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Convergence in law of the minimum of a

branching random walk

Elie Aı̈dékon 1

Eindhoven University of Technology

Summary. We consider the minimum of a super-critical branching random
walk. In [1], Addario-Berry and Reed proved the tightness of the minimum
centered around its mean value. We show that a convergence in law holds,
giving the analog of a well-known result of Bramson [9] in the case of the
branching Brownian motion.

1 Introduction

We consider a branching random walk defined as follows. The process starts with one par-

ticle located at 0. At time 1, the particle dies and gives birth to a point process L. Then,

at each time n ∈ N, the particles of generation n die and give birth to independent copies of

the point process L, translated to their position. If T is the genealogical tree of the process,

we see that T is a Galton-Watson tree, and we denote by |x| the generation of the vertex

x ∈ T (the ancestor is the only particle at generation 0). For each x ∈ T, we denote by

V (x) ∈ R its position on the real line. With this notation, (V (x), |x| = 1) is distributed as

L. The collection of positions (V (x), x ∈ T) defines our branching random walk.

We assume that we are in the boundary case (in the sense of [7])

(1.1) E

∑
|x|=1

1

 > 1, E

∑
|x|=1

e−V (x)

 = 1, E

∑
|x|=1

V (x)e−V (x)

 = 0.

1Supported in part by the Netherlands Organisation for scientific Research (NWO).
Keywords. Minimum, branching random walk, killed branching random walk.
2010 Mathematics Subject Classification. 60J80, 60F05.

1



MINIMUM OF A BRANCHING RANDOM WALK

Every branching random walk satisfying mild assumptions can be reduced to this case by

some renormalization. We refer to Appendix A in [16] for a precise discussion. Notice that

we allow E[
∑
|x|=1 1] = ∞, and more generally P(

∑
|x|=1 1 = ∞) > 0. We are interested in

the minimum at time n

Mn := min{V (x), |x| = n}.

Writing for y ∈ R ∪ {±∞}, y+ := max(y, 0), we introduce the random variables

(1.2) X :=
∑
|x|=1

e−V (x), X̃ :=
∑
|x|=1

V (x)+e−V (x).

We assume that

• the distribution of L is non-lattice,

• we have

E

∑
|x|=1

V (x)2e−V (x)

 <∞.(1.3)

E
[
X(ln+X)2

]
<∞, E

[
X̃ ln+ X̃

]
<∞.(1.4)

These assumptions are discussed after Theorem 1.1. Under (1.1), the minimum Mn goes

to infinity, as it can be easily seen from the fact that
∑
|u|=n e−V (u) goes to zero ([20]). The

law of large numbers for the speed of the minimum goes back to the works of Hammersley

[14], Kingman [17] and Biggins [5], and we know that Mn

n
converges almost surely to 0 in

the boundary case. The second order was recently found separately by Hu and Shi [15], and

Addario-Berry and Reed [1], and is proved to be equal to 3
2

lnn in probability, though there

exist almost sure fluctuations (Theorem 1.2 in [15]). In [1], the authors computed the expec-

tation of Mn to within O(1), and showed, under suitable assumptions, that the sequence of

the minimum is tight around its mean. Through recursive equations, Bramson and Zeitouni

[10] obtained the tightness of Mn around its median, when assuming some properties on

the decay of the tail distribution. In the particular case where the step distribution is log-

concave, the convergence in law of Mn around its median was proved earlier by Bachmann

[4]. The aim of this paper is to get the convergence of the minimum Mn centered around
3
2

lnn for a general class of branching random walks. This is the analog of the seminal work

from Bramson [9], to which our approach bears some resemblance. To state our result, we
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introduce the derivative martingale, defined for any n ≥ 0 by

(1.5) ∂Wn :=
∑
|x|=n

V (x)e−V (x).

From [6] (and Proposition A.1 in the Appendix), we know that the martingale converges

almost surely to some limit ∂W∞, which is strictly positive on the set of non-extinction of

T. Notice that under (1.1), the tree T has a positive probability to survive. If the process is

extinct at time n, we set Mn :=∞ (or min ∅ :=∞ in the definition of Mn).

Theorem 1.1 There exists a constant C∗ ∈ (0,∞) such that for any real x,

(1.6) lim
n→∞

P

(
Mn ≥

3

2
lnn+ x

)
= E

[
e−C

∗ex∂W∞
]
.

Remark 1. We can see our theorem as the analog of the result of Lalley and Sellke [19] in

the case of the branching Brownian motion : the minimum converges to a random shift of

the Gumble distribution.

Remark 2. The condition of non-lattice distribution is necessary since it is hopeless to have

a convergence in law around 3
2

lnn in general. We do not know if an analogous result holds

in the lattice case. Without (1.3), we can expect to have still a convergence in law but cen-

tered around κ lnn for some constant κ 6= 3/2. This comes from the different behaviour of

the probability to remain positive for one-dimensional random walks with infinite variance.

Finally, the condition (1.4) appears naturally for ∂W∞ not being identically zero (see [6],

Theorem 5.2).

The proof of the theorem is divided into three steps. First, we look at the tail distri-

bution of the minimum Mkill
n of the branching random walk killed below zero, i.e Mkill

n :=

min{V (x), V (xk) ≥ 0, ∀0 ≤ k ≤ |x|}, where xk denotes the ancestor of x at generation k.

Proposition 1.2 There exists a constant C1 > 0 such that

lim sup
z→∞

lim sup
n→∞

∣∣∣ezP(Mkill
n ≤ 3

2
lnn− z

)
− C1

∣∣∣ = 0.

This allows us to get the tail distribution of Mn in a second stage.
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MINIMUM OF A BRANCHING RANDOM WALK

Proposition 1.3 We have

lim sup
z→∞

lim sup
n→∞

∣∣∣ez
z

P

(
Mn ≤

3

2
lnn− z

)
− C1c0

∣∣∣ = 0

where C1 is the constant in Proposition 1.2, and c0 > 0 is defined in (2.10).

Looking at the set of particles that cross a high level A > 0 for the first time, we then deduce

the theorem for the constant C∗ = C1c0.

The paper is organized as follows. Section 2 introduces a useful and well-known tool, the

many-to-one lemma. Then, Sections 3, 4 and 5 contain respectively the proofs of Proposition

1.2, Proposition 1.3 and Theorem 1.1.

Throughout the paper, (ci)i≥0 denote positive constants. We write E[f, A] for E[f1A],

and we set
∑
∅ := 0,

∏
∅ := 1.

2 The many-to-one lemma

For a ∈ R, we denote by Pa the probability distribution associated to the branching random

walk starting from a, and Ea the corresponding expectation. Under (1.1), there exists a

centered random walk (Sn, n ≥ 0) such that for any n ≥ 1, a ∈ R and any measurable

function g : Rn → [0, ∞),

(2.1) Ea

{ ∑
|x|=n

g(V (x1), · · · , V (xn))
}

= Ea

{
eSn−ag(S1, · · · , Sn)

}
where, under Pa, we have S0 = a almost surely. We will write P and E instead of P0

and E0 for brevity. In particular, under (1.3), S1 has a finite variance σ2 := E[S2
1 ] =

E[
∑
|x|=1 V (x)2e−V (x)]. Equation (2.1) is called in the litterature the many-to-one lemma

and can be seen as a consequence of Proposition 2.1 below.

2.1 Lyons’ change of measure

We introduce the additive martingale

(2.2) Wn :=
∑
|u|=n

e−V (u)
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and we define for any a ∈ R a probability measure Qa such that for any n ≥ 0,

(2.3) Qa |Fn := eaWn •Pa |Fn

where Fn denotes the sigma-algebra generated by the positions (V (x), |x| ≤ n) up to time

n. We will write Q instead of Q0.

To give the description of the branching random walk under Qa, we introduce the point

process L̂ with Radon-Nykodin derivative
∑

i∈L e−V (i) with respect to the law of L, and

we define the following process. At time 0, the population is composed of one particle w0

located at V (w0) = a. Then, at each step n, particles of generation n die and give birth to

independent point processes distributed as L, except for the particle wn which generates a

point process distributed as L̂. The particle wn+1 is chosen among the children of wn with

probability proportional to e−V (x). We denote by Ba := (V (x)) the family of the positions of

this system. We still call T the genealogical tree of the process, so that (wn)n≥0 is a ray of

T, which we will call the spine. This change of probability was used in [20], see also [15]. We

refer to [21] for the case of the Galton–Watson tree, to [12] for the analog for the branching

Brownian motion, and to [6] for spine decompositions in various types of branching.

Proposition 2.1 ([20],[15]) (i)Under Qa, the branching random walk has the distribution

of Ba.
(ii) For any |x| = n, we have

(2.4) Qa{wn = x |Fn} =
e−V (x)

Wn

.

(iii) The spine process (V (wn), n ≥ 0) has the distribution of the centered random walk

(Sn, n ≥ 0) under Pa.

Before closing this subsection, we collect some elementary facts about centered random

walks with finite variance.

There exists a constant α1 > 0 such that for any x ≥ 0 and n ≥ 1

(2.5) Px(min
j≤n

Sj ≥ 0) ≤ α1(1 + x)n−1/2.

There exists a constant α2 > 0 such that for any b ≥ a ≥ 0, x ≥ 0 and n ≥ 1

(2.6) Px(Sn ∈ [a, b], min
j≤n

Sj ≥ 0) ≤ α2(1 + x)(1 + b− a)(1 + b)n−3/2.
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MINIMUM OF A BRANCHING RANDOM WALK

Let 0 < Λ < 1. There exists a constant α3 = α3(Λ) > 0 such that for any b ≥ a ≥ 0, x, y ≥ 0

and n ≥ 1

Px(Sn ∈ [y + a, y + b], min
j≤n

Sj ≥ 0, min
Λn≤j≤n

Sj ≥ y)(2.7)

≤ α3(1 + x)(1 + b− a)(1 + b)n−3/2.

Let (an, n ≥ 0) be a non-negative sequence such that limn→∞
an
n1/2 = 0. There exists a

constant α4 > 0 such that for any a ∈ [0, an] and n ≥ 1

(2.8) P(Sn ∈ [a, a+ 1], min
j≤n

Sj ≥ 0, min
n/2<j≤n

Sj ≥ a) ≥ α4n
−3/2.

Equation (2.5) comes from [18]. Equations (2.6) and (2.7) are for example Lemmas A.1 and

A.3 in [3]. Equation (2.8) is Lemma A.3 of [2]: even if the uniformity in a ∈ [0, an] is not

stated there, it follows directly from the proof.

2.2 A convergence in law for the one-dimensional random walk

We recall that (Sn) is a centered random walk under P, with finite variance E[S2
1 ] = σ2 ∈

(0,∞). We introduce its renewal function R(x) which is zero if x < 0, 1 if x = 0, and for

x > 0

(2.9) R(x) :=
∑
k≥0

P(Sk ≥ −x, Sk < min
0≤j≤k−1

Sj).

Similarly, we define R−(x) as the renewal function associated to −S. It is known (see [22])

that there exists c0 > 0 such that

(2.10) lim
x→∞

R(x)

x
= c0.

Since E[S1] = 0 and E[S2
1 ] <∞, there exist C−, C+ > 0 such that

P

(
min

1≤i≤n
Si ≥ 0

)
∼ C+√

n
,

P

(
max
1≤i≤n

Si ≤ 0

)
∼ C−√

n

as n→∞ ([18]).

6



E. AIDEKON

Lemma 2.2 Let (rn)n≥0 be a sequence of numbers such that limn→∞
rn
n1/2 = 0. Let F : R+ →

R be a Riemann integrable function. We suppose that there exists a non-increasing function

F : R+ → R such that |F (x)| ≤ F (x) for any x ≥ 0 and
∫
x≥0

xF (x) <∞. Then, as n→∞,

(2.11) E

[
F (Sn − y), min

k∈[0,n]
Sk ≥ 0, min

k∈[n/2,n]
Sk ≥ y

]
∼ C−C+

√
π

σ
√

2
n−3/2

∫
x≥0

F (x)R−(x)dx

uniformly in y ∈ [0, rn].

Proof. Let ε > 0. Since |F (x)| ≤ F (x) and F is non-increasing, we have for any integer

M ≥ 1,

E

[
|F (Sn − y)|, min

k∈[0,n]
Sk ≥ 0, min

k∈[n/2,n]
Sk ≥ y, Sn ≥ y +M

]
≤

∑
j≥M

F (j)P

(
min
k∈[0,n]

Sk ≥ 0, min
k∈[n/2,n]

Sk ≥ y, Sn ∈ [y + j, y + j + 1)

)
.

For j ≥ 1, we have by (2.6),

P

(
min
k∈[0,n]

Sk ≥ 0, min
k∈[n/2,n]

Sk ≥ y, Sn ∈ [y + j, y + j + 1)

)
≤ c1

j

n3/2
.

It yields that

E

[
|F (Sn − y)|, min

k∈[0,n]
Sk ≥ 0, min

k∈[n/2,n]
Sk ≥ y, Sn ≥ y +M

]
≤ c1

n3/2

∑
j≥M

F (j)j

which is less than εn−3/2 for M ≥ 1 large enough. Therefore, we can restrict to F with

compact support. By approximating F by scale functions (F is Riemann integrable by

assumption), we only prove (2.11) for F (x) = 1{x∈[0,a]}, for any a ≥ 0. We have

E

[
F (Sn − y), min

k∈[0,n]
Sk ≥ 0, min

k∈[n/2,n]
Sk ≥ y

]
= P( min

k∈[0,n]
Sk ≥ 0, min

k∈[n/2,n]
Sk ≥ y, Sn ≤ y + a).

Applying the Markov property at time n/2 (we assume that n/2 is integer for simplicity),

we obtain that

(2.12) E

[
F (Sn − y), min

k∈[0,n]
Sk ≥ 0, min

k∈[n/2,n]
Sk ≥ y

]
= E

[
φ(Sn/2), min

k∈[0,n/2]
Sk ≥ 0

]
7



MINIMUM OF A BRANCHING RANDOM WALK

where

φ(x) := Px

(
min

k∈[0,n/2]
Sk ≥ y, Sn/2 ≤ y + a

)
.

We estimate φ(x). Reversing time, we notice that

φ(x) = P

(
min

k∈[0,n/2]
(−Sk) ≥ −Sn/2 − x+ y ≥ −a

)
.

We introduce the strict descending ladder heights and times (H`, T`) of −S defined by H0 :=

0, T0 := 0 and for any ` ≥ 0,

T`+1 := min{k ≥ T` + 1 : (−Sk) < H`},

H`+1 := −ST`+1
.

Since E[S1] = 0, we have T` <∞ for any ` ≥ 0. We observe that R−(x) =
∑

`≥0 P(H` ≥ −x).

Discussing on the time ` such that H` = mink∈[0,n/2](−Sk), we have

P

(
min

k∈[0,n/2]
(−Sk) ≥ −Sn/2 − x+ y ≥ −a

)
=

∑
`≥0

P

(
T` ≤ n/2, H` ≥ −Sn/2 − x+ y ≥ −a, min

k∈[T`,n/2]
(−Sk) ≥ H`

)
.

