≥ n if and only if Tn <∞, so that, for k ∈ N0,

Pη0(Tk+1 <∞) = Eη0

[
1{Tk<∞}PηTk (T <∞)

]
≤ (1− ρ)Pη0(Tk <∞), (5.40)

where we use (ii)(a) and the fact that (5.25) implies that the law of ηTk is also absolutely
continuous w.r.t. ν. Clearly, (5.39) follows from (5.40) by induction. In particular, N < ∞
a.s.

From (5.36) we see that, for 0 ≤ k ≤ n and on {Tk <∞},

Tn = Tk + θTkTn−k. (5.41)

Using (ii)(a) and (b), with the help of (5.25) again, we can a.s. estimate, for 0 ≤ k < n,

Eη0
[
1{Tn<∞} |Tk+1 − Tk|a

]
= Eη0

[
1{Tk+1<∞} |Tk+1 − Tk|a PηTk+1

(Tn−k−1 <∞)
]

≤ (1− ρ)n−k−1Eη0

[
1{Tk<∞,θTkT <∞}

θTkT
a
]

= (1− ρ)n−k−1Eη0

[
1{Tk<∞}EηTk

[
1{T <∞}T a

]]
≤ (1− ρ)n−k−1CaPη0(Tk <∞)

≤ (1− ρ)n−1Ca. (5.42)

Now write, using (5.36),

TN =
N−1∑
k=0

Tk+1 − Tk. (5.43)

By Jensen’s inequality,

T aN ≤ Na−1
N−1∑
k=0

|Tk+1 − Tk|a (5.44)

so that, by (5.42),

Eη0 [T aN ] ≤
∞∑
n=1

na−1
n−1∑
k=0

Eη0
[
1{N=n} |Tk+1 − Tk|a

]
≤ Ca

∞∑
n=1

na(1− ρ)n−1 a.s. (5.45)

and (5.38) follows by taking χ(a, ρ) =
(∑∞

n=1 n
a(1− ρ)n−1

)1/a
.

As for the claim that ITN ⊂ ĪT , write

{TN = n} =
∞∑
k=0

{Tk = n,N = k} (5.46)

to see that ITN ⊂
⋃∞
k=0 ITk . Using (5.36), we can verify by induction that, for each k,

ITk ⊂ {n ∈ N0 : ∃ i1, . . . , ik ∈ IT : n = i1 + · · ·+ ik} ⊂ ĪT , and the claim follows.
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5.2.4 Proof of Proposition 5.4

We can now combine Propositions 5.5 and 5.6 to prove Proposition 5.4.

Proof. In the following we will refer to the hypotheses/results of Proposition 5.5 with the
prefix P. For example, P(i)(a) denotes hypothesis (i)(a) in that proposition. The hypotheses
in Proposition 5.4 will be referred to without a prefix. Since the hypotheses of Proposition 5.6
are a subset of those of Proposition 5.4, the conclusions of the former are valid.

We will show that, if τ := t0 + θt0TN for a suitable t0, then τ satisfies the hypotheses of
Proposition 5.5 for a suitable K. There are two cases. If IT = ∅, then TN ≡ 0. Choosing
t0 = 1, we basically fall in the context of Lemma 5.3. P(i)(a) and P(i)(b) are trivial, (ii)(c)
implies that P(ii)(a) holds with K = (m+ 1), while P(ii)(b) follows immediately from (ii)(d).
Therefore, we may suppose that IT 6= ∅ and put ι := min IT ≥ 1. Let Ĉ := 1 ∨ (χC)
and t0 := ιdĈρ−1/ae. We will show that τ satisfies the hypotheses of Proposition 5.5 with
K = 6ι(m+ 1)Ĉρ−1/a.

P(i)(a): First we show that this property is true for TN . Indeed,

{TN = n} =
∑
k∈N0

{N = k, Tk = n} =
∑
k∈N0

{Tk = n, θnT =∞} (5.47)

= θnD ∩

 ⋃
k∈N0

{Tk = n}

 , (5.48)

and Ĥn :=
⋃
k∈N0
{Tk = n} ∈ Fn since the Tk’s are all stopping times. Now we observe that

{τ = n} = θt0{TN = n− t0}, so we can take Hn := ∅ if n < t0 and Hn := θt0Ĥn−t0 otherwise.

P(i)(b): By (i), it suffices to show that Iτ ⊂ ĪT . Since t0 ∈ ĪT (as an integer multiple of ι),
this follows from the definition of τ and the last conclusion of Proposition 5.6.

P(ii)(a): By (ii)(c), ‖X1‖a = (‖Zτ‖+ τ)a ≤ ((m+ 1)τ)a on D. Therefore, we just need to
show that

Eη0 [τa|D] ≤ (6ιĈ)a/ρ. (5.49)

Now, τa ≤ 2a−1 (ta0 + θt0T
a
N ) and, by Proposition 5.6 and (5.25),

Eη0 [θt0T
a
N ] = Eη0

[
Eηt0 [T aN ]

]
≤ Ĉa. (5.50)

Using (ii)(a), we obtain
Eη0 [θt0T

a
N |D] ≤ Ĉa/ρ. (5.51)

Since t0 ≤ 2ιĈρ−1/a and ι ≥ 1, (5.49) follows.

P(ii)(b): Let S = (Sn)n∈N0 with Sn := θnT . By (ii)(d), it suffices to show that X1 = (Zτ , τ) ∈
σ(Z, S). Since Zτ =

∑∞
n=0 1{τ=n}Zn ∈ σ(Z, τ), it suffices to show that τ ∈ σ(S). From

the definition of the Tk’s, we verify by induction that each Tk is measurable in σ(S). Since
N ∈ σ((Tk)k∈N0), both N and TN are also in σ(S). Therefore, τ ∈ σ(θt0S) ⊂ σ(S).

With all hypotheses verified, Proposition 5.5 implies that X ∈ AV (ε̂, (v, u)), where (v, u) =
Eν [X1|D] and ε̂ = 2Kφ(a−1)/a. To conclude, observe that u = Eν [τ |D] ≥ t0 ≥ ιĈρ−1/a > 0,
so that K = 6(m+ 1)ιĈρ−1/a ≤ 6(m+ 1)u. Therefore, ε̂ ≤ ε and the proposition follows. In
the case IT = {0}, we conclude similarly since u = 1 and K = (m+ 1).
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6 Proof of Theorem 4.1

In this section we show how to put the model defined in Section 3 in the context of Section 5,
and we prove the LLN using Propositions 5.2 and 5.4.

6.1 Two further lemmas

Before we start, we first derive two lemmas (Lemmas 6.1 and 6.2 below) that will be needed
in Section 6.2. The first lemma relates the laws of the environment as seen from Wn and from
W0. The second lemma is an extension of the conditional cone-mixing property for functions
that depend also on Y .

