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Abstract. Consider a branching random walk on the real line with a killing barrier at zero: starting from a
nonnegative point, particles reproduce and move independently, but are killed when they touch the negative
half-line. The population of the killed branching random walk dies out almost surely in both critical and
subcritical cases, where by subcritical case we mean that the rightmost particle of the branching random
walk without killing has a negative speed and by critical case when this speed is zero. We investigate the
total progeny of the killed branching random walk and give its precise tail distribution both in the critical

and subcritical cases, which solves an open problem of D. Aldous [4].

1. INTRODUCTION

We consider a one-dimensional discrete-time branching random walk V' on the real line
R. At the beginning, there is a single particle located at the origin 0. Its children, who
form the first generation, are positioned according to a certain point process .Z on R. Each
of the particles in the first generation independently gives birth to new particles that are
positioned (with respect to their birth places) according to a point process with the same
law as .Z; they form the second generation. And so on. For any n > 1, each particle at
generation n produces new particles independently of each other and of everything up to
the n-th generation.

Clearly, the particles of the branching random walk V form a Galton—Watson tree, which
we denote by 7. Call & the root. For every vertex u € T, we denote by |u| its generation
(then |@| = 0) and by (V(u), |u| = n) the positions of the particles in the n-th generation.
Then . = E\u|=1 dtv(u)}- The tree T will encode the genealogy of our branching random
walk.

It will be more convenient to consider a branching random walk V starting from an
arbitrary = € R [namely, V(&) = z|, whose law is denoted by P, and the corresponding
expectation by E,. For simplification, we write P = Py and E = Eq. Let v := E\u|=1 1 be
the number of particles in the first generation and denote by v(u) the number of children of

ueT.

Assume that E[v] > 1, namely the Galton—Watson tree T is supercritical, then the system
survives with positive probability P(T = oo) > 0. Let us define the logarithmic generating
function for the branching walk:

W(t) = logE[ Z etv(“)} € (—o0, +00], teR.
Ju|=1
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We shall assume that v is finite on an open interval containing 0 and that supp.£N(0, c0) # ()
[the later condition is to ensure that V' can visit (0, 00) with positive probability, otherwise
the problem that we shall consider becomes of a different nature]. Assume that there exists
0« > 0 such that

(1.1) w(g*) = Q*W(Q*)-

We also assume that 1 is finite on an open set containing [0, 0.]. The condition (I.I]) is not
restrictive: For instance, if we denote by m* = esssup supp.%, then (1)) is satisfied if either
m* = oo or m* < oo and EZM:l Ly (u)y=m=} < 1, see Jaffuel [I7] for detailed discussions.

Recall that (Kingman [22], Hammersley [13], Biggins [7]) conditioned on {7 = oo},

1 /
(1.2) Jim miﬁ‘/(u) =19'(0),  as,
where g, is given in (ILI). According to ¢'(04) = 0 or ¥'(0) < 0, we call the case critical
or subcritical. Conditioned on {7 = oo}, the rightmost particle in the branching random
walk without killing has a negative speed in the subcritical case, while in the critical case
it converges almost surely to —oo in the logarithmical scale (see [I5] and [2] for the precise
statement of the rate of almost sure convergence).

We now place a killing barrier at zero: any particle which enters (—oo,0) is removed and
does not produce any offspring. Hence at every generation n > 0, survive only the particles
that always stayed nonnegative up to time n. Denote by 2 the set of all lived particles of
the killed branching walk:

7 ={ueT V)20, Vveelzu},

where [@, u] denotes the shortest path in the tree 7 from u to the root @. We are interested
in the total progeny

7 =#Z.
Then Z < o0, a.s., in both critical and subcritical cases. David Aldous made the following
conjecture:

Conjecture (D.Aldous [4]):

(i) (critical case): If ¢/(p,) = 0, then E[Z] < co and E[Z log Z] = .
(ii) (subcritical case): If ¥'(p.) < 0, then there exists some constant b > 1 such
that P(Z > n) = n~ 00 as n — oo.

Let us call iid case if £ is of form: £ = Y7 | d;x,3 with (Xi)i>1 a sequence of i.i.d.
real-valued variables, independent of v. There are several previous works on the critical
and iid case: when (X;) are Bernoulli random variables, Pemantle [29] obtained the precise
asymptotic of P(Z = n) as n — oo, where the key ingredient of his proof is the recursive
structure of the system inherited from the Bernoulli variables (X;). For general random
variables (X;), Addario-Berry and Broutin [I] recently confirmed Aldous’ conjecture (i);
This was improved later by Aidékon [3] who proved that for a regular tree 7 (namely when
v equals some integer), for any fixed x > 0,

c1R(z)e?® < liminf n(logn)*P,(Z > n) < limsupn(logn)?*P.(Z > n) < caR(x)e??,

n—00 n—00
where ca > ¢; > 0 are two constants and R(z) is some renewal function which will be defined
later. For the continuous setting, the branching Brownian motion, Maillard [27] solved the
question by analytic tools, using link with the F-KPP equation. Berestycki et al. [5] looked
at the genealogy of the branching Brownian motion with absorption in the near-critical case.

In this paper, we aim at the exact tail behavior of Z both in critical and subcritical cases
and for a general point process .Z.
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Before the statement of our result, we remark that in the subcritical case (¢/'(g.) < 0),
there are two real numbers p_ and g such that 0 < p_ < g, < g4 and

¥(o-) =¥(04+) =0,
[the existence of g4 follows from the assumption that suppZ N (0, 00) # 0].

In the critical case, we suppose that

(1.3) E |:V1+6*] < 00, sup  ¢(0) < oo, for some 0* > 0.
0€[—6*%,04+0%]

In the subcritical case, we suppose that
gi_;’_(s*
o_

(1.4) E Z (14 e2-V®) < 00, sup P(0) < o0,

lu|=1 O€[—6*,04+5%]

for some 6* > 0. In both cases, we always assume that there is no lattice that supports .
almost surely.

Our result on the total progeny reads as follows.
Theorem 1 (Tail of the total progeny). Assume (I1) and that

a > 2, in the critical case;

(0%
(1.5) E[v?] < oo, for some { a > 2§—j, in the subcritical case.

(i) (Critical case) If ¢¥'(0.) = 0 and (I.3) holds, then there exists a constant cepip > 0
such that for any x > 0,

1
P, (Z > n) ~ Cerit R(x) e%* n — 00,
n

(logn)2’
where R(x) is a renewal function defined in [{3.20).
(ii) (Subcritical case) If Y/ (0«) < 0 and (1) holds, then there exists a constant csyp > 0
such that for any x > 0,
o+
P, <Z > n) ~ copR(x)et n o n — 0o,

where R(x) is a renewal function defined in [{320).

The values of ¢y and cgyp are given in Lemma 2l Let us make some remarks on the
assumptions (L3]) and (L.4).
Remark 1 (iid case). If & = Y71_ 0rx,)} with (X;)i>1 a sequence of i.i.d. real-valued
variables, independent of v, then (I3) holds if and only if for some 6 > 0, E[v'T] <

Q_+
00 and SUPpe[_g, o, 1] E[eeXl} < oo while (1.7) holds if and only if Elve- +5] < oo and
SUPge[—6,0.4+4] E[ee‘xl] < oo for some § > 0.

Remark 2. By Holder’s inequality, elementary computations show that (I.3) is equivalent
146
to E [Z|u\:1(1 + e V(“))} < 00 and Supge(_s, 5,44 Y(0) < 00, for some § > 0.

To explain the strategy of the proof of Theorem [, we introduce at first some notations:
for any vertex u € 7 and a € R, we define

(1.6) () = inf{0 <k <|ul : V(ug) > a},
(1.7) 7, (u) = inf{0 <k <|u| : V(u) <a},

with convention inf () := oo and for n > 1 and for any |u| = n, we write {ug = &, uq, ..., up} =
[@, u] the shortest path from the root @ to u(uy is the ancestor of k-th generation of w).
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By using these notations, the total progeny set Z of the killed branching random walk
can be represented as follows:

Z={ueT: 1 (u) > |ul}.

For a < z, we define L]a] as the set of individuals of the (non-killed) branching random
walk which lie below a for its first time (see Figure [I]):

(1.8) Lla] :=={ueT : |ul =1, (u)}, a<z.
Since the whole system goes to —oo, L[a] is well defined. In particular, £[0] is the set of
leaves of the progeny of the killed branching walk. As an application of a general fact for a

wide class of graphs, we can compare the set of leaves L£[0] with 2. Then it is enough to
investigate the tail asymptotics of #L[0].

To state the result for #L£[0], we shall need an auxiliary random walk S, under a prob-
ability Q, which are defined respectively in ([B.I7) and in (3.I6) with the parameter there
0 = o« in the critical case, and ¢ = o4 in the subcritical case. We mention that under Q,
the random walk S is recurrent in the critical case and transient in the subcritical case. Let
us also consider the renewal function R(x) associated to S (see (B20))) and 7, the first time
when S becomes negative (see ([3.8))). For notational simplification, let us write Q[¢] for the
expectation of £ under Q. Then, we have the following theorem.

Theorem 2 (Tail of the number of leaves). Assume (I1).

(i) Critical case : if '(0+) = 0 and (I.3) holds, then for any x > 0, we have when n — oo
1
~ / . O+xT__
P, (#L[0] > n) ~ ¢, R(x)e oz )’

— 0% S

where ¢, == Qe ~ o] —1.

(ii) Subcritical case : If '(0s) < 0 and (I7) holds, then we have for any x > 0 when

n — 0o,
o4

PZD(#E[O] > ’I’L) ~ C{subR(x)eQ+xn_Z7
for some constant c;ub > 0.

We stress that Q, S, and R(-) depend on the parameter o = g, (critical case) or o = o4
(subcritical case). If 37, _; (1 + 2=V () has some larger moments, then we can give, as in
the critical case (i), a probabilistic interpretation of the constant ¢/, in the subcritical case.

Lemma 1. Under ({I1) with ¢'(0.) < 0 and (I4). Let us assume furthermore that
2t 4145
(1.9) E Z (14 e2- VW) < 00, for some 6§ > 0,
lu|=1
then
Coup = Co_ (C2)° ™ Q75 = 00),
where c,_ and ck,, are given respectively by (7.16) and Lemma 21 [Q(7, = oco) > 0 since
the random walk S under Q drifts to co].

The next lemma establishes the relation between #L£[0] and the total progeny Z = # 2.
Recall that E[v] > 1.

Lemma 2. Assume (L.7). Then Theorem [ implies Theorem [l with
(i) in the critical case: corip = (E[v] — 1)_1gc’m-t,

/

(ii) in the subcriticase: csyp = (B[] —1) ¢ d, ;.
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FIGURE 1. The set L[a]

The above lemma will be proven in Section 2] and the rest of this paper is devoted to the
proof of Theorem 2l To this end, we shall investigate the maximum of the killed branching
random walk and its progeny. Define for any L > 0,

(1.10) Z Voo ysrt uluy = #(L),  L>0,
where
(1.11) H(L) :={ueT: 7y (u)>71](u)=|ul}

denotes the set of particles of the branching random walk on [0, L] with two killing barriers
which were absorbed at level L [then 5 (L) C Z]. Finally, we define

the number of particles (leaves) which touch 0 before L, see Figure 2

The following result may have independent interest: The first two parts give a precise
estimate on the probability that a level ¢ is reached by the killed branching random walk.
In the third part, conditioning on the event that the level ¢ is reached, we establish the
convergence in distribution of the overshoots at level ¢ seen as a random point process.

Theorem 3. Assume ([I.1).
(i) Assuming ¢¥'(0«) = 0 (critical case) and (I3), we have

Q[?R_l] e—Q*t
Cr

P,(H(t) >0) ~ R(x)e® ™ — t — oo,

where Q is defined in (310), the random variable R is given in [5.27) with o = o«
and Cr > 0 is a constant given in (3.21).
(i) Assuming ¥'(0x) < 0 (subcritical case) and (1.7)), we have
QR
Cr

P,(H(t) > 0) ~ R(x)et® e~ 0+t t — o0,

where Q is defined in (316), the random variable R is given in (5.27) with o = o+
and Cr > 0 is a constant given in (3.21)).

(iii) In both cases and under Py (-| H(t) > 0), the point process i := Zue%(t) 04V (w)—t}
converges in distribution toward a point process uoo on (0,00), where fioo s dis-

- Q, with e defined in (5.20).

tributed as poo under the probability measure
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FIGURE 2. The set 57 (L)

The Yaglom-type result Theorem [ plays a crucial role in the proof of Theorem 2l Loosely
speaking, to make the total progeny Z (or the set of leaves L£[0]) as large as possible, the
branching walk will reach some level L as high as possible and the descendants of all particles
hitting L will make the main contribution in #£[0]. We control the error terms by computing
the moments of Z[0, L] which are the most technical parts in the proof of Theorem [2

In the computations of moments of Z[0, L], we have to distinguish the contributions of
good particles from bad particles. By good particle, we mean that its children do not make
extraordinary jumps (and the number of its children is not too big). Then the number of
good particles will have high moments, however that of bad particles only have low moments.
To describe separately the numbers of good and bad particles in Z[0, L], we shall modify
the Yaglom-type result Theorem [ (iii) as follows.

Denote by €2 the set of o-finite measures on R. For any individual v # @, let % be the
parent of u and define

AV (u) :=V(u) — V(u).

Let us fix a measurable function 2 : Qy — R and write by a slightly abuse of notation
Buy=2| > daven|. VYueT\{z}

and #Z(u) = 0 if u does not have any brothers. We assume some integrability: there exists
some 41 > 0 such that

(1.13) E | (1+ 1oy [VW))e?™Bu) | < o,

Ju|=1
where o = g, if ¢¥/(0) = 0 and o = o4 if ¥'(0«) < 0. For the functions & appearing
in this paper, for instance, #(0) = (3 [(1 + e?)0(dz))? in the critical case and Z(f) =
(% [6(dz)(1+ =)'/~ in the subcritical case (see Sections [fl and [7] where the constant
is introduced) for 6 € Qy, (LI3]) will always be a consequence of (I3) or (I.4) by taking a
sufficiently small 6.

Define for u € T,
(1.14) Br(u) == inf{l < j <|u| : B(uj) > eV} >0,
with the convention that inf ) = co. We consider

Hy(L) = {uweT:75 (u)>71f () =lul,BL(u) =occ}.
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In other words, .#7%(L) only contains those particles u in (L) such that % (u;),j < |ul,
are not very large. Obviously, #% = 5 if 8 = 0. We get an extension of Theorem [ (iii)
as follows:

Proposition 1. Assuming (LI13) and the hypothesis of Theorem[3. Under P,(-| H(t) > 0),
the point process jiz = Y, c o (t) Ogv(u)—ty converges in distribution toward a point process

Bz.o0o on R, where [ig o is distributed as j1p o under the probability measure Q%:l} -Q,
with g o defined in [5.27).

To prove Theorems 2 Bl and Proposition [Il we shall develop a spinal decomposition for
the killed branching random walk up to some stopping lines. Viewed from the stopping
lines, the branching walk on the spine behaves as a two-dimensional Markov chain: The
first coordinate is a real-valued random walk (sometimes conditioned to stay positive) until
some first passage times, and the second coordinate takes values in the space of point
measures, whose laws we describe through a family of Palm measures. As the parameter
of the stopping lines goes to infinity, we shall also need some accurate estimates on the
real-valued random walk and establish a convergence in law for the time-reversal random
walk, in both transient and recurrent cases.

The rest of this paper is organized as follows:

e Section 2 we prove Lemma [2l Then the rest of this paper is devoted to the proofs
of Theorems 2] [, Lemma [I] and Proposition [

e SectionBt we develop the spinal decompositions for the killed and non-killed branch-
ing random walks, which are the main theoretical tools in the proofs.

e Section @ we collect several preliminary results on the one-dimensional real-valued
random walk, both in recurrent and transient cases; in particular, we establish a
result of convergence in law for a time reversal random walk. The proofs of these
results are postponed in Section 8l

e Section by admitting three technical lemmas (whose proofs are postponed in
Section [§), we prove Theorem [B] and Proposition [I1

e Sections[fland [ based on Theorem [Bland Proposition [l we prove Theorem [2in the
critical and subcritical cases respectively. We also prove Lemma [l in this section.

e Section [ contains the proofs of the technical lemmas stated in Sections 4l and Bl

Throughout this paper, we adopt the following notations: For a point process © =
Y oini 0z,y, we write (f,©) = >, f(z;). Unless stated otherwise, we denote by c or
¢ (possibly with some subscript) some unimportant positive constants whose values may
change from one paragraph to another, and by f(t) ~ g(t) as t — to € [0, 0o] if lim;_y4, % =
1; We also write E[X, A] = E[X14] when A is an event and E[X]* = E[X*] # (E[X])*¥ when
X does not have a short expression.

2. FROM THE NUMBER OF LEAVES TO THE TOTAL PROGENY OF THE KILLED BRANCHING
WALK: PROOF OF LEMMA

We recall that our branching random walk starts from x > 0. We introduced for u € T,
7, (u) :=1inf{0 < k <|u| : V(ug) < a}, and

Lla] :=={ueT : |ul =1, (u)}, a<z.

Proof of Lemmal[2 We equip the tree T with the lexicographical order. Let Uy be the k-th
vertex for this order in the set 2 of the living particles. It is well defined until k¥ = Z when
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all living particles have been explored. For k € [1, Z], we introduce
k

V=14 (w(U;) - 1)

i=1

and we notice that Yz = #L[0] [This can be easily checked by using an argument of re-
currence on the maximal generation of the individuals of Z]. We extend the definition
of Yy to k > Z, by Yii1 := Yi + vk — 1 where vy is taken from a family {v;, i > 1} of
ii.d random variables distributed as v(@) and independent of our branching random walk.
We claim that (Y, & > 1) is a random walk. To see this, observe that we can construct
the killed branching random walk in the following way. Let (Dfi(c), i > 1) be ii.d copies
of . At step 1, the root @ =: U; located at x generates the point process ,,2”1(0). If all
the children are killed, we stop the construction. Otherwise, we call U, the first vertex for
the lexicographical order that is alive. Then, U, generates the point process .22(0), and we
continue similarly. The process that we get has the law of the killed branching random walk.
In particular, if I/Z-(C) denotes the number of points of .fi(c), then (Y, k& > 1) has the law of
(Zle(ui(c) —1), k > 1) which is a random walk by construction. This proves the claim. We

suppose that Theorem [2 holds and we want to deduce Theorem [l Let us look at the upper
bound of P,(Z > n). Let m := E[v] > 1 and take ¢ € (0,m — 1). We have

P,(#L0]<(m—1—¢en, Z>n) = P(Yz<(m—1—¢e)n, Z>n)
= > P.(Yi<(m—1-¢en, Z=k)
k>n

> P.(Yi < (m—1-2)k),
k>n

IN

which is exponentially small by Cramér’s bound. By Theorem 2, P, (#L[0] > n) decreases
polynomially. Therefore,

P,(Z>n) < PL(#L0]>(m—1—e)n)+Py(#L[0] < (m—1—¢e)n, Z >n)
= PL(#L[0] > (m—1—¢e)n)(1+ o(1)).
Letting n go to co, then € — 0 yields the upper bound. For the lower bound, we take ¢ > 0
and we observe that,
P,(#L[0]>(m—14¢en, Z<n) = Py,(Yz>(m—1+¢)n, Z<n)

Pm(lrgggn(Yk — (m—1)k) > en).

IN

Let a > 2 in the critical case and o > 294 /p— in the subcritical case. By Doob’s inequality,

n

B| max (Vi — (m ~ DR)[" < gy Bl = (m = D) < c<a>E<;<w —m)?)/2,

aOﬁ

for some constant ¢ = ¢(«) > 0. By convexity,
n n
E(Z(Vz —m)})¥/? < n%_lEZ lvi —m|* = n®2Ely — m|®.
i=1 i=1

It follows that
P,.(#L[0]>(m—14¢)n, Z<n) < cE\uEigm]a n=/2
Therefore,
P.(Z > n) > P, (#L[0] > (m —1+¢e)n) — CE";*;W n=/2,
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which proves the lower bound by taking n — oo then £ — 0. O

3. SPINAL DECOMPOSITION

3.1. Spinal decomposition of a branching random walk (without killing). We begin
with a general formalism of the spinal decomposition for a branching random walk. This
decomposition has already been used in the literature by many authors in various forms,
see e.g. Lyons, Pemantle and Peres [26], Lyons [25] and Biggins and Kyprianou [9].

There is a one-to-one correspondence between the branching random walk (V (u),e7) and
a marked tree {(u,V(u)) : v € T}. For n > 1, let .%, be the sigma-algebra generated by

the branching random walk in the first n generations. For any u € T\{@}, denote by W the
parent of u. Write as before [@,u] = {ug := @, uz, ..., u), } the shortest path from the root
& to u(with |u;| =i for any 0 < i < |ul).

Let h : T — [0,00) be measurable such that h(2) > 0 and for any z € R, v € T with
lv[ =n =0,

(3.1) E[ > hu) | fn} — \h(v),

where A > 0 is some positive constant. Let 4 := {u € T : h(u) > 0}. In our examples of
h in this paper, A = 1, h(u) = f(V(u)) or h(u) = f(V(u1), ...,V (u)y)) for some non-random
function f, and 7, equals either T or 2 the set of progeny of the killed branching walk.