Hence,

(2.13) φ(x) =
∑
`≥0

P

(
T` ≤ n/2, H` ≥ −Sn/2 − x+ y ≥ −a, min

k∈[T`,n/2]
(−Sk) ≥ H`

)
.

By the Markov property at time T`, we see that

P

(
H` ≥ −Sn/2 − x+ y ≥ −a, min

k∈[T`,n/2]
(−Sk) ≥ H`

∣∣∣ (H`, T`)

)
= 1{H`≥−a}P

(
min

j∈[0,n
2
−t]

(−Sj) ≥ 0,−Sn
2
−t ∈ [x− y − a− h, x− y]

)
h=H`,t=T`

.

Let ψ(x) := xe−x
2/21{x≥0}. By Theorem 1 of [11], we check that

1{h≥−a}P

(
min

j∈[0,n
2
−t]

(−Sj) ≥ 0,−Sn
2
−t ∈ [x− y − a− h, x− y]

)
= 1{h≥−a}

2C−
σn

(h+ a)ψ

(
x

σ
√
n/2

)
+ 1{h≥−a}o(n

−1)
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uniformly in x ∈ R, t ≤ n1/2, h ∈ [−a, 0] and y ∈ [0, rn]. To deal with t ∈ [n1/2, n/2], we see

that

1{h≥−a}P

(
min

j∈[0,n
2
−t]

(−Sj) ≥ 0,−Sn
2
−t ∈ [x− y − a− h, x− y]

)
= 1{h≥−a}O(1)

(n
2
− t+ 1

)−1

again by Theorem 1 of [11]. Going back to (2.13), it implies that

φ(x) = o(n−1) +
2C−
σn

ψ

(
x

σ
√
n/2

)∑
`≥0

E
[
(H` + a)1{H`≥−a, T`≤n1/2}

]
+O(1)

∑
`≥0

E

[
H` + a

n
2
− T` + 1

1{H`≥−a, T`∈(n1/2,n/2]}

]

= o(n−1) +
2C−
σn

ψ

(
x

σ
√
n/2

)∑
`≥0

E
[
(H` + a)1{H`≥−a}

]
+O(1)

∑
`≥0

E

[
H` + a

n
2
− T` + 1

1{H`≥−a, T`∈(n1/2,n/2]}

]
.

We want to show that the term in the last line is o(n−1) as well. We observe that

E

[
H` + a

n
2
− T` + 1

1{H`≥−a, T`∈(n1/2,n/2]}

]
≤ aE

[
1

n
2
− T` + 1

1{H`≥−a, T`∈(n1/2,n/2]}

]
.

Since
∑

`≥0 P (H` ≥ −a, T` = k) ≤ Pa(Sk ∈ [0, a], minj≤k Sj ≥ 0), we obtain by (2.6) that∑
`≥0

P (H` ≥ −a, T` = k) ≤ α2(1 + a)3k−3/2.

It yields that∑
`≥0

E

[
H` + a

n
2
− T` + 1

1{H`≥−a, T`∈(n1/2,n/2]}

]
≤ aα2(1 + a)3

bn/2c∑
k=bn1/2c+1

k−3/2 1
n
2
− k + 1

= o(n−1)

indeed. Therefore

φ(x) = o(n−1) +
2C−
σn

ψ

(
x

σ
√
n/2

)∑
`≥0

E
[
(H` + a)1{H`≥−a}

]
uniformly in x ≥ 0. Equation (2.12) becomes

E

[
F (Sn − y), min

k∈[0,n]
Sk ≥ 0, min

k∈[n/2,n]
Sk ≥ y

]
= o(n−3/2) +

2C−
σn

E

[
ψ

(
Sn/2

σ
√
n/2

)
, min
k∈[0,n/2]

Sk ≥ 0

]∑
`≥0

E
[
(H` + a)1{H`≥−a}

]
9



MINIMUM OF A BRANCHING RANDOM WALK

where we used (2.5). We know (see [8]) that Sn/(σn
1/2) conditioned on mink∈[0,n] Sk being

non-negative converges to the Rayleigh distribution. Therefore,

E

[
ψ

(
Sn/2

σ
√
n/2

)
, min
k∈[0,n/2]

Sk ≥ 0

]
∼ C+

2
√
n

√
π

2
.

We end up with

E

[
F (Sn − y), min

k∈[0,n]
Sk ≥ 0, min

k∈[n/2,n]
Sk ≥ y

]
= o(n−3/2) +

C−C+

σn3/2

√
π

2

∑
`≥0

E
[
(H` + a)1{H`≥−a}

]
.

We recall that
∑

`≥0 P(H` ≥ −a) = R−(a) by definition. We check that∑
`≥0

E
[
(H` + a)1{H`≥−a}

]
=

∫
x≥0

F (x)R−(x)dx,

which completes the proof. �

3 The minimum of a killed branching random walk

It reveals useful to study first the killed branching random walk. We consider only individuals

that stay above 0, and we investigate the behaviour of the minimal position

(3.1) Mkill
n := inf{V (u), |u| = n, V (uk) ≥ 0, ∀ 0 ≤ k ≤ n}.

[inf ∅ :=∞]. If Mkill
n <∞, i.e. if the killed branching random walk survives until time n, we

denote by mkill,(n) a vertex chosen uniformly in the set {u : |u| = n, V (u) = Mkill
n , V (uk) ≥

0, ∀ 0 ≤ k ≤ n} of the particles that realize the minimum. We will see that the typical order

of Mkill
n is 3

2
lnn. It will be convenient to use the following notation, for z ≥ 0:

an(z) :=
3

2
lnn− z,(3.2)

In(z) := [an(z)− 1, an(z)).(3.3)

The section is devoted to the proof of the following proposition.

Proposition 3.1 For any ε > 0, there exist A > 0 and N ≥ 1 such that for any n ≥ N and

z ∈ [A, ln(n)], ∣∣∣ ez P(Mkill
n ∈ In(z))− C2

∣∣∣ ≤ ε

where C2 is some positive constant.

10
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Corollary 3.2 Let C1 := C2

1−e−1 . For any ε > 0, there exist A > 0 and N ≥ 1 such that for

any n ≥ N and z ∈ [A, (lnn)/2],∣∣∣ ez P

(
Mkill

n ≤ 3

2
lnn− z

)
− C1

∣∣∣ ≤ ε.

Proposition 1.2 follows.

Assuming that Proposition 3.1 holds, let us see how it implies the corollary.

Proof of Corollary 3.2. Let ε > 0. We have by equation (2.1),

E

∑
|u|=n

1{V (u)≤lnn,min0≤j≤n V (uj)≥0}

 = E

[
eSn , Sn ≤ lnn, min

0≤j≤n
Sj ≥ 0

]

≤ nP

(
Sn ≤ lnn, min

0≤j≤n
Sj ≥ 0

)
.

By (2.6), we have P (Sn ≤ lnn, min0≤j≤n Sj ≥ 0) ≤ c2
1+(lnn)2

n3/2 . Hence, there exists N1 such

that for any n ≥ N1

E

∑
|u|=n

1{V (u)≤lnn,min0≤j≤n V (uj)≥0}

 ≤ ε.

We observe that P(Mkill
n ≤ lnn) is less than the left-hand side. Therefore, P(Mkill

n ≤ lnn) ≤
ε for n ≥ N1. Let A and N be as in Proposition 3.1. We have for n ≥ N and z ∈ [A, lnn],∣∣∣ ez P(Mkill

n ∈ In(z))− C2

∣∣∣ ≤ ε.

We obtain that, for z ∈ [A, (lnn)/2],∣∣∣ ez P

(
Mkill

n ∈
[

3

2
lnn− z − b(lnn)/2c − 1,

3

2
lnn− z

))
−
b(lnn)/2c∑
k=0

e−kC2

∣∣∣ ≤ b(lnn)/2c∑
k=0

e−kε.

Hence, for n ≥ max(N1, N), and z ∈ [A, (lnn)/2]∣∣∣ ez P

(
Mkill

n <
3

2
lnn− z

)
−
∑
k≥0

e−kC2

∣∣∣ ≤∑
k≥0

e−kε+ C2

∑
k>(lnn)/2

e−k + ε.

Take N2 such that if n ≥ N2, then C2

∑
k>(lnn)/2 e−k ≤ ε. We obtain for n ≥ max(N1, N,N2),

and z ∈ [A, (lnn)/2]∣∣∣ ez P

(
Mkill

n <
3

2
lnn− z

)
− C2

1− e−1

∣∣∣ ≤ ε
( 1

1− e−1
+ 2
)

which completes the proof. �
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3.1 Tightness of the minimum

We want to estimate the probability of the event {Mkill
n ∈ In(z)}. The first lemma gives

information on the path of particles located in In(z). Roughly speaking, we show that they

typically follow excursions over the curve k → 3
2

ln k.

Lemma 3.3 Let 0 < Λ < 1. There exist constants c3, c4 > 0 such that for any n ≥ 1, L ≥ 0,

x ≥ 0 and z ≥ 0,

Px

(
∃|u| = n : V (u) ∈ In(z), min

k∈[0,n]
V (uk) ≥ 0, min

k∈[Λn,n]
V (uk) ∈ In(z + L)

)
(3.4)

≤ c3(1 + x)e−c4Le−x−z.

Proof. Let E be the event in (3.4), and for 0 ≤ k ≤ n

(3.5) dk = dk(n, z, L) :=

{
0, if 0 ≤ k ≤ Λn,

max(3
2

lnn− z − L− 1, 0), if Λn < k ≤ 2n.

Discussing on the time when the minimum mink∈[Λn,n] V (uk) is reached, we observe that

E ⊂
⋃
k∈[Λn,n] Ek where we defined Ek :=

⋃
|u|=nEk(u) and for any |u| = n,

Ek(u) :=
{
V (u`) ≥ d` , ∀ 0 ≤ ` ≤ n, V (u) ∈ In(z), V (uk) ∈ In(z + L)

}
.

Similarly, let

Ek(S) :=
{
S` ≥ d`,∀ 0 ≤ ` ≤ n, Sn ∈ In(z), Sk ∈ In(z + L)

}
.

We notice that Px(Ek) ≤ Ex

[∑
|u|=n 1Ek(u)

]
which is Ex

[
eSn−x1Ek(S)

]
by (2.1).

In particular,

(3.6) Px(Ek) ≤ n3/2e−x−zPx(Ek(S)).

We need to estimate Px(Ek(S)). By the Markov property at time k,

Px(Ek(S)) ≤ Px (S` ≥ d` , ∀ 0 ≤ ` ≤ k, Sk ∈ In(z + L))

×P

(
Sn−k ∈ [L− 1, L+ 1], min

`∈[0,n−k]
S` ≥ 0

)
.

For the second term of the right-hand side, we know from (2.6) that there exists a constant

c5 > 0 such that

(3.7) P

(
Sn−k ∈ [L− 1, L+ 1], min

`∈[0,n−k]
S` ≥ 0

)
≤ c5(n− k + 1)−3/2(1 + L).

12



E. AIDEKON

To bound the first term, we have to discuss on the value of k. Suppose that Λ+1
2
n ≤ k ≤ n.

We have by (2.7)

(3.8) Px (S` ≥ d`, ∀ 0 ≤ ` ≤ k, Sk ∈ In(z + L)) ≤ c6
(1 + x)

n3/2
.

If Λn ≤ k < Λ+1
2
n, we simply write

Px (S` ≥ d`, ∀ 0 ≤ ` ≤ k, Sk ∈ In(z + L)) ≤ Px

(
Sk ∈ In(z + L), min

`∈[0,k]
S` ≥ 0

)
≤ c7(1 + x) ln(n)n−3/2(3.9)

by (2.6) . From (3.7), (3.8) and (3.9), there exists a constant c8 > 0 such that∑
k∈[Λn,n−a]

Px(Ek(S)) ≤ c8(1 + x)(1 + L)
a−1/2

n3/2

for any a ≥ 1. By (3.6), it implies that

(3.10)
∑

k∈[Λn,n−a]

Px(Ek) ≤ c8(1 + x)(1 + L)e−x−za−1/2.

It remains to bound Px(Ek) for n− a < k ≤ n. We observe that

Px(Ek) ≤ Px (∃ |u| = k : V (u`) ≥ d` , ∀ 0 ≤ ` ≤ k, V (u) ∈ In(z + L)) .

By an application of (2.1), we have

Px(Ek) ≤ n3/2e−x−z−LPx (S` ≥ d` , ∀ 0 ≤ ` ≤ k, Sk ∈ In(z + L))

which is ≤ c9e−x−z−L(1 + x) by (2.7) (for k ≥ (1 + Λ)n/2 for example). It follows that,

(3.11)
∑

k∈[n−a,n]

Px(Ek) ≤ c9(1 + a)(1 + x)e−x−z−L.

Equations (3.10) and (3.11) yield that, for a ∈ [1, (1− Λ)n/2],

Px(E) ≤
∑

k∈[Λn,n]

Px(Ek) ≤ (1 + x)e−x−z
{
c8(1 + L)a−1/2 + c9(1 + a)e−L

}
.

We take a = eαL with α > 0 to complete the proof. �

Recall that an(z) := 3
2

lnn− z, and In(z) := [an(z)− 1, an(z)).

13
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Definition 3.4 For |u| = n, we say that u ∈ Zz,L if

V (u) ∈ In(z), min
k∈[0,n]

V (uk) ≥ 0, min
k∈[n/2,n]

V (uk) ≥ an(z + L).

In words, u ∈ Zz,L loosely means that a particle is located around 3
2

lnn− z, and made an

excursion above the curve k → 3
2

ln k − z − L. We easily deduce from Lemma 3.3 that for

any ε > 0, there exists L > 0 large enough such that for any n ≥ 1 and z ≥ 0,

(3.12) P

(
∃|u| = n : u /∈ Zz,L, V (u) ≤ 3

2
lnn− z

)
≤ εe−z.

Equivalently, with high probability, any particle located below 3
2

lnn− z made an excursion

above the curve k → 3
2

ln k − z − L. We show now that P(Mkill
n ≤ 3

2
lnn − z) has an

exponential decay as z →∞.

Lemma 3.5 There exist c10, c11 > 0 such that for any n ≥ 1 and z ∈ [0, (3/2) lnn− 1]

ezP

(
Mkill

n ≤ 3

2
lnn− z

)
∈ [c10, c11].

Proof. The proof relies on usual first and second moment arguments. By equation (3.12),

there exists L > 0 such that for any z ≥ 0 and n ≥ 1, we have P(mkill,(n) /∈ Zz,L, Mkill
n ∈

In(z)) ≤ e−z. Let (dk)0≤k≤n be, as defined by (3.5) in the case Λ = 1/2,

(3.13) dk = dk(n, z, L) :=

{
0, if 0 ≤ k ≤ n

2
,

max(3
2

lnn− z − L− 1, 0), if n
2
< k ≤ n.

We have by (2.1),

P(mkill,(n) ∈ Zz,L, Mkill
n ∈ In(z)) ≤ E

∑
|u|=n

1{u∈Zz,L}


= E

[
eSn , Sk ≥ dk, ∀ 0 ≤ k ≤ n, Sn ∈ In(z)

]
≤ n3/2e−zP

{
Sk ≥ dk,∀ 0 ≤ k ≤ n, Sn ∈ In(z)

}
.