Lemma 6.1. µ̄n � µ̄ for all n ∈ N.

Proof. For t ≥ 0, let µ̄t− denote the law of θWt−ξt under Pµ. First we will show that µ̄t− � µ.
This is a consequence of the fact that µ is translation-invariant equilibrium, and remains true
if we replace Wt− by any random variable taking values in Zd. Indeed, if µ(A) = 0 then
Pµ(θxξt ∈ A) = 0 for every x ∈ Zd, so

µ̄t−(A) = Pµ(θWt−ξt ∈ A) =
∑
x∈Zd

Pµ(Wt− = x, θxξt ∈ A) = 0. (6.1)

Now take n ∈ N and let gn := dµ̄n−
dµ . For any measurable f ≥ 0,

Eµ [f(θWnξn)] =
∑
x∈Zd

Eµ
[
1{Wn−Wn−=x}f(θxθWn−ξn)

]
=
∑
x∈Zd

Eµ
[
PθWn−ξn(W0 = x)f(θxθWn−ξn)

]
=
∑
x∈Zd

Eµ [gn(ξ0)Pξ0(W0 = x)f(θxξ0)]

=
∑
x∈Zd

Eµ
[
gn(ξ0)1{W0=x}f(θxξ0)

]
= Eµ [gn(ξ0)f(θW0ξ0)] (6.2)

where, for the second equality, we use (A3).

Lemma 6.2. For L large enough and for all nonnegative f ∈ CR,∞(m) ∨ Y∞,

|Eη [θLf | ΓL]− Eµ̄[θLf | ΓL]| ≤ φL‖f‖∞ µ̄− a.s. (6.3)

Proof. Put fy(η) = f(η, y) and abbreviate Y (L) = (Yk)k>L. Then θLf = θLfY (L) . Since ΓL
depends on Y only through (Yk)k≤L, we have

Eη[θLf 1ΓL | Y
(L)] = Eη

[
θLf(·) 1ΓL

]
◦ (Y (L)), (6.4)

and the claim follows from (H4) applied to fy.
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6.2 Proof of Theorem 4.1

Proof. Fix an L ∈ N large enough and define

ηn :=
(
θZnξ(n,n+1], Yn+1

)
, n ∈ N0

TL :=

{
L on ΓcL,
L+ θLdSe on ΓL.

(6.5)

Observe that dSe is still a stopping time, and that, by (3.3), Zn is an additive functional of
the Markov chain (ηn)n∈N0 . To avoid confusion, we will denote the time-shift operator for ηn
by θ̄, which is given by θ̄n = θZnθn.

Next, we verify (5.25) and the hypotheses of Proposition 5.4 for Zn and TL under Pµ̄.
These hypotheses will be referred to with the prefix P. The notation here is consistent in
the sense that parameters in Section 3 are named according to their role in Section 5; the
presence/absence of a subscript L indicates whether the parameter depends on L or not.

Observe that the law of (ηn)n∈N given η0 is the same as the law of (ηn)n∈N0 under PθZ1
ξ1 .

Therefore, by Lemma 6.1, in order to prove results Pν-a.s., it suffices to prove them under Pη
for µ̄-a.e. η.

(5.25): Since (Yn)n∈N is i.i.d. and Yn+1 is independent of (Zn, ξ), we just need to worry about

the first coordinate of ηn. Put ϕn := dµ̄n
dµ̄ (which exists by Lemma 6.1). For f ≥ 0 measurable,

we may write

Eµ̄
[
f
(
θZnξ(n,n+1]

)]
= Eµ

[
Eξ̄n

[
f
(
ξ(0,1]

)] ]
= Eµ̄

[
ϕn(ξ0)Eξ0

[
f
(
ξ(0,1]

)] ]
= Eµ̄

[
ϕn(ξ0)f

(
ξ(0,1]

)]
, (6.6)

so (5.25) follows.

P(i): We will find Dn for n ≥ L. This is enough, since both ITL and ĪTL are subsets of
[L,∞) ∩ N. We may write

{TL =∞} = ΓL ∩ {|Zt+L − ZL| ≤ mt ∀ t ≥ 0},
θ̄n{TL =∞} = θZnθnΓL ∩ {|Zt+n+L − Zn+L| ≤ mt ∀ t ≥ 0}. (6.7)

Furthermore, by (H1), on θ̄nΓL, Zt+n = Zn for t ∈ [0, L]. Therefore when we intersect the
two above events, we get

D ∩ θ̄nD = ΓL ∩ {|Zt − ZL| ≤ mt ∀ t ∈ [L, n]} ∩ θ̄nD, (6.8)

i.e., the hypothesis holds with Dn := ΓL ∩ {|Zt − ZL| ≤ mt ∀ t ∈ [L, n]} ∈ Fn for n ≥ L.

P(ii)(a): Since {TL = ∞} = {θLS = ∞} ∩ ΓL, we get from (H2) and (H3)(1) that, for for
µ̄-a.e.η,

Pη (TL =∞) = Pη (θLS =∞ | ΓL)Pη(ΓL) ≥ κLγL > 0, (6.9)

so that we can take ρL := κLγL.

P(ii)(b): By the definition of TL, we have

T aL 1{TL<∞} = La1ΓcL
+ (L+ θLdSe)a 1ΓL∩{θLdSe<∞}

≤ La1ΓcL
+ (L+ 1 + θLS)a 1ΓL∩{θLS<∞}

≤ 2a−1(L+ 1)a + 2a−1θL
(
Sa1{S<∞}

)
1ΓL . (6.10)

19



Therefore, by (H3)(2), we get, for µ̄-a.e. η,

Eη
[
T aL 1{TL<∞}

]
≤ 2a((L+ 1)a + (1 ∨ ψL)a) ≤ [2(L+ 1 + 1 ∨ ψL)]a , (6.11)

so that we can take CL := 2(L+ 1 + 1 ∨ ψL).

P(ii)(c): This follows from (H1) and the definition of S.

P(ii)(d): First note that θ̄nTL ∈ σ(Z) for all n ∈ N0. Since {TL = ∞} = ΓL ∩ θL{S = ∞},
we have Z ∈ θLCR,∞(m) ∨ Y∞ on {TL = ∞} by (H1) and (A3), so this claim follows from
Lemma 6.2.

Thus, for large enough L, we can conclude by Proposition 5.4 that there exists a sequence
of times (τk)k∈N0 with limk→∞ τk =∞ a.s. such that (Zτk , τk)k∈N0 ∈ AV (εL, (vL, uL)), where

vL = Eµ̄[Zτ1 |D],
uL = Eµ̄[τ1|D] > 0,

εL = 12(m+ 1)uLφ
(a−1)/a
L .

(6.12)

From (6.12) and (ii)(c), Proposition 5.2 implies that Z ∈ AV (δL, wL), where

wL = vL/uL,

δL = (3m+ 1)12(m+ 1)φ
(a−1)/a
L .