Deﬁne

|u|=n
Fix z € R. Clearly by B.1), (W,) is a (P, (:#,))-martingale.
On the enlarged probability space formed by marked trees with distinguished rays, we
may construct a probability QSJ” and an infinite ray {wg = &, wy, ws, ...} such that for any
n>1, En = Wp_1, and

h(u)
(h) — z V- _ " —
(3.2) Q. (wn u ‘ ,/OO> @), V|u| =n,
and

Q™
(3.3) E‘j" =W,.

To construct Qgch), we follow Lyons [25] under a slightly more general framework: Let
L = E\u|=1 dtv(u)y- For any y € 5, denote by £, a random variable whose law has
the Radon-Nikodym density W; with respect to the law of . under P,. Put one particle
wy = & at x € S, Generate offsprings and displacements according to an independent
copy of .Z,. Let {|u] =1} be the set of the children of wy. We choose w; = u according to
the probability %

p Y R{wo) AW
walks of law Py,(,), while conditioned on V(wy) =y, wy gives offsprings and displacements

All children u # w; give rise to independent branching random

according to an independent copy of ,,é’z; We choose wy among the children of wy in the
same size-biased way, and so on. Denote by Q;h) the joint law of the marked tree (V (u))u>0

and the infinite ray {wg = &, w1, ..., wy,..}. Then Q" satisfies B3) and B.2]), which can
be checked in the same way as in Lyons [25].
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Under vah’, we write, for k > 1,
(3.4) Op = {u: [u| =k, U = wy_1, u# wi}.

In words, Uy, is the set of children of wy_1 except wy, or equivalently, the set of the brothers
of wy, and is possibly empty. Define Sy := V(&) and

(35) Sn = V(wn), @n = Z 6{AV(u)}7 n > 1,

uGUn

where we recall that AV (u) := V(u) — V(). Finally, let us introduce the following sigma-
field:

(3.6) G, = a{(AV(u), we By), Vwy), w, Op, 1<k < n}

Then ¥, is the sigma-field generated by all random variables related to the spine {wy, k >
0}. Let us write v < w if v is an ancestor of u [then v < uw if v < w or v = u]. By the
standard "words’-representation in a tree, u < v if and only if the word v is a concatenation
of the word u with some word s, namely v = us with |s| > 1.

The promised spinal decomposition is as follows. Since it differs only slightly from the
spinal decomposition presented in Lyons [25] and Biggins and Kyprianou [9], we feel free to
omit the proof.

Proposition 2. Assume (31) and fix x € .. Under probability Q&h),

(i) for each n > 1, conditionally on 9,1 and on {S,—1 =y}, the point process (V (u), u =
wp—1) is distributed as £,. In particular, the process (Sp,On)n>0 is Markovian. Moreover,
(Sn)n>0 is also a Markov chain and satisfies

QU (£S5 [ Sn1 =190 1) = 1 By[ 3 F(Vw)

lul=1

o))

for any nonnegative measurable function f, n>1 and y € 5.

(ii) Conditionally on 9, the shifted branching random walks {V (vu) — V(v)}y>0, for
all v € JpZ, Ok, are independent, and have the same law as {V (u)}}, >0 under Py.

Remark that under Qgh), {wp,n > 0} lives in % with probability one. We can extend
Proposition [2 to the so-called stopping lines. Recall (L6]) and (L7). For 0 < = < ¢, we
consider the stopping line

(3.7 € ={uecT: 7 (u)=|ul}.

Note that for any v € T, |v| < 7,7 (v) means that SUPg<;<|o| V(vi) <t (see Figure[d). The
process {V(u)}w <rt(w) CANL be interpreted as the branching random walk stopped by the
line %;. Recalling (IL.I1]), we remark that 6; N 2 = 2 (t), where as before 2 denotes the
set of progeny of the killed branching random walk.

Let Zg, == o{(u,V(u)) : u € T,|u| < 7,7 (u)} be the o-field generated by the branching
walk V' up to the stopping line ;. Assuming ([B.1]), we define

1
Wg, = —— h(u)A1.
o) &
Define two family of stopping times for the process (S, := V(w,),n > 0) under Qih),
(3.8) F=1inf{k > 0: Sy > a}, 7, =inf{k > 0: S, < a}, VaeR,

a
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V(u)
¢ o / P / /) o pa /)
l. o particles in é;
x
n
0 \/\‘ N M\ Y L
FIGURE 3. The set €;

with the usual convention inf() = oo and the corresponding overshoot and undershoot
processes
(3.9) Tf:=8+-a T, :=a-S_-, VacR.

Analogously to (B.6]), we introduce the sigma-field
(3.10) Yo = o{(AV(w), we Ty), V(wy), wp, By, 1<k <7t 7t b,

generated by all information related to the spine [@,w(7;")]. Similarly, we recall L[a] in

(CB) and define F 1y, Weia), Do) as before. The next result describes the decomposition

along the spine [@,w(7;")] (vesp. [@,w(7,)]).

Proposition 3. Assume (31) and let x € .. Take t > x. Suppose that h is such that
Qgch)(T;r < o0) =1. Then,
Qi

(3.11) =

dP, ‘% = Wa.

(i) Under probability QW conditionally on %z, and on {V(v) = x,,v € U;il Ok}, the
shifted branching random walks {V (vu) — V(v)}u:‘wgf(w), stopped by the line €, are
independent, and have the same law as {V(u)h“\ﬁ%tmv( under Pg, stopped by the line
i,

(ii) The distribution of the spine within 6 is given by

h(u)A~ 1

Q;h)<th+ :u|t%gt) G Vu € €.
t

u)

(iii) For any bounded measurable function f : RY — R and for any bounded Fy,-
measurable random variable @y,

h
E, %jg % FV ()0 <i < Ju) @ | = QY [f(5:,0 <i < 7))

Similarly, take a < x and assume that h is such that QSJ” (1, < o0)=1. Then the analog
holds for €, replaced by L[a] (and 7;” by 7, ).
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Remark 3. If Qéh) (77 < 00) =1 for all t, then Wy, is a (P, F,)-martingale by Lemma
6.1 and Theorem 6.1 in [9]. The equivalent holds for L[a].

Proof of Proposition Bl It is enough to prove that for any ¢ : 7 — R measurable and
bounded,
(3.12)

h
B, [ M fv ()0 < < ful) o) @ | = QU [£(51.0 < < ) glw,) 0]
UEG: h(@))\W‘ '
In fact, the Part (iii) follows from ([3I2)), and by taking f = ¢ = 1 in (312) we get (B.1I));
Taking f =1 in (3.12)) and using .11, we get the Part (ii); Finally since 7;" is a stopping
time for (Sk)x, the Part (i) follows easily from Proposition [2
To check ([B12)), it is enough to show that for any N > 1, (312) holds for all ®; of form

&y := F(u,V(u),u € T,|u| < 7,7 (u) A N) with a bounded measurable function F. Notice
that the left-hand-side of ([B.12)) equals

(3.13) > E, Z1{Tt+u_n}h(hg;lnf(V(ui),Ogign)( YO N | = Z(m)
n=0

lul=n

with obvious definition of (3.I3)),. If n > N, since ®; y is measurable with respect to Fy,
we deduce from (B.2]) and the absolute continuity (3.3]) that

BT = QU 1Ly F(S5,0 < i < m)glwn) P .

For n < N, we deduce from the branching property along the stopping line %; (see Jagers
[18]) that

mn = E;B|: Z 1{T;r(u):n}f(v(uz)v 0<:1< n)g(u)ét,N Z

|u|=n |[v|=N,u<v

= Eu| 3 Tt en S (V0,0 <1 < n)g(0) @1 . (’g;’iN]

|v|=N
= Q{15 [(81,0 < i < m)glwn) Py v,
by using again (3:2)) and the absolute continuity (B.3]) at N. Noting that f(5;,0 < i <

n)g(w,) = f(S;,0 <1< Tt+)g(th+) on {7, = n}, we take the sum of (3.I3)),, over all n and
obtain (3.12]). The proof for L[a] works by analogy. O

Let us present below a particular example of h and the corresponding laws of (05, Sy, )n>0-
Recall (ILI)). Define

eV if Y (04) = 0,

Since 9 (0«) = 0 in the critical case and ¥ (p4+) = 0 in the subcritical case, the function
h satisfies (B.1) with A = 1 and s = T. We mention that in the subcritical case, since
¥(0_) = 0, the function u — €2~ also satisfies (1)) with A = 1. This fact will be explored
in Section [7] for the definition of Q(¢-), the measure satisfying ([3.3) with h(u) = e2-"V ),

Write for any x € R, Q, = Qéh) the probability with the choice of h given in (3.14]). For
simplification, let

_J 0s, if'(0x) =0 (critical case);
(3.15) o= { 0+, if ¢'(0«) <0 (subcritical case).
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Then for any = € R, Q, satisfies

dQ.ﬁE —0x u
(3.16) B |5 =eo" Y eVl

|ul=n

We shall write Q = Q¢ when x = 0. The following description of the law of (S, ©p)n>0
under Q, is an easy consequence of Proposition [2] (i).

Corollary 1. Recall (313) and (33). Fiz x € R.

(1) Under Qg, (Sn — Sn—1,0n)n>1 are i.i.d. under Q, whose common law is determined
by
Qo | (S = Su-1)e™ 0O | = B[ 37 V@ (v (w)e Zomimr VD],
Ju|=1
or any n > 1, any measurable functions f,g: R — Ry. In particular, the process (Sp)n>0
f 1 ble f ons f,g: R — R,. T jcul h Sp)n>
1s a random walk on R, starting from Sy = x, with step distribution given by

(3.17) Qo[ /(S0 = Su-t)| =E[ 3 f(V() eV ], nz1.

|u|=1
(ii) For any n > 1 and any measurable function F : Rt — R, ,
E[ N P(V(u),0<i< n)} — e Q, [e—esn F(S;,0<i< n)].
|u|=n
(iii) For any n > 1, and any |u| = n,
eeV(u)
ghRLC)

Remark that by (BI7), Q[S1] = 0 and Q[S?] = ¢”(0+) > 0 in the critical case, while
Q[S1] = ¥'(0+) > 0 in the subcritical case.

3.2. Spinal decomposition for a killed branching random walk. Before introducing
a change of measure related to the killed branching walk, we recall some elementary facts
on the Palm distribution of the point process £ = Z|u\:1 dv(u)y under P. Let E(Z(dx))

be the intensity measure of .Z, namely for any measurable function f: R — R,
[ 1B ) =B f(vw)l
|u|=1

Clearly E(.Z(dz)) is o-finite since ¢ is well-defined on some interval. Then there exists
a family (Z,,2 € R), called reduced Palm distributions, of distributions of random point
measures on R such that

E [F(:p, L~ 8(y) z(dx)}
E(Z(dx)) ’

(3.18) /Q F(x,0)2,(d6) = E(2(dz))-pp. .
f

for any measurable F' : R x Q¢(R) — R4, and where 2 denotes the set of o-finite mea-
sures on R. See Kallenberg [20], Chapter 10 for more details. Roughly saying, Z, is the
distribution of £ — 0,1 conditioned on that &’ charges .

In this subsection, let ((S,),Qz) be as in Corollary [l and (B.I6]). Based on Corollary
0 (i) (with n = 1 and = = 0), elementary computations give that for any measurable
f7 g: R — R-i—a

afssneeen] - [

R

E(.i”(da:))egmf(a:)/ e~ 90=, (d0).

Q



14 E. AIDEKON, Y. HU, AND O. ZINDY

It follows immediately from (B.I7]) that the law of S; under Q is given by Q(S; € dz) =
E(.i”(dm))egx. Hence for any measurable f,g: R — R,

(3.19) Q[f(sl)e—@v@ﬂ} = /R Q(S: € dz) f(x) /Q e~ (9002, (dh).

f
In words, Z, is the law of ©; conditioned on {S; = x} under Q.

Now, we are interested in a change of measure in the killed branching random walk. To
introduce the corresponding density, we consider R(:) the renewal function of the random
walk (Sp)n>0 under Q. More precisely, for x > 0, R(z) is defined by the expected number
(under Q) of visits to [—x, 0] before first returning to [0, c0), i.e. R(0) =1, and

T -1

(3.20) R(z):=Q | li,<s;|, Va>0,

=0
with 7% := inf{j > 1 : S; > 0}. We extend the definition of R on the whole real line by
letting R(z) =0 for all x < 0.

Recall that Q[S;] = 0 in the critical case and Q[S1] > 0 in the subcritical case. It is
known (see Lemma [3)) that the following limits exist and equal to some positive constants:

limy o0 @ = ﬁ, if ¢/ (p«) = 0 (critical case),
3.21 Cgr:= o
(3:21) R lim, . R(z) = ﬁ, if ¢'(0«) < 0 (subcritical case),
Ty =00

with 75~ defined in (3.8)). Recall [315]). Define
hy(u) == RV (1)) ™ Ly ()50, 1 (un)>0) lul=n, ueT.

It is well-known that (R(Sn)l{T(;>n}, n > 0) is a Qg -martingale for any = > 0. Then hy
satisfies (B.I) with A = 1. Note that in this case, . = {u € T : V(ug) > 0,..., V(upy) >
0} = Z is exactly the set of progeny of the killed branching walk.

Let Q; be the probability satisfying (3.3) and ([3.2) with h = h:

dQI‘ _
dP, '7» " R(x)

e 9"

(3.22) > RV@)e™ =M, x>0 n>1

|lu|l=n,ueZ

with Mg := 1. Write for simplification Q™ = Q7. Recalling (3.5]), we deduce from Propo-
sition [2] the following result, see Figure @ below.

Corollary 2. Recall (313). Fix x > 0. Under Q;,

(a) (Sn)n>0 is a (9,)-Markov chain: for any n > 1, y > 0, and for any measurable
function f: Ry — R4,
R(S1)
+ N
Q[ S(8)] et Snr =] = Qu| s

In words, under Q7 , the process (Sn,n > 0) has the same law as the random walk (Sy,n > 0)
under P, conditioned to stay monnegative.

f(Sl)l{slzo}] :

(b) Conditioned on (Sy)n>0, the point processes (Oy)n>1 are independent and each ©y, is
distributed as Zg,—s, -

(¢) For any nonnegative function F and any n > 0,
e~ 0%n
R(Sn)

Ex[ Y F(V(u),0<i< \uy)] = R(z)e®” Q7 F(S;,0<i<n).

ueZ |ul=n
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Proof of Corollary 2t The formula many-to-one (c) is routine. Let us only check (a) and
(b): By Proposition 2 (i), we get that for any n > 1,

Qi [e @0 £(s, |%_1,Sn_1:y}

(3.23) = y[ Z er )R(V( ))1{\/ >0}f( (u))e _Zuyﬁu,\v\:lg(v(v)_y)]
ul= 1

(3:24) = Qy[};(( ))1{51>0}f(51) gem}

(825) = Q[%l{ywﬁo}f@+51)e_<9’91>],

by using Corollary [ (i). Taking ¢ = 0 in ([B.24)) yields the assertions in (a). Taking n =1
gives the joint law of (S1,01) under Q. Let p(dz) = Q(S1 € dz) be the law of S; under
Q. Recall that =, is the law of ©; conditioning on {S; = z} under Q. Then for any event
A €9, 1, we deduce from (3.25)) that

Q[ £(S,)14]

I R(S,,—
= Qf 1a /Rp(dz)ﬁl{sn1+z>0}f(5n—1+2)/

=.(dg)e=o|
Qf

= Qr[1as(s) | Ess (@) o],
) f

by using (a) for the last equality. This together with the Markov property of (S,) with
respect to (%,), imply that for any n > 1 and g : R — Ry,

Q;_ |:€_<g’®n>|gn_17 (S])]20:| — /f\2 Esn_sn71 (d9)€_<g’9>’
f

proving (b). O

e spine
o particles in (Ug)g
< P-BRW's

7
7
/7

SESINES

FIGURE 4. Spinal decomposition under Qa'

V(u)

Remark 4. If we assume that £ =37, d¢x,y with (X;)i>1 a sequence of i.i.d. real-valued
variables of the same law as X, z'ndependent of v, then the expectation in (323) equals to

R( ) _ k—1

S P(v=Fk) kE[ R 1{X+y>0}f(X+y)] (Ee 9<X>) :
n>0

which implies that under QF for each n > 1, conditionally on Y.—1 and on {S,—1 = y},

Sn and ©,, are independent and O, is distributed as 2?2—11 0x,, with v the size-biased of v,

Qf(v=k)=kP(v=k)/E[v],k > 1, and independent of (X;)i>1.
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We may extend Corollary 2] to the stopping lines. Remark that ¢; N2 = J(t) (see (3.7)
and (LIT))). We deduce from Proposition 3] the following result:
Corollary 3. Recall (313) and (EZE) Fiz 0 <z <t. We have

dQ = Z R(V eQV(“) =: Mg,
uE%(t

(3.26) —==| "z,

(i) Under probability Q7 , conditionally on % and on {V(v) = x,,v € U;il Ok}, the
shifted branching random walks {V (vu) — V(v)}u:‘wgﬁ(w), stopped by the line €;, are
independent, and have the same law as {V(u)}IU\STttzv(u) under Py, stopped by the line
Ctzy -

(ii) Moreover, for any measurable function F : RN+ — R,

—QS +

B[ Y F(V(w).0<i<u)| =R Qf

F(S;,0<i< Tj)].
uECNZ (

BRCER

4. ONE-DIMENSIONAL REAL-VALUED RANDOM WALKS

In this section we collect some preliminary results for a one-dimensional random walk
(Sn)n>0 on some probability space (€2,.%,P). Most of the results in this section will be
applied to the random walk S defined in ([BI7) under Q in SectionBl For the sake of clarity
of presentation, the technical proofs are postponed to Section B

4.1. Time-reversal random walks. Let ((Sy,)n,P,) be a real-valued random walk starting
from x € R. We write P = Py. Assume that E[S;] > 0 and E[|S;]3*°] < oo for some § > 0.
In words, we consider random walks that do not drift to —oo. Moreover we assume that the
distribution of S; is non-arithmetic. Let us adopt the same notations 7,7 and R(-) as in

Section [3t

(4.1) T =inf{k >0 : Sy <a},

and the overshoot T;” := S_ + —a >0 and the undershoot T :=a — S - > 0. Let R(:) be
as in (3:20) the renewal functlon of (Sp)n>0 under P. i.e. w1th T* = 1nf{j >1:5; >0},

TF—1

> 1{—wssj}]= vz >0,

J=0

=inf{k >0 : Sk > a}, T, :

a

R(z):=E

and R(0) =

Following [6], we introduce the law of the random walk conditioned to stay nonnegative.
To this aim, we see (Sy,)n>0 under P, as a Markov chain with transition function p(y, dz) :=
P(y + S; € dz). We denote by P} the h-transform of P, by the function R. That is, P is a
probability measure under which (.S,),>0 is a homogeneous Markov chain on the nonnegative
real numbers, with transition function

R(z)

(4.2) 1Ry, dz) = R(y)

It is well known that P*-almost surely S, — oo when n — co. When (S,),,>¢ drifts to oo
(i.e. when E[S1] > 0), PT is the law of the random walk conditioned to stay nonnegative in
the usual sense, i.e. PT(:) =P(-|S; >0,...,5,>0,...).

We denote by (o, Hy)n>1 the strict ascending ladder epochs and ladder heights of S.
Some results from random walk theory are important in the proofs presented here and
recorded in the following lemma.

w(y,dz), y,z > 0.
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Lemma 3. Assume that E[S;] > 0, E[|S1[>T] < oo for some § > 0 and that the distribution
of S1 is non-arithmetic. Then,

(i) T;" converges in law to a finite random variable when t tends to infinity.

(ii) (T;t,t > 0) is bounded in LP for all 1 < p < 1+.

(iii) S +/t converges in probability to 1 when t tends to infinity.

(iv) e IfE[Si] = 0, there exists a constant Cr € (0,00) such that R(z)/x — Cgr
when x — oo. In this case, Cr =

E[TO 1 E[—STO—}'

o IfE[S1] > 0, there exists a constant Cr € (0,00) such that R(x) — Cr when

x — o0o. In this case, Cr = P(T,l_oo).
o=

(v) e IfE[S1] =0, then P(r;" <75 ) ~ ﬁ when t — oo.
e IfE[S1] >0, then P(1;} < 75) — CLR when t — oo.