By (2.7), the right-hand side is less than c12(L)e−z. We obtain that

P(Mkill
n ∈ In(z)) ≤ (c12 + 1)e−z.

This implies the upper bound. To prove the lower bound, we introduce

ek = e
(n)
k :=

{
k1/12, if 0 ≤ k ≤ n

2
,

(n− k)1/12, if n
2
< k ≤ n.

14
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We say that |u| = n is a good vertex if u ∈ Zz, 0 and

(3.14)
∑

v∈Ω(uk)

e−(V (v)−dk)
{

1 + (V (v)− dk)+

}
≤ Be−ek ∀ 1 ≤ k ≤ n,

where Ω(y) stands for the set of brothers of y, i.e the particles x 6= y which share the same

parent as y in the tree T. By (2.8), there exists c13 > 0 such that Q(wn ∈ Zz, 0) ≥ 2c13n
−3/2.

Then, by Lemma C.1, we can choose B > 0 such that for any n ≥ 1 and z ∈ [0, (3/2) lnn−1]

Q(wn is a good vertex) ≥ c13n
−3/2.

Let Goodn be the number of good vertices at generation n. We have by definition of the

measure Q and Proposition 2.1 (ii),

E [Goodn] = EQ

 1

Wn

∑
|u|=n

1{u is a good vertex}


= EQ

[
eV (wn), wn is a good vertex

]
≥ n3/2e−z−1Q (wn is a good vertex)

≥ c13e−z−1.(3.15)

We look at the second moment. We use again Proposition 2.1 (ii) to see that

E
[
(Goodn)2

]
= EQ

[
eV (wn)Goodn, wn is a good vertex

]
≤ n3/2e−zEQ [Goodn, wn is a good vertex] .

Let Yn be the number of vertices |u| = n such that u ∈ Zz,0. We notice that Yn ≥ Goodn,

hence

E
[
(Goodn)2

]
≤ n3/2e−zEQ [Yn, wn is a good vertex] .

We decompose Yn along the spine. We get

Yn = 1{wn∈Zz, 0} +
n∑
k=1

∑
u∈Ω(wk)

Yn(u)

where Yn(u) is the number of vertices |v| = n which are descendants of u and such that

v ∈ Zz, 0. Therefore,

E
[
(Goodn)2

]
≤ n3/2e−z

{
Q(wn is a good vertex)

+
n∑
k=1

EQ

 ∑
u∈Ω(wk)

Yn(u), wn is a good vertex

}.
15



MINIMUM OF A BRANCHING RANDOM WALK

Let G∞ := σ{wj, V (wj),Ω(wj), (V (u))u∈Ω(wj), j ≥ 1} be the sigma-algebra generated by the

spine and its brothers. By Proposition 2.1 (i), we know that the branching random walk

rooted at u ∈ Ω(wk) has the same law under P and Q. We take now dk equal to 0 if k ≤ n/2

and max((3/2) lnn − z − 1, 0) if n/2 < k ≤ n (or, equivalently, we take dk := dk(n, z, 0) in

(3.13)). For u ∈ Ω(wk), we have Yn(u) = 0 if there exists j ≤ |u| such that V (uj) ≤ dj.

Otherwise, we have by (2.1),

EQ [Yn(u) | G∞] = EV (u)

 ∑
|v|=n−k

1{V (vj)≥dk+j , ∀ 0≤j≤n−k, V (v)∈In(z)}


= e−V (u)EV (u)

[
eSn−k , Sj ≥ dk+j,∀ 0 ≤ j ≤ n− k, Sn−k ∈ In(z)

]
.

Consequently,

EQ[Yn(u) | G∞] ≤ n3/2e−z−V (u)PV (u) (Sj ≥ dk+j,∀ 0 ≤ j ≤ n− k, Sn−k ∈ In(z))

=: n3/2e−z−V (u)p(V (u), k, n).

We obtain that

E
[
(Goodn)2

]
≤ n3/2e−z

{
Q(wn is a good vertex) +

n3/2e−z
n∑
k=1

EQ

 ∑
u∈Ω(wk)

e−V (u)p(V (u), k, n), wn is a good vertex

}.(3.16)

We want to bound p(r, k, n) for r ∈ R. We have to split the cases k ≤ n/2 and n/2 < k ≤ n.

Suppose first that k ≤ n/2. Then p(r, k, n) = 0 if r < 0. If r ≥ 0, we apply (2.7) to see that

p(r, k, n) ≤ c14(r + 1)n−3/2.

It implies that

bn
2
c∑

k=1

EQ

 ∑
u∈Ω(wk)

e−V (u)p(V (u), k, n), wn is a good vertex


≤ c14n

−3/2

bn
2
c∑

k=1

EQ

 ∑
u∈Ω(wk)

e−V (u)(1 + V (u)+), wn is a good vertex


≤ c14Bn

−3/2

bn
2
c∑

k=1

e−ekQ (wn is a good vertex)

16
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where the last inequality comes from the property (3.14) satisfied by a good vertex. When

n/2 < k ≤ n, we simply write p(r, k, n) ≤ 1 and we get

n∑
k=bn

2
c+1

EQ

 ∑
u∈Ω(wk)

e−V (u)p(V (u), k, n), wn is a good vertex


≤

n∑
k=bn

2
c+1

EQ

 ∑
u∈Ω(wk)

e−V (u), wn is a good vertex


= n−3/2ez

n∑
k=bn

2
c+1

EQ

 ∑
u∈Ω(wk)

e−(V (u)−dk), wn is a good vertex


≤ Bn−3/2ez

n∑
k=bn

2
c+1

e−ekQ (wn is a good vertex)

by (3.14). Going back to (3.16), we end up with

E
[
(Goodn)2

]
≤ n3/2e−z

{
1 + c15

n∑
k=1

e−ek
}

Q (wn is a good vertex)

≤ c16n
3/2e−zQ (wn is a good vertex) .

Now, observe that Q(wn is a good vertex) ≤ Q(wn ∈ Zz,0) ≤ c17n
−3/2 by Definition 3.4 and

equation (2.7). Hence

(3.17) E
[
(Goodn)2

]
≤ c18e−z.

By the Paley-Zygmund inequality, we have P(Goodn ≥ 1) ≥ E[Goodn]2

E[(Goodn)2]
which is greater

than c19e−z by (3.15) and (3.17). We conclude by observing that if Goodn ≥ 1 then Mkill
n ≤

3
2

lnn− z. �

3.2 Proof of Proposition 3.1

Lemma 3.5 already gives the good rate of decay, but we want to strenghten it into an

equivalent as z → ∞. We recall that mkill,(n) is chosen uniformly among the particles that

realize the minimum. We introduced the notation Zz,L in Definition 3.4. By (3.12), we

can assume that mkill,(n) ∈ Zz,L when Mkill
n ∈ In(z). The first step of the proof is to give

a representation of the probability P
(
Mkill

n ∈ In(z), mkill,(n) ∈ Zz,L
)

in terms of the spine

decomposition presented in Proposition 2.1.

17
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Lemma 3.6 For any z ≥ 0, L ≥ 0, and n ≥ 1, we have

(3.18) P
(
Mkill

n ∈ In(z), mkill,(n) ∈ Zz,L
)

= EQ

[
eV (wn)1{V (wn)=Mkill

n }∑
|u|=n 1{V (u)=Mkill

n }
, wn ∈ Zz,L

]
.

Proof. We observe that

P
(
Mkill

n ∈ In(z), mkill,(n) ∈ Zz,L
)

= E

∑
|u|=n

1{u=mkill,(n),u∈Zz,L}


= E

[∑
|u|=n 1{V (u)=Mkill

n , u∈Zz,L}∑
|u|=n 1{V (u)=Mkill

n }

]
.

Using the measure Q, it follows from Proposition 2.1 (ii) that

E

[∑
|u|=n 1{V (u)=Mkill

n , u∈Zz,L}∑
|u|=n 1{V (u)=Mkill

n }

]
= EQ

[
eV (wn)∑

|u|=n 1{V (u)=Mkill
n }

1{V (wn)=Mkill
n ,wn∈Zz,L}

]
,

which completes the proof. �

For b integer, we define the event En by

(3.19) En = En(z, b) := {∀ k ≤ n− b, ∀v ∈ Ω(wk), min
u≥v,|u|=n

V (u) > an(z)}

where, as before, Ω(wk) denotes the set of brothers of wk. On the event En∩{Mkill
n ∈ In(z)},

we are sure that any particle located at the minimum separated from the spine after the

time n− b. The following lemma will be proved in subsection 3.3.

Lemma 3.7 Let η > 0 and L > 0. There exist A > 0 and B ≥ 1 such that for any b ≥ B,

n ≥ 1 and z ≥ A,

(3.20) Q((En)c, wn ∈ Zz,L) ≤ ηn−3/2.

Let, for x ≥ 0, L > 0, and b ≥ 1

(3.21) FL,b(x) := EQx

[
eV (wb)−L1{V (wb)=Mb}∑

|u|=b 1{V (u)=Mb}
, min
k∈[0,b]

V (wk) ≥ 0, V (wb) ∈ [L− 1, L)

]
.

We stress that Mb which appears in the definition of FL,b(x) is the minimum at time b of the

non-killed branching random walk. Then, define

(3.22) CL,b :=
C−C+

√
π

σ
√

2

∫
x≥0

FL,b(x)R−(x)dx,

18
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where C−, C+ and R−(x) were defined in subsection 2.2. We recall that, by Proposition 2.1

(iii), the spine has the law of (Sn)n≥0. In (3.21), we see that
1{V (wb)=Mb}∑
|u|=b 1{V (u)=Mb}

is smaller than

1, and eV (wb)−L ≤ 1. Hence, |FL,b(x)| ≤ P(Sb ≤ L − x) =: F (x) which is non-increasing in

x, and
∫
x≥0

F (x)xdx = 1
2
E[(L− Sb)21{Sb≤L}] <∞. Moreover, observe that

FL,b(x) = EQ

[
eV (wb)+x−L1{V (wb)=Mb}∑

|u|=b 1{V (u)=Mb}
1{mink∈[0,b] V (wk)≥−x, V (wb)∈[−x+L−1,−x+L)}

]
.

The fraction in the expectation is smaller than 1. Using the identity |1E − a1F | ≤ 1 − a +

|1E − 1F | for a ∈ (0, 1), it yields that for x ≥ 0, ε > 0 and any y ∈ [x, x+ ε],

|FL,b(y)− FL,b(x)|

≤ EQ

[∣∣∣e−(y−x)1{mink∈[0,b] V (wk)≥−y, V (wb)+y−L∈[−1,0)} − 1{mink∈[0,b] V (wk)≥−x, V (wb)+x−L∈[−1,0)}

∣∣∣]
≤ 1− e−ε + EQ

[
1{mink∈[0,b] V (wk)+x∈[−ε,0)} + 1{V (wb)+x−L∈[−1−ε,−1)∪(−ε,0]}

]
.

We easily deduce that FL,b is Riemann integrable. Therefore, FL,b satisfies the conditions of

Lemma 2.2.

We want to prove that the expectation in (3.18) behaves like e−z with some constant

factor, as z → ∞. By Lemma 3.7, we can restrict to the event En. The next lemma shows

that the expectation on this event is then equivalent to CL,be
−z.

Lemma 3.8 Let L > 0 and η > 0. Let A and B be as in Lemma 3.7. For any b ≥ B, we

have for n large enough, and z ∈ [A, lnn],

(3.23)

∣∣∣∣∣ezEQ

[
eV (wn)1{V (wn)=Mkill

n }∑
|u|=n 1{V (u)=Mkill

n }
, wn ∈ Zz,L, En

]
− CL,b

∣∣∣∣∣ ≤ η.

Proof. Let L, η, A, B be as in the lemma. Take n ≥ 1, b ≥ B and z ≥ A. We denote by

Q(3.23) the expectation in (3.23). By the Markov property at time n − b (for n > 2b), we

have

Q(3.23) = EQ

[
F kill(V (wn−b)), V (w`) ≥ d`, ∀ ` ≤ n− b, En

]
where d` := 0 if 0 ≤ ` ≤ n/2 and d` := max(an(z)−L, 0) if n/2 < ` ≤ n, and F kill is defined

by

(3.24) F kill(x) := EQx

[
eV (wb)1{V (wb)=M

kill
b }∑

|u|=b 1{V (u)=Mkill
b }

, min
k∈[0,b]

V (wk) ≥ an(z + L), V (wb) ∈ In(z)

]
.
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Notice that F kill(x) ≤ n3/2e−zQx(mink∈[0,b] V (wk) ≥ an(z + L), V (wb) ∈ In(z)). Hence∣∣∣Q(3.23) − EQ

[
F kill(V (wn−b)), V (w`) ≥ d`, ∀ ` ≤ n− b

]∣∣∣
= EQ

[
F kill(V (wn−b)), V (w`) ≥ d`, ∀ ` ≤ n− b, (En)c

]
≤ n3/2e−zEQ

[
QV (wn−b)( min

k∈[0,b]
V (wk) ≥ an(z + L), V (wb) ∈ In(z))1{V (w`)≥d`, ∀ `≤n−b}, (En)c

]
.

By the Markov property, the term

EQ

[
QV (wn−b)( min

k∈[0,b]
V (wk) ≥ an(z + L), V (wb) ∈ In(z))1{V (w`)≥d`, ∀ `≤n−b}, (En)c

]
is equal to Q

[
wn ∈ Zz,L, (En)c

]
≤ ηn−3/2 by our choice of A and B. Therefore,

(3.25)
∣∣∣Q(3.23) − EQ

[
F kill(V (wn−b)), V (w`) ≥ d`, ∀ ` ≤ n− b

]∣∣∣ ≤ ηe−z.

Recall the definition of FL,b in (3.21). We would like to replace F kill(x) by n3/2e−zFL,b(x −
an(z + L)). We notice that

n3/2e−zFL,b(x− an(z + L))

= EQx

[
eV (wb)1{V (wb)=Mb}∑
|u|=b 1{V (u)=Mb}

, min
k∈[0,b]

V (wk) ≥ an(z + L), V (wb) ∈ In(z)

]
.

We observe that the only difference with (3.24) is that the branching random walk is not

killed anymore. Since
∣∣∣ 1{V (wb)=Mb}∑
|u|=b 1{V (u)=Mb}

−
1{V (wb)=M

kill
b
}∑

|u|=b 1{V (u)=Mkill
b
}

∣∣∣ is always smaller than 1 and is

equal to zero if no particle touched the barrier 0, we have that, for any H ≥ 0 such that

H ≤ an(z + L),∣∣∣ 1{V (wb)=Mb}∑
|u|=b 1{V (u)=Mb}

−
1{V (wb)=M

kill
b }∑

|u|=b 1{V (u)=Mkill
b }

∣∣∣ ≤ 1{∃|u|≤b :V (u)≤an(z+L+H)}.

Consequently,∣∣∣F kill(x)− n3/2e−zFL,b(x− an(z + L))
∣∣∣

≤ EQx

[
eV (wb)1{∃|u|≤b :V (u)≤an(z+L+H)}, min

k∈[0,b]
V (wk) ≥ an(z + L), V (wb) ∈ In(z)

]
≤ n3/2e−zEQx

[
1{∃|u|≤b :V (u)≤an(z+L+H)}, min

k∈[0,b]
V (wk) ≥ an(z + L), V (wb) ∈ In(z)

]
= n3/2e−zGH(x− an(z + L))
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with

GH(y) := Qy

(
{∃|u| ≤ b : V (u) ≤ −H} ∩ {min

k∈[0,b]
V (wk) ≥ 0, V (wb) ∈ [L− 1, L)}

)
.