(6.13)

By (H4), limL→∞ δL = 0. As was observed after Definition 5.1, this implies that w :=
limL→∞wL exists and that limt→∞ t

−1Zt = w Pµ̄-a.s., which, by (3.4), implies the same for
Wt, Pµ-a.s.

We have at this point finished the proof of our LLN. In the following sections, we will look
at examples that satisfy (H1)–(H4). Section 7 is devoted to the (∞, 0)-model for two classes
of one-dimensional spin-flip systems. In Section 8 we discuss three additional models where
the hypotheses are satisfied, and one where they are not.

7 Proof of Theorem 4.2

We begin with a proper definition of the (∞, 0)-model in Section 7.1, where we identify
the functions Ft of Section 2 and check assumptions (A1)–(A3). In Section 7.2, we first
concern ourselves with finding events ΓL satisfying (H1) and (H2) in suitable versions of spin-
flip systems with bounded rates, and then show that (H3) holds. We also derive uniform
integrability properties of t−1Wt which are the key to showing convergence in Lp once we
have the LLN. In Sections 7.3 and 7.4, we specialize to particular constructions in order to
prove (H4), which is the hardest of the four hypotheses. Section 7.5 is devoted to proving a
criterion for positive or negative speed.

7.1 Definition of the model

Assume that ξ is a càdlàg process with state space E := {0, 1}Z. We will define the walk W
in several steps.
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7.1.1 Identification of Ft

First, let Tr+ = Tr+(η) and Tr− = Tr−(η) denote the locations of the closest traps to the
right and to the left of the origin in the configuration η ∈ E, i.e.,

Tr+(η) := inf{x ∈ N0 : η(x) = 1, η(x+ 1) = 0},
T r−(η) := sup{x ∈ −N0 : η(x) = 1, η(x+ 1) = 0}, (7.1)

with the convention that inf ∅ = ∞ and sup ∅ = −∞. For i, j ∈ {0, 1}, abbreviate 〈i, j〉 :=
{η ∈ E : η(0) = i, η(1) = j}. Let Ē := 〈1, 0〉, i.e., the set of all the configurations with a trap
at the origin.

Next, we define the functional J that gives us the jumps in W . For b ∈ {0, 1} and η ∈ E,
let

J(η, b) := T+(η)
(
1〈1,1〉 + b1〈0,1〉

)
+ T−(η)

(
1〈0,0〉 + (1− b)1〈0,1〉

)
, (7.2)

i.e., J is equal to either the left or the right trap, depending on the configuration around
the origin. In the case where the configuration is an inverted trap (〈0, 1〉), the direction of
the jump is decided by the value of b. Observe that J = Tr+ = Tr− = 0 when η ∈ Ē,
independently of the value of b.

Suppose that ξ0 ∈ Ē, and let (bk)k∈N be a sequence of numbers in {0, 1}. We define (Ft)t≥0

as a function of ξ and this sequence as follows. Put X0 = τ0 := 0 and, recursively for k ≥ 0,

τk+1 := inf{t > τk : (ηt(Xk), ηt(Xk + 1)) 6= (1, 0)},
Xk+1 := Xk + J(θXkξτk , bk+1).

(7.3)

Since ξ is càdlàg, we have τk+1 − τk > 0 for all k ∈ N0. We define (Ft)t≥0 as the path that
jumps Xk+1 −Xk at time τk+1 and is constant between jumps, i.e., for t < limk→∞ τk,

Ft :=

∞∑
k=0

1{τk≤t<τk+1}Xk. (7.4)

The above definition makes sense as long as the jumps are finite. When this fails, we can
declare ±∞ to be absorbing states.

When ξ is an IPS such that the total flip rate for each site is uniformly bounded, then
limk→∞ τk = ∞ a.s. This is true, for example, for any IPS with translation-invariant rates
satisfying the existence conditions in Liggett [6], Chapter I. If, additionally, there are a.s.
minimum and maximum densities under the equilibrium measure, then J < ∞ a.s. and, by
induction, Xk <∞ a.s. for every k as well, since, as we saw in the proof of Lemma 6.1, the law
of the environment as seen from an integer-valued random variable is absolutely continuous
w.r.t. the equilibrium. Therefore, in this case Ft is defined and is finite for all t.

7.1.2 Check of (A1)–(A3)

When, as in the case of the last paragraph, Ft is defined and finite for all t, we may define Wt

so as to satisfy (A1) in the following way. Let (bn,k)n,k∈N0 be a double-indexed sequence of
i.i.d. Bernoulli(1

2) random variables. Put W0− := 0 and, recursively for n ≥ 0 and t ∈ [0, 1),

Wn −Wn− := J
(
θWn−ξn, bn,0

)
,

Wt+n −Wn := Ft
(
θWnξ[n,n+t], (bn+1,k)k≥1

)
.

(7.5)
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From (7.5), assumption (A1) follows with (Yn)n∈N := ((bn,k)k∈N0)n∈N, and with Z = W if
ξ0 ∈ Ē, while Z is defined arbitrarily otherwise. This is enough because µ̄(Ē) = 1. Assumption
(A2) is a consequence of the fact that the value of J can be found by exploring contiguous
pairs of sites, one pair at a time, starting around the origin. Therefore (A2) holds with R = 1.
Assumption (A3) also follows from (7.5).

7.1.3 Monotonicity

The following monotonicity property will be helpful in checking (H3). In order to state it,
we first endow both E and D([0,∞), E) with the usual partial ordering, i.e., for η1, η2 ∈ E,
η1 ≤ η2 means that η1(x) ≤ η2(x) for all x ∈ Z, while, for ξ(1), ξ(2) ∈ D([0,∞), E), ξ(1) ≤ ξ(2)

means that ξ
(1)
t ≤ ξ

(2)
t for all t ≥ 0.

Lemma 7.1. Fix a realization of (bn,k)n,k∈N0. If ξ(1) ≤ ξ(2), then Wt(ξ
(1), (bn,k)n,k∈N0) ≤

Wt(ξ
(2), (bn,k)n,k∈N0) for all t for which both are defined.

Proof. This is a straightforward consequence of the definition. To see why, we need only
understand what happens when the two walks separate; when this happens, the second walk
is always to the right of the first.

7.2 Spin-flip systems with bounded flip rates

7.2.1 Dynamical random environment

From now on we will take ξ to be a single-site spin-flip system with translation-invariant and
bounded flip rates. We may assume that the rates at the origin are of the form

c(η) =

{
c0 + λ0p0(η) when η(0) = 1,
c1 + λ1p1(η) when η(0) = 0,

(7.6)

where ci, λi > 0 and pi ∈ [0, 1]. We assume the existence conditions of Liggett [6], Chapter I,
which in our setting amounts to the additional requirement that c has bounded triple norm.