Proof: Notice that T;" is also the overshoot of the random walk (H,,) above the level ¢. In
the case E[S1] = 0, Doney [11] implies that H; has a finite (2 4 §)-moment which in view
of Lorden ([24], Theorem 3, applied to (H,)), implies that (7;",¢ > 0) is bounded in L?
for all 1 < p < 1+ 4. In the case E[S;] > 0, again by Lorden ([24], Theorem 3, applied
to (Sp)), (T;7,t > 0) is bounded in LP for all 1 < p < 2+ 6. This provides Part (ii) of
the lemma. Moreover, we see that in both cases, H; = T; 0+ has a finite expectation and
obviously is non-arithmetic, then a refinement of the renewal theorem gives Part (i) of the
Lemma (Feller [12], pp. 370 equation (4.10)). For both cases, Part (iii) is a consequence of
Part (ii). To show (iv), we recall the duality lemma:

R(x):1+ZIP’(H;§x), x>0,
n=1
where (H, ,n > 1) denotes the (strict) ascending ladder heights of —S (in particular, H; =
T, the undershoot at 0). In the case E[S;] = 0, Part (iv) is a consequence of the renewal
theorem (see Feller [12] pp. 360) with Cr = E[%,] (v) is obtained by applying the
0

optional stopping theorem to the martingale (Sg,0 < k < Tt+/\7'0_ ) (the uniform integrability
is guaranteed by (ii), see [3], Lemma 2.2). In the case E[S;] > 0, Part (iv) and (v) follow from
the duality lemma: Cr = E[7*] = limg_,oo R(z) = 1+> 7 P(H,, <o0) =14+> - P(ry <

n __ 1
OO) - P(T(;ZOO)' .

We recall now Tanaka’s construction (see Figure [) of the random walk conditioned to
stay positive. Let us recall that (o,, H,),>1 are the strict ascending ladder epochs and
ladder heights of S and let (w;);>1 be independent copies of the segment of the random
walk (Sp)n>0 up to time o := o7 viewed from (o, S,) in reversed time and reflected in the
x-axis; that is, (w;);>0 are independent copies of
(4.3) (0,85 — So—-1,5¢ — So—2,...,Sy —51,5).

We write now w; = (w;(£); £ = 0,1,2,...0®) to identify the components of w;. In [31],
Tanaka shows that the random walk conditioned to stay positive can be constructed by
gluing the w;’s together, each starting from the end of the previous one. More formally,
let (o;f, H; )n>1 be the renewal process formed from the independent random variables
(0@ w;(0D)), that is

(40 (5 HD) = (0D 4+ 0™ 0D+ wn(0™), > 1

Then, Tanaka’s result says that the random walk conditioned to stay positive can be con-
structed via the process ((,)n>0 given by

(4.5) Co = H + w1 (n—o7) of <n<of,.
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Cn

1
_l’_
0 01 Oy 03 04 05

FIGURE 5. Tanaka’s construction
Finally we introduce a process (3n)n20 (obtained by modifying slightly the random walk
conditioned to stay positive) which will be the limit process that appears in the following
lemma. Let 0 :=sup{n > 1 : (, = minj<;<, (;} and observe that & is almost surely finite

since ¢, — 0o. Then (Sy)n>0 is defined by

A 1
(4.6) E|F(Sunz0)] = B[ F((Gnz0)].
for any test function F. Observe that Tanaka’s construction implies E[(5] = E [H;] . Moreover
we introduce ¢ := sup{n > 1 : Sn = minj<;<p 5’2} which is almost surely finite since
S — o0,

Lemma 4. Assume that E[S1] > 0, E[|S1]37%] < oo for some § > 0 and that the distribution
of S1 is non-arithmetic. Recall {{-1) and fix an arbitrary integer K > 1. Let F' : R x
Rf — R be a bounded and measurable function. Suppose that for any z € ]Rff, the set

{z € R : F(-,2) is not continuous at x} is at most countable [which may depend on z].
Then

(i)
lim E[F(Tfr, (Srj — Tj—j)lﬁjSK) |t > K] = E[F(US&; (Sj)lngK)}7

t—o00

where (3n)n20 is the process defined by (4.0) and U is a uniform random variable
on [0, 1] independent of (Sp)n>0-

(ii)
Jim B [F(Tﬁ, (S = S+ _jloj<k) |7 > K] = E[F(US},, (5j)1§j§K)]7

where ET denotes the expectation with respect to the probability measure PT.

As a consequence, under P(-|7;” > K) or under P*(-|7;" > K), the random vector
(T, (ST? — STt+_ Jo<j<k) converges in distribution toward (USs, (S;)o<j<k) when t — oo.
We also note that the conditioning with respect to the event {7,” > K} is just technical

since this event is asymptotically typical (indeed almost surely 7,7 — oo when t — 00).

Proof. See Section [8 O
We end this subsection by an estimate on a random walk with positive drift:

Lemma 5. Assume that E[S1] > 0, E[S?] < co. Let (a;, S; — Si—1)i>1 be an i.i.d. sequence
such that a; > 0 almost surely. For any p > 1 such that E[a}] < co and for any k> 0, there
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exists some constant ¢, > 0 such that
P

F-1
(4.7) E, Z A e Y| < Cp.re» vVt >0, Vo <t
k=0

Proof. See Section [8l d

4.2. Centered random walks. Let ((Sy,)n>0,P;) be a real-valued random walk starting
from z € R. We write P = Py. Assume that

(4.8) E[Si] =0, Var(S1) >0, E[e“5'] <oo, Yue (—(1+n),n),

for some 1 > 0. Recall that P(r] < 757) is of order 7 as L — oo (cf. Lemmal[3). We have

the following estimate.

Lemma 6. Under ({f.8). For any d > 0, there exist some constants ¢ > 1 and ¢ = (8) > 1
such that for all L>1,0<a <L,

-5 __ T L—-a+1
(4.9) Eale 0 lirarsy] S oo
TL+—1 T(;—l )
(4.10) B[ 3 e 5] 1B, [ 3 e8] < ¢,
=0 =0 :
5
(4.11) E, [e T 0w | < e
(4.12) Ea[ Y e < d#,
0<j<ry AT ’
(4.13) Ea[ T e—SI-5)] < c/a_zl,
0<j<ry AT ’
-S _ CS(T— ] a+1
(4.14) Bale 0 Loy Do 09| < 0T
0<j<ry

Remark: A weaker assumption sup_, <, E [¢“5] < 0o is enough to get (£LI0), (£IT),
(AI12) and (EI3).

Proof. See Section 8 O

4.3. Random walks with negative drift. In this subsection, we give estimates on tran-
sient random walks. We take again ((Sy)n>0, Pz) a random walk, but we suppose now that
E[S1] < 0, hence the random walk drifts to —oco. We suppose that there exist 7, 71, 72 > 0
such that

(4.15) E[e?] =1,  E[e"] < oo, YVu € (—n1,7 + n2).
Then,
(4.16) P(r, <757) = P(ry =) >0, a— —oo.

By Theorem 1 of [16], if S} is non-arithmetic, then
(4.17) P(r}f <15) ~coe 1, a — 400,

for some constant cg > 0. We end this section by two lemmas:
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Lemma 7. Under ({{.12). For any r > 0, we can find some positive constants c,c, " such
that for any a >0, L > 1,

5 -
(4.18) E, [e "

IN

e(r) it r <m,

(4.19) Ea{ Z (1+L—- Sg)aeT’Sf_ < d(r,a)e oDk ifr >~, a>0.
0<e<r; )

min(T(;,TZ:)

) a +L—5)% _ < d'e"1+L—a)", a€|0,L],a>0.
420)E 1+ L — Sp)>er "1 (14 L —a)'t 0,L 0

=0 )
Proof. See Section Bl O

Lemma 8. Under (£.13). Fiz some 0 < n < mn1, b >0 and o > 0. Assume that (S, —
Sp—1,0n)n>1 are i.i.d. with ay > 0 almost surely.

(i) For any 0 < p < v/b satisfying E [(1 + 1{51<0}e_’751)a117] < 00, there ezists some
constant ¢, > 0 such that

-nS _ To. p
(4.21) E, |e 70 <Zeb5e,1a£) <t 1 >0
/=1

(it) Assume p > 1 is such that E [(1 + 1{31<0}6_"S1)a€] < 0o and E[eP?1] < oo. There
exists some constant cp .o > 0 such that for all L >0 and 0 <z < L,

min(7; ,TZL)

—nS__ p
E, [e 0 ( Z (1+L—SZ—1)a€bS‘Z’1ae>

/=1
(14 L —2)PelPb  if p < ~/b,
(4.22) < cppax {8 EF(L+L—z)ToP ifp=~/b,
eV(x—L)+pbL if p> ,.Y/b
Proof. See Section B O

5. MAXIMUM OF THE KILLED BRANCHING RANDOM WALK: PROOFS OF THEOREM B AND
ProposITION [

Let us first recall the following criterion for convergence in distribution of point processes
which can be found in Resnick [30] (see pp. 153, proposition 3.19). Let E be a polish space.
Then, let us define the Laplace transform of a point process 6 with probability measure P
by

(5.1) w(f) = | exp{— / fde} aB(0) = [ exp(~(7.0)} aP(0)

where f is a positive measurable function from E to R. Let C’;Q(E) be the space of continuous
functions from F to Ry with compact support. Then we have

(5.2) lim Up, (f) = Wp(f), Vfe€CK(E),
if and only if

(vague)

(5.3) P, — P, n — 0o,

which is the same as the convergence in distribution of the point processes.
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Recall the real-valued random walk (S,,) defined in Corollary [l In order to treat both
critical and subcritical cases in the same proof, we introduce the following function defined
on R, by

tu lf 1/}/(@*) - 07 Q*u lf W(Q*) = 07
(5.4) A(t) = 7 0= ;
1, if ¢/(04) <O, or, if¢'(e) <0,
and observe that the renewal function R(-), associated with the random walk (.S,,, Q) defined
by ([B:20)), satisfies that (see ([3.21]))
R(t) ~ CrZ(t), t — oo.

We take the notation of Theorem [3] and Proposition Il The key step is to prove that for
any f € C’;Q(R) and when t — oo, we have
R(x)e?”
CRrZ(t)ect

(5.5) E, [6_“’”@”5)1{1{@»0}

e_<fuu@,oo>
éR .

We recall from (3.26]) that Mz, = 3 (; D uen (1) R(V(u))e?V ™ where #(t) denotes the
set of those u € 2 satisfying 7;" (u) = |u| (see (LII)). Then H(t) > 0 if and only if Mz, > 0.
It follows that

M%t e_(fvli%,t>

_<fuuf,@ t> — + _
* € ’ 1 H(t 0 - QLE *
M‘gt {H(t)> }] M%

We will now use the so-called “decomposition along the spine” (wy) (under Q). Recalling

(56) Ex |:€_<f”u@’t>1{H(t)>0}:| = Ex

that O = {u : |[u] =k, U =wp_1, x # wy}, we have

(57) <f7 N:@,t> = f( )1{ﬁt(w + )=o0} + Z Z 1{5,5 )=o00} f N}t ))>7

1<k<r;m u€Uy
where T;" = STt+ — t denotes the overshoot of S above the level ¢ (see (89)), and for any
u € T the point process ugiu)) is associated to the subtree 7 (rooted at u) of T and
defined by

V(u V(u
(5.8) = 3 Sy = Y S
veT W25 (t) veTWNA ()

Recall that R(s) ~ CrZ(s) when s — oo. Since V(u) >t for all u € J(t), we get that,
under Q;,

. e ' V() =t ovw-n
(59) M(Kt ~ m CR%(t)eQ Z % (1 + f) CQ s t — o0.
ue I (t)
Then repeating the spinal decomposition arguments for the above sum »° () We obtain
R(x)e?” ot I5(t)
CrZ(t)et J(t) |’

with
Vi(u
Ig(t) = eXP{ — F(T) 8, (w +)=00} > Lgwmoop Mégi >}=

1<k<r;t u€l

T .
J(t) = @<1+?>eﬂ + > Z/,@ 1+ ee 1V (dz).

1<k<r;m u€UE



22 E. AIDEKON, Y. HU, AND O. ZINDY

Therefore, to prove (5.5]) we only have to show that

e~ {(frbz,00)
o [B0] o).

Note that I5(t) € [0,1] and J(t) > 1, hence IJﬁT(tt)) € [0,1] . Recalling the convergence in
law of the process (t — STt+_ jJo<j<k for any fixed K > 1 (see Lemma H]), we will restrict

the sums over k in Ig(t) and J(t) to k’s between 7,7 — K and 7;7. To this aim let us
introduce H"(t) the number of descendants of u that reach t before 0 (with the convention
H%(t) = 1if V(u) > t). The following lemma ensures that with probability close to 1,
Zlgkgf—K > uew, H"(t) = 0 [the sum is 0 if " < K]:

Lemma 9. We have
PR . K u
(i) imsup j _, o, limsup;_, ., Q; < he1 Dwen, HU() > 1) =0,
(1) im sup g _, o lim sup,_, .o Q" <ﬂt(th+) <7t - K) =0.

Proof of Lemmal[d. See Subsection [8.4] O
Notice that lim;_,e QF (7, > K) = 1 and that on {8(w_ +) >7 - K7t > K},

Bi(u) = inf{r," — K <j <|u| : Buj) > V1) = g (),
for any u = W+ O U € Uk with 7,7 — K < k < 7;7. The advantage of 85 (u) is that 85 (u)
only locally depends on the spines around Tt+. Therefore (B.IT]) will be a consequence of
I/ (t K) e_<fuu@,oo>
+ |28 —Ql
(5.12) Kh—H>100 tllglo Q. [J/(t, K) 1{TJ>K}] Q [ R ’
with
— + V(u))
IG(t, K) = eXP{ - f(T; )1{55(%;):00} - > > Lig (uw)=oc} (> 1 @t >},

T —K<k<rt u€Uk

+
J(tK) = %(1—1—%) e 4 Z Z /{@ 1+ egz (V(u))(dz)

+ I(<k<'r+ u€Uy

Recall (5.8) that the measures Nggu)) in the previous expressions are associated with the

(V(u))

branching random walk killed at 0. Now, we want to replace the measures p,, *’ by the

(V(u))

same measures fi,, ~ but associated with the non-killed branching random walk:
~(V(u ~(V(u
(5.13) i = 3 Law=e) Sverns A V= Y Sy,
veTWNG, veT NG,

where we recall that v € 7 N, if and only if v is a descendant of u and 7,7 (v) = |v] (see
(B7) for the definition of %;). The following lemma confirms that we can replace V() by
V(@) with probability close to 1:

Lemma 10. Let us define fort >0 and K > 1
vt K) = {77 > K}n{ (G, ul" ™) = @G 5 ), Yu e Ui, V€ (7 - Kol
Then for any K > 1, we have
: + c) _
e @ () <o
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Proof of Lemma[I0. See Subsection R4l d
By Lemmas [0 and [I0, to prove (5.5]) it is enough to show that

. . T(t K) e_<fuu',@,oo>
+ [ 18\% _
(5.14) dim im Qg [f(t, %) 1{T¢>K}] =Q [ m ,

where fg(t, K) and J(t, K) are as I5(t, K) and J'(t, K') but with V®) in lieu of V(W)
Tﬁ(th) = eXp{ - f(T;t—l—)l{ﬁf{(wT;r):oo} - Z Z 1{5K (u)=o00} fnu/gt ))>}7

- K <k<rt u€ls

~ +
Jt,K) = %(14—%) el 4 Z Z/{@ 1+ egz (V(u))(dz)

rF— K <k<r" u€ly

Let us now introduce a family of point processes denoted by (& [ ,uy)yeR, which are
associated to the non-killed branching random walk V under P and are defined by

2ve, HB, )=} 0y w)—yy> i ¥ =0,

(515) ﬁ,@,y =
5{—y}’ if y<O,
and
> vew, Ovw)—yy, i ¥ =0,
(5.16) Hy =

5{—y}’ if y<O.

where €, was defined in (3.7)); in particular, {V(v) —y,v € €,} denotes exactly the set of
overshoots of the (non-killed) branching random walk V' above the level y. By Part (i) of
Corollary 3, under Q*, conditionally on %, and on {V(u) = x,,u € U, 1 < k < 7,7}, the

family {(,u;lgu ), MEV(“”), u € Ug, 1 < k < 7,7} is independent and satisfies

o~ ~ U law — —
(5.17) (@5, 1), under Q) " (s> Tir—s,), under P).
For convenience of notations, let us introduce
(5.18) s = S =S+ 1<i<ql,
(5.19) of = 0. ., 1<i<7

Recall that 7" := Srj — ¢ denotes the overshoot of S over ¢. Thus, (5.17)) yields that on
{r,” > K},

Is(t, K as.
(5.20) QF [(?(27}{)) ‘%;] = oK <Tt+,5(t),...,S}?,@<t>,...,@§?> ;

where for any ty > 0,s1,...,sx > 0 and the point measures #), 1 < i < K, of form
90 = Em( v RO we define

K
i =) {95’(9(1)) < e—t0+31‘} ., 1<i<K,

)

j=i
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and
Pt K <t07 S1,---3 8K, 0(1)7 s 70(K)>

m(®) 2,J
exp{ — fto)1y = I 1oy S5 (f, A0 m>}

@,si—to—x-
= E — ,
R (1+ ) et + I S [ (14 5) e 7™ ()

s;—to— :r:

and with (under P) ((ﬁ%}ﬁ,ﬁg’j)),y € R);j>1 iid. copies of ((fig,,7i,),y € R). Then,
applying Part (b) of Corollary 2 to (5.20) implies that on {r;" > K},

I(t, K) as. ~ (1) (1)
5.21 Q|22 g 0<k <t % (T+,s .8 )
( ) J(t,K) k t Tt Pt.K \ Lt 91 K
with
K .
N R 4 | E L P O E R §
=1
with so := 0 for notational convenience. Now for any (tg,s1,...,5x) € R x Rf and for

any family (H(i))lgig{ of point processes 6 := Em( Vs NCR let us define

gooo’K(to,sl,...,sK,H(l),...,H(K)> = lim gomK(to,sl,...,sK,H(),...,H(K)>,
t—o0
Poo,k (t0,81,---,8K) = lim @y i (to,s1,---,5K),
t—o00

and observe that these limits exist by the dominated convergence theorem, which also yields
that

(5.22) &oo,K (to,sl, v ,SK)
K
= [ TIEem s (@09) orc (t051, i 60, 6000
i=1
m(l) _7,,
exp{—f(ton%,K—zuuKz LS D)

// —
B,si—to— z;

edo + 50 YT [ e (d2)
T
J

._to

K .
— [T[=@E
=1

The next step is to replace ¢ k by Yoo i
Lemma 11. Fix K > 1. Then we have
(523)  lim QF [\@7;@@*,5“% Sy — G k(T S ,Sﬁ?)uw%}] —0.

Proof of Lemma[I1l See Subsection 8.4l O
Note that since ¢y g (-) and @oo k() differ only if ¢’(p,.) = 0, the previous result is not
trivial only in the critical case.

Finally thanks to (5.2I) and Lemmal[ITl the double limits (5.14]) will be a consequence of
the following lemma.

Lemma 12. We have
_<f7/>1'.93 oo>
t t € '
lim lim Q) |$Peo K(T;,S% )7"'751}())1{@*»{}} =Q [T] ,

K—oot—00
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where
, — (4,9)
(5'24) Koo = US 1J1 +le ZN%S _US, X(z)7
(5.25) 9; = ﬂ{%(éj)ge—U3&+§j}, Vi> 1,
j=i
(5.26) Hoo 1= Oy, +leg“s 55X
=17
(5.27) R = eQUS“rZZ/eQZ_s —US, Xu)(dZ) =/e"zuoo(dZ),
i=1 j=1

and 0 = 0« if V'(0x) =0, 0 = oy if ¥'(0x) <0, and under Q,

o the ((m %];,ﬂg’])), y € R); j>1 are i.i.d. with common distribution that of ((fig,, fi,),y €
R) under P (see (210))), and are independent of everything else;

e the process (Syp)n (as well as the associated random time &) and the random variable
U are introduced in Lemma[] (see Subsection [{.1]),

o conditionally on {S,,n > 0}, the random point processes Q, = Z @ fori>1

J=1 X
are independent and ©; is distributed as Es g (see (Z18) and Corollary (2 for
the Palm measures (E,,z € R)).

Proof of Lemma[I2. See Subsection R4l d

Proof of Theorem Bl and Proposition Ik Assembling (5.2I]), Lemma [Tl and Lemma
imply (5.14)), hence (5.5): namely for any f € C;£(R) and when ¢t — oo, we have

R(z)e® [e—<f7 1198,00) R(z)ee”

—(fr1z,t) ~ - -1 —(f,i,00)
Em |:€ 1{H(t)>0} CR%(t)th R CR%(t)CQt Q[% ]Q |:€ ] ’

by the definition of jig . Taking f = 0 in the above asymptotical equivalence yields Part
(i) and Part (ii) of Theorem Bl while Proposition [[lis a consequence of Part (i) and Part (ii)
together with (5.5]). Finally, taking £ = 0 in Proposition [Il gives Part (iii), which completes
the proof of Theorem [3] O

6. PROOF OF THEOREM [21 THE CRITICAL CASE

We look at the critical case 9'(0.) = 0. By linear transformation on V', we may assume
that o, = 1 in the whole section without any loss of generality. We investigate the tail
distribution of the number of leaves # £[0] (see (L8)) for the definition). We will see that when
L[0] is large, the main contribution comes from particles that reached a critical height L.
For integrability reasons, we will also restrict to good particles whose brothers do not display
atypical jumps, and are not too many. We denote by G(v) :={u € T : U="v;u # v} the
set of brothers of v ( % denotes as before the parent of v in the tree T). For A>1,L>1
(typically A is a large constant whereas L — o0), we say that

L—V(u;
u € B(L, \) if there exists some 1 < j < |u : Z (14 AV > )\e%
veV(uy)

and u € G(L, \) if such j does not exist. In words, G(L, \) collects good particles in the sense
that their large moments are finite, however B(L, \) is a set of bad particles for which only
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low moments exist. Recall (IL12]) that Z[0,L] =", Lo (w)=lul<7} ()
leaves in the killed branching random walk that did not touch the level L. Let us decompose
Z10, L] as the sums over good particles and bad particles:

Z[0,L] = Z4[0, L] + Z3[0, L]

} counts the number of

with
Z0. L= D N wmperf@y HOL= Y L wmuer )
wEG(L,N) weB(L,\)
The following lemma shows that we can neglect the number of bad particles.
Lemma 13. For § > 0 small enough, there exist constants ¢ = ¢(6) > 0 and ¢ = /(8) > 0
such that forx >0, ,A>1and L > 1
(1+x)e”
1.2
For § > 0 small enough, there exists a constant ¢ = ¢(§) > 0 such that for x > 0, A > 1,
L>1and B >0,

c'L

(6.1) E,[Z]0,L]] < eX™° + ce®e”

< c)\_61+B (1+f1?)ew

(6.2) E: | > LluerwanZ™[0,L+ 5] L+B L

ue’ (L)

where ZW[0, L 4+ B] is the number of leaves in L[0] that are descendants of u and did not
cross level L + B.