It shows that, for any H ∈ [0, an(z + L)],

EQ

[∣∣∣F kill(V (wn−b))− n3/2e−zFL,b(V (wn−b)− an(z + L))
∣∣∣1{V (w`)≥d`, ∀ `≤n−b}

]
≤ n3/2e−zEQ

[
GH(V (wn−b)− an(z + L))1{V (w`)≥d`, ∀ `≤n−b}

]
.

We choose H such that C−C+
√
π

σ
√

2

∫
y≥0

GH(y)R−(y)dy ≤ η/2. The function GH satisfies the

conditions of Lemma 2.2 for the same reasons than FL,b does. By Lemma 2.2, it yields that

EQ

[∣∣∣F kill(V (wn−b))− n3/2e−zFL,b(V (wn−b)− an(z + L))
∣∣∣1{V (w`)≥d`, ∀ `≤n−b}

]
≤ ηe−z

for n large enough and z ∈ [0, lnn]. Combined with (3.25), we get

(3.26)∣∣∣Q(3.23) − n3/2e−zEQ

[
FL,b(V (wn−b)− an(z + L)), V (w`) ≥ d`, ∀ 0 ≤ ` ≤ n− b

]∣∣∣ ≤ 2ηe−z.

Recall the definition of CL,b in (3.22). We apply again Lemma 2.2 to see that

EQ

[
FL,b(V (wn−b)− an(z + L)), V (w`) ≥ d`, ∀ 0 ≤ ` ≤ n− b

]
∼ CL,b
n3/2

as n → ∞ uniformly in z ∈ [0, lnn]. Consequently, we have for n large enough and z ∈
[0, lnn],∣∣∣n3/2e−zEQ

[
FL,b(V (wn−b)− an(z + L)), V (w`) ≥ d`, ∀ 0 ≤ ` ≤ n− b

]
− e−zCL,b

∣∣∣ ≤ ηe−z.

The lemma follows from (3.26). �

We now have the tools to prove Proposition 3.1.

Proof of Proposition 3.1. Let ε > 0. By (3.12), there exists L0 ≥ 0 such that for any L ≥ L0,

z ≥ 0 and n ≥ 1

P(mkill,(n) /∈ Zz,L, Mkill
n ∈ In(z)) ≤ εe−z.

By Lemma 3.6, it yields that for L ≥ L0∣∣∣P(Mkill
n ∈ In(z))− EQ

[
eV (wn)1{V (wn)=Mkill

n }∑
|u|=n 1{V (u)=Mkill

n }
, wn ∈ Zz,L

] ∣∣∣ ≤ εe−z.
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For η > 0 and L ≥ L0, take B = B(L) ≥ 1 and A = A(L) > 0 as in Lemma 3.7. We have

then

EQ

[
eV (wn)1{V (wn)=Mkill

n }∑
|u|=n 1{V (u)=Mkill

n }
, wn ∈ Zz,L, Ecn

]
≤ n3/2e−zQ(wn ∈ Zz,L, Ecn) ≤ ηe−z

for b ≥ B, z ≥ A and n ≥ 1. Consequently,∣∣∣P(Mkill
n ∈ In(z))− EQ

[
eV (wn)1{V (wn)=Mkill

n }∑
|u|=n 1{V (u)=Mkill

n }
, wn ∈ Zz,L, En

] ∣∣∣ ≤ (ε+ η)e−z.

By Lemma 3.8, we get that for L ≥ L0, b ≥ B(L), n large enough and z ∈ [A(L), lnn],

(3.27)
∣∣∣ezP(Mkill

n ∈ In(z))− CL,b
∣∣∣ ≤ (ε+ 2η).

We still call Q(3.23) the expectation in the left-hand side of (3.23). We introduce

C−L,b := lim inf
z→∞

lim inf
n→∞

ezQ(3.23),

C+
L,b := lim sup

z→∞
lim sup
n→∞

ezQ(3.23).

In particular, taking the limits in n→∞ then z →∞ in (3.23), we have, for b ≥ B(L)

CL,b − η ≤ C−L,b ≤ C+
L,b ≤ CL,b + η.

Notice that En (hence Q(3.23)) is increasing in b. It implies that C−L,b and C+
L,b are both

increasing in b. Let C−L and C+
L be respectively the (possibly zero or infinite) limits of C−L,b

and C+
L,b when b → ∞. By (3.27), we know that CL,b ≤ ezP(Mkill

n ∈ In(z)) + ε + 2η for

b ≥ B(L), hence CL,b ≤ c11 + ε + 2η by Lemma 3.5. It implies that C−L and C+
L are finite

and bounded uniformly in L ≥ L0. We have then

lim sup
b→∞

CL,b − η ≤ C−L ≤ C+
L ≤ lim inf

b→∞
CL,b + η.

Letting η go to 0, it yields that CL,b has a limit as b→∞, that we denote by C(L) = C−L =

C+
L . Similarly, we see that Q(3.23) is increasing in L. It gives that C(L) admits a limit as

L → ∞, that we denote by C2, which is necessarily finite. However we do not know yet if

C2 > 0. Let L > L0 such that |C2 − C(L)| ≤ η and b ≥ B(L) such that |CL,b − C(L)| ≤ η.

Then, by (3.27), there exists N ≥ 1 such that for any n ≥ N and z ∈ [A(L), lnn], we have∣∣∣ezP(Mkill
n ∈ In(z))− C2

∣∣∣ ≤ ε+ 4η.

It remains to show that C2 > 0. We see that, necessarily,

lim sup
z→∞

lim sup
n→∞

∣∣∣ezP(Mkill
n ≤ 3

2
log n− z)− C2

1− e−1

∣∣∣ = 0.

We know then that C2 > 0 by the lower bound obtained in Lemma 3.5. �
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3.3 Proof of Lemma 3.7

We present here the postponed proof of Lemma 3.7.

Proof of Lemma 3.7. We follow the same strategy as for Lemma 3.5. Let η > 0. To avoid

superfluous notation, we prove the lemma for L = 0 (the general case works similarly). Recall

the definition of En = En(z, b) in (3.19). We want to show that P(Ecn, wn ∈ Zz,0) ≤ ηn−3/2

when b and z are large enough. As before, we take the numbers (dk, 0 ≤ k ≤ n) and

(ek, 0 ≤ k ≤ n) such that dk := 0 if 0 ≤ k ≤ n/2, dk := max(3
2

lnn− z− 1, 0) if n/2 < k ≤ n

and

ek = e
(n)
k :=

{
k1/12, if 0 ≤ k ≤ n

2
,

(n− k)1/12, if n
2
< k ≤ n.

We say again that |u| = n is a good vertex if u ∈ Zz,0 and∑
v∈Ω(uk)

e−(V (v)−dk)
{

1 + (V (v)− dk)+

}
≤ Be−ek ∀ 1 ≤ k ≤ n

with B such that, for n ≥ 1 and z ≥ 0

(3.28) Q(wn ∈ Zz,0, wn is not a good vertex) ≤ η

n3/2

(see Lemma C.1). Let as before Ω(wk) be the set of brothers of wk and G∞ be the sigma-

algebra generated by {wk, V (wk), Ω(wk), (V (u))u∈Ω(wk), k ≥ 1}. Recall the law of the branch-

ing random walk under Q in Proposition 2.1 (i). For En to happen, every brother of the

spine at generation less than n− b must have its descendants at time n greater than an(z).

In other words,

(3.29) Q((En)c, wn is a good vertex) = Q

1−
n−b∏
k=1

∏
u∈Ω(wk)

p (u, z), wn is a good vertex


where p (u, z) := PV (u)(M

kill
n−|u| > an(z)) is the probability that the killed branching random

walk rooted at u has its minimum greater than an(z) at time n− |u|. From Lemma 3.3, we

see that, if |u| ≤ n/2, then

1− p (u, z) ≤ c20(1 + V (u)+)e−z−V (u).

Since wn is a good vertex, we have for k ≤ n/2 (hence dk = 0),
∑

u∈Ω(wk)(1+V (u)+)e−V (u) ≤
Be−ek = Be−k

1/12
. It implies that for z large enough, and 1 ≤ k ≤ n/2,∏

u∈Ω(wk)

p (u, z) ≥ exp
(
−c21e−ze−k

1/12
)
.

23



MINIMUM OF A BRANCHING RANDOM WALK

It yields that

bn/2c∏
k=1

∏
u∈Ω(wk)

p (u, z) ≥ exp

−c21e−z
bn/2c∑
k=1

e−k
1/12

 ≥ exp(−c22e−z).

Therefore, there exists A1 > 0 such that for any z ≥ A1, and n ≥ 1

(3.30)

bn/2c∏
k=1

∏
u∈Ω(wk)

p (u, z) ≥ (1− η)1/2.

If k > n/2, we simply observe that if Mkill
` ≤ x, a fortiori M` ≤ x. Since Wn (defined in

(2.2)) is a martingale, we have 1 = E[W`] ≥ E[e−M` ] ≥ e−xP(M` ≤ x) for any ` ≥ 1 and

x ∈ R. We get that

1− p (u, z) ≤ P(Mn−|u| < an(z)− V (u)) ≤ ean(z)e−V (u).

We rewrite it (we have z ≥ 0), 1− p (u, z) ≤ n3/2e−V (u) = e−(V (u)−dk) for n/2 < k ≤ n. Since

wn is a good vertex, we get that
∏

u∈Ω(wk) p (u, z) ≥ e−c23e−ek = e−c23(n−k)1/12 . Consequently,

n−b∏
k=bn/2c+1

∏
u∈Ω(wk)

p (u, z) ≥ e−c23
∑n−b
k=bn/2c+1

e−(n−k)1/12

.

It yields that there exists B ≥ 1 such that for any b ≥ B and any n ≥ 1, we have,

(3.31)
n−b∏

k=bn/2c+1

∏
u∈Ω(wk)

p (u, z) ≥ (1− η)1/2.

In view of (3.30) and (3.31), we have for b ≥ B, z ≥ A1 and n ≥ 1,
∏n−b

k=1

∏
u∈Ω(wk) p (u, z) ≥

(1− η). Plugging it into (3.29) yields that

Q((En)c, wn is a good vertex) ≤ ηQ (wn is a good vertex ) ≤ ηQ
(
wn ∈ Zz,0

)
.

It follows from (3.28) that

Q((En)c, wn ∈ Zz,0) ≤ η(Q
(
wn ∈ Zz,0

)
+ n−3/2).

Remember that the spine behaves as a centered random walk. Then apply (2.7) to see that

Q (wn ∈ Zz,0) ≤ c24n
−3/2, which completes the proof of the lemma. �
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4 Tail distribution of the minimum of the BRW

We prove a slightly stronger version of Proposition 1.3.

Proposition 4.1 Let C1 be as in Proposition 1.2 and c0 as in (2.10). For any ε > 0, there

exists N ≥ 1 and A > 0 such that for any n ≥ N and z ∈ [A, 2 ln lnn],∣∣∣ez
z

P(Mn ≤
3

2
lnn− z)− C1c0

∣∣∣ ≤ ε.

We introduce some notation. To go from the tail distribution of Mkill
n to the one of Mn,

we have to control excursions inside the negative axis that can appear at the beginning of

the branching random walk. For z ≥ A ≥ 0 and n ≥ 1, we define the set

(4.1) SA := {u ∈ T : min
k≤|u|−1

V (uk) > V (u) ≥ A− z, |u| ≤ (lnn)10}.

We notice that SA depends on n and z, but we omit to write this dependency in the notation

for sake of concision. For z ≥ 0 and u ∈ SA, we define the indicator Bn,z(u) equal to 1 if and

only if the branching random walk emanating from u and killed below V (u) has its minimum

below 3
2

lnn− z. Equivalently,

Definition 4.2 For u ∈ SA, we call Bn,z(u) the indicator of the event that there exists

|v| = n, v > u such that V (v`) ≥ V (u), ∀|u| ≤ ` ≤ n and V (v) ≤ 3
2

lnn− z.

Finally, let for |v| ≥ 1,

(4.2) ξ(v) :=
∑

w∈Ω(v)

(1 + (V (w)− V (
←
v ))+)e−(V (w)−V (

←
v ))

where
←
v denotes the parent of v (and y+ := max(y, 0)). To avoid some extra integrability

conditions, we are led to consider vertices u ∈ SA which behave ’nicely’, meaning that ξ(uk)

is not too big along the path {u1, . . . , u|u| = u}. The first subsection controls the set SA.

Proposition 1.3 is then proved in subsection 4.2.

4.1 The branching random walk at the beginning

We will see that P(Mn ≤ 3
2

lnn−z) is comparable to the probability that there exists u ∈ SA
such that Bn,z(u) = 1. The lemmas in this section are used to give an equivalent of this

probability. As usual, we will use a second moment argument. Lemmas 4.3 and 4.4 give

bounds respectively on the first moment and second moment of the number of such vertices

u.
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Lemma 4.3 (i) Recall that R(x) is the renewal function of (Sn)n≥0 defined in (2.9). Let

ε > 0 and C1 be the constant in Proposition 1.2. There exists A ≥ 0 such that for n large

enough and z ∈ [A, ln1/5(n)],

(4.3)

∣∣∣∣∣ ez

R(z − A)
E

[∑
u∈SA

Bn,z(u)

]
− C1

∣∣∣∣∣ ≤ ε.

(ii) For any |u| ≥ 1, let T (u) := {∀1 ≤ k ≤ |u| : ξ(uk) < e(V (uk−1)+z−A)/2}. We have

E

[∑
u∈SA

Bn,z(u)1T (u)c

]
= o(z)e−z

uniformly in A ≥ 0 and n ≥ 1.

Proof. Let k ≤ (lnn)10. By the Markov property at time k, we have

(4.4) E

[∑
u∈SA

Bn,z(u)1{|u|=k}

]
= E

[∑
u∈SA

1{|u|=k}P
(
Mkill

n−k ≤ an(z + r)
)
r=V (u)

]

where we recall that Mkill
n−k is the minimum of the branching random walk killed below zero at

time n− k. We observe that V (u) ∈ [A− z, 0] when u ∈ SA. We check by Corollary 3.2 that

there exist A > 0 and N ≥ 1 such that for any n ≥ N , k ≤ (ln(n))10 and z+r ∈ [A, ln(n)/2],∣∣∣ez+rP (Mkill
n−k ≤ an(z + r)

)
− C1

∣∣∣ ≤ ε.

Plugging it into (4.4), it implies that, for n ≥ N , k ≤ (lnn)10 and z ∈ [A, ln(n)/4],∣∣∣∣∣ezE
[∑
u∈SA

Bn,z(u)1{|u|=k}

]
− C1E

[∑
u∈SA

e−V (u)1{|u|=k}

] ∣∣∣∣∣ ≤ εE

[∑
u∈SA

e−V (u)1{|u|=k}

]
.