From (7.6), we see that the IPS is stochastically dominated by the system ξ+ with rates

c+(η) =

{
c0 when η(0) = 1,

c1 + λ1 when η(0) = 0,
(7.7)

while it stochastically dominates the system ξ− with rates

c−(η) =

{
c0 + λ0 when η(0) = 1,
c1 when η(0) = 0.

(7.8)

These are the rates of two independent spin-flip systems with respective densities ρ+ :=
(c1 + λ1)/(c0 + c1 + λ1) and ρ− := c1/(c0 + λ0 + c1). Consequently, any equilibrium for ξ is
stochastically dominated by, respectively, dominates a Bernoulli product measure with density
ρ+, respectively, ρ−. Thus, the walk is defined and is finite for all times by the remarks made
in the Section 7.1.

We will take as the dynamic random environment the triple Ξ := (ξ−, ξ, ξ+) starting from
initial configurations η−, η, η+ satisfying η− ≤ η ≤ η+, and coupled together via the basic (or
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Vasershtein) coupling, which implements the stochastic ordering as an a.s. partial ordering.
More precisely, Ξ is the IPS with state space E3 whose rates are translation invariant and at
the origin are given schematically by (the configuration of the middle coordinate is η),

(000) →


(111) c1,
(011) c(η)− c1,
(001) c1 + λ1 − c(η),

(001) →


(111) c1,
(011) c(η)− c1,
(000) c0,

(011) →


(111) c1,
(000) c0,
(001) c(η)− c0,

(111) →


(000) c0,
(001) c(η)− c0,
(011) c0 + λ0 − c(η).

(7.9)

7.2.2 Definition of ΓL and verification of (H1)–(H3)

Using Ξ, we can define the events ΓL by

ΓL :=
{
ξ±t (x) = ξ±0 (x) ∀ t ∈ [0, L], x = 0, 1

}
. (7.10)

Since ξ− ≤ ξ ≤ ξ+, this event implies that also ξt(x) = ξ0(x) for all t ∈ [0, L] and x = 0, 1.
Therefore, when ξ0 ∈ Ē, ΓL implies that there is a trap at the origin between times 0 and L.
Since µ̄ is concentrated on Ē, (H1) holds. The probability of ΓL is positive and depends on
the initial configuration only through the states at 0 and 1, so (H2) is also satisfied.

In order to verify (H3), we will take advantage of the stochastic domination in Ξ to reduce
to the case of independent spin-flips. This will also allow us to deduce convergence in Lp,
p ≥ 1.

Lemma 7.2. Let ξ be an independent spin-flip system. Let ρ ∈ [0, 1), and let ν be the
Bernoulli product measure on {0, 1}Z with density ρ, except at the sites 0 and 1, where the
states are a.s. 1. Then

(a) The process (t−1W+
t )t≥1 is bounded in Lp for all p > 1.

(b) Let S := sup{t > 0: Wt > mt}. There exist positive constants m = m(ρ), K1 = K1(ρ)
and K2 = K2(ρ) such that

Pν(S > t) ≤ K1e
−K2t for all t > 0. (7.11)

Before proving this lemma, let us see how it leads to (H3). We will show that, for any
a > 0, there exists a constant K ≥ 0 such that, for all L ≥ 1 and η ∈ Ē,

Eη
[
θL
(
Sa1{S<∞}

)
| ΓL

]
≤ K. (7.12)

To start, we note that
S := min(S+,S−), (7.13)
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where
S+ := inf{t ≥ 0: Wt > mt} and S− := inf{t ≥ 0: Wt < −mt}. (7.14)

Let us focus on S+. Denote by 1 the configuration with 1’s everywhere except at site 1, so
that 1 ∈ Ē. Also, for η ∈ E, denote by (η)1,1 the configuration obtained from η by setting
the state at sites 0 and 1 equal to 1. Noting that S+1{S+<∞} ≤ S and S is monotone in the
initial configuration, and using stochastic domination, we may write

Eη
[
θL
(
Sa+1{S+<∞}

)
,ΓL

]
≤ Eη [ΓL,EξL [Sa]] ≤ Eη

[
ΓL,E(ξ+L )1,1

[Sa]
]

= Pη(ΓL)Eη
[
E(ξ+L )1,1

[Sa]
]
≤ Pη(ΓL)E1

[
E(ξ+L )1,1

[Sa]
]
. (7.15)

Under P1, the distribution of ξ+
L outside {0, 1} is product Bernoulli(ρL) with ρL = ρe+e

−λL(1−
ρe), where λ is the total flip rate and ρe is the equilibrium density of the independent spin-
flip system. Denote by ν1 the measure that is product Bernoulli(ρ1) outside {0, 1} and is
concentrated at 1 on these two sites. Since ρL ≤ ρ1 for L ≥ 1, it follows from the above
observations and Lemma 7.2 that

Eη
[
θL
(
Sa+1{S+<∞}

)
| ΓL

]
≤ Eν1 [Sa] <∞. (7.16)

We can similarly control S− by noting that Lemma 7.2 implies the symmetric result for
ρ ∈ (0, 1] and S′ := sup{t > 0: Wt < −mt} (by exchanging the role of particles and holes).
Therefore, in order to verify (H3), all that is left to do is to prove Lemma 7.2.

We now give the proof of Lemma 7.2.

Proof. First, suppose that ρ is the equilibrium density for the system, and let λ be its total
flip rate. For a path ξ, define G0 = U0 := 0 and, recursively for k ≥ 0,

Gk+1 := Gk + Tr+(θGkξUk),
Uk+1 := inf{t > Uk : ξt(Gk+1 + 1) = 1}. (7.17)

Put

Ht :=

∞∑
k=0

1{Uk≤t<Uk+1}Gk+1. (7.18)

Then H = (Ht)t≥0 is the process that waits to the left of a hole until it flips to a particle,
and then jumps to the right to the site just before the next hole. Therefore, Wt ≤ Ht

by construction and, since Ht ≥ 0, also W+
t ≤ Ht. Since ξ is an independent spin-flip

system that (apart from two sites) starts from equilibrium, the increments Gk+1−Gk are i.i.d.
Geometric(1− ρ), and Uk+1 − Uk are i.i.d. Exponential(λρ) and independent from (Gk)k∈N0 .
From this we see, using Jensen’s inequality, that (t−1Ht)t≥1 is bounded in Lp for all p > 1,
which proves (a), and that limt→∞ t

−1Ht = (λρ(1 − ρ))−1 a.s. Moreover, since the Gk have
exponential moments and the jump times Uk have a minimal rate, H satisfies a large deviation
estimate of the type

Pν(∃ s > t such that Hs > ms) ≤ K1e
−K2t for all t > 0, (7.19)

where m := 2]λρ(1 − ρ)]−1. The claim follows from (7.19), since {S > t} ⊂ {∃ s >
t such that Hs > ms}.