Proof. We prove separately (6.I) and (6.2]). The notation ¢ denotes a constant that can
change value from line to line.

Proof of Equation (6.1]).
By Proposition Bl (applied to £]0] and h(y) := e¥), we see that

| 1
E.[20.L] = ¢'Qq —Zb[O,L]]
_ZuEE[O] eV
eV (u) .
= €"Q, —ue_ (u)q = (<t () H{ueB LA
| ueLo] EUEE[O} eV(u) {rg (w)<r (u)} ~H{ueB(L,A)}
v

The weight 267“;/(1” is the probability that the vertex wu is the spine, see Proposition Bl
u€ L[0]

Therefore,
-S _
E; [Z,[0,L]] = " Q, [6 0 1{75<TL+}1{wTO, EB(LA} |»
where 7, (resp. 7; ) is the hitting time of (—00,0) (resp. (L,+0o0)) by the random walk

L—Sp_
S. Let 6 € (0,1), and, for k > 1, ap, := > 5, {1 + AV < e . (we recall that
Uk := U(wg)). From the definition of B(L, \), we observe that

k

7o "0 L-S
. §y—8 —§- k=1
1{w70, EB(LN)} = Z Ligsne=si-nrzy < me (%A e 2 ,1> -
k=1 k=1

It yields that
o

_s _ L—Sg_
(6.3) E, (%[0, L] < €'Qq [ ™0 1+ > min (aiA—5e—5 > 1,1>
k=1
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We first consider the term corresponding to k = 7, i.e

L-S

_S _ . s Th —1
Q. [e o 1{T(;<TL+} min (a‘io)\ b0 71>]

L-S _
-S _ . _ _ To —1
< Q3 [e "o min (a‘j)\ 00— ,1)].
0

We know that (S,), is under Q a centered random walk. Assumption (L3) ensures
that Q [e"(U+M51] is finite if n is small enough. In turn, it implies (see (8I5)) that
<

Q [e—(1+n)57]

-5 _ ’
(@II). Then it is not hard to see that Qgle 0 lge] < e™9L, for some constant 1’ > 0
where £ := {S - > —0L/8,S - | < L/2}. Therefore, we can restrict to the event £, on
0 0
L—-S _
T —1
OL/8 and e~9 2 < e /4 1t yields that

S - =S _
¢ for small > 0, and any x > 0. We also have Q, [e To "t 7o } < c by

. =S
whiche 70 <

e
g L—-S _ 1
- . 5 — o~ —n 5 —sL
Q. [e 0 min (a‘j)\ 0e=0 ,1)] < de MOk L\ 58Qm[a‘i,].
0

0

Observe that -

Q””[a%] => Q. [1{j_1<TO—}QSj,1[1{51<0}a§-] ;
by the Markov property at j — 1.]_F1‘0r y:=5j_12>0,

Qy[l{S1<0}a§'] < Qy[e_%&ag] = e_%y Q[e_%slag-].

By Cauchy-Schwarz’ inequality and (3] we have Q[e=5"/ 2a§-] < cif 6 > 0 is chosen small
enough. Therefore,

Qm[a‘%] se Z;Qm [1{j—1<m’}6_% jfl} ;
=

which is uniformly bounded by (4.10). Hence, we showed that

L-S _
o -1

_S — 1!
(6.4) Q. [e 70 1{T5<T+}a5,)\_56_5 2 ] < ce ML,

Lt Ty

We consider now the terms corresponding to & < 7, in (6.3). By the Markov property at
time k, we get

oy §\—0 —6 k=t
Qo e 01y o ohyapA e 2
L—-S —
-5 PR sl S -
< A7°Q [1{k<T<T+}ake 2 ]supr[e o ]
0 L yzo

L-—-S
_ -6 § —6= k=l
= cA7’Q, [1{k<TO<TL+}ake 2 ] ,
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again by (8I%]). By the Markov property at time k — 1, we observe that the last expectation

LSk

is Qg 1{,€<T07<T+}e_‘S 2 Q[a‘f]. Summing over k > 1, we deduce that
L
s Ty —1 s
TP § —o——k=l1
Qo e ™l Z ape 2
k=1
79 —1 _5L75k71
< Qq 1{TJ<TZF} ¢ ?
k=1

L-Sk_1

By ([@14), we have Q, L= crty Egio_l e 0 } < ¢ for some ¢ = ¢(5). We obtain
that

79 —1

-S _ L=Sp_1 1+=x
-6 - 5 —6 Iy—6
AT°Qg e o 1{7(;<TL+} kg 1 ape 2 <cdA\ 72

Then (6] follows from Equations (6.3]) and (6.4]).

Proof of Equation (6.3).
By the branching property, we have

E: | Y luesaoZ™0,L+Bl| =B, | Y lpesaapf(V(w)]
ue#(L) ue (L)

with f(y) := E,[Z[0,L + B]]. Using the measure Q,, Proposition Bl implies that f(y) =

—V(w _—
e?Qyle g 1= <TL++B}] which is smaller than c%ey by (&9)). It follows that
1+ B
(65 Eu| > LuueswayZ™0,L+B]| < %E > Luenaaye’ ™
ue (L) ue (L)

By Proposition [l with €7, and h(y) := €Y, we observe that

V(u T
E, § LiueB(r,n)}€ Wl = e Q. [1{TL+<TO}1{wT+€B(L,A)}] :
ue (L) L

As before, we have for § > 0,

i o-s
-5 § —§= k=1
Lw 1 iseBLy} <A E ape 2
L k=1
where aj, == 37 5, {1 + AV, Hence,
+

L-5k_1

L
-9 § : é,—08
)\ Q(E 1{TZL<T(;} ake 4
k=1

IN

Q. 1{TL+<TJ}1{“’TL+ GIBS(L,A)}:|

L-5k_1

= )\_JZQm |:1{k§7-£r<7—0}a26_5 4 ] .

k>1
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Using the Markov property at time k — 1 for every k > 1 yields that

L-5Sk—1

+
7L
-5 —0
Qo | Ly cnpliw sy | < A7Qe | 1o }kze 2
=1

L=Sk_1

2

_ A —0

= A7°Q, 1{TL+<T(;}§ e 2
k=1

with ¢ = Q[aj] < oo if § > 0 is small enough by ([3). We get by equation ([EI3)

1+
)
Qs |:1{T£r<7—0}1{wT£L€]B(L,)\)}:| <t ——.

Going back to (6.5]), we obtain

(1+B) (L+a)er
L+ B L ’

E, Z 1{u€B(L’)\)}Z(u) [0, L+ B] < Ao
ueI (L)

proving (6.2)). O

We are going to re-prove the following estimate of Aidékon [3] but in a more general
setting. We recall that £[0, L] is the set of leaves in £]0] which did not hit (L, +oc0), and
Z[0,L] :== #L[0,L]. We call similarly £4[0, L] the leaves in L]0, L] which are in G(L, \),
hence we have Z,[0, L] := #L,4[0, L] the number of such leaves.

Lemma 14. Fiz A\ > 1 and assume that ¥'(0s) = 0 with o, = 1. Under (I.3), there exists
some constant ¢ > 0 such that for all L>1, and 0 < x < L,

2 e’
E, [(ZQ[O,L]) } < A1+ )" 5.
Proof: Writing Zy[0, L] = 3~ [ eV(”)l{Tj(vb‘v‘}e_V(”)

sition [3 (applied to £[0] and h(z) := €”) that

-S _
(6.6) E, [(Zg[o,L])Q] — &Q, [Zg[o,L]e % 1{75@;}1{%56@(&”}].

Liveg(r)}, we deduce from Propo-

We decompose Z,4[0, L] along the spine (wy, n > 0) as follows:

Z,00,L] <1 +§O: > zWio, L],

k=1u€eUly,

where ZW[0,L] := Y verw 1 {r () ()} denotes the number of descendants of u,

touching 0 before L [T(*) means as before the subtree rooted at u]. We have an inequality
here since we dropped the condition that the particles must be in G(L, A). By Proposition 2]
under Q,, conditioned on %, := o{w;, S;, U;, (V(u),u € U;),j > 0}, (2™ [O,L])ue%dST&

are independent and each Z()[0, L] is distributed as (Z[0, L], Py (y)). In particular,

_ +
=lv|<T]

QulZy[0, L] [ %] < 14+ > By (20, L]).

k=1 u€eUy
Proposition Bl implies as well that for any z € R,

_S _
E.(Z00,L)) = Q. 0 1 sy
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which is zero if z > L and is 1 if z < 0. By (49]), we get that
L—z+1
E.[Z[0, L]] < ce” ——F——1{zepo,0)} + Liz<0}-

Hence,

i oL V(u)+1
Q. [ZQ[O,L] ‘%o} <1+ Z Z <ceV( )%1{V(u)€[O,L]} + 1{V(u)<0}> .
k=1 ueUy

For k < 77, we observe that [recalling Sg_1 = V (wg_1)]

L—-V(u)+1
V(u
> Ty we.y

u€Ug

L —V(u)+1
— Sk Z AV( )%1{V(u)€[07ﬂ}
u€ly,
Meskflak

<
> C T
with ay =), 5, 11 + AV Tf w - € G(L, A), it follows that for any k < 7,
wLl—Vu)+1 L—Sp1+1 Ska-t
Z eV( )—l(—/ ) 1{V(u)€[O,L}} < /\EL—Z ! e 2 .
u€Ug

L
2.

Similarly, we observe that Liviw <oy < ax < Ae2. Therefore, if w_- € G(L, A), then
uely ~{V(u)<0} To

Qu[2,0.01[ 9] £ 1435 3 (L Sia+ 1™
k=1

Equation ([6.6]) implies that

B[00 < el g o)+

To

e+l -S _ Sg—1-L
A——Qu e 7 1{To<rf}kZ(L — S 1e 2|,
=1

The right-hand side is smaller than e*(1+ ¢/(1 + :L"))\GXLZL) by (@14]). It completes the proof
of the lemma. 0

We look now at the progeny of a particle which went far to the right. Recall the derivative
martingale
oW, = — Z V(u)e¥ ™), n > 0.
|u|l=n
According to Theorems 5.1 and 5.2 in Biggins and Kyprianou [9], under P, OW,, converges
almost surely to OW,, which has infinite mean and is almost surely positive on {7 = oo}.

Lemma 15. Assuming ¢'(0«) = 0 with o, = 1. Under (I.3), as t — oo, the law of #L[0]
under Py, normalized by €'/t converges in distribution to ¢* Wy, with

Qe v 1]

(6.7) = —Q[ST(;]
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Proof: By linear translation, it is equivalent to prove that under Py, #L[—t] normalized
by e!/t converges in law to ¢* OW,. If we define

OWpi_yg = — Z V(u)ev(“),

ueL[—t]

then OW,[_y converges almost surely to OWy (cf. Biggins and Kyprianou [9], Theorem
5.3). We write

1
_ 4=t V(u)+t | =
(6.8) OW g = te " ( Z e + tm)’
ueL[—t]
with 7, = — zueﬁ[_t](V(u) + t)eV W+t At this stage, we may apply a result of Nerman

[28] for the asymptotic behavior of #C;[—t} Eueﬁ[—t] VWt Let ¢ = ZuEC[O] Si—v() be
the point process formed by the (non-killed) branching walk V' stopped at the line £]0].
Generate a branching random walk (Ve(u),u € T¢) from the point process &, where Vg, 7T¢
are related to ¢ in the same way as V, T are to .Z. Define L¢[a] := {u € T¢ : |u| = 7 (u)}
for all a > 0. Clearly L¢[t] = £L][—t] and

Zueﬁ[—t] eVttt _ Zue’Tg Yu(t — ou)
#L1 ey, Gull —0u)’
where for any u € T¢, 0y := —Ve¢(u) and
Yu () = 1ip>0 Z em_(gv_ou)l{av—ou>x}v bu(T) = Lip>0y Z Yoy—gu>a}-

v=U V=Uu

Applying Theorem 6.3 in Nerman [28] (with a = 1 and A\, = oo there) gives that conditioned
on {7 = oo}, almost surely, when ¢ tends to infinity

ZueTg ¢U(t - Ju) N E[Z‘U‘ZI,UE'E e_guav]
2 uee Pult = 0u) E[Z|v|=1,ve7g(1 - 6_"”)} ‘

Observe that E[Z|v|=1,v€7’g e‘“”av} = _E[Zueﬁ[o} ev(“)V(u)} =-Q [STJ}, and similarly,

)
E E\v\:l,veTg(l - e‘““)] = Q[e 70 ] — 1. Therefore conditioned on {7 = oo}, almost
surely

Zueﬁ[—t] eVt N Q {STJ]
R

On the other hand, following the same strategy, we get that conditioned on {7 = oo}, we
have almost surely

t — oo.

t Q [(575)2/2]
#ﬁn[—t] 7 Q[e_sfo’] 9

Dividing both sides of (6.8) by #L£[—t], and using the fact that OW,_y goes to W, we
deduce the lemma. O

t — oo.

We also need the following simple technical lemma whose proof is postponed in Section

B
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Lemma 16. On some probability space (0, % ,P), let Zle d1v;y be a point process on R.
Let (T';,i > 1) be a sequence of i.i.d. random variables on Ry, independent of o{&, Y;,1 <
i < &} Assume that for some p >0 and a > 0,

p(n >t) = (a+o()tP,  t— oo

(i) If p =1 and if there exists some § > 0 such that E [Zle YZ-H‘S} < 00, then
£ 3
tlggotp(; Yili>t) = aIE[Z_;Y}
+4
(ii) If p > 1 and if there exists some § > 0 such that E[Zle(l + Yi)r < 00, then
g £
S T _ P
Jim ¢ ]P’(Z; YiTi>t) = aE[Z;YZ |

In the critical case, the branching random walk goes to —oco. In particular, almost surely,
H(L) = 0if L is large enough. Fix A > 1. For L > 1, let uy 1, := Zue%(L) O4v ()1} LueG (L))} -
Then Proposition [l implies that py  under P(-| H(L) > 0) converges when L — oo to
fi.0 defined in Proposition [l with % (u) := )‘_2(ZUEU(U){1 + eAVN)2 We will write
firoo 1= Zfi 1 0z, instead of fiz ~. Since the measures fi) o, are increasing in A, we can as-

sume that the labelling (x;); does not depend on A > 1. We write similarly p) o := Zf;l Oz,
for the measure f1 ~ given by Proposition [, and we know that the Radon-Nykodym deriv-

ative of [i) o With respect to py o is Q?%jl}. Notice that if Q = 0, then fi) o is the measure
ZETOo.
Lemma 17. Assuming ¥'(0«) = 0 with o, = 1 and (L3). Fiz X\ > 1 and let fiy o and

Hrco be as above. Under Q, let (8W<§é),i > 1) be a sequence of i.i.d. random variables,
independent of iy and of common law that of OW, under P. For any A > 1, we have

o ' LT i
(6.9) Jlim 1Q ; T W >t | = Ql Q[%_’T]l |
Moreover, for any c > 0,
2 S ] 2 1
(6.10) Jlim X*Q ;e%awgg >cA? | = QT
Proof of Lemma [I7: For any ¢ > 1, by Theorem 2.5 (i) of Liu [23],
(6.11) QWY > t) =P(0Wa > t) ~ % t — o0.

In order to prove (6.9), we shall apply Lemma [I6] (i) and it is enough to show that there
exists some § > 0 such that Q [Efil(l + exi)H‘S] < 0o. Remark that fi) o has the support
contained in R, hence for § > 0, Q [Zfil(l + e“’ci)H‘S} < 21+0Q [Efil e(1+5)xi}. We are

going to prove a stronger statement: for fio the point process defined in Theorem (@) (iii),
we have

(6.12) Q [ / ﬁoo(da;)eu”)m} < 0.
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The statement (6.12]) implies the corresponding integrability for fiy o since fiy o is stochas-
tically dominated by Jiso. To prove (6.12]), we consider x(L) := Zuejf@) eI+ (V(w)—L) and

prove first that, under P (-|2#(L) # 0), x(L) converges in law to [ fico(dz)e!T®2. In order
to apply the convergence in law of Theorem [ (iii), we need some tightness result. We claim
that

(6.13) supP,(Ji € |1, H(L)|] : V(') — L > K|H(L) > 0) = ox(1),
L>1

where we order the set of particles in .7#°(L) (eventually empty) in an arbitrary way: (L) =
{u,1 <i < H(L)}. Markov inequality yields that the probability term in (6.13)) is smaller
than
(6.14) e Ke B[ Y "MIPL(H(L) > 0)7 <ee FLE,[ Y V],

ue (L) ue (L)
where the inequality is a consequence of Theorem [3] (i). To prove the claimed tightness
result it is sufficient to show that there exists some constant ¢ > 0 such that for any = > 0
and L > max(1,z) we have

V)] < il
(6.15) E[ ) e | <e(l+a)—
ueH (L)
To see it, we change of measure from P, to Q, by Proposition B (applied to 47 and
h(z) := e*) and find that
Bl Y "M =eQ.(rf <7).
ue (L)
Then (8I7) implies (6.15]). Assembling (6.14]) and ([6.15]) yields (6.I3]) and allows us to apply
Theorem [3 (iii) to obtain the convergence in distribution, under P( - |#(L) # 0), of x(L)
toward [ fioo(dx)e1 )7,
Then (612) will hold once we have checked that E(x(L) | #(L) # 0) is bounded on L.
By Theorem [3] (i) with g, = 1, it is enough to show that

. <c—.
(6.16) E[X(L)] <
But by the change of measure,

(S . —L
E[X(L)} = e_LQ [e ( A ),T; <7 |-

The above expectation Q[] is less than ¢ by applying (£.9)) to the random walk (6(L—5}));>0
(the integrability is guaranteed if ¢ is sufficiently small). This proves (6.16]) and a fortiori

©.9).
Remark that by (6.12]) and Lemma [I0] (i), if we write fico = Zle 0fz,}, then

_QRTY e
Q1]

1
Q[R]

¢
. 1 1
=1

since R = Zgzl e by definition, see (5.27)). We have already observed that [iy o is stochas-
tically non-decreasing in A and is dominated by i [ficc corresponds to fiy oo with A = oo].

Then limsup,_, ., A’Q (Zfil e W) > c)\2) < limsupy_, ., \2Q <Z§:1 evi oWl > c)\2)
which is W—], yielding the upper bound in (G.10).
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For the lower bound, let A\g > 1 and by the monotonicity in fiy,

9 o
ey 2 i a1 (i) 2 S Timinf \2 i o117 (@) 2
lg\ni}ggf)\ Q ;:1 e OW3Y > cA > h)\lggf)\ Q ;:1 e OW3Y > cA

QR 1o €]
QR

by applying (69]) to iy, - Letting A\g — oo and noting that kaol e”i = [ €"prg 00(dz) = R,
this gives the lower bound of (G.10]). O

Recall that we obtained the existence of some constant ¢ > 0 such that for any z > 0, L > 0
with L > max(1,z) we have

(6.17) E > eV<“>]§c(1+a;)%
ue (L)

We now have all the ingredients to prove Theorem [2] in the critical case.