From the definition of SA, we observe that by (2.1), E
[∑

u∈SA e−V (u)1{|u|=k}
]

= P(Sk ≥
A− z, Sk < S`, ∀ 0 ≤ ` < k − 1). Hence, we can rewrite the inequality above as∣∣∣∣∣ezE

[∑
u∈SA

Bn,z(u)1{|u|=k}

]
− C1P(Sk ≥ A− z, Sk < S`, ∀ 0 ≤ ` < k − 1)

∣∣∣∣∣
≤ εP(Sk ≥ A− z, Sk < S`, ∀ 0 ≤ ` < k − 1).

By definition of the renewal function R(x), we have R(z − A) =
∑

k≥0 P(Sk ≥ A− z, Sk <
S`, ∀ 0 ≤ ` < k − 1). Therefore, summing over k ≤ (lnn)10 (and since |u| ≤ (lnn)10 if
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u ∈ SA), we get

∣∣∣ezE[∑
u∈SA

Bn,z(u)

]
− C1R(z − A)

∣∣∣
≤ εR(z − A) + C1

∑
k>(lnn)10

P(Sk ≥ A− z, Sk < S`, ∀ 0 ≤ ` ≤ k − 1).

Observe that

P(Sk ≥ A− z, Sk < S`, ∀ 0 ≤ ` ≤ k − 1) ≤ P(Sk ∈ (A− z, 0], min
`<k

S` ≥ A− z)

≤ c24(1 + z − A)3(1 + k)−3/2

≤ c24(1 + lnn)3(1 + k)−3/2

by (2.6), for n ≥ 1 and z ∈ [A, lnn]. Therefore,
∑

k>(lnn)10 P(Sk ≥ A − z, Sk < S`, ∀ 0 ≤
` ≤ k − 1) ≤ c25 ln(n)−2 ≤ ε for n large enough. Since R(z −A) is always bigger than 1, we

obtain for n ≥ N , and z ∈ [A, lnn],

∣∣∣ezE[∑
u∈SA

Bn,z(u)

]
− C1R(z − A)

∣∣∣ ≤ εR(z − A)(1 + C1).

This ends the proof of (i). Similarly, we have by the Markov property

E

[∑
u∈SA

Bn,z(u)1T (u)c

]
= E

[∑
u∈SA

1T (u)cP
(
Mkill

n−|u| ≤ an(z + r)
)
r=V (u)

]
.

By Lemma 3.5, we have for any n ≥ 1, k ≤ (lnn)10 and z + r ≥ 0

P
(
Mkill

n−k ≤ an(z + r)
)
≤ c26e−z−r.

Remember that if u ∈ SA, then |u| ≤ (lnn)10 and z + V (u) ≥ A ≥ 0. It implies that

(4.5) E

[∑
u∈SA

Bn,z(u)1T (u)c

]
≤ c26e−zE

[∑
u∈SA

1T (u)ce
−V (u)

]
.

At this stage, we make use of the measure Q. We have

(4.6) E

[∑
u∈SA

1T (u)ce
−V (u)

]
=

b(lnn)10c∑
k=0

Q(wk ∈ SA, T (wk)
c).
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We see that Q(w0 ∈ SA, T (w0)c) ≤ Q(T (w0)c) = 0. For k ≥ 1, we have by definition of the

event T (wk) that 1T (wk)c ≤
∑k

`=1 1{ξ(w`)≥e(V (w`−1)+z−A)/2}. It follows that

Q(wk ∈ SA, T (wk)
c) ≤

k∑
`=1

Q
(
wk ∈ SA, ξ(w`) ≥ e(V (w`−1)+z−A)/2

)
.

Together with equations (4.5) and (4.6), it gives that

E

[∑
u∈SA

Bn,z(u)1T (u)c

]
≤ c26e−z

b(lnn)10c∑
`=1

b(lnn)10c∑
k=`

Q
(
wk ∈ SA, ξ(w`) ≥ e(V (w`−1)+z−A)/2

)
.

In order to prove (ii), it is enough to show that

(4.7)
∑
`≥1

∑
k≥`

Q
(
wk ∈ SA, ξ(w`) ≥ e(V (w`−1)+z−A)/2

)
= o(z)

uniformly in A ≥ 0. The left-hand side is 0 if z < A. Therefore, we will assume that z ≥ A.

For k ≥ `, notice that if wk ∈ SA, then necessarily minj≤` V (wj) ≥ A−z, V (wk) ≥ A−z and

V (wk) < min`≤j≤k−1 V (wj) (in particular, k is a ladder epoch for the random walk started

at V (w`)). It implies that

Q
(
wk ∈ SA, ξ(w`) ≥ e(V (w`−1)+z−A)/2

)
≤ Q

(
ξ(w`) ≥ e(V (w`−1)+z−A)/2, min

j≤`
V (wj) ≥ A− z, A− z ≤ V (wk) < min

`≤j≤k−1
V (wj)

)
.

Summing over k ≥ `, we get∑
k≥`

Q
(
wk ∈ SA, ξ(w`) ≥ e(V (w`−1)+z−A)/2

)
≤ EQ

[
1{ξ(w`)≥e(V (w`−1)+z−A)/2}1{minj≤` V (wj)≥A−z}

∑
k≥`

1{A−z≤V (wk)<min`≤j≤k−1 V (wj)}

]
.

By the Markov property at time `, we recognize in the term
∑

k≥` 1{A−z≤V (wk)<min`≤j≤k−1 V (wj)}

the number of strict descending ladder heights above level A− z when starting from V (w`).

Consequently, ∑
k≥`

Q
(
wk ∈ SA, ξ(w`) ≥ e(V (w`−1)+z−A)/2

)
≤ EQ

[
1{ξ(w`)≥e(V (w`−1)+z−A)/2}1{minj≤` V (wj)≥A−z}R(z − A+ V (w`))

]
.
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We know from (2.10) that there exists c27 > 0 such that R(x) ≤ c27(1 + x) for any x ≥ 0.

Thus, R(z − A + V (w`)) ≤ c27(1 + z − A + V (w`−1))+ + c27(V (w`) − V (w`−1))+. Also, we

obviously have minj≤` V (wj) ≤ minj≤`−1 V (wj). It yields that∑
k≥`

Q
(
wk ∈ SA, ξ(w`) ≥ e(V (w`−1)+z−A)/2

)
≤ c27(f(`) + g(`))

where

f(`) := EQ

[
1{ξ(w`)≥e(V (w`−1)+z−A)/2}1{minj≤`−1 V (wj)≥A−z}(z − A+ V (w`−1))

]
,

g(`) := EQ

[
1{ξ(w`)≥e(V (w`−1)+z−A)/2}1{minj≤`−1 V (wj)≥A−z}(V (w`)− V (w` − 1))+

]
.

Equation (4.7) boils down to

(4.8)
∑
`≥1

(f(`) + g(`)) = o(z).

Let (ξ,∆) be a generic random variable independent of all the random variables used so far,

and distributed as (ξ(w1), V (w1)) (under Q). Using the Markov property at time ` − 1 in

f(`), we get

f(`) = EQ

[
1{ξ≥e(V (w`−1)+z−A)/2}1{minj≤`−1 V (wj)≥A−z}(z − A+ V (w`−1))

]
.

Summing over ` (and replacing `− 1 by `) yields that

∑
`≥1

f(`) = EQ

[∑
`≥0

1{V (w`)+z−A≤2 ln(ξ)}1{minj≤` V (wj)≥A−z}(z − A+ V (w`))

]

By Lemma B.2 (i), we have for any x ≥ 0

EQ

[∑
`≥0

1{V (w`)+z−A≤x}1{minj≤` V (wj)≥A−z}(z − A+ V (w`))

]
≤ c28(1 + x)2(1 + min(x, z − A))

≤ c28(1 + x)2(1 + min(x, z)).

We deduce that, with the notation of (1.2),∑
`≥1

f(`) ≤ c28EQ[(1 + 2 ln+ ξ)
2(1 + min(2 ln+ ξ, z))]

= c28E[X(1 + 2 ln+(X + X̃))2(1 + min(2 ln+(X + X̃), z))]

= o(z)(4.9)
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under (1.4) by Lemma B.1 (ii). We consider now g(`). We have similarly∑
`≥1

g(`) = EQ

[
∆+

∑
`≥0

1{V (w`)+z−A≤2 ln(ξ)}1{minj≤` V (wj)≥A−z}

]
.

From Lemma B.2 (i), we get∑
`≥1

g(`) ≤ c28EQ[∆+(1 + 2 ln+ ξ)(1 + min(2 ln ξ, z))]

= c28E[X̃(1 + 2 ln+(X + X̃))(1 + min(2 ln(X + X̃), z))]

= o(z)(4.10)

by Lemma B.1 (ii). Equations (4.9) and (4.10) imply (4.8). �

We compute the second moment in the following lemma.

Lemma 4.4 Recall the notation SA in (4.1), Bn,z(u) in Definition 4.2 and T (u) in Lemma

4.3. There exists a constant c29 > 0 such that for any z ≥ A ≥ 0, and n ≥ 1,

(4.11) E
[
U2
]
− E [U ] ≤ c29e−ze−A

where U :=
∑

u∈SA Bn,z(u)1T (u).

Proof. Let U be as in the lemma. We observe that

U2 − U =
∑

u6=v∈SA

Bn,z(u)Bn,z(v)1T (u),T (v)

where u 6= v ∈ SA is a short way to write u ∈ SA, v ∈ SA, u 6= v. It follows that

E[U2 − U ] ≤ E

[∑
u6=v

Bn,z(u)Bn,z(v)1{u,v∈SA}1T (u)

]

≤ 2E

 ∑
u6=v,|u|≥|v|

Bn,z(u)Bn,z(v)1{u,v∈SA}1T (u)

 .
For |u| ≥ |v|, and u 6= v, notice that Bn,z(u) depends on the branching random walk rooted at

u, whereas Bn,z(v)1{u∈SA} is independent of it (even if v is a (strict) ancestor of u). Therefore,

by the branching property,

E[U2 − U ] ≤ 2E

 ∑
u6=v,|u|≥|v|

Φ(V (u), n− |u|)Bn,z(v)1{u,v∈SA}1T (u)


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where, for any r ≥ 0 and ` ≤ n

(4.12) Φ(r, `) := P
(
Mkill

` ≤ an(z + r)
)
.

By Lemma 3.5, we have Φ(V (u), n−|u|) ≤ c30e−z−V (u) for |u| = o(n), which is the case when

u ∈ SA by definition. It gives that

E[U2 − U ] ≤ c30e−zE

 ∑
u6=v,|u|≥|v|

e−V (u)Bn,z(v)1{u,v∈SA}1T (u)


≤ c30e−z

∑
k≥0

E

∑
|u|=k

e−V (u)1{u∈SA}1T (u)

∑
v 6=u,|v|≤k

Bn,z(v)1{v∈SA}

 .(4.13)

The weight e−V (u) hints for a change of measure from P to Q. For any k ≥ 0, we have by

Proposition 2.1 (ii)

E

∑
|u|=k

e−V (u)1{u∈SA}1T (u)

∑
v 6=u,|v|≤k

Bn,z(v)1{v∈SA}


= EQ

1{wk∈SA}1T (wk)

∑
v 6=wk,|v|≤k

Bn,z(v)1{v∈SA}

 .(4.14)

We have to discuss on the location of the vertex v with respect to wk. We say that u � v if

v is not an ancestor of u, nor u is an ancestor of v. If v 6= wk and |v| ≤ k, then either v � u,

or v = w` for some ` < k. In view of (4.13) and (4.14), the lemma will be proved once the

following two estimates are shown:

∑
k≥1

EQ

[∑
v�wk

Bn,z(v)1{v∈SA}, wk ∈ SA, T (wk)

]
≤ c31e−A,(4.15)

∑
k≥1

k−1∑
`=0

EQ [Bn,z(w`), wk ∈ SA, w` ∈ SA, T (wk)] ≤ c32e−A.(4.16)

Proof of equation (4.15).

Decomposing the sum
∑

v�wk along the spine, we see that

(4.17)
∑
v�wk

Bn,z(v)1{v∈SA} =
k∑
`=1

∑
x∈Ω(w`)

∑
v≥x

Bn,z(v)1{v∈SA},

31



MINIMUM OF A BRANCHING RANDOM WALK

where Ω(w`) is as usual the set of brothers of w`. The branching random walk rooted at x ∈
Ω(w`) has the same law under P and Q. Let as before G∞ := σ{wj,Ω(wj), V (wj), V (x), x ∈
Ω(wj), j ≥ 0} be the sigma-algebra associated to the spine and its brothers. We have, for

x ∈ Ω(w`)

(4.18) EQ

[∑
v≥x

Bn,z(v)1{v∈SA}

∣∣∣G∞] = EQ

[∑
v≥x

Φ(V (v), n− |v|)1{v∈SA}
∣∣∣G∞]

with the notation of (4.12), which is

≤ c29e−zEQ

[∑
v≥x

e−V (v)1{v∈SA}

∣∣∣G∞]

by Lemma 3.5. We observe now that if v ≥ x and v ∈ SA, then min|x|≤j≤|v|−1 V (vj) > V (v) ≥
A− z. Therefore

EQ

[∑
v≥x

e−V (v)1{v∈SA}

∣∣∣G∞] ≤ EV (x)

[∑
v∈T

e−V (v)1{minj≤|v|−1 V (vj)>V (v)≥A−z}

]
.

By (2.1), we have

EV (x)

[∑
v∈T

e−V (v)1{minj≤|v|−1 V (vj)>V (v)≥A−z}

]
= e−V (x)E

[∑
i≥0

1{minj≤i−1 Sj>Si≥A−z−r}

]
r=V (x)

= e−V (x)R(z − A+ V (x))

by definition of the renewal function R in (2.9). Going back to (4.18), we get that for any

x ∈ Ω(w`),

EQ

[∑
v≥x

Bn,z(v)1{v∈SA}

∣∣∣G∞] ≤ c29e−ze−V (x)R(z − A+ V (x)).

In view of (4.17), we have

∑
k≥0

EQ

[∑
v�wk

Bn,z(v)1{v∈SA}, wk ∈ SA, T (wk)

]
(4.19)

≤ c29e−z
∑
k≥1

k∑
`=1

EQ

 ∑
x∈Ω(w`)

e−V (x)R(z − A+ V (x)), wk ∈ SA, T (wk)

 .
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We know that (2.10) implies R(x) ≤ c27(x+ + 1). We observe that, for a ≥ 1

(4.20)
∑

x∈Ω(wj)

(a+ V (x)+)e−V (x) ≤ (a+ V (wj−1)+)e−V (wj−1)ξ(wj).

First by (4.20) then by definition of T (wk), it yields that for k ≥ ` ≥ 1

EQ

 ∑
x∈Ω(w`)

e−V (x)R(z − A+ V (x)), wk ∈ SA, T (wk)


≤ c27EQ

[
(z − A+ V (w` − 1) + 1)e−V (w`−1)ξ(w`), wk ∈ SA, T (wk)

]
≤ c27e(z−A)/2EQ

[
e−V (w`−1)/2(z − A+ V (w`−1) + 1), wk ∈ SA

]
.