Next, consider the general case. Let ρe be the equilibrium density of the independent
spin-flip system. Using stochastic domination, we may suppose that ρ ≥ ρe. If ρ > ρe, then
let ξ′ be the independent spin-flip system with rate λρ to flip from hole to particle and rate
λ(1−ρ) to flip from particle to hole. This system stochastically dominates the original system
and has ρ as its equilibrium density, and so we fall back to the previous case.
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7.2.3 Uniform integrability

The following corollary implies that, for systems given by (7.6), (t−1|Wt|p)t≥1 is uniformly
integrable for any p ≥ 1, so that, whenever we have a LLN, the convergence holds also in Lp.

Corollary 7.3. Let ξ be a spin-flip system with rates as in (7.6), starting from equilibrium.
Then (t−1Wt)t≥1 is bounded in Lp for all p > 1.

Proof. This is a straightforward consequence of Lemma 7.2(a) since, by monotonicity, W+
t in

ξ is smaller than its counterpart in ξ+. Moreover, since −W is also a (∞, 0)-walk in the same
class of environments, this reasoning is valid for W−t as well.

We still need to verify (H4). This will be done in Sections 7.3 and 7.4 below.

7.3 Example 1: M < ε

We recall the definition of M and ε for a translation-invariant spin-flip system:

M :=
∑
x 6=0

sup
η
|c(ηx)− c(η)| , (7.20)

ε := inf
η

{
c(η) + c(η0)

}
, (7.21)

where ηx is the configuration obtained from η by flipping the x-coordinate.

7.3.1 Mixing for ξ

If ξ is in the M < ε regime, then there is exponential decay of space-time correlations (see
Liggett [6], Section I.3). In fact, if ξ, ξ′ are two copies starting from initial configurations
η, η′ and coupled according to the Vasershtein coupling, then, as was shown in Maes and
Shlosman [8], the following estimate holds uniformly in x ∈ Z and in the initial configurations:

Pη,η′
(
ξt(x) 6= ξ′t(x)

)
≤ e−(ε−M)t. (7.22)

Since the system has uniformly bounded flip rates, it follows that there exist constants
K1,K2 > 0, independent of x ∈ Z and of the initial configurations, such that

Pη,η′
(
∃s > t s.t. ξs(x) 6= ξ′s(x)

)
≤ K1e

−K2t. (7.23)

For A ⊂ Z×R+ measurable, let Discr(A) be the event in which there is a discrepancy between
ξ and ξ′ in A, i.e., Discr(A) := {∃(x, t) ∈ A : ξt(x) 6= ξ′t(x)}. Recall the definition of CR(m)
and CR,t(m) from Section 3.1. From (7.23) we deduce that, for any fixed m > 0 and R ∈ N,
there exist (possibly different) constants K1,K2 > 0 such that

Pη,η′(Discr(CR(m) \ CR,t(m))) ≤ K1e
−K2t. (7.24)

25



7.3.2 Mixing for Ξ

Bounds of the same type as (7.22)–(7.24) hold for ξ±, since M = 0 and ε > 0 for independent
spin-flips. Therefore, in order to have such bounds for the triple Ξ, we need only couple a
pair Ξ, Ξ′ in such a way that each coordinate is coupled with its primed counterpart by the
Vasershtein coupling. This can be accomplished by the following set of rates at the origin (the
configurations of the middle coordinates, ξ and ξ′, are η and η′; the configurations of ξ± and
ξ′± outside the origin play no role):

(000)(000) →


(111)(111) c1,
(011)(011) c(η) ∧ c(η′)− c1,
(011)(001) c(η)− c(η) ∧ c(η′),
(001)(011) c(η′)− c(η) ∧ c(η′),
(001)(001) c1 + λ1 − c(η) ∨ c(η′),

(001)(001) →


(111)(111) c1,
(011)(011) c(η) ∧ c(η′)− c1,
(011)(001) c(η)− c(η) ∧ c(η′),
(001)(011) c(η′)− c(η) ∧ c(η′),
(000)(000) c0,

(000)(001) →



(111)(111) c1,
(011)(011) c(η) ∧ c(η′)− c1,
(011)(001) c(η)− c(η) ∧ c(η′),
(001)(011) c(η′)− c(η) ∧ c(η′),
(001)(001) c1 + λ1 − c(η) ∨ c(η′),
(000)(000) c0,

(000)(011) →


(111)(111) c1,
(011)(011) c(η)− c1,
(001)(011) c1 + λ1 − c(η),
(000)(000) c0,
(000)(001) c(η′)− c0,

(000)(111) →



(111)(111) c1,
(011)(111) c(η)− c1,
(001)(111) c1 + λ1 − c(η),
(000)(000) c0,
(000)(001) c(η′)− c0,
(000)(011) c0 + λ0 − c(η′).

(7.25)

The other transitions, starting from

(111)(111), (011)(011), (111)(011), (111)(001), (111)(000), (7.26)

can be obtained from the ones above by symmetry, exchanging the roles of ξ± and of particles
and holes. Redefining Discr(A) := {∃ (x, t) ∈ A : Ξt(x) 6= Ξ′t(x)}, by the previous observation
we see that (7.24) still holds, with possibly different constants. As a consequence, we get the
following lemma.

Lemma 7.4. Define d(η, η′) :=
∑

x∈Z 1{η(x)6=η′(x)}2
−|x|−1. For any m > 0 and R ∈ N,

lim
d(Ξ0,Ξ′0)→0

PΞ0,Ξ′0

(
Discr(CR(m))

)
= 0. (7.27)
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Proof. For any t > 0, we may split Discr(CR(m)) = Discr(CR,t(m))∪Discr(CR(m)\CR,t(m)),
so that

Pη,η′
(
Discr(CR(m))

)
≤ Pη,η′

(
Discr(CR,t(m)) + Pη,η′

(
Discr(CR(m) \ CR,t(m))

)
. (7.28)

Fix ε > 0. By (7.24), for t large enough the second term in (7.28) is smaller than ε uniformly
in η, η′. For this fixed t, the first term goes to zero as d(η, η′)→ 0, since CR,t(m) is contained
in a finite space-time box and the coupling in (7.25) is Feller with uniformly bounded total
flip rates per site. (Note that the metric d generates the product topology, under which the
configuration space is compact.) Therefore lim supd(η,η′)→0 Pη,η′ (Discr(CR(m))) ≤ ε. Since ε
is arbitrary, (7.27) follows.

7.3.3 Conditional mixing

Next, we define an auxiliary process Ξ̄ that, for each L, has the law of Ξ conditioned on ΓL
up to time L. We restrict to initial configurations η ∈ Ē. In this case, Ξ̄ is a process on(
{0, 1}Z\{0,1}

)3
with rates that are equal to those of Ξ, evaluated with a trap at the origin.