Proof of Theorem 2] (i), (critical case):

Lower bound of Theorem [2 (i): Recall that we have assumed p, = 1 by linear transfor-
mation. Fix a constant A > 0. Consider n — oo and let L,, 4 :=logn + loglogn — A. We
recall from (LI0) that H(Ly a) = #5¢(Ly, 4) is the number of particles that hit level L, 4
before touching 0. We call H g(Ln,A) = #c%”g(LmA) the number of particles in (L, 4)

which are in G(Ly, \) with X := e. We order the set of particles in 5 (L, ) (eventually
empty) in an arbitrary way: (L, ) = {u,1 <i < Hy(L, 4)}. Denote by #L£®[0] the
number of descendants of the i-th particle (¥ which are absorbed at 0. Then,

Hg(Ln,A)

P, (#L[0] >n) > P Y #LD[0]>n

Hg(Ln,a)
(6.18) = P, (H(Lpa)>0) P, Z #£910] H(Lp) >0
. Q[gRil] ean,A
By Theorem Bl (i), Py (H(Ln,.a) > 0) ~ —o.— R(x)e” Sg—= as n — oo. On the other

hand, conditioned on (L, 4) and on {V(u(l)) 1 <i< Hy(Lna)}, (#ﬁ( [0 ])1§i§Hg(Ln,A)
are independent, and each #£®[0] is distributed as #L£[0] under Py o)

By Lemma [I5, if we denote by B® := #£0) [O]e‘v(“(i))V(u(i)), then conditioned on
(L, a) and on {V(u),1 < i < Hy(Ly )}, for each i, B®) converges in law to oW
as n — 00, where 8W££),i > 1, is a sequence of i.i.d. random variables of common law
that of (0Wx, P), and independent of L.+ We may assume by Skorohod’s representation
theorem that for each 7, B® converges almost surely to c*@Wéﬁ,).

Let ¢ € (0,1). First, we want to show that we can restrict to the event E(Ly 4) =
{B®W > (1—¢)c¢* oWy Vi1 <i< Hg(Lpa)}. We have

Px(E(Ln,A)C | H(Ln,A) > 0)
< Eu[Hy(Lna)| H(Lna) > 0] sup P.(ze *#L[0] < (1 —£)c"0W)

z22Ly A
= Eu[Hy(Lpa) | H(Lna) > 011, ,-
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The term 7y, , goes to zero as n — oo by Lemma By (6I7) and Theorem [ (i), we
have Ew[Hg(LmA)‘H(Ln,A) > 0] < e_L”»AEm[ZUG%)(Ln 2) ev(“)|H(Ln,A) > 0] < ¢ for some

positive constant ¢ = c(z) which depends on z. Hence, Py (E(Ly 4)|H(Ly . 4) > 0) =
or, 4(1). We have

Hg(Ln A

P, ( Z #LO[0] > n | H(Ly,a) > 0)

Hg(Ln,A) oV (u®) 0
_ px< 3 PO >n|H(Ln7A)>O>

=1
> Pz(

Hy(L, i
9(Ln,a) oV (u®)

V(u®)

(6.19) B® >, B(Lya) | H(Lp.a) > 0).

i=1
Observe that
Hg (Ln,A) V(u(z))

P, BY >n, E(L, Ln.a) >0
— V(ul) ny B(Lna)| H(Ln,a)
Hy(Ln,4) v (4)
> P, S _ow® > — " B(Lna) | H(Lna) >0
- — V(®) T F T e (l-e) ’ ’
Hg(Ly,a) oV (u®) 0 n
2 > P, — | H(L, 1),
(6.200 > ; V(u(z))aw IO (Ln,a) >0 +og, ,(1)

where oy, ,(1) = 0 as L, 4 — oo. In order to apply the convergence in law of Proposition
[, we need some tightness result. Recalling (6.13)), it is sufficient to show that

supP, (Ji € [|1, H(L)|] : oW > K| H(L) > 0) = ox(1).
L>1

Since the OWO@’S are i.i.d. copies of 9Wy and independent of i, ,, Markov inequality
yields that the probability term in the previous equation is smaller than

K~YV?E,[H(L)| H(L) > 0/E[\/0W.] = O(K~Y/2),

by using (6.17)), Theorem B (i) and (G.I1). This yields the claimed tightness and allows us
to apply Proposition [0l to get

Hg(Ln,a) oV ()

(6.21) lim P, [ >

n—00 ¢
=1

(Ze“@W(Z c*(1 —E)>

where [iy o = Zfi 1 0z, is the point process defined before Lemma [I7, and we recall that

Ai=e2. By 613), (619), (6:20), [6.21)) and the definition of Ly, 4, we deduce that for any
A >0,

_ow® > " | Hg(L,
V(u®) °°>c*(1—6)‘ (Lna) >0

S ' 22
R(z)e" e Q Z B oW > —
i=1

-1
liminf n(logn)? P, (£[0] > n) > m c(1—¢)

n—oo CR
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We let € — 0 to get
lim inf n(log n)? P, (#5[0] > n) > R(z)e"C(A),

n—oo
with 0(4) = W et Q( 20, envcrom) > 22).

By Lemma [I7] we have C(4) — 5—; as A — oo, which leads to

*

lini)infn(log n)* P, (#ﬁ[O] > n> > R(x)e” <

R
We notice that we showed in fact that, for any A > 0,

Hg(L A)
hnnl)lgfn(log n)‘P, ; #LY[0] >n | > R(x)e"C(A).
Repeating the same argument with this time E'(L, ) := {B® < (1 +¢)d Doviil<
i < Hy(Ln a)} yields that C(A) is also a limsup. Therefore,

n—oo

Hg(Ln,a)
(6.22) lim n(logn)? Px( Z #L£9[0] > n> = R(z)e*C(A),
i=1

with C(A) — 5—; as A — o0.
Upper bound of Theorem [2 (i). Let n > 0 and ¢ > 0. We take again L, 4 := logn +

loglogn — A and A := e%. Markov inequality with (G.I) implies that if A is taken large
enough,
lim sup n(log n)?P, (Zp[0, L a] > nn) < e.

n—o0
By Theorem [3] (i), we can choose B > 0 large enough such that
(6.23) limsup n(logn)*P,(H(L, + B) > 0) <e.

On the other hand, by (6.2]) and Markov inequality, we obtain that for A large enough,

(6.24)  limsup n(logn)*P, Z 1{ueJB(Ln,A,>\)}#£(u) [0] >nn, H(L, + B)=0
" u€H (L, a)

1
< i logn)?—E, 1 ZWo,L, + B]| <
< limsup n(logn) - Z (WEB(Ln N} 0,L,+ B]| <e
’U,Ejf(Ln’A)
where the notation Z®],] was introduced in Lemma I3l Finally, it yields that
(6.25) lim sup n(log n)*P, Z 1{ueB(Ln,A,A)}#£(u) [0] >nn | <2e.
" u€H (L, 4)

We now show that the “good particles” which never touch L, s are negligible when A is
large. We recall that Z4(0, Ly, 4) is the number of particles in G(Ly, A) that touch 0 before
L, 4. By Lemma [I4]
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Therefore, by the choice of L, 4 and A we have that for any fixed n > 0,

c(1+z)ee 2
n? ’
which is less than ¢ if A is large enough. By triangular inequality, for any 0 < n < 1/3 and
any € > (0, we deduce that if A is large enough
Hg(Ln,A)
P.(#LI0] >n) <P, | > #L900] > (1-3npn | +4e.
i=1

lim sup n(logn)?P, <Zg[0, Ly al > nn> <

n—oo

From this and (6.22]), by letting A — oo and 1 — 0, we deduce the upper bound

*

limsup n(logn)? P, <#£[0] > n) < R(x)e” <
n—00 CR

Thus we have
lim n(logn)? Py (#£[0] > n) = R(2)e" ¢

crit
the renewal function for the descending ladder heights. The renewal theorem implies that
-S _
Cgr= Q[—ST(;]_l. Hence, from the value of ¢* in (6.7]), we end up with ., = Qe ™ —1]

indeed. O

with ¢, ., = 5—R Finally, we recall that Cg is the limit of R(x)/x as © — oo, R(z) being

7. PROOF OF THEOREM [2 THE SUBCRITICAL CASE

We treat here the subcritical case 1)'(0«) < 0. Define a new probability measure Qle-)
by B3) with h(u) = e2-V® for all u € 7. Then for any = € R,

ngcgi) —o-x _V(uw)
Wyn:eg |§_:eg ’ nzo.

We recall that Q satisfies (8.16]) with o = o4.

Applying Proposition 2] we see that the trajectory of the spine (S,,) is a random walk
that drifts to 400 under Q, and drifts to —oo under Q(-), in fact, Q[S1] = ¢'(04) > 0
and Q(@-)[S1] = +/(p_) < 0. In particular (see (I6) and (&I7), changing S; in —S; for
Q(Q*)), we deduce the existence of C’g*) > 0 such that

(7.1) Q(Q*)(TZr <Th )~ ele-—er)L Q(rf <15) ~ = L — oo,

C’}(%Q’) Cr’

(the second equivalence follows from Lemma B]). The strategy of the proof of Theorem
(ii) is in the same spirit as in the critical case (i). Recall (L8] that £[0] denotes the set of
leaves of the killed branching random walk. We give first an estimate on the moments of

4L[0).

Lemma 18. For any integer k < g—f, there exists some constant cx > 0 such that for any
x>0

E.[(#L£[0)"] < cgeto-".

Proof of Lemma We give a proof by induction on k. Changing measure from P, to
ng’) with Proposition [ (with £[0] and h(u) = €2~V for u € T) yields the identity

(7.2) B, [(#L0)F] = Qi) [e 0 (#el0) ]
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By (418]), the case k = 1 holds. Suppose that it is true for k—1 > 1, and that 2 < k < Z’—f.
We decompose #L[0] along the spine

#L0) =1+ Z > #LMo],

=1 uely

where #£[0] is the number of particles descendants of u absorbed at 0. We mention that
if V(u) < 0, then #£®[0] = 1. Conditionally on Geo, (#LW[0])uev,s,, 0 < j < 75, are
independent and each #£™[0] is distributed as (#£[0], Py (y)). By the triangle inequality,

Qe [icio) 16 "4 <1430 3 e (#e00)" " 16w

:| 1/(k-1)
(=1 uely

For each ¢ and uw € Uy, we have from our induction assumption
(7.3)

k—1 k—1
Qle- [(#ﬁ(“) [0]) ‘goo} < Ly (w<oy + Loy er—1e FIV < ¢ (1 + e“”“’) .

Therefore we get

] 1/(k—-1)

<1 +c'§0: Z 1+ e2- V),

(=1 u€eUy

Qle-) [(#c[OD‘“‘l oo

In view of (7.2]), we deduce that

[ - k-1
7o
—0-S _
E, [(#E[O])k] < ce® 4 et Q) | U Z Z {14 e~V
l=1 ueU,
- — k—1
—0_S _ 0
< ce? T4 ce? " Qgg,) e o ZeQ*S‘Z*laz ,
/=1

where for any £ > 1, ay := zuew{l—i—eﬁ’*AV(“)}. Plainly Corollary [Tl also holds with o = o_,

which implies that under fo*), the random variables (S; — Sy—1,a¢)¢>1 are i.i.d. (whose
law does not depend on x). Moreover

k
QU1+ Lggycope @M af T <E | Y (14 VW) <o,
|u|=1
by (L4]). Applying (£.21]) withb = o_, p = k—1, v = o4 —o_ (recalling that o4 /o_ > k > 2),
k-1
—0-5 _— iy .
we get ng)’) e 7 ( oy eQS‘flag> < celb=De-z proving the lemma. O

We introduce the analog of good and bad particles in the subcritical case, and we feel free
to use the same notation. For A > 1, L > 1, we say now that

u € B(L, \) if there exists some 1 < j < |u] : Z (14 €22V W) 5 peo-(E=VI5-1))

P
VIv=uj_1
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and u € G(L, \) otherwise, and we define again
Z4l0, L] = Z 1{Tg(u):\u|<TL+(u)}’ Zp[0, L] := Z 1{Tg(u)=\ul<i(u)}‘
weG(L,\) u€B(L,\)
Recall the notation ¢* in (L4).
Lemma 19. Let k* := [ (] + 1 be the smallest integer such that k* > 2=. Let 0 < dy <

s (0F 4
min(%, k* — £5).
(i) There exists some constant ¢ > 0 such that for any L >z > 0,
k*—2t s

B, [Z,00,1)F] < X" 7o coreele ki man)k

(ii) For q := g—f + da, there exists some constant ¢ := (A, q) > 0 such that for any

L>x>0,
q

E, Z e0-V W) | < o o+t glae-—e4)L
we# (L) NG(L,N)

(i11) If we assume (I.9), then

k*
E, Z e0-V () < celt® e(k*gf—m)L7 0<z<L.
ue (L)
Proof of Lemma

(i): Let k be an integer. By changing of measure from P, to Q;Q*), we obtain

e

—0_S _
(T4)  El(Z0,1)"] = e+-* Q") [ Ol _cewan (Z0 )V 7y < 7|

By decomposing the tree T along the spine (wy), we get that

o
(7.5) Zy(0,L) < Z[0,L] =1+ ) > Z™[o,L],
(=1 ueUy
where ZW[0,L] = 3, cr Lt (w)=fol<r (0} denotes the number of descendants of wu,

touching 0 before L [T(*) means as before the subtree rooted at u]. By Proposition 2
under Q, conditioned on ¥, = o{w;, S;,U;, (V(u),u € Uj),j > 0}, the random variables
(ZW]o, L])uew,Krg are independent and each Z™|[0, L] is distributed as (Z[0, L], Py ()
Conditioning and using the triangle inequality, we have

(7.6)

(@) [(Zf0, 21y |goo})1/(k_l) <1+ i 3 <Q§C«2) [(zw 0.2))" (ngl/(k_l)-
(=1 ues,

Assume k < (o4 /0_)+1. From Lemmal[I8| since Z(W[0, L] < #L£M™[0] and k—1 < o4 /0_,
we know that

o1 1/(k=1) v
O
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where the indicator comes from Z® [0, L] = 1 if V(u) < 0. It follows that
- oS

EAZ0L)] < cerrQe) [ %] +

r - k—1
T _ _97‘977 - _V(u

ce? " QL) e 0 ]‘{wT(;EG(L,)\),T(;<TL+} DD (14er VM)

(=1 ueUy,

7.7 — e Q) [ 0 | feet A
x (rdhrd)

with some larger constant ¢ > 0 and the obvious definition of Am for the remaining

expectation under Q;Q*). By (#I8), see also Theorem 4 in [24] applied to —S at 7.f,
—0-S _

Qfé’*) [e o= ] < ¢. Therefore we have shown that for all k < (o4 /0_) + 1,

(7.8) E,[(Z,[0, L])*] < e + ce?~ " Ay

0 estimate , let us adopt the notation a,: for an > 1, ap := +
To esti tAmlt dopt th tati f yi>1 uew, (1

e@-AV(W) hence Zgl > uew, (1 + e0-Vw) < Zgl e?=5-1gy. On {ng € G(L,\N)}, ap <
Ases 0 (L=Se-1) a%_s for any 0 < s < 1. It follows that

_ k—1
To
(79) Am < )\s(k—l) esgf(k—l)L Q;Q,) 6_97570* Zegf(l—s)SQ,la%—s 77_0— < Tl—ji- 7
(=1

forany 0 < s <1and k < (p4/0-) + 1.
If o4 /o— is not an integer, then k* < g—f + 1 and (7.9)) holds for k = k*. Take

(7.10) s il i
' k*—1
Notice that
(1—s)(k*—=1)+1
Q) [(1 + Lig,<ope” ) agl_s)(k*_l)} <SE|) (1+eVM) < 0,

|u|=1

Qle-) [ea—s)gf(k*—l)sl] _ blo-(1H(1=9)(k" =) < o

by (L4). Under Qle-), (S¢ — Sg_l,a%_s)321 are i.i.d. Applying [@22) to the expectation
term QSJ-’*)[-] in (T9) with vy =04 —0-,b=0-(1—15),n = o—,p = k* — 1 and noticing that
pb > 7, we get that if we take k = k* in (7)), then

A < enH D e glor e @D Do se-)k

—  eNSET=D) ey —o)(@—L)+(k*—1)e- L

This estimate with (Z.8)) prove (i) in the case that g4 /o— is not an integer.
It remains to treat the case when o4 /o_ is an integer. Then k* = S—f + 1. Applying (7.7)
to k = k* — 1 (which is less than g—f + 1), we have that
e k*—2
E.[(Z,[0, L) 7Y < de-7 4 cetQle) e T (S eS| ny <,
=1
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which by an application of (£22]) with « = 0,7 = o4 —o0_,b=0_,p=k* =2 =~/b [it is
easy to check the integrability hypothesis in Lemma [§ (ii)], yields that

E.[(Z,0, L) <e(1+L—z)e+®,  0<a<L.

Moreover, E,[(Z,[0,L])¥"~']is 1 if # < 0 and 0 if # > L. Going back to (78] and (7.4)
with now k = k*, we obtain that

E.[(Z,[0, L)*] < ce? " Q{2 [1 +e L, _es(z. AN T g < TZ]

with

,7_

Q;
A= Z > < (1+ L = V(w) e ey yep +1{V(u><0}>-

{=1 ueUy,
Observe that on {¢ <7, <7/},

Q;
Do+ L=V@) ey ey + Lvw<o
u€Uyp

o_
< (14 L= Spy)erel Ty (14 e AV,
u€Uyp

o_
which in turn is bounded by ¢(1+L—Sy_1) %+ eP- -1 \3ese~(L=5-1)q) =% gince W~ € G(L, N,
where 0 < s < 1is as in (ZI0). It follows that

Ex[(Zg[O,L])k*] < c/)\s(k*—l)esg,(k*—l)L 0%

- k-1
(e-) |75 - o A=s o (1-9)S, - +
Qy e 0 Z(l +L—Si1)*a, %e -1 , Ty < T}
(=1

Again, we apply @22) to (Sp — Se—1,a; *)e>1 with v = ¢4 —0_,b = 0_(1 — s),n =
0—,p = k* — 1 > ~/b [the integrability hypothesis can be easily checked as before], which
yields that E,[(Z,[0, L])*"] < A5k =D eorat(k"e-—0e+)L  proving (i) in the case that o4 /o
is an integer.

(ii): Write in this proof A := Zuejf@) AG(LN) e?-V()  Instead of Q&Q*), we shall make
use of the probability Q defined in (B.16) with o = o4 for the change of measure. We stress
that under Q, (.S,,) drifts to +oo.

Firstly, we prove by induction on k that for any 1 < k < k* —1, there exists some constant
¢k = cx(A) > 0 such that

(7.11) E, [AF] < o eoer elbe-enlk,
By the change of measure, we get that for £ > 1,
- (0-=0+)S + - -
E,[AY] = e'Q, [ Ll +€G(L, AT T < }
(7.12) = €g+m+(gi_g+)LQx [e(g—g+)TL 1{wT+GG(L,)\)}Ak_1’ Tz_ < 7—0_:| )
L

where T} := STL+ — L > 0. This yields the case k = 1 of (Z.11)).
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Assume 2 < k < k* — 1 and that (C.II) holds for 1,...,k — 1. Exactly as before, we
decompose A along the spine up to Tz_, apply the triangular inequality and arrive at

(Qx[Ak_llg ])1/(19 1) <e +Z Z Qx A(u k— 1,@ ])1/(19 1

{=1 ueU,

where A® .= 2067—(“)0%(” AG(L,A) e2-V(®) with 7 the subtree rooted at u. By Proposi-
tion @, under Q, and conditioning on %, each A is distributed as (A, Py (y)). Hence by

_ ‘ _ L o A oee-n
induction assumption, (Qg[(A®™)F=1 @, )/ k=1 < k- 1e =1 e2 %, Then,

_S 4 04+ AV (u) ey (Sp_1—L)
(QuIN* o) V) < o T e LZZV“ .

{=1 ueUy

Notice that 25 > o_ and that on {wTL+ € G(L,\)},

o 4 e+ (11— o
Z ek_leV( < ay m%x e(k+1 0—)AV (u) < (az)l—s \o—(—T) (1 S)e(rﬂ—(l—s)g,)(L—Sg,l)y
u€0y

kr—2t 5,
o_

with s := —5=—. We mention that the above inequality holds for k = k*.

Going back to (7.12]), we obtain that [we keep the density there ele-=e)T only fore” L
and use the inequality (z + y)F~1 < 2F=1(zk=1 4 y*=1))

E,[A"]
L
< c()\)69+x+(9——9+)L) o0~ (k=1)L Qx[e(kgf—ng)TgL]_i_Qx[Z( O s p(1=8)o—(Sp—1— L)]k !
=1
Remark that Qgc[e(k@*_“)TL+ ] = Q[elke-—e+ )TLtz] is bounded by some constant since we

have Q[e(Fe-—0++9)51] = exp{¢)(ko_ + )} < oo if § > 0 is sufficiently small [here we use the
fact that & < k* —1]. By Lemmal5 the above expectation Q[ --]¥~! is uniformly bounded,
which proves (Z.ITJ).

To control E,[AY], we use the change of measure:

E,[AY] = e“”@*_”)LQx 6(97—9+)TL+ i +eG(L,>\)}Aq_17 Tzr < 7-0—] )
L

Since ¢ < k*, (Qu[AY 1G]V (@D < (Q[AF %)Y/ * V). From (TII) with k = k* — 1

there, we use the same arguments as before and get that

E,[AY]
i
< cetrHe-—en)l po-(a=1L [ Q [e(a0-—0+)T ]+Q [Z( o) 78 e(lms)e—(Sea— L)] -
=1

Again, Qw[e(qQ*_“)Tf] is bounded by some constant since Q[e(9¢-—¢+951] = exp(1)(qo_+
§) < oo if § > 0 is sufficiently small. By Lemma [5] the above expectation Q[ --]97! is
uniformly bounded, which proves (ii).
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(iii) The proof goes in the same spirit as that of (i) and (ii): Let x(L) 1= >_,c (1) eo-(V(w)-L)
and we prove by induction that for any 1 < k < k*,

(7.13) E, [X(L)ﬂ <cpett@ D zeR.