By Proposition 2.1 (iii), we have

∑
k≥1

k∑
`=1

EQ

[
e−V (w`−1)/2(z − A+ V (w`−1) + 1), wk ∈ SA

]
=

b(lnn)10c∑
k=1

k∑
`=1

E

[
e−S`−1/2(z − A+ S`−1 + 1), min

j≤k−1
Sj > Sk ≥ A− z

]

≤
∑
k≥1

k∑
`=1

E

[
e−S`−1/2(z − A+ S`−1 + 1), min

j≤k−1
Sj > Sk ≥ A− z

]

Equation (4.19) becomes

∑
k≥1

EQ

[∑
v�wk

Bn,z(v)1{v∈SA}, wk ∈ SA, T (wk)

]
(4.21)

≤ c29c27e−ze(z−A)/2
∑
k≥1

k∑
`=1

E

[
e−S`−1/2(z − A+ S`−1 + 1), min

j≤k−1
Sj > Sk ≥ A− z

]
.

We observe that

∑
k≥1

k∑
`=1

E

[
e−S`−1/2(z − A+ S`−1 + 1), min

j≤k−1
Sj > Sk ≥ A− z

]

=
∑
`≥1

E

[
e−S`−1/2(z − A+ S`−1 + 1)

∑
k≥`

1{minj≤k−1 Sj>Sk≥A−z}

]
.
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By the Markov property at time `− 1, we get

∑
k≥1

k∑
`=1

E

[
e−S`−1/2(z − A+ S`−1 + 1), min

j≤k−1
Sj > Sk ≥ A− z

]
≤

∑
`≥1

E

[
e−S`−1/2(z − A+ S`−1 + 1)R(S`−1 + z − A), min

j≤`−1
Sj ≥ A− z

]
≤ c27

∑
`≥1

E

[
e−S`−1/2(z − A+ S`−1 + 1)2, min

j≤`−1
Sj ≥ A− z

]
.

By Lemma B.2 (iii), we have∑
`≥1

E

[
e−S`−1/2(z − A+ S`−1 + 1)2, min

j≤`−1
Sj ≥ A− z

]
≤ c33e(z−A)/2.

Consequently, by (4.21)

∑
k≥1

EQ

[∑
v�wk

Bn,z(v)1{v∈SA}, wk ∈ SA, T (wk)

]
≤ c34e−ze(z−A)/2e(z−A)/2 = c34e−A.

Equation (4.15) follows.

Proof of equation (4.16)

We have ∑
k≥1

k−1∑
`=0

EQ [Bn,z(w`), wk ∈ SA, w` ∈ SA, T (wk)]

=
∑
`≥0

∑
k>`

EQ [Bn,z(w`), wk ∈ SA, w` ∈ SA, T (wk)]

=
∑
`≥0

EQ

[
Bn,z(w`)1{w`∈SA}

∑
k>`

1{wk∈SA}∩T (wk)

]
.

Let t` be the first time t after ` such that V (wt) < V (w`). If k > ` and wk ∈ SA, then

V (wk) < V (w`), which means that necessarily k ≥ t` (and t` < (lnn)10). Moreover, we have

T (wi) ⊂ T (wj) if i ≤ j. Thus,∑
k>`

1{wk∈SA}∩T (wk) = 1{wt`∈SA, t`<(lnn)10}
∑
k≥t`

1{wk∈SA}∩T (wk)

≤ 1{wt`∈SA, t`<(lnn)10}∩T (wt` )

∑
k≥t`

1{mint`≤j<k V (wj)>V (wk)≥A−z}.
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We observe that Bn,z(w`) is a function of the branching random walk killed below V (w`) and

therefore is independent of the subtree rooted at wt` . As a result, applying the branching

property, we get

EQ

[
Bn,z(w`)1{w`∈SA}

∑
k>`

1{wk∈SA}∩T (wk)

]

≤ EQ

[
Bn,z(w`)1{w`∈SA}1{wt`∈SA, t`<(lnn)10}∩T (wt` )

∑
k≥t`

1{mint`≤j<k V (wj)>V (wk)≥A−z}

]
= EQ

[
Bn,z(w`)1{w`∈SA}1{wt`∈SA, t`<(lnn)10}∩T (wt` )

R(z − A+ V (wt`))
]
.

We have V (wt`) < V (w`). Since R is a non-decreasing function, we obtain

EQ

[
Bn,z(w`)1{w`∈SA}

∑
k>`

1{wk∈SA}∩T (wk)

]
≤ EQ

[
Bn,z(w`)1{w`∈SA}1{wt`∈SA, t`<(lnn)10}∩T (wt` )

R(z − A+ V (w`))
]
.

We can now apply the Markov property at time `. It yields that

EQ

[
Bn,z(w`)1{w`∈SA}

∑
k>`

1{wk∈SA}∩T (wk)

]
≤ EQ

[
1{w`∈SA}R(z − A+ V (w`))Φ̃(V (w`), n− `)

]
= 1{`<(lnn)10}EQ

[
1{minj<` V (wj)>V (w`)≥A−z}R(z − A+ V (w`))Φ̃(V (w`), n− `)

]
where, if τ−0 := min{j ≥ 0 : V (wj) < 0}, then

Φ̃(r, i) := Q
(
τ−0 < (lnn)10, Mkill

i ≤ an(z + r), ξ(wj) ≤ e(r+V (wj−1)+z−A)/2, ∀ 1 ≤ j ≤ τ−0
)
.

By Proposition 2.1 (iii), it implies that

EQ

[
Bn,z(w`)1{w`∈SA}

∑
k>`

1{wk∈SA}∩T (wk)

]
(4.22)

≤ 1{`<(lnn)10}E
[
1{minj<` Sj>S`≥A−z}R(z − A+ S`)Φ̃(S`, n− `)

]
.

Let us estimate Φ̃(r, i) for i > n/2. We have to decompose along the spine. Notice that if

Mkill
i ≤ an(z + r), then there must be some j < τ−0 and x ∈ Ω(wj) such that there exists a

35
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line of descent from x which stays above 0 and ends below an(z + r) at time i. Therefore,

Φ̃(r, i)

≤
b(lnn)10c∑
j=1

EQ

 ∑
x∈Ω(wj)

PV (x)(M
kill
i−j ≤ an(z + r)), ξ(wj) ≤ e(r+V (wj−1)+z−A)/2, j < τ−0

 .
By Lemma 3.3, we get that for i > n/2

Φ̃(r, i) ≤ c35e−z−r
b(lnn)10c∑
j=1

EQ

 ∑
x∈Ω(wj)

(1 + V (x)+)e−V (x), ξ(wj) ≤ e(r+V (wj−1)+z−A)/2, j < τ−0


≤ c35e−z−r

b(lnn)10c∑
j=1

EQ

[
e−V (wj−1)(1 + V (wj−1))e(r+V (wj−1)+z−A)/2, j < τ−0

]
,

by (4.20). It follows that

Φ̃(r, i) ≤ c35e−Ae−(r+z−A)/2
∑
j≥1

E
[
e−Sj−1/2(1 + Sj−1), j < τ−0

]
= c36e−Ae−(r+z−A)/2,

by Lemma B.2 (ii). Going back to (4.22), (notice that n− ` > n− (lnn)10), we obtain that

EQ

[
Bn,z(w`)1{w`∈SA}

∑
k>`

1{wk∈SA}∩T (wk)

]
≤ c36e−AE

[
1{minj<` Sj>S`≥A−z}R(z − A+ S`)e

−(S`+z−A)/2
]
.

Summing over ` ≥ 1, then applying Lemma B.2 (iii) completes the proof of (4.16). �

4.2 Proof of Proposition 4.1

We can now prove Proposition 4.1.
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Proof of Proposition 4.1. Let ε > 0. We see that for any r ≥ 0,

P

(
∃|u| ≥ (lnn)10 : V (u) ∈ [−r, 0], min

j≤|u|
V (uj) ≥ −r

)

≤
∑

k≥(lnn)10

E

∑
|u|=k

1{V (u)∈[−r,0],minj≤k V (uj)≥−r}


=

∑
k≥(lnn)10

E

[
eSk , Sk ∈ [−r, 0], min

j≤k
Sj ≥ −r

]
≤

∑
k≥(lnn)10

P(Sk ∈ [−r, 0],min
j≤k

Sj ≥ −r)

by (2.1). We notice that P(Sk ∈ [−r, 0],minj≤k Sj ≥ −r) ≤ c37(1 + r)2k−3/2 by (2.6).

Therefore,

(4.23) P

(
∃|u| ≥ (lnn)10 : V (u) ∈ [−r, 0], min

j≤|u|
V (uj) ≥ −r

)
≤ c38(1 + r)2(lnn)−5.

We also observe that

P(∃u ∈ T : V (u) ≤ −r) ≤
∑
n≥0

E

∑
|u|=n

1{V (u)≤−r,V (uk)>−r,∀ k<n}

(4.24)

=
∑
n≥0

E
[
eSn , Sn ≤ −r, Sk > −r ∀k < n

]
≤ e−r.

On the event {∀ |u| ≥ (lnn)10 : V (u) ≥ 0} ∩ {∀u ∈ T, V (u) ≥ A − z}, we observe that

Mn ≤ 3
2

lnn − z if and only if
∑

u∈SA Bn,z(u) ≥ 1 (recall the definition of Bn,z and SA in

Definition 4.2 and in (4.1)). It yields that, for n ≥ 1 and z ≥ A,∣∣∣∣∣P
(
Mn ≤

3

2
lnn− z

)
−P

(∑
u∈SA

Bn,z(u) ≥ 1

)∣∣∣∣∣ ≤ c38(1 + z − A)2(lnn)−5 + eA−z.

Let us look at the upper bound. We have P
(∑

u∈SA Bn,z(u) ≥ 1
)
≤ E

[∑
u∈SA Bn,z(u)

]
.

Therefore (take A ≥ 1)

P

(
Mn ≤

3

2
lnn− z

)
≤ c38z

2(lnn)−5 + eA−z + E

[∑
u∈SA

Bn,z(u)

]
.
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Lemma 4.3 implies that for n ≥ N1 and z ∈ [A1, (lnn)1/5],

ez

R(z − A1)
P

(
Mn ≤

3

2
lnn− z

)
− C1 ≤ c38

ez

R(z − A1)
z2(lnn)−5 +

eA1

R(z − A1)
+ ε.

Since R(x) ∼ c0 at infinity by (2.10), we have for n ≥ N1 and z ∈ [A2, (lnn)1/5]

ez

c0z
P

(
Mn ≤

3

2
lnn− z

)
− C1 ≤ c38zez(lnn)−5 +

eA1

c0z
+ 2ε.

We deduce that for n ≥ N2 and z ∈ [A3, ln lnn]

ez

c0z
P

(
Mn ≤

3

2
lnn− z

)
− C1 ≤ 4ε.

This proves the upper bound. Similarly, we have for the lower bound

P

(
Mn ≤

3

2
lnn− z

)
≥ P

(∑
u∈SA

Bn,z(u) ≥ 1

)
− c38z

2(lnn)−5 − eA−z

≥ P(
∑
u∈SA

Bn,z(u)1T (u) ≥ 1)− c38z
2(lnn)−5 − eA−z.

If we write as in Lemma 4.4, U :=
∑

u∈SA Bn,z(u)1T (u), then by the Paley-Zygmund formula,

we have P(U ≥ 1) ≥ E[U ]2

E[U2]
. By Lemma 4.3, we know that ez

R(z−A4)
E[U ] ≥ C1 − ε for n ≥ N2

and z ∈ [A4, (lnn)1/5]. By Lemma 4.4, we have that E[U2] ≤ (1 + ε)E[U ] if A4 is taken large

enough. Hence, ez

R(z−A4)
P(U ≥ 1) ≥ ez

R(z−A4)
(1 + ε)−1E[U ] ≥ (1 + ε)−1(C1− ε). It yields that

ez

R(z − A4)
P(Mn ≤

3

2
lnn− z) ≥ (1 + ε)−1(C1 − ε)− c38z

2(lnn)−5 − eA4−z.

From here, we conclude as before to see that for n ≥ N2 and z ∈ [A5, ln lnn],

ez

c0z
P(Mn ≤

3

2
lnn− z) ≥ C1 − c39ε.

The proposition follows. �

5 Proof of Theorem 1.1

For β ≥ 0, we look at the branching random walk killed below −β. The population at time

n of this process is {|u| = n : V (uk) ≥ −β, ∀ k ≤ n}. We define the associated martingale

(5.1) D(β)
n :=

∑
|u|=n

R(β + V (u))e−V (u)1{V (uk)≥−β, k≤n}.
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Since D
(β)
n is non-negative, it has a limit almost surely and we denote by D

(β)
∞ this limit.

Under (1.3) and (1.4), we know by Proposition A.1 that D
(β)
∞ > 0 almost surely on the event

of non-extinction for the killed branching random walk. For A ≥ 0, let Z[A] denote the set

of particles absorbed at level A, i.e.

Z[A] := {u ∈ T : V (u) ≥ A, V (uk) < A∀ k < |u|}.

By Theorem 7 of [6], we know that
∑

u∈Z[A] R(β + V (u))e−V (u)1{V (uk)≥−β, k≤n} converges

to D
(β)
∞ almost surely as A → ∞. Recall that R(x) ∼ c0x at infinity by (2.10). On the

event {minu∈T V (u) ≥ −β}, we see that necessarily D
(β)
∞ = c0∂W∞ almost surely, and∑

u∈Z[A] R(β + V (u))e−V (u)1{V (uk)≥−β, k≤n} ∼ c0

∑
u∈Z[A](β + V (u))e−V (u) as A→∞. Again

by Theorem 7 of [6], we have limA→∞
∑

u∈Z[A] e−V (u) = 0 almost surely. We deduce that

(5.2) lim
A→∞

∑
u∈Z[A]

V (u)e−V (u) = ∂W∞

on the event {minu∈T V (u) ≥ −β}, and therefore almost surely by making β →∞. We can

now prove the convergence in law.

Proof of Theorem 1.1. Fix x ∈ R and let ε > 0. For any A > 0, we have for n large enough

P(∃u ∈ Z[A] : |u| ≥ (lnn)10) ≤ ε,

P(∃u ∈ Z[A] : V (u) ≥ ln lnn) ≤ ε.

Take A > 0. Let YA := {maxu∈Z[A] |u| ≤ (ln(n))10, maxu∈Z[A] V (u) ≤ ln lnn}. We observe

that

P(Mn ≥
3

2
lnn+ x) ≥ P(Mn ≥

3

2
lnn+ x, YA)

= E

 ∏
u∈Z[A]

P(Mn−t ≥
3

2
ln(n) + x− r)r=V (u),t=|u|, YA

 .
By Proposition 4.1, there exists A large enough and N ≥ 1 such that for any n ≥ N ,

t ≤ (lnn)10 and z ∈ [A− x, ln lnn− x],

(5.3)
∣∣∣ez
z

P(Mn−t ≤
3

2
ln(n)− z)− C1c0

∣∣∣ ≤ ε.

We get that

P(Mn ≥
3

2
lnn+ x) ≥ E

 ∏
u∈Z[A]

(1− (C1c0 + ε)(V (u)− x)ex−V (u)), YA

 .
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Since P(YcA) ≤ 2ε for n large enough, we have for n large enough

P(Mn ≥
3

2
lnn+ x) ≥ E

 ∏
u∈Z[A]

(1− (C1c0 + ε)(V (u)− x)ex−V (u))

− 2ε.