More precisely, for η̄ ∈ {0, 1}Z\{0,1}, denote by (η̄)1,0 the configuration in {0, 1}Z that is equal
to η̄ in Z \ {0, 1} and has a trap at the origin. Then set C̄x(η̄) := Cx((η̄)1,0), where C̄x is
the rate of Ξ̄ and Cx is the rates Ξ at site x ∈ Z. Observe that the latter depend only on
the middle configuration η, and not on η±. These rates give the correct law for Ξ̄ because Ξ
conditioned on ΓL is Markovian up to time L. Indeed, the probability of ΓL does not depend
on η (for η ∈ Ē) and, for s < L, ΓL = Γs ∩ θsΓL−s. Thus, the rates follow by uniqueness.
Observe that they are no longer translation-invariant.

Two copies of the process Ξ̄ can be coupled similiarly as Ξ by using rates analogous to
(7.25). Since each coordinate of Ξ̄ has similar properties as the corresponding coordinate in
Ξ (i.e., ξ̄± are independent spin-flip systems and ξ̄ is the in M < ε regime), it satisfies an
estimate of the type

P̄η,η′ (Discr([−t, t]× {t})) ≤ K1e
−K2t (7.29)

for appropriate constants K1,K2 > 0. From this estimate we see that d(Ξ̄t, Ξ̄
′
t) → 0 in

probability as t→∞, uniformly in the initial configurations. By Lemma 7.4, this is also true
for P(Ξ̄t)1,0,(Ξ̄′t)1,0

(Discr(CR(m))). Since the latter is bounded, the convergence holds in L1 as
well.

7.3.4 Proof of (H4)

Let f be a bounded function, measurable in CR,∞(m), and estimate∣∣Eη [θLf | ΓL]− Eη′ [θLf | ΓL]
∣∣ ≤ 2‖f‖∞Pη,η′

(
θLDiscr(CR(m)) | ΓL

)
≤ 2‖f‖∞ sup

η,η′
Ēη,η′

[
P(Ξ̄L)1,0,(Ξ̄′L)1,0 (Discr(CR(m)))

]
, (7.30)

where Ē denotes expectation under the (coupled) law of Ξ̄. Therefore (H4) follows with

φ(L) := 2 sup
η,η′

Ēη,η′
[
P(Ξ̄L)1,0,(Ξ̄′L)1,0 (Discr(CR(m)))

]
, (7.31)

which converges to zero as L→∞ by the previous discussion.
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7.4 Example 2: subcritical dependence spread

In this section, we suppose that the rates c(η) have a finite range of dependence, say r. In
this case, the system can be constructed via a graphical representation as follows.

7.4.1 Graphical representation

For x ∈ Z, let Ijt (x) and Λjt (x) be independent Poisson processes with rates cj and λj respec-

tively, where j = 0, 1. At each event of Ijt (x), put a j-cross on the corresponding space-time
point. At each event of Λj(x), put two j-arrows pointing at x, one from each side, extending
over the whole range of dependence. Start with an arbitrary initial configuration ξ0 ∈ {0, 1}Z.
Then obtain the subsequent states ξt(x) from ξ0 and the Poisson processes by, at each j-cross,
choosing the next state at site x to be j and, at at each j-arrow pair, choosing the next state
to be j if an independent Bernoulli(pj(θxηs)) trial succeeds, where s is the time of the j-arrow
event. This construction is well defined since, because of the finite range, for each fixed time
t ≥ 0 it can a.s. be performed locally.

Any collection of processes with the same range and with rates of the form (7.6) with ci,
λi fixed (i = 0, 1) can be coupled together via this representation by fixing additionally for
each site x a sequence (Un(x))n∈N of independent Uniform[0, 1] random variables to evaluate
the Bernoulli trials at j-arrow events. In particular, ξ± can be coupled together with ξ in the
graphical representation by noting that, for ξ−, p0 ≡ 1 and p1 ≡ 0 and the opposite is true for
ξ+. For example, ξ− is the process obtained by ignoring all 1-arrows and using all 0-arrows.
This gives the same coupling as the one given by the rates (7.9). In particular, we see that in
this setting the events ΓL are given by (when ξ0 ∈ Ē)

ΓL :=
{
I0
L(0) = Λ0

L(0) = I1
L(1) = Λ1

L(1) = 0
}
. (7.32)

7.4.2 Coupling with a contact process

We will couple Ξ with a contact process ζ = (ζt)t≥0 in the following way. We keep all Poisson
events and start with a configuration η0 ∈ {i, h}Z, where i stands for “infected” and h for
“healthy”. We then interpret every cross as a recovery, and every arrow pair as infection
transmission from any infected site within a neighborhood of radius r to the site the arrows
point to. This gives rise to a ‘threshold contact process’ (TCP), i.e., a process with transitions
at a site x given by

i→ h with rate c0 + c1,
h→ i with rate (λ0 + λ1)1{∃ infected site within range r of x}.

(7.33)

In the graphical representation for ξ, we can interpret crosses as moments of memory loss
and arrows as propagation of influence from the neighbors. Therefore, looking at the pair
(Ξt(x), ζt(x)), we can interpret the second coordinate being healthy as the first coordinate
being independent of the initial configuration.

Proposition 7.5. Let i represent the configuration with all sites infected, and let Ξ0, Ξ′0 ∈ E3.
Couple Ξ, Ξ′ and ζ by fixing a realization of all crosses, arrows and uniform random variables,
where Ξ and Ξ′ are obtained from the respective initial configurations and ζ is started from i.
Then a.s. Ξt(x) = Ξ′t(x) for all t > 0 and x ∈ Z such that ζt(x) = h.
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Proof. Fix t > 0 and x ∈ Z. With all Poisson and Uniform random variables fixed, an
algorithm to find the state at (x, t), simultaneously for any collection of systems of type (7.6)
with fixed ci, λi, from their respective initial configurations runs as follows. Find the first
Poisson event before t at site x. If it is a j-cross, then the state is j. If it is a j-arrow, then
to decide the state we must evaluate pj and, therefore, we must first take note of the states
at this time at each site within range r of x, including x itself. In order to do so, we restart
the algorithm for each of these sites. This process ends when time 0 or a cross is reached
along every possible path from (x, t) to Z×{0} that uses arrows (transversed in the direction
opposite to which they point) and vertical lines. In particular, if along each of these paths
time 0 is never reached, then the state at (x, t) does not change when we change the initial
configuration. On the other hand, 0 is not reached if and only if every path ends in a cross,
which is exactly the description of the event {ζt(x) = h}.

7.4.3 Subcritical regime

The process (ζt)t≥0 is stochastically dominated by a standard (linear) contact process (LCP)
with the same range and rates. Therefore, if the LCP is subcritical, i.e., if λ := (λ0 +λ1)/(c0 +
c1) < λc where λc is the critical parameter for the corresponding LCP, then the TCP will die
out also. When r = 1, we have the following lemma, which follows from results Liggett [6],
Chapter VI.