The case k = 1 is obvious by the change of measure. Assume (I3]) for £ — 1 and
2 < k < k*. By repeating the same arguments as in (ii), we get that

B.[x(L)"] < cet ) x

k—1
(7.14) ng’*)[e(k_l)ngg,7'2r <7+ Qle-) <Z Z et (V)= > T < T

(=1 u€eUy

By the absolute continuity between ng)’) and Q,

Q;Q*)[e(k_l)Q*Tf,TZ <15] = eler—e)r—(h-le-Lqy [c (ko——e+)9 <7y ]
= e(g+_gi)(x_L)Qx[e(kgi_ng)T;’TL < Ty ]

< ce(g‘l’_gf)(m_L)’

where the term Q,[eF¢-~ o )T7 r ] is uniformly bounded, since for k£ < k* and sufficiently small
84 > 0, Q[e(k97—9++54)51] — e¥(ke-+d1) < o0 by @a).

It remains to control the second expectation term Q(g’) in (T14). Let by := 3,5, et Av(u)
for £ > 1. Under Q ( — Sy—1,b¢)¢>1 are ii.d. and

142+

o_
QI =B (Y e V) (Y e TVOE-1 o g Y eV

lul=1 vFu lu|=1

since o— < 5. Then Q)b < oo by (TI). Going back to (TI4), we see that the

k-1

expectation term Q[(-)*~1, 7} < 757] equals

n
TL _
Qgﬂg,) <Zbe€%(S‘*1_L))k 1’7_; <5 < ¢ eler—e-)@=L)

by applying (@22)) to (Sy — S¢—1,b¢)e>1 With v = 04 — 0, b=poy/(k—1) and p =k — 1.
This proves (7.I3]) hence (iii). O

The next lemma controls the number of bad particles.
Lemma 20. Let r = S—j — 1+ % (with §* as in (I4)).
(i) There exists some constant ¢ = c(r) > 0 such that for all0 <z < L,

E. [Z[0,L]] <cA 7" e+t olo——ot)L

(it) Denote by Ly 1[0] := {v € L[0] : Ju € (L) NB(L,\) with u < v} the set of leaves
which are descendants of some element of (L) NB(L,\). Then for any 0 <z < L,

By [#L5.0[0] < c A" et+Telo-—e0)L

Proof of Lemma 20
(i) By changing the measure from P, to fo’*)

x _9757'7 —
E, (200, L)) = e*" Q) e © 0 Loy _enny 7o <7
7o
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Let us write a; := Zueu(l + e2-AV(®) 5> 1 in this proof. Then

(7.15) Liw__eB(LA) <Z>\ aj e re-(L=S-1),

which yields that
To

E, [Z[0,L]] < X TetTQle) e & S Za e~re-(E=Si-1) o < T
< e TTel T elor—o-)(@=L)

by applying E22) to v = o+ — 0—,p = 1 and b = ro_ > + [the integrability hy-
pothesis is satisfied thanks to (L4) and the choice of : Q(-) [(1+ 1g,<cope™ @) af] <

r+1
E [Z\m:l(l + eg,V(u))] < 00, and Q(¢-) [67“9*51} = e¥(e-(147) < 0] This proves (i).

(i) Remark that #Lp (0] = > ,c v (1)nB(L)) #.L£1[0], where £MW[0] denotes the set of
leaves which are descendants of u. By the branching property, conditioned on (L) N
B(L,\), (#L£® [0)ue#(L)rB(L,\) are independent and are distributed as #.L[0] under Py ().
It follows from Lemma [I8 (with k& = 1) that

B #0.0) < B | Y VO] =t Qe [uy € BL )T <7
we#(L)NB(L,\)

by the change of measure from P, to fo*). By (TI5) (with 7/ instead of 7, ), the above
probability under Q(g’) is less than

Zar —ro-(L=5;- )7'2'<7'0_

< A ZQ {_7’9 (L—S5;- 1)]<m1n(TL,TO)}QQ [a}],

j>1

T

since for each j, a; is independent of (Sj_1,j < min(r},7;)); moreover Q;Q*)[aj] =

Q(Q*)[a;‘] = ¢ < oo as in (i). Then we have
E. [Z,]0, L]] < cc/egfx)\_rz Qle-) [e_TQ*(L_S’;l),j < min(Tz—’To_)} )
j>1
which by an application of (£19) (with ro_ > v := o4 — p_) gives (ii). O
Let Még*) be the almost sure limit of M,(Lgf) = Zm‘:n e0- VW), By [8],[25], Méogf) is

almost surely positive on the event {7 = oo}. From [23], we know that there exists a
constant ¢,_ such that

(7.16) P(ME) > t) ~c, t704/0 = 0.
We mention that the constant ¢, is given in [19], Theorem 4.10:
1
c, = 7]3[ e2-uple-wye+/e- _ e2+U (Mg Q+/97]7
o = e Pl 2 P

where under P and conditioned on {V (u), |u| = 1}, (Még’ ’u))w:l are i.i.d. copies of ME).
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Lemma 21 (Subcritical case). As t — oo, the law of #L[0] under Py, the number of
descendants absorbed at 0 of a particle starting from t, normalized by -t converges in

distribution to ¢, Még’) where
Qle-) [E‘Q*Sfa] 1
0- Q)| -5, ]

Proof of Lemma [21t The proof goes in the same way as that of Lemma [I5] we only point
out the main difference and omit the details. Recall that Lla] :== {u € T : |u| =7, (u)}. By

linear translation, it is enough to prove that e =¢~t#L[—t] converges in law to CrupMoo (e) et
Még[:z} = ZUGE[—t] e2-V(® which converges almost surely to Még ). On the other hand,

we have Még[:z} = e 0t Zuez[—t} e@-(V(W+) - Just like the proof of Lemma @5, we apply

Theorem 6.3 in Nerman [28] (with o = p_ there) and obtain that on {7 = oo}, almost
surely

S erig e¢- V@) Qle-) [ _ ST,}
i — 0— — 0 , t — o0
#L[—1] Q(e-) [e o ] -1
which easily yields the lemma. O

Lemma 22. Let [iy o = Zfil ¢z;1 be the point process defined in Proposition [1] associated
with B(0) == (% [ 0(dz)(1 + e2-*))Y/2= for 6 € Qp. Let (Még”i),i > 1) be a sequence of

i.1.d. Tandom variables of common law that of (Méé’*’, P), independent of iy . Ast — 0o,
we have )
CA
Q ZegffﬂiMéogf,i) >t|~e,_Q [/ ﬂ,\,oo(dx)egw] to+/o—

1=1

We mention that as A — 0o, Q [[ [ixco(dz)e?+?] —

Q[éR by (E24) and (B27).
Proof. Let Ay := Zue%”(L) AG(L,A) ee-(Vw-L) By ProposmlonlI_L under P, (-|H(L) > 0),

Ap ) converges in law to [ py oo(dz)e=* = zgil e?-"i (some tightness is required here but
we omit the details since the arguments are similar to the critical case). By Lemma [I9 (ii),
the family (Ap x,P.(-[H(L) > 0)) is bounded in LY with g = z—f + J2, hence

q

Cx
(7.17) Q Ze"*mi < 0.
i=1

This together with (ZI6]) allows us to apply Lemma [0l to p = z—f and yields the desired
asymptotic. O

We now prove Theorem 2] in the subcritical case.
Proof of Theorem [2] (ii):

Lower bound of Theorem [3 (ii): The proof of the lower bound goes in the same way as
that of Theorem [2] (i) by using Proposition [l and Lemma 21l Let A > 0. Consider n — oo,
let Ly := i logn — A and X := 24, We keep the same notations Hy(La), (#£®[0],1

i < Hg(LA)) We define as well B®) := #£0[0]e~ o=V () for 4@ € H(La), and E(LA)



46 E. AIDEKON, Y. HU, AND O. ZINDY

the event that B®) > (1 — e)M& " ' Vi with small £ > 0. Repeating the proof of the lower
bound of Theorem [2] (i), and using ProposmonlIl and Lemma 21}, we get that for any A > 0,

Hg(La)
imintn P 3 #£70)> n)
QR A & : : 1
> o+T L0+ o-ziprle-i) 5 = po-A
> Cr R(z)e®t"e Q(;e MZE >C:Ube )
-1
(7.18) = QR g eereca),
Cr

where [ig o = Zfil 0{z,} 18 the point process as in Lemma 22 (with \ := e?=4 there) and
ct.p is defined in Lemma[2Il The same also holds for the upper bound, hence for any A > 0,
Hy(La)

(7.19) lim ne P ( Z Q) ) QR o yeesac(4),

n—oo CR

Since P, (#E[O] > n) > Pm(zili(lLA) #LO[0] > n), we get that for any A > 0,

QR
Cr

(7.20) lim inf n+/¢- P, (#L[0] > n) > R(z)e?Cs(A).

n—o0

Upper bound of Theorem [2 (ii): By Lemma and Lemma (i) with L := Ly =
Q% logn — A, A := e2-“, we obtain the following estimate: For any ¢ > 0,

P, <Z9[07 La]l> €n) < (gn)—k*ceA(QJC*—9+—5297)eQ+w+(9J€*—Q+)LA = oy n—o+/o- 6—5297A’

and
P, (Zb[O, Ll > 6n) < gi ce~Aler—o-t8"0-/2) goratlo-—on)la — ¢ pmot/o- g=0"0-A/2
n
with the same estimate for P, (ﬁb,LA [0] > en). Since Z[0, La] = Z4[0, La] + Z[0, L 4], we
obtain that for any € > 0,
lim sup lim sup n®+/2- P, (Z[0, L 4] + Ly 1,[0] > 3en) = 0.

A—oco  n—oo

From here and using the fact that #L£[0] = Z[0, La|+Ly 1, [0] —I—Zfigl(LA) #.L£@[0], we deduce
from (CI9) that for any A > 0,

lim sup n9+/9*Px(#£[0] >n) < Q™|

R(2)e2+*Cy(A) + 0a(1),
n—o00 CR

with 04(1) — 0 as A — oo (in fact exponentially fast). This together with the lower
bound (Z20) yields that lim,_, n¢+/¢~ P, (#L[0] > n) exists and is finite. Then, a fortiori,
lim g, Cs(A) also exists and is some finite constant. This proves Theorem [2 (ii). O

We end this section by giving the proof of Lemma [Tl
Proof of Lemma[l: By (B.21)), Cr = 1/Q(7, = 00). Recall (ZI8)). It suffices to show that

(7.21) Jim C4(4) = = () /o
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The lower bound follows from the monotonicity: the random point measure fig o is
stochastically increasing in A; Then for any A > Ay,

€
; 1
Cs(A) > eQ+AQ< E =AM > — eQ*A),
c
i=1 sub

where [ig) 00 = Zfiol ¢z By LemmaR2with Ao = e2-40 there, we get that for any Ag > 0,
it C.(4) 2 6 Q | [ fagoelio)e?| (1) /7

Letting Ag — 0o, the above expectation term converges to 1/Q[R~!] and proves the lower
bound.

To derive the upper bound, by Lemma (iii) and Theorem [ (ii), we get that under
P(|A(L) > 0), > yenr) e~ (V(W)=L) is bounded in L*" and converges in law to zgi"l ee-Ti,
where [is = Zg:’l 0¢z,}- Therefore

k*

Coo
Q Z ed=%i < 00,
i=1
which in view of Lemma [0 and (7.I6]) yields, as A — oo,

(ct )9+/97‘

sub

Coo
; 1 c
eo+A Q(E :egfxiM(val) > — 697A> N o-
i=1 = Csub Q[%_l]

Since i stochastically dominates fia oo, this gives the desired upper bound for Cs(A) and
completes the proof of the lemma. O

8. PROOFS OF THE TECHNICAL LEMMAS

8.1. Proof of Lemma [l Obviously we may assume that || F'||o < 1 throughout the proof
of (i) and (ii).

Proof of Part (i). Since P(1;¥ > K) — 1 as t — 00, it is enough to show that

81  lmE |:1{T;F>K}F(Tt+7 (S — ST;_j)1§j§K)] =E [F(Ug&v (Sj)1§j§K)]-

Recall that (o, Hy)n>1 are the strict ascending ladder epochs and ladder heights of S.
Since for some (unique) n > 1, 7;* = o, and T;" = H,, — t, we can write

Bt = E|:1{Tt+>K}F(CTt+’ (STj - STj—j)lngK)}
= > E[1{Hn,1gt<Hn}1{K<on}F(Hn —t, (S0, — SUn—j)lﬁjSK)]
n>1

Let us choose some integer m > K. Notice that o, — 0p_p, > K and o, > K for n > m.
Since the previous sum for n < m is smaller than P(H,, > t) which tends to 0 when ¢ tends
to infinity, we get

B, = E[l{HHgKHn}F(Hn —t,(Sq, — San—j)lstK)} +0i(1)

n>m

=: Bé + Ot(l),
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with |o;(1)] < P(H,, > t) — 0 as t — oo. Applying the strong Markov property at the
stopping time o¢,,_,,, we obtain that

B, = Z E[l{HH,mgt}EHn,m (Lt s<t< i} F(Hm — t,(Ss,, = Sop—j)1<j<K)] ]

n>m

= Y B[, <n9(t — How)],
n>m
with
g(x) = E|:1{H77L—1SI<Hm}F(Hm — I, (ng — SUm—j)lngK) , Yo > 0.

Therefore
t
(8.2) B, = / g(t — x)du(x),
0

with u(x) = >, 5o P(H, < ). Let us check that g is directly Riemann integrable on R..
Recall that a function g is directly Riemann integrable (see Feller [12], pp. 362) if g is
continuous almost everywhere and satisfies

[e.e]

(8.3) Z sup |g(x)] < oo.

n—=0 n<r<n+l1

Observe first that || F||s < 1 implies ||g||cc < 1. Now recall that H; is integrable. Therefore,

Y sup |g(x)| <D P(Hpy >n) =1+E[Hy] =1+ mE[H] < oo,
n>0 n<zx<n+l1 n>0

yielding (83). Now we prove that g is a.e. continuous. For z € RE  denote by D(z) C R%
the set on which F'(-, z) is discontinuous. By assumption, D(z) is at most countable for any
real z, hence D((Sy,, — Ss,,—j)i<j<k) is a random set (maybe empty) at most countable;

The same is true for the random set
o

T:= {Hn — 2:2€ D((Sy, — Sory—i)1<i<i) U {0}}.

n=1

In other words, we may represent Y by a sequence of random variables taking values in R.
It follows that
9 .= {y : ]P’(y € T) > O} is at most countable.

We claim that for any z € R} \Z, g is continuous at x. In fact, for any sequence (),
such that z,, — z as n — oo, let &, == 1yy,, <z, <t} F(Hm — Tn, (Sor — Som—ij)1<j<K)
and & := lyp,  <acq, ' (Hm — 2, (Ss,, — So,,—j)1<j<k), we shall show that as n — oo,

(8.4) &n — &, a.s.,

which in view of the dominated convergence theorem, implies that g(z,) — g(x) and the
desired continuity of g at x. To prove (84, firstly we remark that

(8.5) limjup Lt <zn<Hm} = Wi <o<m | < Wi, =) + YHp=ay =0, a.s.,
n o

since ¢ 2 [hence a fortiori P(H,, = ) = 0 for all n > 1]. Secondly,
]P)(Hm —x E D((ng — ng_j)lngK)) < P(l‘ € T) =0,

since ¢ Z. In words, almost surely, H,,, —x & D((Ss,, — So,.—j)1<j<k ), which implies that
F(-,(So,,—Som—j)i<j<k) is continuous at H,,—z; hence F(Hy,—xp, (S, —Som—j)1<i<k) =
F(Hp, — z,(Se,, — Som—j)i<j<ik) a.s. when n — oco. This and ([83) yield (84) and the
continuity of g on R7\Z. Then g is directly Riemann integrable.
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Going back to ([8.2), we apply the renewal theorem (see Feller [12], pp. 363) and obtain
that

1 o0
. / o
i Bl = gy ], ot

which implies

. 1 H’m_Hmfl
T E [HllE[/o F(H = Hint = 2, (S0, = SUm_j)lSjSK)d:E}
1
= o [Hl]E[(Hm — Hon ) F(U(Hy — Hin1), (S5, = So-iisiic) |

by using the independent uniform variable U.

Finally since the random segments {(Sakﬂ- — Sgk)0§j§0k+l_gk i 0<k < m} are i.i.d.,
Tanaka’s construction (see (4.5])) implies that under P the segment of the random walk
(Sn)n>0 up to time o, viewed from (o, Sy,,) in reversed time and reflected in the z-axis,
ie. (S5, —So,—j)o<j<k, has the same law as ((j)o<j<x. Moreover since with this “partial”
construction H,, — H,,_1 corresponds to the value of the reversed and reflected process at
time 0 =sup{n > 1 : {;, = min;<j<, (;}, we obtain that

1
. [Hl]E[(Hm — Hyp ) F(U(Hy = Hin 1), (s, = So-ihisid)|
1 o
B E[Hl]E[CgF(Ugg’(gj)lﬁjSK)} :E[F(Us&v(sj)lﬁjélf)]y

by using (4.6]). This proves (81]) and the part (i) of the lemma.

Proof of Part (ii) Write for notational convenience gj(t) = Srj — Srj— j when 1 < j < 7"
Note that Part (i) of the lemma implies

(8.6) Jim B [1{K<TL+}F(TZF, (gj(L))lgng)] =E [F(US&, (Sj)lgng)] =: CF.

Using the absolute continuity between P and P up to the stopping time 7;" [the martingale
(R(Sj)l( yd < 7,7) is uniformly integrable thanks to Lemma [3] (ii) and (iv)], we can
write

ET [1{K<T;}F(7}+, (§§t))1SjSK):| =k [R(Srj)l{K<Tj<Tg}F(Tt+v (gj(t))lngK)] -

We treat first the case E[S1] = 0. Combining Parts (iii) and (iv) of Lemma [ we deduce
from the above equality that as t — oo,

R+ [1{K<T¢}F(q}+7(5]@)19@)} ~ CptE [1{K<T;<T(;}F(CG+,(5]@)19@)] =: Ay

Let us now introduce ¢; := ¢ — 2t7 with (1+6/2)"! <~ < 1 and observe that 7,” < 75" on
the event {r;" < 75 }. Recalling that Part (ii) of Lemma [ says that (7;",¢ > 0) is bounded
in LP for all 1 < p < 144, we get IP’(TZ > t7) < ¢t™" = o(t~!) by choosing p such that
~vp > 1. Therefore we obtain

j<'rtJr

A= CRtE[1{K<TJ<TO}1{ST;<t—ﬂ}F(3’l+7(§§t))1<j<K)]+Ot(1)
t

= Ay + A +oi(1),
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where 04(1) — 0 as t — oo and

Ay = CRtE|:1{7—t+<7-0}1{ST+<t—t“f}1{7—j—7—zg>K}F(1:t+v(§§t))1SjSK):|’
£t
Al = CRtE[1{K<Tt+<'ro}1{ST+St—ﬂ}l{T:r—Tf<K}F(1}+7(§§t))1<]’<K)]'
Ly t—

Applying the strong Markov property at the stopping time TZ yields
r_
A = CRtE[l{TZqO}l{STZ gt—ﬂ}f(sfet)},
where
St

(8.7) F(@) = Ba (L pt oy P (8120 |
Then, writing

St S(L

Eol{jriry F(TT (S )1<j<x)] = Eligeriy F(TL (S5 N<i<r)),

with L =t — z, Equation (R.0]) yields

09 gt sy o] | 0, 1o

from which we deduce

—Cp|—0 t—
weﬁzg}—(tﬂ ‘f(.%') F’ ) 0,

since uniformly in @ > &, Pu(ry < 77) = P(r2, < 7,°,) < P(rZ,, < ) = oy(1).

Furthermore, observing that P(TZ < T ) ™ CLRt (see Part (v) of Lemma Bl and recall

that £, = t — 27 with 4 < 1) and P(t — S+ < 7) = P(T;f > ¢7) = o(t™!) imply
t

P(TZ <7y i STZ <t—1tY) ~1/Cgt, when t tends to infinity, we obtain

(8.9) A, — Cp, t — 0.
Similarly, the strong Markov property applied at the stopping time TZ implies

A;’ < CgrtE 1{TZZ<7_O—}1{ST+St_t—y}]P’STZL (Tt+ < K) .
Ly t

Moreover, observe that

(8.10) sup IP’I(TtJr <K)< Pt_t’Y(Tt+ <K)= IP’(T;; < K) =o0(1),
e<t—t7

which implies
(8.11) Af < CrtP(rf <714, STZ <t —1P(rh < K) = o(1),

by recalling that P(7,” < 74 ; ST; <t—1t7) ~ c%—ﬁt Combining (89), (8I1]) and recalling
t

7)), we obtain Ay — Cp, when t — oo, which concludes the proof of Part (ii) in the case
E[S1] = 0.