In particular,

lim inf
n→∞

P(Mn ≥
3

2
lnn+ x) ≥ E

 ∏
u∈Z[A]

(1− (C1c0 + ε)(V (u)− x)ex−V (u))

− 2ε.

We make A go to infinity. We have almost surely by (5.2) and the fact that
∑

u∈Z[A] e−V (u)

vanishes

lim
A→∞

∑
u∈Z[A]

ln(1− (C1c0 + ε)(V (u)− x)ex−V (u)) = −(C1c0 + ε)ex∂W∞.(5.4)

By dominated convergence, we deduce that

lim inf
n→∞

P(Mn ≥
3

2
lnn+ x) ≥ E [exp(−(C1c0 + ε)ex∂W∞)]− 2ε,

which gives the lower bound by letting ε→ 0. The upper bounds works similarly. Let A be

such that (5.3) is satisfied for n large enough. We observe that, for n large enough,

P(Mn ≥
3

2
lnn+ x) ≤ P(Mn ≥

3

2
lnn+ x,YA) + 2ε

= E

 ∏
u∈Z[A]

P(Mn−t ≥ 3/2 ln(n) + x− r)r=V (u),t=|u|,YA

+ 2ε

≤ E

 ∏
u∈Z[A]

P(Mn−t ≥ 3/2 ln(n) + x− r)r=V (u),t=|u|

+ 2ε.

Using (5.3), we end up with

lim sup
n→∞

P(Mn ≥
3

2
lnn+ x) ≤ E

 ∏
u∈Z[A]

(1− (C1c0 − ε)(V (u)− x)ex−V (u))

+ 2ε.

From here, we proceed as for the lower bound. �
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A The derivative martingale

We work under (1.1), (1.3) and (1.4) but we drop the assumption that L is non-lattice. The

renewal function R(x) was defined in (2.9). For any β ≥ 0, let

D(β)
n :=

∑
|u|=n

R(V (u) + β)e−V (u)1{V (uk)≥−β, ∀ k≤n}

be the (non-negative) martingale associated to the branching random walk killed below −β
and we denote by D

(β)
∞ its limit. The question of the convergence in L1 was adressed in [6],

where the authors give almost optimal conditions for the convergence to hold. However, we

deal with slightly weaker conditions, so we have to prove the convergence in our case.

Proposition A.1 Assume (1.1), (1.3) and (1.4).

(i) For any β ≥ 0, D
(β)
n converges in L1 to D

(β)
∞ .

(ii) We have D
(β)
∞ > 0 almost surely on the event of non-extinction of the branching random

walk killed below −β.

(iii) We have ∂W∞ > 0 almost surely on the event of non-extinction of T.

Proof. We adapt the proof of [6] (see [20] for the case of the additive martingale). For any

y ≥ 0, let Q
(β)
y defined by

dQ
(β)
y

dPy

∣∣∣
Fn

:=
D

(β)
n

R(y + β)e−y
.

We write Q(β) for Q
(β)
0 . Then, under Q

(β)
y , the branching random walk has the following

spine decomposition (we refer to [3] for a more precise description). The spine w0 starts at

V (w0) = y. At time 1 it gives birth to a point process distributed as (V (x), |x| = 1) under

Q
(β)
y . Then the spine w1 at time 1 is chosen proportionally to R(V (u) + β)e−V (u)1{V (u)≥−β}

among the children of w0. At each time n, the spine wn produces an independent point

process distributed as (V (x), |x| = 1) under Q
(β)
V (wn), while the other particles |u| = n generate

independent point processes distributed as (V (x), |x| = 1) under PV (u). The spine wn+1 at

time n+ 1 is chosen proportionally to the weight R(V (u) + β)e−V (u)1{V (uk)≥−β, ∀ k≤n} among

the children of wn. Under Q
(β)
y , the spine process (V (wn), n ≥ 0) is distributed as the

random walk (Sn)n≥0 conditioned to stay above −β, i.e, for any measurable non-negative

function F : Rn+1 → R+,

E
Q

(β)
y

[F (V (w0), . . . , V (wn))] =
1

R(y + β)
Ey

[
F (S0, . . . , Sn)R(β + Sn), min

k≤n
Sk ≥ −β

]
.
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We observe now that if lim supn→∞D
(β)
n < ∞, Q(β)-a.s then D

(β)
n converges in mean under

P (it is actually an equivalence, see [20] for example). Let

G∞ := σ{wj, V (wj),Ω(wj), (V (u))u∈Ω(wj), j ≥ 1}

be the sigma-algebra of the spine and its brothers. We have

EQ(β) [D(β)
n | G∞] = R(β + V (wn))e−V (wn) +

n∑
k=1

∑
x∈Ω(wk)

R(β + V (x))e−V (x)1{V (xj)≥−β, ∀ j≤k}.

We know that V (wn)→∞ Q(β)-almost surely, therefore R(β + V (wn))e−V (wn) goes to zero

as n → ∞. Furthermore, we see that 1/D
(β)
n is under Q(β) a positive supermartingale, and

therefore converges as n → ∞. We still denote by D
(β)
∞ the (possibly infinite) limit of D

(β)
n

under Q(β). We already know that R(x) ≤ c27(1 + x+) for any x ∈ R. Then, by Fatou’s

lemma

EQ(β) [D(β)
∞ ] ≤ lim inf

n→∞
EQ(β) [D(β)

n ]

≤ c27

∑
k≥1

∑
x∈Ω(wk)

(1 + (β + V (x))+)e−V (x).(A.1)

To prove (i), it remains to show that the right-hand side of the last inequality is finite. We

observe that

(A.2)
∑
k≥1

∑
x∈Ω(wk)

(1 + (β + V (x))+)e−V (x) ≤ A1 + A2

with

A1 :=
∑
k≥1

(1 + β + V (wk−1))e−V (wk−1)
∑

x∈Ω(wk)

e−(V (x)−V (wk−1)),(A.3)

A2 :=
∑
k≥1

e−V (wk−1)
∑

x∈Ω(wk)

(V (x)− V (wk−1))+e−(V (x)−V (wk−1)).(A.4)

Let us consider A1. We recall that X :=
∑
|x|=1 e−V (x), X̃ :=

∑
|x|=1 V (x)+e−V (x) and we

introduce X ′ :=
∑
|x|=1R(β + V (x))e−V (x)1{V (x)≥−β}. We have for any z ∈ R and a ≥ −β

Q(β)
a (X > z) =

1

R(a+ β)e−a
Ea

[
X ′1{X>z}

]
≤ c40E

[
X1{X>z}

]
+ c41

1

1 + a+ β
E
[
X̃1{X>z}

]
(A.5)

=: c40h1(z) + c41
1

1 + a+ β
h2(z).
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We deduce by the Markov property at time k − 1 that

Q(β)

 ∑
x∈Ω(wk)

e−(V (x)−V (wk−1) ≥ eV (wk−1)/2


≤ EQ(β)

[
c40h1(eV (wk−1)/2) + c41

1

1 + V (wk−1) + β
h2(eV (wk−1)/2)

]
.

Hence,

∑
k≥1

Q(β)

 ∑
x∈Ω(wk)

e−(V (x)−V (wk−1) ≥ eV (wk−1)/2

(A.6)

≤ c40

∑
`≥0

EQ(β)

[
h1(eV (w`)/2)

]
+ c41

∑
`≥0

EQ(β)

[
1

1 + V (w`) + β
h2(eV (w`)/2)

]
.

We estimate
∑

`≥0 EQ(β)

[
h1(eV (w`)/2)

]
. Going back to the measure P, we have

EQ(β)

[
h1(eV (w`)/2)

]
=

1

R(β)
E

[
R(β + S`)h1(eS`/2), min

j≤`
Sj ≥ −β

]
=

1

R(β)
E

[
R(β + S`)X1{S`≤2 lnX}, min

j≤`
Sj ≥ −β

]
,

where X is independent of the random walk (Sn, n ≥ 0). Conditioning on X, then using

Lemma B.2 (i), we get that

(A.7)
∑
`≥0

EQ(β)

[
h1(eV (w`)/2)

]
≤ c42

R(β)
E[X(1 + ln+ X)2)]

which is finite by (1.4). Similarly,

EQ(β)

[
1

1 + V (w`) + β
h2(eV (w`)/2)

]
≤ c43E

[
X̃1{S`≤2 lnX}, min

j≤`
Sj ≥ −β

]
.

Lemma B.2 (i) implies that

(A.8)
∑
`≥0

EQ(β)

[
1

1 + V (w`) + β
h2(eV (w`)/2)

]
≤ c44E

[
X̃(1 + ln+X)

]
<∞

under (1.4) by Lemma B.1 (i). Equations (A.6) , (A.7) and (A.8) give that

(A.9)
∑
k≥1

Q(β)

 ∑
x∈Ω(wk)

e−(V (x)−V (wk−1) ≥ eV (wk−1)/2

 <∞.
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By the Borel-Cantelli lemma, we obtain that

(1 + β + V (wk−1))e−V (wk−1)
∑

x∈Ω(wk)

e−(V (x)−V (wk−1) ≤ (1 + β + V (wk−1))e−V (wk−1)/2

for k large enough almost surely. From (A.3), we deduce that A1 < ∞. We proceed

similarly for A2, replacing in (A.5) 1{X>z} by 1{X̃>z}. By analogy, we find that A2 < ∞ if

E[X(1 + ln+ X̃]2] and E[X̃(1 + ln+ X̃)] are finite. This is the case by (1.4) and Lemma B.1

(i). Equations (A.1) and (A.2) yield that D
(β)
∞ <∞ Q(β)-a.s, which ends the proof of (i). We

prove now (iii). It is well-known (see Theorem 12 of [6]) that P(∂W∞ > 0 | non− extinction)

is 0 or 1. We have P(D
(0)
∞ > 0) > 0 by (i). Since R(x) ≤ c27(1 + x+), we see that

D
(0)
∞ ≤ c27∂W∞, and therefore P(∂W∞ > 0) > 0. Hence, we have ∂W∞ > 0 almost surely

on the event of non-extinction. We can now prove (ii). Let β ≥ 0. On the event of non-

extinction of the branching random walk killed below β, we can find a vertex u (in the

killed branching random walk) such that min{V (v), v > u} ≥ V (u) and #{v ∈ T : v >

u} =∞. The sum
∑

v≥u,|v|=nR(β+V (v))e−V (v)1{V (vk)≥−β, ∀k≤n} converges then to c0∂W∞(u)

where ∂W∞(u) is the almost sure limit of
∑

v≥u,|v|=n V (v)e−V (v). We know from (iii) that

∂W∞(u) > 0, hence
∑

v≥u,|v|=nR(β + V (v))e−V (v)1{V (vk)≥−β, ∀k≤n} has a positive limit. Since

D
(β)
n ≥ e−V (u)

∑
v≥u,|v|=nR(β + V (v))e−V (v)1{V (vk)≥−β, ∀k≤n}, we have that D

(β)
∞ > 0. �

B Auxiliary estimates

Lemma B.1 Let X and X̃ be non-negative random variables such that (1.4) holds.

(i) We have

E
[
X(ln+ X̃)2

]
<∞, E

[
X̃ ln+ X

]
<∞.

(ii) As z →∞,

E
[
X(ln+(X + X̃))2 min(ln+(X + X̃), z)

]
= o(z),

E
[
X̃ ln+(X + X̃) min(ln+(X + X̃), z)

]
= o(z).

Proof. We prove (i). We claim that for any x, x̃ ≥ 0

(B.1) x(ln+ x̃)2 ≤ 3x(ln+ x)2 + 2e−1x̃ ln+ x̃.

If x̃ ≤ x, the inequality is immediate. Therefore, we suppose that x̃ > x and we write

z = x̃/x. Equation (B.1) can be rewritten

(ln z)2 + 2 ln z ln+ x ≤ 3(ln+ x)2 + 2e−1z ln z + 2e−1z ln+ x.
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We check that (ln z)2 ≤ 2e−1z ln z and 2 ln z ln+ x ≤ 2e−1z ln+ x for z ≥ 1, which ends the

proof of (B.1). It yields that

E
[
X(ln+ X̃)2

]
≤ 3E

[
X(ln+X)2

]
+ 2e−1E

[
X̃ ln+ X̃

]
which is finite under (1.4). Also, X̃ ln+X ≤ max(X̃ ln+ X̃,X ln+X), hence E[X̃ ln+(X)] <

∞. We turn now to the proof of (ii). Let ε > 0. We observe that

E
[
X(ln+(X + X̃))2 min(ln+(X + X̃), z)

]
= E

[
X(ln+(X + X̃))2 min(ln+(X + X̃), z), ln+(X + X̃) ≥ εz

]
+ E

[
X(ln+(X + X̃))2 min(ln+(X + X̃), z), ln+(X + X̃) < εz

]
.

On one hand,

E
[
X(ln+(X + X̃))2 min(ln+(X + X̃), z), ln+(X + X̃) ≥ εz

]
≤ zE

[
X(ln+(X + X̃))2, ln+(X + X̃) ≥ εz

]
= zoz(1)

since E
[
X(ln+(X + X̃))2

]
<∞. On the other hand,

E
[
X(ln+(X + X̃))2 min(ln+(X + X̃), z), ln+(X + X̃) < εz

]
≤ εzE

[
X(ln+X + X̃)2

]
.

Thus, E
[
X(ln+(X + X̃))2 min(ln+(X + X̃), z)

]
≤ (1 + E[X(ln+X + X̃)2])εz for z large

enough, and is therefore o(z). We show similarly that E
[
X̃ ln+(X + X̃) min(ln+(X + X̃), z)

]
=

o(z). �

Let (Sn)n≥0 be a one-dimensional random walk, with E[S1] = 0 and E[(S1)2] <∞.

Lemma B.2 (i) There exists a constant c45 > 0 such that for any α ≥ 0, z ≥ 0 and x ≥ 0

Ez

[∑
`≥0

1{S`≤x}1{minj≤` Sj≥0}S
α
`

]
≤ c45(1 + x)1+α(1 + min(x, z)).

(ii) We have

E

[∑
`≥0

e−S`/21{minj≤` Sj≥0}

]
= c46 <∞.
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(iii) There exists a constant c47 > 0 such that for any z ≥ 0,

Ez

[∑
`≥0

e−S`/21{minj≤` Sj≥0}

]
≤ c47.

Proof. We observe that, for α ≥ 0,

Ez

[
Sα` 1{S`≤x,minj≤` Sj≥0}

]
≤ xαPz

(
S` ≤ x, min

j≤`
Sj ≥ 0

)
.