Lemma 7.6. Let Bt be the cluster of healthy sites around the origin at time t. If λ < λc,
then there exist positive constants K1,K2,K3,K4 such that

Pi
(
∃ s > t : |Bs| < K1e

K2s
)
≤ K3e

−K4t. (7.34)

Lemma 7.6 says that the infection disappears exponentially fast around the origin. The
proof in Liggett [6], Chapter VI, relies on the nearest-neighbour nature of the interaction, but
using the techniques in Bezuidenhout and Grimmett [4] it should be possible to obtain the
same result for any r. From here on we will take r = 1, but the rest of the argument will
follow for any r as soon as a result like Lemma 7.6 is shown to be true for subcritical LCP
with range r.

Pick a cone C with any inclination and tip at time t. Because of Lemma 7.6, if t is
large, then with high probability all sites inside C are healthy. Therefore, inside a set of high
probability, the states of ξ in the cone are equal to a random variable that is independent of
the initial configuration, which implies the cone-mixing property.

7.4.4 Proof of (H4)

In order to prove the conditional cone-mixing property, we couple the conditioned process
with a conditioned contact process as follows. First, let

Γ̃L :=
{
IjL(i) = ΛjL(i) = 0: j, i ∈ {0, 1}

}
. (7.35)

Proposition 7.7. Let î represent the configuration with all sites infected except for {0, 1},
which are healthy. Let Ξ0, Ξ′0 ∈ Ē3. Couple Ξ, Ξ′ conditioned on ΓL and ζ conditioned on Γ̃L
by fixing a realization of all crosses, arrows and uniform random variables as in Proposition 7.5
and starting, respectively, from Ξ0, Ξ′0 and î, but, for Ξ and Ξ′, remove the Poisson events
that characterize ΓL and, for ζ, remove all Poisson events up to time L at sites 0 and 1, which
characterizes Γ̃L. Then a.s. Ξt(x) = Ξ′t(x) for all t > 0 and x ∈ Z such that ζt(x) = h.
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Proof. On ΓL, the states at sites 0 and 1 are fixed for time [0, L]. Therefore, in order to
determine the state at (x, t), we need not extend paths that touch {0, 1} × [0, L]: when
every path from (x, t) either ends in a cross or touches {0, 1} × [0, L], the state at (x, t) does
not change when the initial configuration is changed in Z \ {0, 1}. But this is precisely the
characterization of {ηt(x) = h} on Γ̃L when started from î.

The proof of (H4) is finished by noting that (ηt)t≥0 starting from î and conditioned on Γ̃L
is stochastically dominated by (ηt)t≥0 starting from i. Therefore, by Lemma 7.6, the “depen-
dence infection” still dies out exponentially fast, and we conclude as for the unconditioned
cone-mixing.

7.5 The sign of the speed

For independent spin flips, we are able to characterize with the help of a coupling argument
the regimes in which the speed is positive, zero or negative. By the stochastic domination
described in Section 7.2, this gives us a criterion for positive (or negative) speed in the two
classes addressed in Sections 7.3 and 7.4 above.

7.5.1 Lipschitz property of the speed for independent spin-flip systems

Let ξ be an independent spin-flip system with rates d0 and d1 to flip to holes and particles,
respectively. Since it fits both classes of IPS considered in Sections 7.3 and 7.4, by Theorem 4.1
there exists a w(d0, d1) ∈ R that is the a.s. speed of the (∞, 0)-walk in this environment. This
speed has the following Lipschitz property.

Lemma 7.8. Let d0, d1, δ > 0. Then

w(d0, d1 + δ)− w(d0, d1) ≥ d0δ

d0 + d1 + δ
. (7.36)

Proof. An independent spin flip system ξ with rates d0, d1 can be constructed via a graphical
representation by taking, for each site x ∈ Z, two Poisson processes N i(x) with rates di,
i = 0, 1, with each event of N i representing a flip to state i. For a fixed δ > 0, a second
system ξδ with rates d0 and d1 + δ can be coupled to ξ by starting from a configuration
ξδ0 ≥ ξ0 and adding to each site another Poisson process N δ(x) with rate δ, whose events also
represent flips to particles, but only for ξδ. Let us denote by W and W δ the walks in these
respective environments. Since under the coupling ξ ≤ ξδ, we have by monotonicity Wt ≤W δ

t

for all t ≥ 0. Define a third walk, W ∗, that is allowed to use one and only one event of N δ.
More precisely, W ∗ will see the same environment as W up to the first time S when its path
encounters an event of N δ, and the configuration around W ∗S− is then taken to be the same
as the one around WS , except for an additional particle at W ∗S− + 1. At further times, W ∗

sees no more N δ events. By construction, we have Wt ≤W ∗t ≤W δ
t . We aim prove that

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥

d0

d0 + d1
δt, (7.37)

where µ and µδ are the equilibria of the respective systems. From this the conclusion will
follow after dividing by t and letting t→∞.
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Let η1 := θWS
ξS ∈ Ē and η2 := (η1)1 be the configurations around WS and W ∗S−, respec-

tively. Then

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥ Eµ [W ∗t −Wt, S ≤ t] ≥ Eµ [W ∗t −Wt, S ≤ t, η1(2) = 0]

= Eµ
[
Eη1,η2

[
W 2
t−S −W 1

t−S
]
, η1(2) = 0, S ≤ t

]
, (7.38)

where W i, i = 1, 2 are copies of W starting from ηi and coupled via the graphical represen-
tation. Note that, for any s > 0, when starting from η1, η2, the difference W 2

s −W 1
s can only

decrease when we flip all states to the left of W 1
0 to particles and all states to the right of W 2

0

to holes. But, in the event that η1(2) = 0, after doing these operations, we find that W 2 has
the same distribution as W 1 + 1, so that

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥ Pµ (η1(2) = 0, S ≤ t) . (7.39)

Next, consider the event η1(2) = 0. There are two possible situations: either at time S
the site WS + 2 was not yet visited, in which case the state there is still distributed as a
Bernoulli(d1/(d0 + d1)), or it was visited before S. In the latter case, let s be the time of the
last visit to this site before S. By geometrical constraints, at time s only a hole could have
been observed at this site, so the probability that its state at time S is a hole is larger than
at equilibrium, which is d0/(d0 + d1). In other words,

Pµ
(
η1(2) = 0 | S,W[0,S]

)
≥ d0

d0 + d1
, (7.40)

which, together with (7.39) and the fact that S is distributed as Geometric(δ), gives us

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥

d0

d0 + d1

(
1− eδt

)
. (7.41)

Since δ is arbitrary, we may repeat the argument for systems with rates d1 + (k/n)δ, n ∈ N
and k = 0, 1, . . . , n, to obtain

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥

n−1∑
k=0

d0

d0 + d1 + (k/n)δ

(
1− e(δ/n)t

)
≥ d0

d0 + d1 + δ
n
(

1− eδt/n
)
, (7.42)

and we get (7.37) by letting n→∞.