The case E[S;] > 0 is similar but easier. Indeed, combining Parts (iii) and (iv) of Lemma
[Bl implies

E 1{K<T;}F(Tt+,(gj(t))lsJ‘SK)} ~ CrE [1{K<Tj<rg}F(71+,(gj(t))lngK)] =: A
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Recalling that ¢, = t — 2¢t7 and that Part (ii) of Lemma [3 implies IP’(TZ; > 1Y) = o04(1), we
get

A = CRE[1{K<Tt+<‘ro}1{STZ+St—t”’}F(Tt+7(gj('t))1<j<K)]+0t(1)
t

(812) = CgrE |:1{7't+<7'0}1{Sq—+<t—ﬂ}1{7t+_'rgt>K}F(ﬂ+’ (§](t))1SjSK)] + Ot(l),
£t

the last equality being a consequence of (8.10), which still holds in the case E[S;] > 0. Then,
the strong Markov property yields

(8'13) gt = CRE[1{722<T(;}1{STZL St—t“f}f(srjt)] + Ot(l)v
¢

where we recall that the function f is defined by (87]). Now the strategy is exactly the same
as for the previous case. Indeed, since P,(7, < 7,7) = 0;(1) (uniformly in = > ¢;) is still
true, (8.6) implies max, (g, 4 |f(z) — Cp| — 0, when ¢ tends to oo. Combining this with
Part (v) of Lemma [3] (which implies ]P’(TZ; <7y ST; <t —1t7) = 1/CR) yields 4, — Cp,

when ¢ — oo. This concludes the proof of Part (ii) of the lemma and completes the proof of
Lemma 4 ]

Proof of Lemma[3: We may assume that p equals some integer, say, m > 1. Indeed, for any
m — 1 < p < m, by the concavity,

T;L—l p T;L—l m
Sp—t Sp—t
E, Z apsr € <Ky Z (a1 )P/ eP(Sk=t)/m
k=0 k=0

Applying @) to ((ags1)?™, Sk — Sk_1) with integer m yields the general case p.
Now, we consider p = m is some integer and prove (4.7). Firstly,

Tj—l

oo _ t
E|S o6t < R[50 @] = /0 =0 du(y),
k=0

k=0

where S, := max{S;: 0 < j <k} and
n=0

Remark that « is finite and satisfies the following renewal equation (see Heyde [14], Theorem
1):

with F(s) :=P(S; < s),s € R. According to the renewal theorem (see Heyde [14], Theorem
2 or Feller [12] pp. 362 (1.17) and pp. 381), fg e *(=Y) du(y) = O(1) as t — oo (the limit
exists in the non-arithmetic case). By linear transformation, we obtain that for any x > 0,

+_
E. [ o ! e“(sk_t)] is uniformly bounded for all x < ¢.

+_
We now prove the lemma by induction on m. By independence, E,, ZZ;() ! Gkt e"(Sh—t) | —

> k>0 Ex [erS= | < 7t — 1] E[a4] is bounded by some constant (the law of aj1 does not
depend on ), this proves the lemma in the case m = 1.
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+_
Let m > 2 and assume that the lemma holds for 1, ..., m—1. Write y; := z;tzz ! ak+1e“(sk_t)

for 0 <i < 7" and X+ = 0. Remark that

T;L—l m—1 T;r—l
(o)™ = > [0a)™ = ()™ = D Ch Y alty? 50 (i)
=0 7=0 1=0

Applying the Markov property at ¢ + 1, we get

m—1
E.[xg'] = D ChE.

7=0 i=
m

am J o(m=5)r(Si—t) Eg, [(Xz’—i—l)j]
0

-1 —
< ¢ E, Z a?jd] e(m—i)r(Si—t) 7
j=0 i=0

since by the induction hypothesis Eg, [(Xi+1)m_j ] is bounded by some constant. The last

expectation is again uniformly bounded (the case m = 1 of the lemma), which proves that
the lemma holds for m, as desired. O

8.2. Proof of Lemma [6l. For a € R, denote as before by T, := ST; —a > 0 (resp.
Iy == a—S_- > 0) the overshoot (resp. undershoot) at level a. Clearly the overshoot
T, is also the overshoot at the level a for the strict ascending ladder heights (H,,). By the
assumption (L), max(Si,0) has finite n-exponential moment. This in view of Doney [11]
implies that E[e’f1] < oo for any 0 < § < 7. Applying Chang ([10], Proposition 4.2) shows
that for any 0 < § < 7, there exist some constant ¢ = ¢(§) > 0 such that for all b > a,z > 0,

(8.14) Po(T;" > 2) < ce™o%.

Similarly for the undershoot T, > 0: since max(—Si,0) has a finite (1 + 7)-exponential
moment, we get that for any 0 < § < n,

(8.15) Py (T, > z) < ce” 1+, Va<bVz>D0.

By (BI4) and (BIH), MaXg o -+ |Sk| < L+ T} + Ty is integrable under P,. By
applying the optional stopping theorem, we get

[ST*AT } =E, [(ST(; - STg)l{quL*}] ""Ea[STg]-

Observe that Ea[STf] = L+Ey[T}] <L+ ¢ by (8I4). Since ST(; - STL+ < —L, we obtain

L _ /
(8.16) P, <70— < TL+> < ++C V0<a<L.
Exactly doing the same and using (8I5]), we get
_ n a+d
(8.17) Pa<7'0 >TL>g —,  ¥0<a<L.

Let us also mention that by considering the martingale (5]2 — Var(S1)j);j>1, which is uni-

formly integrable on [0, 7, A 7; ], we can find some constant ¢ > 0 such that for all L > 1
and 0 <a < L,

(8.18) E, [TO— A Tﬂ < L2,
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-S _
(i) Proof of (£-9): If L —a > £, we deduce from (BIF) that E,[e "o 1{70’<TL+} <
-S _
E, [e 0 } < ¢ which is less than ¢ % if ¢ > 3e.

Let 0 < L—a< % Note that under P,, 75 < 7'2— implies that 72/2 <7 < 7'2—. Then by
the strong Markov property at TL_/2,

E“[e o 1{T(f<'rzr}] = Ea ¢ o 1{Tg/2§7(;<r£r}]

r -5 _
= Ea _1{7-2/2<7'Zr} ES - [6 0 1{TJ<TZF}]]

L/2

< Eq 1{72/2<'r2r} (C+e L2 Lis _

S _ -S _
where we use the fact that for all z:= S_- >0, E, [e 0 1{T5<TL+}] <E,e 7] <chy

L/2
B.I5). Since S - <0 means that T} , > L/2, we deduce from (8.I5) that
L/2
E [e_si/?l } =FE [e%JrT;/?l } < ce OL/2
a 5,0 e {Tp,2L/2}] = ‘

This together with (8I6]) give that

_577 — —0L/2
E, [e 0 1{TJ<TL+}] < (P, <7’L/2 < TZ'-) + ce /
= C]Pa—L/Q (TO_ < TZ—/2> + C€_6L/2
L —a-+ C/ —6L/2
< ¢c—— +ce /
(L/2)
< c”L —a+ 1.
- L
(i1) Proof of ({4-10): Let us show that E[Z;‘io_l e%%] < oo
Ty —1
E[ Z e_‘ssj] = ZE[@“SSJ', Jj< T0_:| < Zc(l + )72 < 0,
Jj=0 Jj=20 J=0

where we used Theorem 4 (and Theorem 6 if S is lattice) of [32] for the bound of E|e %%, j <

Ty ] Let (H, ,0, )n>0 be the strict ascending ladder heights and epochs of —S (with

o, :=0). For a > 0, we notice that

Ea[ e—5sj] _ E[Tfle—(s(wsj)]
=0

= gE[ > e_é(ﬁsj)l{H,ISa}}

o <j<oniy

7o —1

_ i & [e_a(a—Hm 1y Sa}] E[ > e“”ﬂ} :

n=0 7=0
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by applying the strong Markov property at o,,. We showed that E { E e 0_ e %% | < 00. On
the other hand, Lemma [B applied to the random walk (H,,

n

Jn>0 says that
o0

sup Z E [e‘é(a_H’;) 1{H; Sa}] < 0.

a>0 n—0

Hence sup,>o Eq [ E;O 0 e 551} < 00. Similary, by considering the random walk L — S., we

+
get that E, [Z i£o e_é(L_Sj)} is uniformly bounded by some constant. This proves (4.10).

(11i) Proof of (AII)). Discussing on the value of the time 7, then using the Markov

property, we have
S - =S _
T — T, Skp—1—S
Bafe s 0] < kZEa[e Sy
>1

DD LIC P

k>1

where for any y € R, h(y) = Ele ' 115,<,y] < eVE[e~ 1+ = e for § > 0 small
enough. Hence,
Ty —1

S _ =S _
E, [e o1 7o } < cEa[ Z 6_65’“}

and (£I1) follows from (.I0]).

(iv) Proof of ({{.13) and ({.13): Clearly ([@I3) follows from (AI2]) by considering the
random walk (L — S;);>0. It suffices to prove (£I2]). If L — a > L/3, there is nothing to

prove since Ea[20§j<7(;/\7£r 6_6Sj] < EG[EOSKTJ e“ssﬂl is less than some constant by

E10).
Considering L —a < L/3. We have

E, Z e_‘ssﬂ}

0§j<7’6/\7’£L

[ 005, 58,
_1{7';/227(;/\72} Z ] + E [ {TZ/2<T(;/\TZF} Z e ]]

0<j<ty AT 0<j<ry AT

[ —sL/2 _— + —688;

= i At
TL/2§]<TO ATL

L2 4Bl aonBs [ Y ],

L)2
/ 0<j<ry AT

= E,

IN

IN

by using (8I8) and the strong Markov property at TL_/2. Let z := STf/ < L/2. Tfx <
L/2
0, then under P,, 757 = 0 and Er[zo<j<rg/\rj e_‘ssj] = 0, whereas if 0 < = < L/2,
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[Zo<]<70 At € 7] < ¢ by @I0). Then we get

]Ea|: Z e—&SJ} < cL2e0L/2 + P, <7’L_/2 <75 A 7';)

0<j<ry AT

IN

cL2e 0L/2 4 cP, <7']:/2 < 7’;)

_5L/2+CL—CL+C/

< cl?
= e L2

by using (816). This proves (£12).
(v) Proof of {4-14): By monotonicity, it is sufficient to prove (4I4) for 0 < § < 7. Then,
notice that

Ea[e‘% Lo <t 3 6—5<L_sj>} :iEa[l{nngATo,sn<o}€_s" 3 e—é(L—Sj)]‘

0<j<ry n=1 0<j<n
Applylng the Markov property of S at n — 1 and using the fact that for all > 0,
E.le” 11{51<0}] = Ele™®~ 511{51<_x}] < ¢(8)e (97 by [@F) (recall that 0 < § < 7),

we get that

- —8(L—S,;
Ea[e {'r <} Z e J)]
0<j<7y
S C Z Ea |:1{n<7_2,/\7_07}e_(1+5)5n71 Z e—é(L—S]):|
n=1 B 0<j<n
619) = e Rl TR [ YD 0],
=0 0§m<7f/\'r(;
where the last equality follows from the Markov property at j. Applying ([4.12]) and (4.13)),
we get that
B —8§(L—S;
Ea{e {T <} Z e J)}
0<j<ry
S L—S;+1
< CZE [ (<rt ey 4@-%%%]
§=0
d _S(L—§.- a—+1
< 7| X ] <ety
0§j<7’ZL/\T(;
proving (4.14]).

We mention that (IE:QI) also holds with 6 = 0, which implies that

(8.20) Eale 7 10y ] < EBofrs ATH < 1%, VL>1,0<a<L.

8.3. Proof of Lemmas [7l and 8. Keeping the notation 7, for the undershoot at level a,
we have as before for any 0 < r < nq,

(8.21) Py(T, > x) <c(r)e ", Va<b Vx>0.

Proof of Lemma [Tk
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(i) Proof of ([4.18). It is a straightforward consequence of (8.21]).
(ii) Proof of {{-19). Let us introduce the tilted measure P, defined by ZEZ
¢7(Sn=5)  Under P,, the random walk drifts to +0o. We write

Ea[ S @+ LS Sf] = DR+ 8)% 51, )]
o<e<r} £>0

= ) Eo[(1+L— Syl %1 feriy)
>0
— gt —V)Lfga{ 3 (14 LS —v)(Sz—L)}
0§€<7’ZL
Cewaev—v)LfEa[ 3 e(r—fy)(se—L)/z}‘

0<e<rf

o(So,+,8n)

IA

Therefore, we only have to show that

supEa[ Z e(T—’Y)(Sz—L)/ﬂ <e,
020 Cocoart

which is done by the same argument as in the proof of (£I0]).
(11i) Proof of ({4-20). We have

min(7, ,7;) min(7y ,77)
S B T
=0 —

min(T:a,TZia)
= eﬁ/afE[ Z (1—|—L—a—55)a].
£=0
Remark that (1+-L—a—S;)* < c¢(1+L—a)*+c|S¢|*1(g5,<0} and that E[Ezgo |Sg|0‘1{32<0}] <
oo (indeed observe that for any v € (0,) there exists c(a,v") such that 3, [S¢[*11s,<0) <
(e, 7)o e~ 75t whose expectation under P is finite, see Kesten [21]). Therefore, we get
min(T:a,TZria)
E[ Z (I1+L—a—5p)° SC'(l—I—L—a)afE[TZF_a]—|—c’§c(1+L—a)o‘+l,
=0
which completes the proof of the lemma. O

Proof of Lemma Bt Firstly, we remark that it is enough to prove the lemma for integer
p. In fact, let k — 1 < p < k with some integer k and assume that (i) holds for k in lieu of
p. Then by concavity,

To To
—nS__ p -nS__ pb k
E,|e 7o ( E ebsfflag) <E,|le ( E eks‘ffl(ag)p/k)
/=1 /=1

Applying (i) to (Sp — Sp—1, af/k) with %b in lieu of b gives (£2I]). The same is true for (ii).

Now we assume p integer and we shall use the Markov property to expand the power.
Let either x := 75 or x := min(7; ,7;) and consider a measurable function f : R — R.
Define

_ X k
AX,f(x,k;) =K, [6 1757(; (Zf(Sg_l)ag) ] s k>0, zeR,

(=1
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and we mention that A, r(z,0) =e ™ ifx <0, Ay(x,k) =0ifx <Oand k> 1. Let k > 1
and Y; := >0, f(Se—1) ag for 1 <i < 7'0_, Yy+1 := 0. Then
X

Y=Y (v} -vi) Z Ck Z i-1)" (@) (Yipr)* "

=1 =1

Applying the Markov property at ¢ gives that

k 00
Ay(x, k) = ZCIZ ZEm [Lgi<ay (F(Siz1))" (ai)" Ay s (Si ke — )]
r=1 =1
(8.22) — B(a, k) + Oy (2, k),

with

k 0o
By(z,k) = > Ci> Ea[l<ysisop(f(Sic) (@) Ay p(Sink —1)]
=1 i=1

Cx(w,k) = ) B [1{i§x,Si<0}(f(Sz‘—l))k(ai)ke_"Si].
i=1

In the rest of the proof of the lemma, we shall use twice the notations A, (z, k), By(z, k),
Cy(z,k) but without the subscript x and take x = 7,7, f(y) = e in the proof of (i) and
X = min(7, 7'2'), f=L-y+ 1)aeby in the proof of (ii).

S [y k

Proof of (i): Let in this proof A(z, k) = E, [e " <240:1 ebs‘fflag) ] We prove ([@.21])

by induction on k.

The case k = 0 follows from ([AI8). Let 1 < k < /b and assume that we know that
Az, j) < ¢ e/%® for all 0 < j <k —1 and = > 0. We have to show that A(z, k) < ¢, e*??.

Using the induction hypothesis, A(S¢,k —7) < cp_eFPSe if §, > 0. From ([822)), we

have

B(z,k) < CZZE [kaz Hag)" e(k—r)bAngegTO_]
r=1>1

< CZZE [kaz Yag)" e(k—r)bASZ}7

r=1¢>1

with ASy := Sy — Sy for £ > 1. By the independence of (as, ASy), we get that

Bz, k) < CZE [a1 ) ok rbASl] ZE [kbse,l}

>1
_ kbx r _(k—r)bS kb1t
ce ;E [(al) e 1} ZZ; <IE [e 1]) .
Observe that
S R e O R )

and E [e"51] <1 since k < v/b. Hence B(z,k) < ¢ ™
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It remains to deal with C (:17 k). Observe from (822]) that

Cla, k) = ZE [b’“& a1 ooy Lsi<oye "S}

N ZEZB [ebkspll{ﬁfﬂ—l}ESiﬂ[1{Sl<0}(a1)ke_”51]} ,
=1

by the Markov property at ¢ — 1. Since y := S;—1 > 0,
Ey[1{51<0}(a1)ke—n51] = e_nyE[l{SK—y}(a1)k6_"51] < E[1{51<0}(a1)k6_"51].
It follows that N
C(z, k) < CZEQC [ekaH} < ke,

since bk < 7. This yields that A(x, k) = B(x,k) + C(z, k) < ce’*® proving ([@21)).
Proof of (i1): Write in this proof
min(ry 7)) .
A(z,j) = E, e_nSTJ ( Z (1+L—- Sg_l)o‘ebs‘fflag)] , T€eRj>0.
=1
We mention that A(z,0) =e ™ if x <0 and for j > 1, A(z,j) =0if z <0 or z > L.
From (822), A(x k) = B(z,k) + C(x, k) with

ar T’bS
(8.23)B ZCkZ;E (14 L= 8520) €57 () A5 b = 1) 1 i iy
1=
ak k _bkS;_1_—nS;
(8.24)C ZE (L= Sy + 1)FafetSioemSin, ]

We now prove ([4.22)) by induction on p, where p equals some integer m > 1.

Firstly, let m < +/b and assume ([@.22]) holds for all A(z,7) with 0 < 57 < m — 1. By
B8.23),

B(x,m)chZEx[(l—i—L—S»_ )T erbSi=1(a)" (1 + L — 8;)@(m=r) eblm=r)s; ,J<TL].
r=1j>1

Write as before AS; = S;—S;_1. Notice that for any j < 77, (14 L—S;)m=r) blm=r)AS; <
c+ce(l+L— Sj_l)“(m_’") et(m=r)AS; - By the independence of (aj, ASj), it is easy to see
that the above expectation under E, is less than

cEla’](1+ eb(m_’")sl)] E. [(1 + L —8; 1) membSim1 4 < TZ_:| )

which implies that

Blz,m) < ¢ E, [(1 + L= 8jq)Mm e < Tzr]
j=1
J embr ZE [(1 +L—x— Sj—1)am embsjfl’ j< 7'2—_90]
jz1
(825) < C(l +L— x)amemb:c,

where the last estimate follows from the facts that for j < Tz__x, 14+L—2—8j_)™<
c(1+L—x)* +c[Sj—1|*" and that >, E [1Sj—1]0™ embSi-1] < oo (since mb < 7).
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By the Markov property at i — 1,

Clz,m) =Y E, [(L — Sio1 + 1) Ry (L, <qpaf’e i —1 <75 < Tg] :
=1

As in the proof of (i), Es,_, [1{s, <oya*e”"'] is less than some constant, hence
(8.26) Clz,m) < ¢ E, [(L — S+ 1)emetmSicn 1 <7y < Tﬂ
i=1

< Cl(l +L— x)amemb:c,

by 825). Therefore, A(z,m) = B(x,m) + C(z,m) < c¢(1 + L — z)*™e™* proving the case
m.

Considering now the case when v/b = m is an integer. Since m —r < /b for any
1<r<m,Blym-—r)<cprol+L— y)“m=rle(m=n)y for 0 <y < L. By (823),

< ¢ ) E, [(1 + L= 85 1) e (ay) (14 L — ;) r)e(m=r)Si

{j<min(ry ,TZL)} :

Repeating the same argument as before, we get that
min(Ti,T?:)

B(a,m) < B, | Y. (1+L—S8) ™ e™St| <c(1+L—a)tem,
j=1
by [@20). According to (826]), we get the same estimate for C(z,m), which proves the case
m = y/b.
It remains to deal with the case m > ~/b. Let my := [v/b] + 1 be the least integer larger
than /b and assume that E[a]"] < oo, E[e?™~D51] < 0o, We check that [E22) is satisfied

for m = my: applying (8.23]) and using the already proved results for A(x,m; — r) (since
my —r < v/b), we get that B(xz,m1) is bounded by

mi
CZZEI |:(1 +L— S}_l)ar erijfl(aj)r(l +L— Sj)l—l—a(ml—r) eb(m—r)Sj 1{j<72r}] ,
r=1j>1

(the extra 1 in the power comes from the possible m; — 1 = ~/b). As before, we get that
B(w,ml) < C, ZEx |:(1 +L— S'_1)1+am1 67711175'1',17 ,] < Tz—] < ce’y(:C—L)-FWllIJL7
Jj=21
by applying ([£.20). The same estimate holds for C'(z,mq) by using (825]). This proves that

([#£22]) holds for m = my. The other m > m; can be treated by induction on m and by using
the same arguments as before, we omit the details. O

8.4. Proofs of Lemmas [9], 10l 1] and We give in this subsection the proofs of these
lemmas used in the proof of Theorem [l

Proof of Lemma [O: Write in this proof

T:r—K

(8.27) Ao = Z Z H"(t) >0, B = {ﬁt(wﬁ) <7 - K}

k=1 ueUy
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Let us first observe that Markov inequality together with Part (i) of Corollary Bl imply

K
(8.28) Q; <Am ‘%o> < D) wV(w),,

k=1 ueUy
with
W(‘Tv t) =E, [H(t)] 1{x§t} + 1{x>t}-
Furthermore, Part (ii) of Corollary 3] yields for any x <t
—o5_+

_ z v+ | € ¢ R($) x —ot (z—t)
E, [H(t)] = R(x)e?” Q, [R(S +)1{T?<To’}] < 570] 0Tt < pol@—t)
Tt

from which we deduce that 7(x,t) < eg(x_t)l{xgt} + 1z < e?@=t) Therefore, we obtain

K-
o (efn) 5 oo o
k=0 wEBg 41
On the other hand, by the definition of ﬁt(wﬁ) (see (LI4)),
K1
gy € 3 OB
k=0
It follows that
r—K-1
(8.29) Qf <Am U BRI ‘%) < ) ST =T (),
k=0

with b1 := ZuEUk+1 @2V (W) 4 (B(wh11))?. Recall that under QF, (Sy, by ) x>0 is a Markov
chain, see Proposition 2l Fix a A > 0. Then the following double limits equal zero:

(8.30) lim sup lim sup Q" (Elk <t —-K:t-8S,<\ 7> K) =0.