To prove (i), it remains to show that
∑

`≥0 Pz (S` ≤ x, minj≤` Sj ≥ 0) ≤ c45(1 + x)(1 +

min(x, z)). Suppose that x < z. If τ−x denotes the first passage time at level x of (Sn)n≥0,

we have

∑
`≥0

Pz

(
S` ≤ x, min

j≤`
Sj ≥ 0

)
= Ez

∑
`≥τ−x

1{S`≤x,minj≤` Sj≥0}


≤ E

[∑
`≥0

1{S`≤x,minj≤` Sj≥−x}

]

where we used the Markov property at time τ−x . We have

∑
`≥0

P

(
S` ≤ x, min

j≤`
Sj ≥ −x

)
≤ 1 + x2 +

∑
`>x2

P

(
S` ≤ x, min

j≤`
Sj ≥ −x

)
≤ 1 + x2 + c48

∑
`>x2

(1 + x)3`−3/2

≤ c49(1 + x)2(B.2)

by (2.6). Suppose now that x ≥ z. Then,

∑
`≥0

Pz

(
S` ≤ x, min

j≤`
Sj ≥ 0

)
≤

∑
`≤x2

Pz

(
min
j≤`

Sj ≥ 0

)
+
∑
`>x2

Pz

(
S` ≤ x, min

j≤`
Sj ≥ 0

)
.

From (2.5), we know that Pz (minj≤` Sj ≥ 0) ≤ c50(1 + z)(1 + `)−1/2, whereas, by (2.6),

Pz

(
S` ≤ x, min

j≤`
Sj ≥ 0

)
≤ c51(1 + z)(1 + x)2(1 + `)−3/2.
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We get∑
`≥0

Pz

(
S` ≤ x, min

j≤`
Sj ≥ 0

)
≤ c50

∑
`≤x2

1 + z√
1 + `

+ c51

∑
`>x2

(1 + z)(1 + x)2(1 + `)−3/2

≤ c52(1 + z)(1 + x).(B.3)

From (B.2) when x < z and (B.3) when x ≥ z, we have for x, z ≥ 0,∑
`≥0

Pz

(
S` ≤ x, min

j≤`
Sj ≥ 0

)
≤ (c49 + c52)(1 + x)(1 + min(x, z)).

This ends the proof of (i). We turn to the statement (ii). We have∑
`≥0

E
[
e−S`/21{minj≤` Sj≥0}

]
=
∑
`≥0

∑
i≥0

e−i/2P(S` ∈ [i, i+ 1), min
j≤`

Sj ≥ 0).

By (2.6), P(S` ∈ [i, i+ 1), minj≤` Sj ≥ 0) ≤ c53(1 + i)(1 + `)−3/2, which completes the proof

of (ii). Let (T̃k, H̃k, k ≥ 0) be the strict descending ladder epochs and heights of (Sn)n≥0,

i.e. T̃0 := 0, H̃0 := S0 and for any k ≥ 1, T̃k := min{j > T̃k−1 : Sj < Hk−1}, H̃k := ST̃k . By

applying the Markov property at the times (T̃k, k ≥ 0), we observe that

Ez

[∑
`≥0

e−S`/21{minj≤` Sj≥0}

]
= c46Ez

[∑
k≥0

e−H̃k/21{H̃k≥0}

]

where c46 is the constant of (ii). The fact that Z(z) := Ez

[∑
k≥0 e−H̃k/21{H̃k≥0}

]
is bounded

in z ≥ 0 then comes from the renewal theorem: let U(dy) denotes the renewal measure of

(H̃k, k ≥ 0), i.e. U(dy) :=
∑

k≥0 P(H̃k ∈ dy). Then Z(z) =
∫ 0

−z e−(z+y)/2U(dy) which is

bounded by the renewal theorem (see Section XI.1 of [13]). �

For α > 0, a ≥ 0, n ≥ 1 and 0 ≤ i ≤ n, we define

(B.4) ki :=

{
iα, if 0 ≤ i ≤ bn/2c,
a+ (n− i)α, if bn/2c < i ≤ n.

Lemma B.3 Let α ∈ (0, 1/6) and ε > 0.

(i) There exist d > 0 and c53 > 0 such that for u ≥ 0, a ≥ 0 and n ≥ 1,

P
{
∃0 ≤ i ≤ n : Si ≤ ki − d, min

j≤n
Sj ≥ 0, min

bn/2c<j≤n
Sj ≥ a, Sn ≤ a+ u

}
(B.5)

≤ (1 + u)2
{ ε

n3/2
+ c53

(nα + a)2

n2−α

}
,

where ki is given by (B.4).
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Proof. We treat n/2 as an integer. Let E be the event in (B.5). We have P(E) ≤
∑n

i=1 P(Ei)

where

Ei := {Si ≤ ki − d, min
j≤n

Sj ≥ 0, min
λn<j≤n

Sj ≥ a, Sn ≤ a+ u}.

We first treat the case i ≤ n/2, so that ki = iα. By the Markov property at time i ≥ 1 and

(2.7), we have

P(Ei) ≤
c54(1 + u)2

n3/2
E
[
(1 + Si)1{Si≤iα,minj≤i Sj≥0}

]
which is smaller than c55(1+u)2

n3/2

(1+iα)3

i3/2
by (2.6). It yields that, if L is greater than some

constant L0 (which does not depend on d), we have

(B.6)
λn∑
i=L

P(Ei) ≤ (1 + u)2 ε

n3/2
,

[
∑y

i=x := 0 if x > y.] We treat the case n/2 < i ≤ n. We have by the Markov property at

time i and (2.6),

P(Ei) ≤
c56(1 + u)2

(n− i+ 1)3/2
E
[
(1 + Si − a)1{Si≤a+(n−i)α,minj≤n Sj≥0,minλn<j≤i Sj≥a}

]
.

If i ≥ 2n/3, we use (2.7) to see that P(Ei) ≤ c57(1 + u)2 (1+n−i)3α−
3
2

n3/2 . Therefore, if L ≥ L1,

(L1 does not depend on d),

(B.7)
n−L∑

i=b2n/3c

P(Ei) ≤ (1 + u)2 ε

n3/2
.

If n/2 < i < 2n/3, we simply write

P(Ei) ≤
c58(1 + u)2

(n− i+ 1)3/2
E
[
(1 + Si − a)1{a≤Si≤a+(n−i)α,minj≤i Sj≥0}

]
≤ c59(1 + u)2 (n− i)α

(n− i+ 1)3/2
P(a ≤ Si ≤ a+ (n− i)α, min

j≤i
Sj ≥ 0)

≤ c60(1 + u)2n
α(a+ nα)2

n3

by (2.6). We deduce that

(B.8)

b2n/3c∑
i=n/2

P(Ei) ≤ c61(1 + u)2 (nα + a)2

n2−α .
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Notice that our choice of L does not depend on the constant d. Thus, we are allowed to

choose d ≥ Lα, for which P(Ei) = 0 if i ∈ [1, L] ∪ [n− L, n]. We obtain by (B.6),(B.7) and

(B.8)
n∑
i=1

P(Ei) ≤ (1 + u)2
{

2
ε

n3/2
+ c61

(nα + a)2

n2−α

}
,

hence P(E) ≤ (1 + u)2
{

2 ε
n3/2 + c61

(nα+a)2

n2−α

}
indeed. �

C The good vertex

We recall the definition of a good vertex. Let z ≥ 0 and L ≥ 0. We define for n ≥ 1 and

k ≤ n

dk :=

{
0, if 0 ≤ k ≤ n

2
,

max(3
2

lnn− z − L− 1, 0), if n
2
< k ≤ n.

Let also

ek = e
(n)
k :=

{
k1/12, if 0 ≤ k ≤ n

2
,

(n− k)1/12, if n
2
< k ≤ n.

For |u| = n, we say that u ∈ Zz,L if V (uk) ≥ dk for k ≤ n and V (u) ∈ In(z). We say that u

is a good vertex if u ∈ Zz,L and for any 1 ≤ k ≤ n,

(C.1)
∑

v∈Ω(uk)

e−(V (v)−dk)
{

1 + (V (v)− dk)+

}
≤ Be−ek .

We defined the probability Q in (2.3) and the spine (wn, n ≥ 0) in subsection 2.1.

Lemma C.1 Fix L ≥ 0. For any ε > 0, we can find B large enough in (C.1) such that

Q(wn is not a good vertex, wn ∈ Zz,L) ≤ εn−3/2 for any n ≥ 1 and z ≥ 0.

Proof. Fix L ≥ 0 and let ε > 0. We do as if n/2 is an integer. By Lemma B.3, there exists

c62 = c62(L) > 0 and N = N(L) such that for n ≥ N and z ≥ 0

Q
(
wn ∈ Zz,L, ∃0 ≤ j ≤ n− 1 : V (wj) ≤ dj+1 + 2ej+1 − c62

)
≤ ε

n3/2
.

We see that, for any 1 ≤ k ≤ n, ∑
v∈Ω(wk)

e−(V (v)−dk)
{

1 + (V (v)− dk)+

}
> Be−ek , V (wk−1) ≥ dk + 2ek − c62


⊂

 ∑
v∈Ω(wk)

e−(V (v)−dk)
{

1 + (V (v)− dk)+

}
> Be−(V (wk−1)−dk+c62)/2

 .
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Therefore, for n ≥ N and z ≥ 0

Q(wn is not a good vertex, wn ∈ Zz,L) ≤ ε

n3/2
+(C.2)

n∑
k=1

Q

 ∑
v∈Ω(wk)

e−(V (v)−dk)
{

1 + (V (v)− dk)+

}
> Be−(V (wk−1)−dk+c62)/2, wn ∈ Zz,L

 .

We only have to show that we can find B large enough such that

n∑
k=1

Q

 ∑
v∈Ω(wk)

e−(V (v)−dk)
{

1 + (V (v)− dk)+

}
> Be−(V (wk−1)−dk)/2, wn ∈ Zz,L

 ≤ ε

n3/2
.

Let 1 ≤ k ≤ n/2, hence dk = 0. By the Markov property at time k, we get

Q

 ∑
v∈Ω(wk)

e−V (v)
{

1 + V (v)+

}
> Be−V (wk−1)/2, wn ∈ Zz,L


≤ EQ

λ(V (wk), k, n),
∑

v∈Ω(wk)

e−V (v)
{

1 + V (v)+

}
> Be−V (wk−1)/2, V (wj) ≥ 0, ∀ j ≤ k


where λ(r, k, n) := Qr(V (wj) ≥ dj+k, ∀ j ≤ n − k, V (wn−k) ∈ In(z)). We get by (2.7),

λ(r, k, n) ≤ c63n
−3/2(1 + r+). It yields that

n3/2Q

 ∑
v∈Ω(wk)

e−V (v)
{

1 + V (v)+

}
> Be−V (wk−1)/2, wn ∈ Zz,L

(C.3)

≤ c63EQ

1 + V (wk)+,
∑

v∈Ω(wk)

e−V (v)
{

1 + V (v)+

}
> Be−V (wk−1)/2, V (wj) ≥ 0, ∀ j ≤ k

 .
We see that ∑

v∈Ω(wk)

e−V (v)
(

1 + V (v)+

)
≤ e−V (wk−1)

∑
v∈Ω(wk)

e−(V (v)−V (wk−1))
{

1 + V (wk−1)+ + (V (v)− V (wk−1))+

}
≤ e−V (wk−1)(1 + V (wk−1)+)

∑
v∈Ω(wk)

e−(V (v)−V (wk−1))
{

1 + (V (v)− V (wk−1))+

}
.

With the notation of (4.2), we have then∑
v∈Ω(wk)

e−V (v)
(

1 + V (v)+

)
≤ e−V (wk−1)(1 + V (wk−1)+)ξ(wk).
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It yields that

EQ

1 + V (wk)+,
∑

v∈Ω(wk)

e−V (v)
{

1 + V (v)+

}
> Be−V (wk−1)/2, V (wj) ≥ 0, ∀ j ≤ k


≤ EQ

[
1 + V (wk)+, ξ(wk) > B

eV (wk−1)/2

1 + V (wk−1)
, V (wj) ≥ 0, ∀ j ≤ k

]
.

On the other hand, we have

1 + V (wk)+ ≤ 1 + V (wk−1)+ + (V (wk)− V (wk−1))+.

Let (ξ,∆) be generic random variables distributed as
(∑

|x|=1(1 + V (x)+)e−V (x), V (w1)+

)
under Q, and independent of the other random variables. By the Markov property at time

k − 1, we obtain that

EQ

1 + V (wk)+,
∑

v∈Ω(wk)

e−V (v)
{

1 + V (v)+

}
> Be−V (wk−1)/2, V (wj) ≥ 0, ∀j ≤ k


≤ EQ [κ(V (wk−1)), V (wj) ≥ 0, ∀ j ≤ k − 1]

with, for x ≥ 0, κ(x) := (1 + x)1{ξ>Bex/2/(1+x)} + ∆+1{ξ>Bex/2/(1+x)}. Taking B̃ = c64B

slightly bigger than B, we can assume that κ(x) ≤ (1 +x)1{ξ>B̃ex/3}+ ∆+1{ξ>B̃ex/3}. In view

of (C.3), it follows that

∑
k≤n/2

Q

 ∑
v∈Ω(wk)

e−V (v)
{

1 + V (v)+

}
> Be−V (wk−1)/2, wn ∈ Zz,L

 ≤ c63n
−3/2(D1 +D2)

where

D1 :=
∑
k≥0

EQ

[
(1 + V (wk))1{V (wk)≤3(ln ξ−ln B̃)}, min

j≤k
V (wj) ≥ 0

]
D2 :=

∑
k≥0

EQ

[
∆+1{V (wk)≤3(ln ξ−ln B̃)}, min

j≤k
V (wj) ≥ 0

]
.

We recall that by Proposition 2.1 (V (wn), n ≥ 0) is distributed as (Sn, n ≥ 0) (under P).

Notice that in the definition of D1, the term inside the expectation is 0 if B̃ > ξ. Therefore,

we can add the indicator that B̃ ≤ ξ. By Lemma B.2 (i), we get that

D1 ≤ c65EQ

[
1{B̃≤ξ}(1 + (ln ξ − ln B̃)+)2

]
≤ c65EQ

[
1{B̃≤ξ}(1 + ln+ ξ)

2
]
.
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Observe that ξ = X + X̃ with the notation of (1.2). Going back to the measure P, we get

D1 ≤ c65E
[
X1{B̃≤X+X̃}(1 + ln+(X + X̃))2

]
≤ ε

for B (or B̃ := c64B) large enough since E
[
X(1 + ln+(X + X̃))2

]
<∞ by (1.4) and Lemma

B.1 (i). Similarly,

D2 ≤ c66E
[
X̃1{B̃≤X+X̃}(1 + ln+(X + X̃))

]
≤ ε

for B large enough. Therefore,

∑
k≤n/2

Q

 ∑
v∈Ω(wk)

e−V (v)
{

1 + V (v)+

}
> Be−V (wk−1)/2, wn ∈ Zz,L

 ≤ 2
ε

n3/2
.

The case n/2 < k < n can be treated with the same strategy by reversing time, and we feel

free to skip this case. We find that

n∑
k=bn/2c+1

Q

 ∑
v∈Ω(wk)

e−(V (v)−dk)
{

1 + (V (v)− dk)+

}
> Be−(V (wk−1)−dk)/2, wn ∈ Zz,L

 ≤ 2
ε

n3/2

for B large enough. Going back to (C.2), it yields that Q(wn is not a good vertex, wn ∈
Zz,L) ≤ 5εn−3/2 for n ≥ N and z ≥ 0. Choosing B ≥ N , the inequality holds for any n ≥ 1

and z ≥ 0. �
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