7.5.2 Sign of the speed

If d0 = d1, then w = 0, since by symmetry Wt = −Wt in distribution. Hence we can
summarize:

Proposition 7.9. For an independent spin-flip system with rates d0 and d1,

w ≥ d0
d0+d1

(d1 − d0) if d1 > d0,

w = 0 if d1 = d0,

w ≤ − d1
d0+d1

(d0 − d1) if d1 < d0.

(7.43)
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Applying this result to the systems ξ± of Section 7.2, we obtain the following.

Proposition 7.10. Suppose that there exists a speed w for the (∞, 0)-model in a spin-flip
system with rates given by (7.6). Then,

v ≥ c0+λ0
c1+c0+λ0

(c1 − c0 − λ0) if c1 > c0 + λ0,

v ≤ − c1+λ1
c0+c1+λ1

(c0 − c1 − λ1) if c0 > c1 + λ1.
(7.44)

This concludes the proof of Theorem 4.2 and the discussion of our two classes of IPS’s for
the (∞, 0)-model. In Section 8 we give additional examples and discuss the limitations of our
setting.

8 Other examples

We discuss three types of examples: generalizations of the (α, β)-model and the (∞, 0)-model,
and mixtures thereof.

1. Pattern models. Take ℵ to be a finite sequence of 0’s and 1’s, which we call a pattern,
and let R be the length of this sequence. Take the environment ξ to be of the same type used
to define the (∞, 0)-walk. Let q : {0, 1}R \ {ℵ} → [0, 1]. The pattern walk is defined similarly
as the (∞, 0) walk, with the trap being substituted by the pattern, and a Bernoulli(q) random
variable being used to decide whether the walk jumps to the right or to the left. More precisely,
let ϑ = (η0(0), . . . , η0(R − 1)). If ϑ = ℵ, then we set W0 = 0, otherwise we sample b0 as an
independent Bernoulli(q(ϑ)) trial. If b0 = 1, then W0 is set to be the starting position of the
first occurrence of ℵ in η0 to the right of the origin, while if b0 = 0, then the first occurrance
of ℵ to the left of the origin is taken instead. Then the walk waits at this position until the
configuration of one of the R states to its right changes, at which time the procedure to find
the jump is repeated with the environment as seen from W0. Subsequent jumps are obtained
analogously. The (∞, 0)-model is a pattern model with ℵ := (1, 0), q(1, 1) := 1, q(0, 0) := 0
and q(0, 1) := 1/2.

For the spin-flip systems given by (7.6), the pattern walk is defined and is finite for all
times, no matter what ℵ is, the reasoning being exactly the same as for the (∞, 0)-walk. Also,
it may be analogously defined so as to satisfy assumptions (A1)–(A3). When we define the
events ΓL as

ΓL :=
{
ξ±s (j) = ξ±0 (j) ∀ s ∈ [0, L] and j ∈ {0, ..., R− 1}

}
, (8.1)

we may indeed, by completely analogous arguments, reobtain all the results of Section 7, so
that hypotheses (H1)–(H4) hold and, therefore, the LLN as well.

2. Internal noise models. For x ∈ Z \ {0} and η ∈ E, let πx(η) be functions with a finite
range of dependence R. These are the rates to jump x from the position of the walk. Let
πx := supη πx(η) and suppose that, for some u > 0,∑

x∈Z\{0}

eu|x|πx <∞. (8.2)

This implies that also

Π :=
∑

x∈Z\{0}

πx <∞. (8.3)
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The walk starts at the origin, and waits an independent Exponential(Π) time τ until it jumps
to x with probability πx(ξτ )/Π. These probabilities do not necessarily sum up to one, so the
walk may well stay at the origin. The subsequent jumps are obtained analogously, with ξτ
substituted by the environment around the walk at the time of the attempted jump. It is clear
that (A1)–(A3) hold. The walk has a bounded probability of standing still independently of
the environment, and its jumps have an exponential tail. We choose

ΓL := {τ > L}. (8.4)

By defining an auxiliary walk (Ht)t≥0 that also tries to jump at time τ , but only to sites
x > 0 with probability πx/Π, we see that Wt ≤ Ht and that Ht has properties analogous to
the process defined in the proof of Lemma 7.2. Therefore, (H1)–(H3) are always satisfied for
this model. Since ΓL is independent of ξ, (H4) is the (unconditional) cone-mixing property.
Observe that W0 = 0, so that µ̄ = µ. Therefore the LLN for this model holds in both examples
discussed in Section 7, and also for the IPS’s for which cone-mixing was shown in Avena, den
Hollander and Redig [1]. The (α, β)-model is an internal noise model with R = 0 (the rates
depend only on the state of the site where the walker is) and πx(η) = 0, except for x = ±1,
for which π1(1) = α = π−1(0) and π1(0) = β = π−1(1).

3. Mixtures of pattern and internal noise. Let I be a finite set, and suppose that for
each i ∈ I we are given a model that is either pattern or internal noise. Let (It)t≥0 be an
irreducible continuous-time Markov chain on I, starting from equilibrium. Then the mixture
is the model for which the dynamics associated to i is applied in the time intervals when It is
in state i. A choice of ΓL is given by

ΓL =
∑
i∈I
{I0 = i} ∩ ΓiL, (8.5)

where ΓiL is the corresponding event for the model associated to i. It is easily checked that
the mixed model satisfies (A1)–(A3) and that, whenever (H1)–(H4) are satisfied for each i,
they are also satisfied for the mixed model.

An open example. Let us close by giving an example of a model that does not satisfy the
hypotheses of our LLN (in dynamic random environments given by spin-flip systems). When
ξ(0) = j, let Cj be the cluster of j’s around the origin. Define jump rates for the walk as
follows:

π1(η) =

{
|C1| if η(0) = 1,
|C0|−1 if η(0) = 0,

π−1(η) =

{
|C0| if η(0) = 0,
|C1|−1 if η(0) = 1.

(8.6)

Even though this walk seems to be a natural example (and is quite close to our setup), it does
not satisfy (A3). Nor does it satisfy (H2) for any reasonable choice of ΓL, which is actually
the hardest obstacle. The problem is that, while we are able to transport a.s.-properties
of the equilibrium measure to the environment measure (i.e., from the point of view of the
walk) using absolute continuity, we cannot control the distortion in events of positive measure.
Indeed, even if ΓL has a high probability at time zero, there is no a priori guarantee that it
will have high probability frequently enough at later times under the environment measure.
And even if we are able to find enough time points where this happens, correlations between
the event {Wt ∈ C(m) ∀ t ≥ 0} and translations of ΓL start to play a role. Because of such
complications, the proof for the LLN breaks down and the challenge remains.
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