K—oo  t—00
In fact, let ¢t be large and observe that
Q:(Elkr<7't+—K: t— S <A, Tt+>K) SQ:(TttA+K<Tt+)
which by the Markov property at Ttt 0 18 less than sup,_ ., Q;j (K < Tt+). By the abso-
lute continuity between Q; and Q,

R(Sk)

R(t)
Ql—li_ (K < Tt+) = Qy 1{K<Tt+/\7-(;} R(y) =

R(y)

R(t)
R(y)

Q,(ri > K) = Q(Tt—ty > K).

It follows that
t
lim sup Q" (Elk <t —K:t-8S, <\ 7,7 > K) < Q(T;_ > K)limsupL) = Q(T;_ > K),
t—o0 t—o0 R(t — )\)
which goes to 0 as K — oo. This proves (8.30).
Let
E\(t,K)={Vk<t —K:t—S,>2A\7 >K}.

Since Qf (1;F > K) — 1 as t — oo, which in view of (830) yields that for any small ¢ > 0,
there exists some Ky = Ky(g,A) > 0 such that for all K > Ky, there exists some to(K, e, \)
satisfying

(8.31) QI (B1(t, K)°) <&, Vit > to.
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We claim that there exists some small § > 0 such that

(8.32) sup Q7 [b]] < oo,
z>0
Tj—l
(8.33) lim sup Q" Z e 5=t | < o0,
t—o0
k=0
for any x > 0.

Admitting for the moment ([832]) and (833]), we prove the lemma as follows: define

Tt+— -1

K
Bot, K)i= () {brrr <8079 n{r > K.

o

0
By ([829) and on Ey(t, K) N Ei(t, K) which is ¥-measurable,
Tj—K 1
Qt (4mzn UBmzn |4 ) < TS 3 A
k=0

+
which is less than e=2*4 377t SK e 451 gince on Ei(t,K), Sg—t< -Afork <7t — K.

This with (8.31]) imply that for all ¢ > ¢,

Q; (Agzn U BEzm)
Tj—l
(8.34) < e+ Qf (Bt K)F N E(1LK)) + e ViQE | 3 eds0
k=0

On the other hand, fix the constant § > 0 in (832), we have

é
Qf <E2(t,K)c N El(t,K)> < Qf 15, (t.5) Z (bk+1)6 o~ % (t=5k)
k<t —K

[
< QY lpny Y (beyr) e T
k<t K

< eTMIQE | YT (o) e O

_k<7’t7L
Applying the Markov property at k gives that
Tj—l 00
Q[ e 00| = 3 1 e TE0QE (o)

k=0 k=0

T;L—l

< sup Q+ b6 Q-I— el 2 (Sk—t)
z>0 ;)

By ([832) and (B33]), we get some constant ¢ independent of A and ¢ [the constant ¢ may
depend on z, §] such that Q; [ZTt al o (Sk_t)(bk+1)5:| < cand Qf [ Z_El (%= t)] <ec.
Going back to (8.34]), we obtain that for all K > K,

lim sup Q;F <Am U Bm) <e+ce

t—o0

—doA/4 + CB_Q)\/4.
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Letting A — oo and € — 0, we get that

lim sup lim sup Q; (Am U Bm)

K—oo t—oo

It remains to show (832 and (R:33). By (3.:22),

—oz
Qj[b({] = E, [% Z 1{V( )>0}R eQV(u ZeQ(V ( ) )6:|
|u|=1 v#£U

1
= E[m El: 1{V(u)2—z}R(V(u) + z)eQV(u) (%: EQV(U) + %’(u)g)é}
ul|=1 vFEU

CE[Z|u\:1(1 + [V (u)])eeV ™) ((2\ = eQV(” )° +,%’(u)59)], (critical case),

IN

cE [( 2= eV ) (Zlu\=1 GQV(“))%(U)‘SQ] , (subcritical case),

since R(z) ~ CRrz in the critical case and R(z) ~ Cpg in the subcritical case as z — oo. If
d > 0 is sufficiently small, the later expectations are finite by (LI3]) together with (I3 and

(L4]) respectively, which yields (8:32]).
To show (B.33]), we deduce from the absolute continuity between Q; and Q, that

Tt+—1

_ - o R(Sk)
+ K (Sk—t) _ K (Sk—t) k
s ar | X e = Qi e ).
k=0 k=0
Let us distinguish the critical and subcritical cases: In the critical case, Q[S1] = 0 and

R(z) ~ Crz as z — oco. There exists some constant ¢ such that for all ¢ > 1, the RHS of

(B35 is less than

0o Tj/\T(;—l
3 Q[ O —arQu | Y e
k=0 k=0

Applying (@I3) with L = ¢t and § = & [this ¢ has nothing to do with that in (832])]
A +_
gives that Q, [ ktzg o1 e“(sk_t))} < csZH. Hence Qf [Z;tzole“(sk_t)] < ¢(z + 1) for
all t > 1. This proves (833) in the critical case.

In the subcritical case, we note that Q[S1] > 0 and R(-) is bounded. By (8.35]), we get
that for some constant ¢ > 0,

Tt+—1 0o
SRR N N
k=0 k=0

which, according to Lemma [l is uniformly bounded by some constant. This completes the
proof of (8.33]) and hence that of Lemma O

Proof of Lemma [I0: Observe that
(r>mynree ) ) U {Elv eTW : ju < 75 (v) < 7 (v) = |v|} .

ke(rt—K,r;"] u€lk
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Recall that ¥, = 0{(AV(U),U € Ug), V(wg),wg, Ok, 1 <k < Tt+}. For any event F' € ¥%,,
we deduce from Corollary Bl that

Qf ({n > K}nT°(t,K)) <QIF)+Qf |1r >, D f(V(w)]|,
ke(r,m—K,r;"] w€0k
with f(y) := Py(Jv : 75 (v) < 777 (v) = Jv|) = P(Fv : 77, (v) < 737, (v) = |v]) [we mention
that f(y) = 0 if y > t]. For any y < t, by the branching property at 7_,(v), f(y) <

sup,<_, P, (Ju: Ttty(u) < 00) =P(FJu: 7 (u) < o) :=n(t) which converges to 0 since the

(non-killed) branching random walk V' goes to —oo. Therefore,

Qf ({n" > K}nT°(t,K)) < QF(F)+n)QF |1r D #Uy

kE(T:r—K,T:r]

Consider an arbitrary ¢ > 0. By Lemma M (ii), (STj - ST;L—i’ 1 <i < K) converges in
law, hence there exists some A = A\(¢, K') > 0 such that for all large ¢ (in particular, t > 4\),

Qf(F) =qQf ({Tt+ >Kin m {Sk>t—)\, |Sk — Sk—1] <)\}) >1-—c¢,

kG(Tt -K T;r]
with obvious definition of the event Fj. Let C' > 0 and define
Fg::Flﬂ{Vke( ~ K7 #ngc}.

Hence for all sufficiently large ¢, Qf (7,7 < K) < e and

QF (M(t,K) < 26+ QIFNF)+nt)Qf |1n, Y. #Us
kE(Tj—K,T;r}
(8.36) < 26+ Qf(FLNEY) +CKn(t),

with n(t) — 0 as t — co. By ([3)) and (I4]), we can find a sufficiently small 6 > 0 such that
Q[(#U1)°] = E[(v —1)° > ju=1 €° Viu ] := ¢ < 00. Observe that

Q (FNFs) < C°Qf {1& > <#Uk>5]

kG(T;L—K,T;L}

IN

-0 s
C ZQ;{ |:]~{‘Sk—sk,1‘S)\,Sk,1>t—)\,7't+2k} (#0k) ]

k>1

—0
= ZQZ' |:— {|Sk—Sk—1|<A\,Sk_1>t— )\k<7’ AT Y (#Uk) :|

k>1

-8 R(t + )\ )
= Z |:1{Sk—1>t—)\,k§q—t+/\q—(;} (#Uk) ] ,
k>1

since R is non-decreasing and Sy < t+ \. By Corollary [l (i), under Q,,, #Uy, is independent
of {Sr_1 >t— ANk < 7" A7y} and has the same law as #U;; moreover Q,[(#01)°] =
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Q[(#U1)%] =: ¢ < co. Using the fact that R(t 4+ \) < 2R(t — \) for all large ¢, we have

. R(t + )\
Qf (FiNF;5) < - Z [1{sk,1>t—>\,kgﬁmg}}
k>1
5 (Sk-1)
< 2cC™ ZQSL‘ |: (x) 1{Sk1>t—)\,k<'rt+/\'ro}:|
k>1
"
= 2C 0_5 Q;_ Z 1{Sk71>t_)\}
k=1

Observe that QF [EZ’; 1{Sk71>t_)\}] < Qf [ Z’il eg(skfl_(t_m] which by (B33) is
smaller than some constant ¢ = ¢(\, x) < oco. Going back to (836]), we get that
Qf (I°(t,K)) < 26 +2¢C7° + C K n(t).
Letting t — 0o, C' — oo and then € — 0 (4 being fixed), we prove Lemma [T0l O

Proof of Lemma [I1t Firstly, note that there is nothing to prove in the subcritical case
[since Z(t) = 1 by (54)]. It remains to consider the critical case, thus ¢ = p. and Z(t) =t
for all ¢ > 0. For notational convenience, write

m(®

A = exp{ f(to) 1J1 K Z 14 K Z _il_’i)to_xu)>}’
g J

K m®

Bom et S el o)
=1 j=1
K m®
o oxt g*z—(%J
D ) o) TS SR
=1 j=

Then

gomK<t0,sl,...,sK,Q(l),...,H(K)> = E[ A },

Poo, K <t07317"'73K70(1)7"'79(K)> = E|:
Since f >0, A <1, and we get that
D
“Pt,K (to,sl,... ,SK,H(l),... ,H(K)) — Poo,K <t0,81,... ,SK,Q(l),... ,9(K > ‘ < E[B2}
We are going to prove that

D 1
ﬁ S a, a.s.
Indeed, notice firstly that the non-killed branching random walk V' goes to —oo, ,u(i’j ) o (d2)

—to— T;
is an a.s. finite measure on R, and tge2*t0 < iezé’*to for any to > 0. Secondly, let C” =
sup{a > 0: faoo (Z’]) Z)(dz) > 0}. Note that ¢; ; < —eQ*CH < 1 feg*z_(w) o (d2).

—to— si—to— Z‘J

It follows that [ ze® * Tz Z_(Z’]) o (dz) < Gy feg*z_(m) »(dz) < (feg*z_(w) (dz))z.

s—to xj si—to— xj si—to— xj
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Hence
K m® B2
Dt S (fert il o) <
O« =1 j=1 Sl_to x O«
yielding that ‘&t,K(TtJF, S%t), e ,Sé?) — Poo i (T}, S(t), . ,Sé?)‘ < % and proving Lemma
1o O

Proof of Lemma We prove the following stronger statement: For any K > 1,
. ~ t t
tliglo Q;_ [QDOO,K(T?_’ Sg )7 cee 7‘51&{))1{7—+>K}]

exp{—f(US&>1@1,K—zz114;{2 RSNy

s —US§;—X®
®37) = Q e i) 1 : :
e "+Zz12 Fs vs. X(z>( 2)
which implies Lemma [12] by letting K — co. Define
. — : - ) <4<
£Li(s,0) in (s; —log #(9)) , 1<i<K,
()
Alto,s,0) = eXP{ — fto)1i£1(s,0)>t0} — Z Liri(s,0)>t0} Z [ _S’ito L )>}7
j=1 !
K m®
B(to,s,0) = e+ Z; Z;/egz_sz’ito o 5 (dz),
i=1j

for s := (s1,...,8K), 0 := (01, ...,0K), with 0; = ZT:(ZI) 5{90(1-)}, 1 <i < K. Denote by O(s) a
j

random variable taking values in Q?K with law Hfil By, (d0D). Then [recalling sq := 0]

K
SZoo,K (to,S) = / [A i(())’Z Z :| H»—‘sl—sl 1 d@
’ i=1

Alto,s, O(s)) .
E[m] (to,s) € R%. x RE.

Plainly the function ¢ i is bounded by 1. Therefore Lemma [I2 will be a consequence
of Lemma Ml if we have checked that for any fixed s € ]Rff , the function ty — Qoo i (t0,s) is
continuous excepted from a set at most countable.

To this end, we study at first the continuity of y — (f, 7y () ) which are ii.d. copies
of (f,71,). Recall that (f,7,) = Zue% f(V(u) —y) for any ﬁxed y > 0. Let us consider
7, (u) == inf{k : V(ug) > t} and define the associated optional line %, just like (7). By
the definition of the stopping line ¢, and the continuity of f, we immediately obtain
(838) hglsup |<f7 ﬁyk> <f7 My | < f Z 1{~+ lul,V(uw)=y} — f(O) Z 1{V(u):y}7

—00 we?,
for any sequence (yx)g, such that yr — y when k& — oo. On the other hand, Corollary [
(ii) also holds for this family of optional lines by replacing n by 7, . Then we take the
expectation (under P) in (R38]) and obtain that

(5.39) imsup (£,75,) = (7)1 < FO) Qs =)

k—o00
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where 7,7 := inf{n > 0 : S, > y}. Denoting as before by (Hy)n>1 the (strict) ascending
ladder heights of S, we remark that

A= {y : Q(S;J =y) > 0} C G {y Q(Hy, =y) > 0} is countable.

Then by 839), y — (f,,) is continuous (in L' hence a fortiori in probability) on y & Aj.
The same holds for y — (f, 7y () ) with any 4,7 > 1. Now we write explicitly ©(s) by

a random vector ©(s) = (91,...,9 ) with 6; := zjj‘/i(li) 5{X(i)}
j

variables £;(s,0), 1 < i < K [The random variables M () take values in N, X ]@ in R, and
£i(s,0) in RU {oo}]. Observe that all the following three events are countable:

and the associated random

K
Ay = U {x : P(:E:Xj(-i), for some 1 < j < M(i)) > 0},
i=1

Ag = U{x P:z:— (s,@))>0},

Ay = AgUU{si—x—y:xEAg,yeAl}.
i=1

We claim that ¢ k (to,s) is continuous on ty & A4. To check this, we fix tg ¢ Az and

take a sequence t,, — tp as n — oco. Let

o MO

E:=] U (X € si—to — M} U{£i(s,0) = to}.

=1 j=1
Since tg & A4, we deduce from the definition of Ay that P(E) = 0. Observe that on E°,
s; —to — X](-Z) ¢ Ay and tg # £(s,0), hence A(t,,s,0)1gc — A(to,s,0)1ge in probability. In
other words, A(t,,s,0) — A(to,s, ) in probability and the same holds for B(t,,s,f). By
the dominated convergence theorem, when n — oo,
A(tn,S,Q(S))] [A(to,S,@(S))

Yoo, K (tns S) = E[B(tn,s, O(s)) B(tp,s,0(s))

= QOOO,K (t07 S) )

proving the desired continuity at any ¢y € A3. Then we can apply Lemma [ and get Lemma
112 O

8.5. Proof of Lemma Throughout the proof, 6 > 0 is taken to be sufficiently small.

Proof of (i): Let us write f(z) := —logEe™*"t for x > 0; By Tauberian theorem,
x
f(l') ~ m, xz — 0.

Let A, := {maxj<;<¢ Y; < :1:‘“'%} (maxy = 0). Then for z > 0,

3
IP(A;) < sz(lﬂi)(l—%)yil—i-é — (D=3 — o(z' /%), z 0,
i=1
since ¢ > 0 is small. By independence of (I';), we have

(8.40) E[e—fzzilmi] :E[e—zzil D]~ Eexp |- 3 f@Yi)la, | +o(a'+).

s.
I Mm
5
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Define ¢
log(1/2)
T, = —t Yi)la., O 1.
. Zf(fl? )14, <z<

Plainly as ¢ — 0, T, — a2§:1 Y; almost surely. Notice that on A, zY; < 29/2, which
together with the asymptotic of f implies that for all 0 < z < x¢ with z( sufficiently small,

zY; 4a zY;
f(zY;) < 2075571 75vy) S 5 ey for all 1 <@ < & Hence

3
e Tl B

X

By the dominated convergence theorem,

M (1—Eexp f

= fav)

X
i=1

3
Aq ) — aE) Y,
=1

This and (8.40Q) yield that as x — 0, w <1 —-E |:€_xzz§=1 szz]) — aIEZf:l Y; which

implies (i) by Tauberian theorem.

Proof of (ii): Define W := Zle Y; and let A > 1 and 0 < £ < a/2. By conditioning on
(Yi)1<i<e¢ and using the tail of I';, we have that for large ¢,

¢
P(; YT >t) > ]P’( max (Y;T;) > t, W < )\)

1<i<g
> ELren(1- f[l(l - (a_ti;)yg’))}
> (a—2)E [1{WS>\} i Yf} e,
which implies that -
lim inf tPIP< Z Y;T; > t) (a —2)E [1{W9} ZZ;YZP] -

Letting ¢ — 0 and then A — oo ylelds the lower bound.

To prove the upper bound, we remark that by considering <Y instead of Y; (with ¢ > 0),
we can assume without loss of generality that almost surely Y >1 (ifi <¢).

By the Markov inequality (0 being small),
(8.41) P(W > t17%/2) < ¢~ A=/ Rpyr+o] — o(t7P),

Let € > 0 be small and define
(8.42)

AR = {1I£l;51<X (YT, < St}, B = {Zg:YZFZ > t}, CrI) = {W < tl_é/z}.
1=1

By conditioning on Y := o{¥;,1 < i < &, &}, we get that

13
]P’(A(m N B(m N C’m) < t_p_‘SIE[lcE[(; YZTZ-)erélA ‘Y}]
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By convexity, (Z§:1 yili)P o < (Z§:1 yi )Pt Z§:1 yinM for any y; = 0. Observe that
by using the tail of T';,

2(p +9)
5

et/yi
E[Ff+51{ri<e_t}] < / (p+ 5):L"p+5_IIP>(I‘Z- > z)dr < (5t/yi)5,
< 0

for all large ¢ and y; < t'79/2. Tt follows that for any 0 < ¢ < 1,
£
(8.43) P(Am N Bz N C’(m) <cpst P LK [WpM_l Z Yil_‘s].
i=1

Since Y; > 1, the above expectation is less than E[WWP*9] which is finite.

Pick up 1 < ¢ < p and p — ¢ < 1/2. Using the Markov inequality and conditioning on Y,
we obtain

]P’({Eligfzat<F,~Yi<(1—6)t}ﬂBmﬂ0m)
< P({3i<&:TYi>et, Y YTy > e} N Cray))

G
[ ¢
—1—
< (et)yE ;mrigiﬁm%
i= J7

< ()TTIE Y YiQ YT QYT leggy,

i=1 ki i

< (et)y " UE[E[NYE [Wquc

|[=ﬂ94| ’

since (35, Y1) < Oy Yk)q_l(zj# Y;T'%) for all i by the convexity inequality and since
B .. . 1+q

the I';’s are i.i.d. and independent from Y. Furthermore, observe that E [W 'wm. <

E [WP+] t(+a=p=0)(1-9/2) ' Therefore, we obtain
IP’({EIZ' < et <IVY; < (1 =)t} N By N C’(m) < g gt P (HaPI/2,
This combined with (841 and (8.43]) yields that, for all large ¢,
P(B(m) < P( max (Y;I;) > (1 —e)t, CdHZb) +dstTPE 4 o(t7P)

1<i<¢

IA

£ P

a+e)Y, _ _

E|: E ﬁl{wgtlé/2}:| +C;/l),5t p€6+0(t p).
=1

It follows that
t—00 (1 — g)p

3 3 P
Y:
limsuptp]P’( E Y, T > t) SE{ E lat ¥ } +C;>,556’
i=1 i=1

where § > 0 is fixed. Letting ¢ — 0 yields the upper bound and completes the proof of the
Lemma. ]
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